Mostrar el registro sencillo del ítem
Improving craft beer style classification through physicochemical determination and the application of deep learning techniques
dc.creator | Gómez Pamies, Laura Cecilia | |
dc.creator | Bianchi, María Agostina | |
dc.creator | Farco, Andrea Paola | |
dc.creator | Vázquez, Raimundo Damián | |
dc.creator | Benítez, Elisa Inés | |
dc.date.accessioned | 2024-04-09T12:18:55Z | |
dc.date.available | 2024-04-09T12:18:55Z | |
dc.date.issued | 2024-04-09 | |
dc.identifier.issn | 0101-2061 | |
dc.identifier.issn | 1678-457X (online) | |
dc.identifier.uri | http://hdl.handle.net/20.500.12272/10414 | |
dc.description.abstract | The consumption of craft beer at fairs and festivals is a phenomenon that keeps growing in the world. For this reason, it is important to control the quality characteristics of the different styles. This study aimed to analyze the different styles of beer, classify them according to their physicochemical parameters, and propose a predictive pattern-based model known as deep learning that best defines the styles that are presented at festivals. Physicochemical analyses of final gravity, color, alcohol, bitterness, and α-acids were carried out on eight styles of beer. The first four parameters are those that characterize the styles according to the Beer Judge Certification Program style guide. The incorporation of the α-acid determination allowed a more realistic classification that considers the brewers’ new tendencies. This study will lay the foundations to improve local recipes, implement standardization, and provide training to local brewers | es_ES |
dc.format | plain | es_ES |
dc.language.iso | eng | es_ES |
dc.language.iso | eng | es_ES |
dc.rights | openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.rights.uri | Atribución-NoComercial-CompartirIgual 4.0 Internacional | * |
dc.subject | physicochemical attributes | es_ES |
dc.subject | beer | es_ES |
dc.subject | predictive analysis | es_ES |
dc.title | Improving craft beer style classification through physicochemical determination and the application of deep learning techniques | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.affiliation | Fil: Gómez Pamies, Laura Cecilia. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Centro de Química e Ingeniería Teórica y Experimental; Argentina. Fil: Gómez Pamies, Laura Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. | es_ES |
dc.description.affiliation | Fil: Bianchi, María Agostina. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Centro de Química e Ingeniería Teórica y Experimental; Argentina. Fil: Bianchi, María Agostina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. | es_ES |
dc.description.affiliation | Fil: Farco, Andrea Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina | es_ES |
dc.description.affiliation | Fil: Vázquez, Raimundo Damián. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo Universitario de Automatización; Argentina. | es_ES |
dc.description.affiliation | Fil: Benítez, Elisa Inés. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Centro de Química e Ingeniería Teórica y Experimental; Argentina. Fil: Benítez, Elisa Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina | es_ES |
dc.description.peerreviewed | Peer Reviewed | es_ES |
dc.relation.projectid | PATCARE0008193TC | es_ES |
dc.relation.projectid | Desarrollo de indicadores de calidad higiénica en plantas elaboradoras de cerveza artesanal | es_ES |
dc.type.version | publisherVersion | es_ES |
dc.rights.use | Acceso abierto | es_ES |
dc.identifier.doi | https://doi.org/10.5327/fst.00071 |