Mostrar el registro sencillo del ítem

dc.creatorLezcano Airaldi, Luis
dc.creatorGramajo, Sergio
dc.creatorScappini, Reinaldo
dc.creatorBolatti, Diego
dc.date.accessioned2024-03-23T13:43:50Z
dc.date.available2024-03-23T13:43:50Z
dc.date.issued2021-08-13
dc.identifier.citationL. L. Airaldi, R. J. R. Scappini, S. Gramajo and D. Bolatti, "Congestion Control Proposal in SDN With Random Early Detection," 2020 IEEE Congreso Bienal de Argentina (ARGENCON), Resistencia, Argentina, 2020, pp. 1-5, doi: 10.1109/ARGENCON49523.2020.9505361.es_ES
dc.identifier.isbn978-1-7281-5957-7
dc.identifier.urihttp://hdl.handle.net/20.500.12272/10019
dc.description.abstractThe emerging technology of SDN (Software Defined Networks) separates the data control plane from the forwarding plane while maintaining a centralized control of the network management. The SDN features require new traffic engineering techniques that exploit the global (centralized) network view, and the status and features of traffic flows. Our purpose is to perform traffic engineering in an SDN architecture, using the OpenFlow protocol capabilities and the potential of the SDN controller to collect operational data of the entire network, such as topology, latency, buffer utilization and frame sizes of the controlled devices in order to implement QoS. Considering that the performance of the network is an essential component of Quality of Service (QoS), and congestion is the main factor that affects it, this paper explores a method to search for alternative paths based on data from switches using the Random Early Detection (RED) congestion control mechanism.es_ES
dc.description.sponsorshipUniversidad Tecnológica Nacional - SCyTes_ES
dc.description.sponsorshipUniversidad Tecnologica Nacional - Facultad Regional Resistenciaes_ES
dc.formatpdfes_ES
dc.language.isoenges_ES
dc.language.isoenges_ES
dc.rightsembargoedAccesses_ES
dc.subjectSDNes_ES
dc.subjectQoSes_ES
dc.subjectCongestion Controles_ES
dc.subjectREDes_ES
dc.titleCongestion control proposal in SDN with random early detectiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder-es_ES
dc.description.affiliationLezcano Airaldi, Luis. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Centro de Investigación Aplicada en Tecnologías de la Información y Comunicación; Argentina.es_ES
dc.description.affiliationGramajo,Sergio. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Centro de Investigación Aplicada en Tecnologías de la Información y Comunicación; Argentina.es_ES
dc.description.affiliationScappini, Reinaldo. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Centro de Investigación Aplicada en Tecnologías de la Información y Comunicación; Argentina.es_ES
dc.description.affiliationBolatti, Diego. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Centro de Investigación Aplicada en Tecnologías de la Información y Comunicación; Argentina.es_ES
dc.description.peerreviewedPeer Reviewedes_ES
dc.relation.projectidCCUTIRE0005353TCes_ES
dc.type.versionpublisherVersiones_ES
dc.relation.referencesJ. W. Guck and W. Kellerer, "Achieving end-to-end real-time Quality of Service with Software Defined Networking," 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet), Luxembourg, Luxembourg, 2014, pp. 70-76, doi: 10.1109/CloudNet.2014.6968971. keywords: {Quality of service;Real-time systems;Mathematical model;Equations;Delays;Access control;Calculus;Software Defined Networking;Openflow;Quality of Service;real-time;priority queueing;access control}es_ES
dc.relation.referencesL. Enhai, L. Yan and P. Ruimin, "An Improved Random Early Detection Algorithm Based on Flow Prediction," 2009 Second International Conference on Intelligent Networks and Intelligent Systems, Tianjian, China, 2009, pp. 425-428, doi: 10.1109/ICINIS.2009.115. keywords: {Detection algorithms;Neural networks;Intelligent networks;Artificial neural networks;Equations;Intelligent systems;Computer science;Control systems;Prediction algorithms;Curve fitting;Active Queue Management;curve fitting;RBFNN;random early detection (RED)}es_ES
dc.relation.referencesA. A. Barakabitze et al., "QoE Management of Multimedia Streaming Services in Future Networks: A Tutorial and Survey," in IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 526-565, Firstquarter 2020, doi: 10.1109/COMST.2019.2958784. keywords: {Quality of experience;Streaming media;Videos;Tutorials;Optimization;Cloud computing;Adaptation models;Surveys;QoE;network management;OTT;ISP;5G;SDN;NFV;OTT and ISP collaboration}es_ES
dc.relation.referencesZ. Cheng, X. Zhang, Y. Li, S. Yu, R. Lin and L. He, "Congestion-aware local reroute for fast failure recovery in software-defined networks," in Journal of Optical Communications and Networking, vol. 9, no. 11, pp. 934-944, Nov. 2017, doi: 10.1364/JOCN.9.000934. keywords: {Optical switches;Optical fiber networks;Resilience;Emulation;Heuristic algorithms;Algorithm design and analysis;Congestion avoidance;Fast reroute;Openflow;SDN}es_ES
dc.relation.referencesT. Hafeez, N. Ahmed, B. Ahmed and A. W. Malik, "Detection and Mitigation of Congestion in SDN Enabled Data Center Networks: A Survey," in IEEE Access, vol. 6, pp. 1730-1740, 2018, doi: 10.1109/ACCESS.2017.2780122. keywords: {Servers;Control systems;Protocols;Mice;Receivers;Throughput;TCP congestion control;incast solutions;data center;SDN}es_ES
dc.relation.referencesYifei Lu and Shuhong Zhu, "SDN-based TCP congestion control in data center networks," 2015 IEEE 34th International Performance Computing and Communications Conference (IPCCC), Nanjing, 2015, pp. 1-7, doi: 10.1109/PCCC.2015.7410275. keywords: {Switches;Receivers;Ports (Computers);Protocols;Throughput;Packet loss;Data center networks;TCP;Incast;Congestion control;SDN}es_ES
dc.relation.referencesJ. Bao, J. Wang, Q. Qi and J. Liao, "ECTCP: An Explicit Centralized Congestion Avoidance for TCP in SDN-based Data Center," 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 2018, pp. 00347-00353, doi: 10.1109/ISCC.2018.8538608. keywords: {Computers;Centralized Control;congestion Control;datacenter Networks;sDN;tCP}es_ES
dc.relation.referencesS. N. Hertiana, A. Kurniawan, Hendrawan and U. S. Pasaribu, "Path associativity centralized explicit congestion control (PACEC) for SDN," 2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCREC), Yogyakarta, Indonesia, 2017, pp. 18-23, doi: 10.1109/ICCEREC.2017.8226679. keywords: {Switches;Protocols;Internet;Bandwidth;Centralized control;Renewable energy sources;congestion control;SDN;PACEC}es_ES
dc.relation.referencesJ. Gruen, M. Karl and T. Herfet, "Network supported congestion avoidance in software-defined networks," 2013 19th IEEE International Conference on Networks (ICON), Singapore, 2013, pp. 1-6, doi: 10.1109/ICON.2013.6781970. keywords: {Subscriptions;Reliability;Protocols;IP networks;Streaming media;Optimization;Resource management;Congestion Avoidance;Rate Control;Software-Defined Networking}es_ES
dc.relation.referencesM. -T. Kao, B. -X. Huang, S. -J. Kao and H. -W. Tseng, "An Effective Routing Mechanism for Link Congestion Avoidance in Software-Defined Networking," 2016 International Computer Symposium (ICS), Chiayi, Taiwan, 2016, pp. 154-158, doi: 10.1109/ICS.2016.0039. keywords: {Bandwidth;Monitoring;Topology;Network topology;Packet loss;Ports (Computers);Software-Defined Networking;link congestion;traffic rerouting}es_ES
dc.relation.referencesS. Song, J. Lee, K. Son, H. Jung and J. Lee, "A congestion avoidance algorithm in SDN environment," 2016 International Conference on Information Networking (ICOIN), Kota Kinabalu, Malaysia, 2016, pp. 420-423, doi: 10.1109/ICOIN.2016.7427148. keywords: {Throughput;Control systems;Protocols;Hardware;Ports (Computers);Network topology;Topology;TCP congestion;SDN Controller;congestion avoidance algorithm;utilization}es_ES
dc.relation.referencesZ. N. Abdullah, I. Ahmad and I. Hussain, "Segment Routing in Software Defined Networks: A Survey," in IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 464-486, Firstquarter 2019, doi: 10.1109/COMST.2018.2869754. keywords: {Routing;Network topology;Multiprotocol label switching;Topology;Scalability;Tutorials;Segment routing (SR);software defined networks (SDN);controller;control plane;data plane;traffic engineering (TE);network monitoring}es_ES
dc.relation.referencesS. Sezer et al., "Are we ready for SDN? Implementation challenges for software-defined networks," in IEEE Communications Magazine, vol. 51, no. 7, pp. 36-43, July 2013, doi: 10.1109/MCOM.2013.6553676. keywords: {Cloud computing;Data centers;Network security;Routing;Switches;Quality of service}es_ES
dc.relation.referencesS. Floyd and V. Jacobson, "Random early detection gateways for congestion avoidance," in IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397-413, Aug. 1993, doi: 10.1109/90.251892. keywords: {Transport protocols;Delay effects;Throughput;Propagation delay;Bandwidth;TCPIP;Traffic control;High-speed networks;Feedback;Delay estimation}es_ES
dc.rights.use-es_ES
dc.identifier.doi10.1109/ARGENCON49523.2020.9505361
dc.relation.isreferencedbyDong Yang, Wei-Tek Tsai, "SDN-Based Congestion Control and Bandwidth Allocation Scheme in 5G Networks", Sensors, vol.24, no.3, pp.749, 2024.es_ES
dc.creator.orcid-es_ES
dc.creator.orcid-es_ES
dc.creator.orcid-es_ES
dc.creator.orcid-es_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem