Mostrar el registro sencillo del ítem

dc.creatorLa Red Martínez, David Luis
dc.creatorGiovannini, Mirtha
dc.creatorKaranik, Marcelo
dc.date.accessioned2020-05-29T15:06:43Z
dc.date.available2020-05-29T15:06:43Z
dc.date.issued2018-12-01
dc.identifier.issn2315-7704
dc.identifier.urihttp://hdl.handle.net/20.500.12272/4439
dc.description.abstractIt is well known that academic achievement is one of the key aspects in the development of educational activities and it strongly determines the chances of success during and after a university career. It is therefore important to try and effectively monitor students’ performance in order to prevent problems from emerging, as well as, to be able to provide academic coaching when the performance is not adequate. The aforementioned problem-anticipation possibility is closely related to the ability to predict the most probable situation based on concrete information. In an academic achievement framework, it is desirable to be able to predict students’ performance considering concrete individual parameters. This work outlines the results obtained by an academicachievement prediction model based on data mining algorithms which uses socioeconomic information as well as, students’ grades. The tests were carried out at National Technological University, Resistencia Regional Faculty (UTN-FRRe), during the AED-Algoritmos y Estructuras de Datos (Algorithms and Data Structures) class throughout the 2013, 2014, 2015 and 2016 terms. The results obtained confirmed adequate behaviour of the model which has been validated for both description and prediction of academic achievement profiles.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.rights.uriAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.sourceAcademia Journal of Educational Research 6(12), 279-289. (2018)es_ES
dc.subjectacademic achievementes_ES
dc.subjectstudent profileses_ES
dc.subjectdata mininges_ES
dc.subjectmachine learninges_ES
dc.titleAcademic performance profiles : an intelligent predictive model based on data mininges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.affiliationFil: La Red Martínez, David Luis. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Educativa sobre Ingeniería; Argentinaes_ES
dc.description.affiliationFil: Giovannini, Mirta Eve. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Educativa sobre Ingeniería; Argentinaes_ES
dc.description.affiliationFil: Karanik, Marcelo. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Educativa sobre Ingeniería; Argentinaes_ES
dc.description.peerreviewedPeer Reviewedes_ES
dc.relation.projectidDiseño de un modelo predictivo de rendimiento académico mediante la utilización de minería de datos. Director del proyecto: Dr. David L. La Red Martínezes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.rights.useAcceso abiertoes_ES


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess