

ASIGNATOR	IN TROTECTO TIMAL	
TRABAJO PI	RÁCTICO: Máquina Unica - Introduco	ion
TÍTULO: Cal	dera de recuperación de ciclo combin	ado de tres presiones.
PROFESOR:	Ing. Trejo Ponce, Federico Gastón	
JEFE DE TRA	ABAJOS PRÁCTICOS: Ing. Babez, Fe	ernando
AYUDANTE	AD HONOREN: Ing. Sznajderman, Jo	orge Ricardo
ALUMNOS:	Mastronardi, Federico Silva, Maximiliano	CURSO:

ESPECIALIDAD: INGENIERÍA MECÁNICA GRUPO: -

Fecha de realización: 2020

ASTGNATURA: PROVECTO FINAL

Firma y Aprobación del trabajo:

Songini, Esteban Schneider, Natalia

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

INTRODUCCIÓN PROYECTO FINAL MAQUINA ÚNICA

INDICE

1.	DE:	SCRIPCIÓN	3
2.	DE	SARROLLO DEL CICLO COMBINADO	6
	2.1	Propiedades del Vapor Generado en la Caldera de Recuperación	6
	2.2	Parámetros	6
	2.3	Diagrama de la Instalación	7
	2.4	Diagrama T-S	8
	2.5	Irreversibilidades en el Ciclo	11
	2.6	Rendimientos del Ciclo	12
	2.7	Propiedades de los Humos	13
	2.8	Característica de la Turbina de Vapor	13
3.	DE:	SARROLLO DE LA CALDERA DE RECUPERACIÓN (HRSG)	14
	3.1.	Descripción	14
	3.2.	Consideraciones de Diseño	16
	3.3.	Dimensionamiento Térmico	20
	3.4.	Determinación de los Coeficientes de Transmisión	22
	3.5.	Determinación de los Paquetes de Tubos	27
	3.6.	Determinación del agua en spray para los Atemperadores	29
	3.7.	Cálculo del Rendimiento	30
	3.8.	Cálculo Mecánico de partes Sometidas a Presión	34
4.	СО	NCLUSIÓNES	

Revisión: 02 Fecha: 01/08/2020 Página 2/11

X

UNIVERSIDAD TECNOLÓGICA NACIONA - FACULTAD REGIONAL AVELLANEDA

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

1. DESCRIPCIÓN

Una caldera es un dispositivo que está diseñado para generar vapor saturado. Este vapor saturado se genera a través de una transferencia de energía (en forma de calor) en la cual el fluido, originalmente en estado líquido, se calienta y cambia de estado. La transferencia de calor se efectúa mediante un proceso de combustión que ocurre en el interior de la caldera, elevando progresivamente su presión y temperatura. La presión no puede aumentar de manera desmesurada, ya que debe permanecer constante.

Debido a que la presión del vapor generado dentro de las calderas es muy grande, estas están construidas con metales resistentes.

1.1. Parámetros característicos de los Generadores de Vapor

Cuando una caldera se utiliza para producir vapor, se la puede llamar generador de vapor.

Los parámetros más importantes que definen las características de un generador de vapor de recuperación son los siguientes:

Presión efectiva

En la práctica se suelen clasificar en:

Baja presión: p< 20 kg /cm2

Media presión: 20 kg/cm2 <p< 64 kg/cm2

Alta presión: p>64 kg/cm2

Capacidad

Se suele medir por el caudal de vapor (toneladas por hora, tn/h) producido a una presión y temperatura determinadas, para una temperatura dada del agua de alimentación de la caldera. A veces se indica por la potencia térmica aprovechada o del combustible.

Superficie de calefacción

Es la superficie a través de la cual tienen lugar los procesos de transmisión de calor (gases calientes-agua/vapor).

Puede dividirse en:

- Superficie de transmisión directa: en ella es dominante la transmisión de calor por radiación.
- Superficie de transmisión indirecta: en ella es dominante la transmisión de calor por convección.

Revisión: 02 Fecha: 01/08/2020 Página 3/11

米

UNIVERSIDAD TECNOLÓGICA NACIONA - FACULTAD REGIONAL AVELLANEDA

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

La superficie de calefacción está limitada en cuanto a sus dimensiones por los siguientes factores:

- Los gases de combustión no deben enfriarse por debajo de su punto de rocío ácido a fin de evitar condensaciones que faciliten la corrosión (en combustibles con contenido de azufre significativo, como carbón o fuel esta temperatura está en el entorno de 140 °C, mientras que en las calderas de gas natural esta temperatura es de 50-60 °C)
- Un enfriamiento excesivo de los gases calientes conlleva una pérdida de tiro en el caso de calderas de tiro natural, debiéndose de introducir un mecanismo de tiro forzado.
- Una vez que los gases calientes se enfrían por debajo de cierta temperatura un aumento de superficie de transmisión es poco rentable pues la cantidad de calor disponible es muy pequeña (la transferencia de calor está en relación directa con el salto térmico).

Producción específica de vapor

Es la relación entre la producción de vapor y la superficie de calefacción.

Índice de vaporización

Es la masa de vapor producida por unidad de masa de combustible utilizado para su producción (depende del rendimiento basado en el PCI del combustible utilizado). El índice de vaporización es el inverso del consumo específico de combustible, definido como la masa de combustible que utiliza la caldera para producir una unidad de masa de vapor, en las condiciones nominales de trabajo (presión y temperatura del vapor determinadas y una temperatura del agua de alimentación dada).

1.2. Clasificación de las Calderas

Las partes fundamentales de una caldera son:

- Cámara de combustión u hogar, donde se realiza la combustión
- Cuerpos de intercambio, donde se transfiere el calor de los gases calientes al fluido que transporta el calor o caloportador.
- Quemadores
- Envolvente o carcasa que aísla el cuerpo intercambiador del exterior.
- Conjunto de elementos auxiliares y de control de la caldera

Las calderas pueden ir dotadas de los siguientes componentes externos o no al cuerpo de la misma:

- Economizador: Intercambiador de calor que precalienta el agua de entrada a la caldera, tomando calor de los humos o gases de escape.
- Recuperadores o regeneradores de calor: Intercambiadores de calor, que precalientan el aire de entrada a la cámara de combustión a partir de los gases de escape.

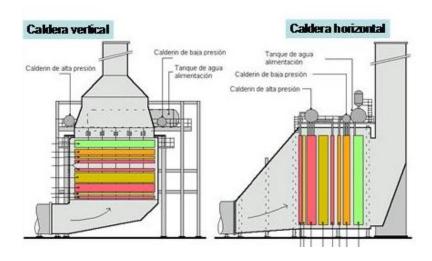
Las calderas o generadores de vapor que producen vapor sobrecalentado, (que es utilizado en la mayoría de las turbinas de vapor) llevan incorporadas a la misma un sobrecalentador o cambiador de calor que genera el vapor sobrecalentado a partir del vapor saturado producido en el vaporizador de la caldera.

Revisión: 02 Fecha: 01/08/2020 Página 4/11

*

UNIVERSIDAD TECNOLÓGICA NACIONA - FACULTAD REGIONAL AVELLANEDA

INGENIERÍA MECÁNICA


PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

Las calderas pueden clasificarse atendiendo a distintos conceptos:

- Por la fuente de energía utilizada
 - Calderas de combustión, en las que el calor proviene directamente de la combustión de un combustible.
 - Calderas de recuperación, en las que el calor procede de un fluido a alta temperatura (gases calientes).
 - Calderas mixtas. En el caso de estar situadas en el escape de turbinas de gas, algunas calderas suelen incorporar también un quemador, con lo que son simultáneamente de recuperación y combustión.
- Por el fluido calo portador
 - o Calderas de agua caliente.
 - Calderas de agua sobrecalentada
 - Calderas de fluidos térmicos.
 - Calderas o generadores de aire caliente.
 - Calderas de vapor
- Dentro de los generadores de vapor se distinguen
 - Calderas de vapor saturado
 - Calderas de vapor sobrecalentado
 - Por el material constructivo:
 - Calderas de fundición
 - Calderas de acero
- Por el tipo de tiro
 - Tiro natural (hogar en depresión).
 - Tiro forzado (cámara de combustión presurizada).
- Por el tipo de circulación
 - Circulación natural
 - Circulación forzada
- Por su disposición
 - Horizontales. La dirección del flujo de gases es horizontal y los haces tubulares se disponen transversalmente, es decir, son verticales.
 - Verticales. La dirección del flujo de gases es vertical, mientras que los haces tubulares se disponen transversalmente, es decir, son horizontales o inclinados.

Revisión: 02 Fecha: 01/08/2020 Página 5/11

*

UNIVERSIDAD TECNOLÓGICA NACIONA - FACULTAD REGIONAL AVELLANEDA

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

2. DESARROLLO DEL CICLO COMBINADO

2.1 Propiedades del Vapor Generado en la Caldera de Recuperación

Alta presión:

• Producción Vapor AP: 82,378 kg/seg cada una

Presión de vapor AP: 116,5 Bar
Temperatura Vapor AP: 570 °C

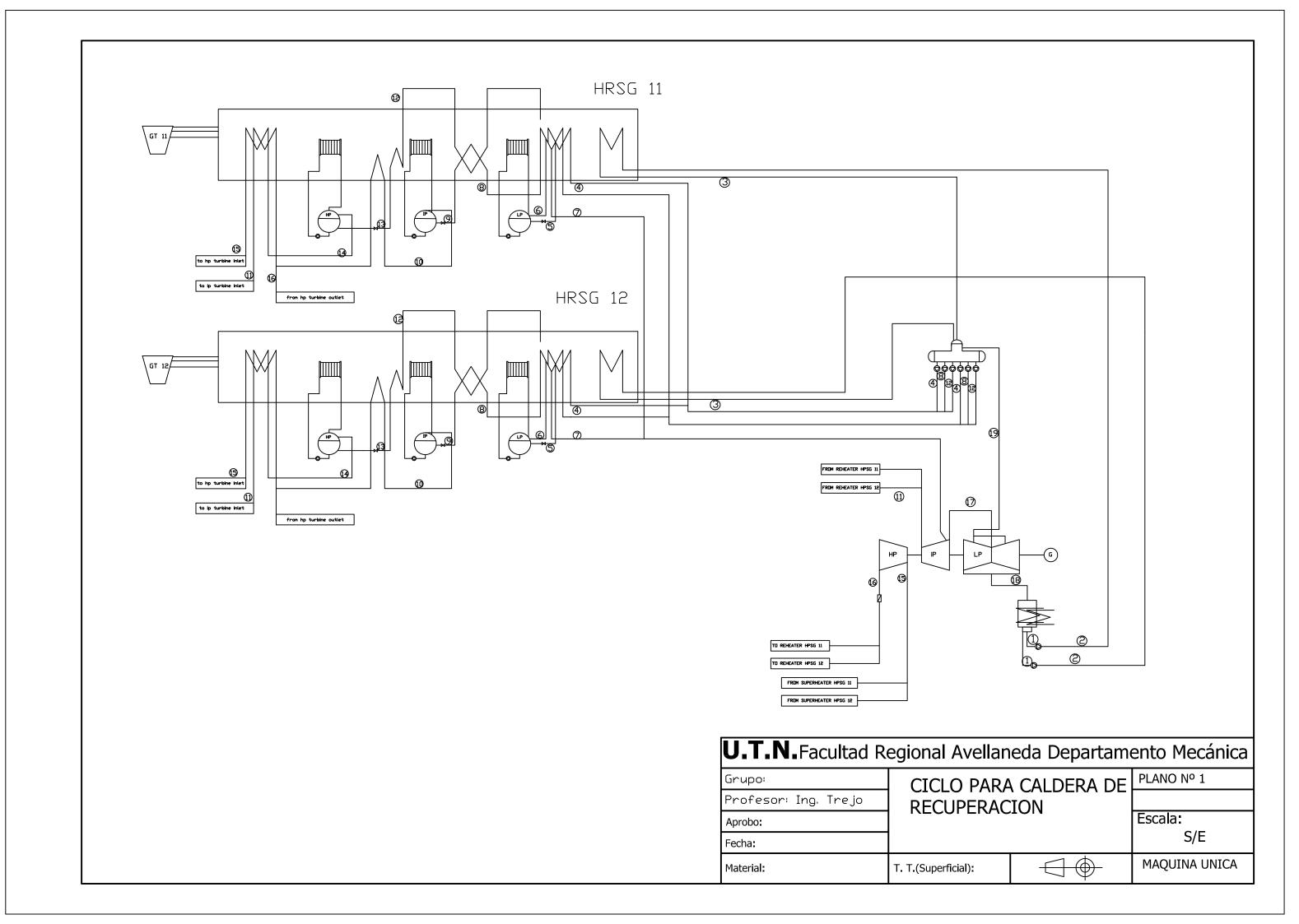
Media presión:

• Producción Vapor MP: 91,096 kg/seg cada una

Presión de vapor MP: 27,2 BarTemperatura Vapor MP: 570 °C

Baja presión:

• Producción Vapor BP: 8,463 kg/seg cada una

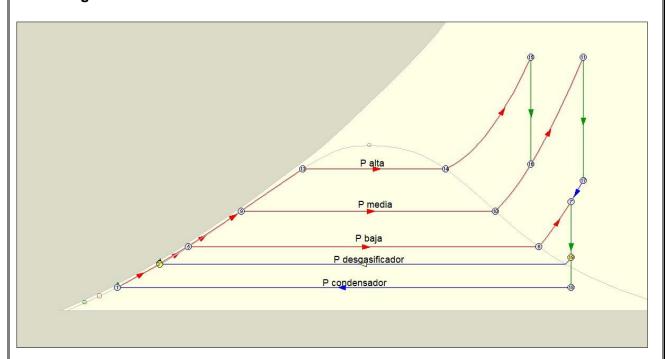

Presión de vapor BP: 4,7 Bar
Temperatura Vapor BP: 149,49 °C

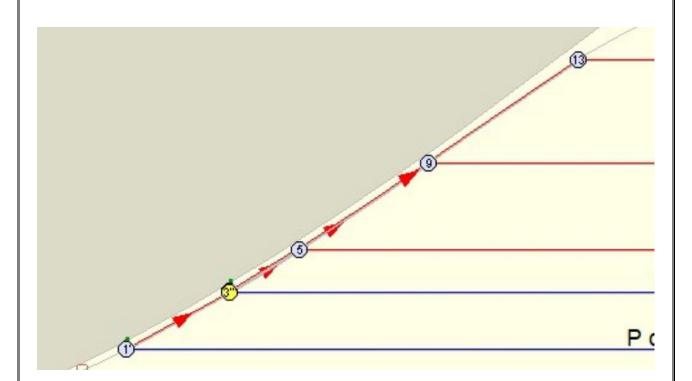
A continuación, se presenta en un cuadro los parámetros de cada estado correspondiente al ciclo descripto en el plano adjunto.

2.2 Parámetros

Ν°	Presión (BAR)	Temperatura (°C)	Entalpia (KJ/Kg)	Entropía (KJ/kg*c)	Energía interna (KJ/Kg)	Título
1	0,1961	59,6	250,18	0,8228	250,16	0
2	1,5	59,6	250,312	0,8228	250,16	-
3	1,5	111,32	467,179	1,4346	467,337	0
4	4,7	111,35	467,674	1,4346	467,179	-
5	4,7	149,49	629,785	1,836	629,272	0
6	4,7	149,49	2744,93	6,841	25,5818	1
7	4,7	250	2960,88	7,30026	2723,44	-
8	27,2	111,56	470,042	1,4346	467,179	-
9	27,2	228,482	983,545	2,5974	980,266	0
10	27,2	228,482	2802,8	6,2241	2602,79	1
11	27,2	570	3615,87	7,4759	3232,48	-
12	116,5	112,4	479,415	1,4346	467,18	-
13	116,5	322,45	1477,3	3,4742	1459,66	0
14	116,5	322,456	2690,96	5,5119	2518,24	1
15	116,5	570	3534,4	6,7306	3170,73	-
16	27,2	333,123	3081,14	6,7306	2817,08	-
17	4,7	250	2960,88	7,30026	2723,44	-
18	0,1961	59,59	2403,68	7,30026	2264,3	0,9133
19	1,5	126,085	2723,09	7,3002	2541,93	-

Revisión: 02 Fecha: 01/08/2020 Página 6/11


INGENIERÍA MECÁNICA

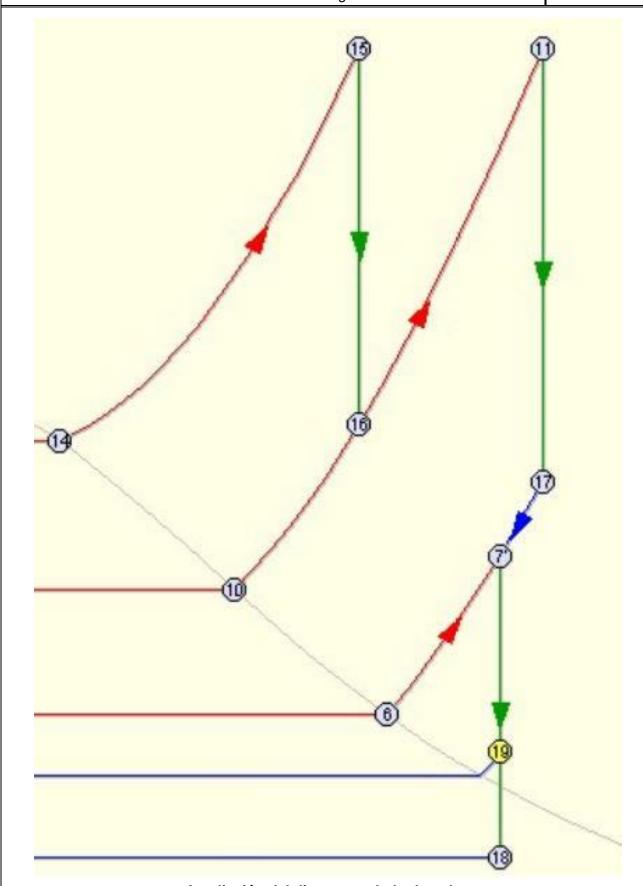

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

2.4 Diagrama T-S

Ampliación del diagrama – lado izquierdo.


Revisión: 02 Fecha: 01/08/2020 Página 8/11

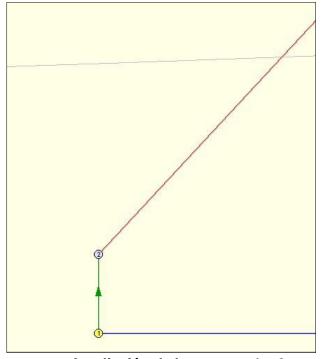
INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

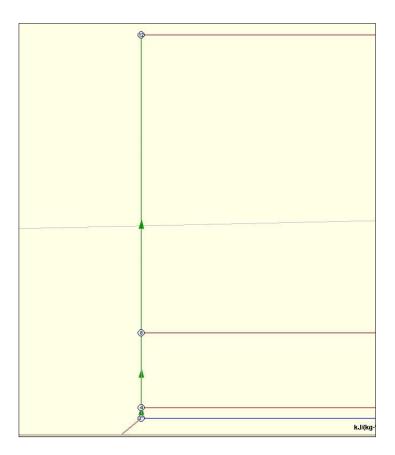
Alumnos: Mastronardi - Silva - Songini - Schneider Curso: 5°1

Ampliación del diagrama – lado derecho.

Revisión: 02 Fecha: 01/08/2020 Página 9/11



INGENIERÍA MECÁNICA


PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

Ampliación de los puntos 1 y 2.

Ampliación de los puntos 3 - 4 - 8 - 12.

Revisión: 02 Fecha: 01/08/2020 Página 10/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

2.5 Irreversibilidades en el Ciclo

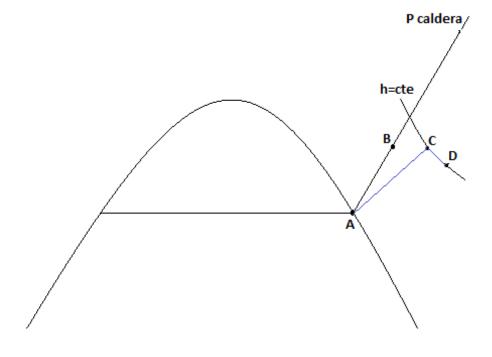
En el ciclo teórico presentado anteriormente para obtener el ciclo real se debe consideran cuatro irreversibilidades en diversos componentes. La fricción del fluido y las pérdidas de calor indeseables hacia los alrededores son las dos fuentes más comunes de irreversibilidades.

De las cuales dos son propias de las transformaciones no adiabáticas en la realidad (bomba y turbina) y las otras dos se producen por pérdida de carga en la serpentina del sobrecalentador y en la válvula de admisión de la turbina.

Irreversibilidades debido a transformaciones no adiabáticas:

- Irreversibilidad de la bomba
- Irreversibilidad de la turbina

Irreversibilidades debidas a pérdidas de carga:


- Irreversibilidad del sobrecalentador
- Irreversibilidad de la válvula de admisión

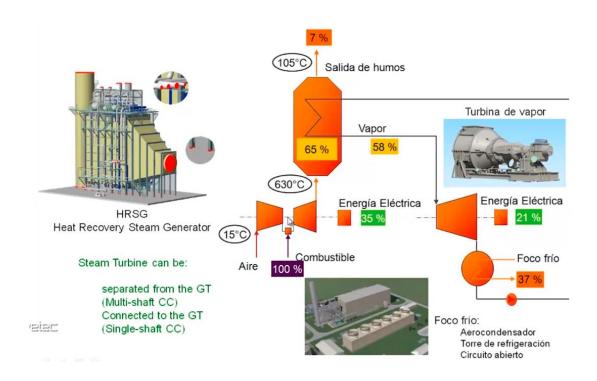
Desarrollo de las irreversibilidades en nuestro ciclo:

Se considera que, a la salida de los domos, la perdida de carga del sobrecalentador es el 10% de la presión de la caldera. Sumado un 5% de perdida generada por la válvula que regula el vapor en la entrada de la turbina. Con lo cual en vez de los estados 15, 11 y 17 se tienen los estados 15′, 11′ y 17′.

Visualizamos lo mencionado:

- Los estados anteriores 14, 10 y 6 corresponde al punto A
- Los estados 15, 11 y 17 corresponde al punto B
- El punto intermedio entre el sobrecalentador y la caldera corresponde al punto C
- Los estados 15´, 11´ y 17´ corresponden al punto D

Revisión: 02 Fecha: 01/08/2020 Página 11/11


INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

2.6 Rendimientos del Ciclo

La Turbina de Gas (nuestro ciclo consta de dos TG) tiene una entrada de aire y otra de combustible, por media de la cual se producirá una transformación de la energía contenida en el combustible para transformarla en energía mecánica rotativa y transferirla a un generador, para producir energía eléctrica, la mayor parte de esa energía térmica liberada en la combustión saldrá en los humos de escape. Estos humos que ingresarán la caldera de recuperación y en ella se producirá vapor sobrecalentado que ingresará a la turbina de vapor, finalmente convertirá esta energía potencial del vapor en energía mecánica rotativa y se transferirá a un generador, para lograr obtener energía eléctrica.

- Se suministra un 100% de energía en el combustible.
- El 35% se convierte en energía eléctrica (del gas).
- El 7% se pierde por la chimenea, pérdidas que no se pueden evitar.
- El 21% se convierte en energía eléctrica (del vapor).
- Finalmente, el 37% se evacua a la atmósfera, a través de una torre de refrigeración del ciclo abierto.

Alta eficiencia: 57-58% rendimiento neto.

Revisión: 02 Fecha: 01/08/2020 Página 12/11

*

UNIVERSIDAD TECNOLÓGICA NACIONA - FACULTAD REGIONAL AVELLANEDA

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

2.7 Propiedades de los Humos

Los combustibles utilizados en nuestro caso serán 2, uno principal y otro sustituto.

El principal es Gas natural, pero como sabemos hay épocas en las cuales la demanda en la región del mismo es superior a la que puede proveer la empresa distribuidora y el suministro puede exceder lo establecido por contrato. Por lo cual nosotros disponemos de otro combustible, Fuel Oil, el cual necesitamos tener almacenado.

Los poderes caloríficos de los mismos son diferentes, por lo tanto, la composición de los humos a la salida de la turbina de gas serán diferentes según el combustible. Estos humos entran a la caldera de recuperación, los cuales están detallados a continuación:

Composición de los humos con Gas natural:

Compuesto	Peso (%)
Co2	5.818
N2	73.4787
H20	5.218
O2	14.2585
Ar	1.2288
Temperatura	581.3

Perdida de Calor 0.49 MJ/s

Composición de los humos con Fuel oíl:

Compuesto	Peso (%)
Co2	8.40
N2	71.2080
H20	6.0316
O2	13.1544
Ar	1.1914
Temperatura	569,0
So2	0.0076

Perdida de Calor 0.42 MJ/s

Los caudales a la salida de la turbina de gas dependerán del combustible utilizado, estos serán los siguientes:

- Caudales de humos de gas 690,942 kg/s
- Caudales de humo de fuel oíl 705,048 kg/s

2.8 Característica de la Turbina de Vapor

- Fabricante ABB
- Potencia Bruta: 288,3 MW
- Etapas: 3 (Alta, media y baja presión Esta ultima de doble flujo)
- Potencia Nominal Neta en bornes del alternador: 288MW

Revisión: 02 Fecha: 01/08/2020 Página 13/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

3. DESARROLLO DE LA CALDERA DE RECUPERACIÓN (HRSG)

3.1. Descripción

3.1.1. Evaporador

Se produce el cambio de fase de agua a vapor. Las calderas emplean tubos de agua expuestos al calor de los gases de combustión, por el interior de los cuales circula el agua a presión. Dichos tubos se encuentran conectados a dos cabezales verticales:

- El cabezal inferior (downcomer) suministra el agua saturada a los tubos.
- En los tubos el agua se evapora y, por convección natural, (debido a la disminución de la densidad con la temperatura) asciende.
- En el cabezal superior (riser), la mezcla de líquido-vapor formada se recoge y es enviada al domo.
- En el domo se recibe el agua de alimentación y se envía el vapor saturado al sobrecalentador.

3.1.2. Sobre-calentador

Son paquetes de tubos donde se calienta el vapor por encima de su temperatura de saturación, a la presión de operación, para aumentar drásticamente su entalpía. Estos intercambiadores de calor suelen trabajar en contraflujo.

El vapor saturado que viene del domo pasa por el interior de los tubos, donde su temperatura se eleva a presión constante.

El límite de la temperatura del vapor está determinado por el generador de vapor y la turbina, debido al límite de resistencia de sus materiales a las altas temperaturas.

3.1.3. Economizador

Cumple con la función de recibir el agua de alimentación (o precalentada) y hacer un último precalentamiento antes de su entrada a los paquetes de evaporadores, aprovechando el calor desprendido por los gases de escape del circuito de combustión.

Con esta disposición aumenta el rendimiento térmico global de la instalación, disminuyendo las perdidas por calor sensible de los gases de combustión evacuados a la chimenea.

La transferencia de calor se realiza por convección en un inter-cambiador en contracorriente y debido a las temperaturas de intercambio (relativamente poco elevadas), se necesitan grandes superficies de transferencia. Debido a las bajas temperaturas del fluido circulante en su interior, la humedad contenida en los gases de combustión puede condensar sobre estos tubos si la temperatura es inferior a la del punto de rocío de los gases. Según la composición de los gases, esta condensación puede llegar a provocar fuerte corrosión en el banco por formación de H2SO4 a partir de los SO2, contenidos en los gases. Por este motivo, es importante garantizar que el agua, al llegar al economizador, ha sido precalentada lo suficiente.

3.1.4. Pre-calentador de agua

Permite que el agua llegue al economizador a la temperatura adecuada. De este modo, se consigue que, en caso de que la temperatura de los gases caiga por debajo del punto de rocío, la humedad contenida en los mismos condense sobre el propio pre-calentador.

Al ser un paquete de tubos que, por concepto, debe ser más pequeño que el economizador, se puede emplear acero inoxidable en su fabricación para que resista las condiciones a las que va a estar sometido.

La transferencia de calor se realiza por convección en un intercambiador en contracorriente, al igual que en los economizadores. Este tipo de paquete de tubos se encuentra directamente ligados a la existencia de una bomba de recirculación, asegurando un caudal de recirculación de fluido a través del mismo para conseguir la temperatura adecuada a la entrada del economizador.

Revisión: 02 Fecha: 01/08/2020 Página 14/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

3.1.5. Domo

Tiene la doble función, separar el agua del vapor generado en los circuitos de presión de la caldera y mantener una reserva de agua para todos ellos. Debe dar un caudal de vapor en condiciones de presión y temperatura solicitadas.

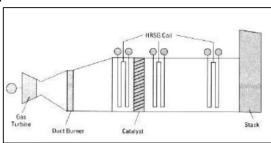
Constituye el recinto de mezcla en el que se encuentra en equilibrio la fase liquida-vapor, por lo cual, se encuentra a la temperatura de saturación y a la presión de operación. En él se establece un plano de agua cuyo nivel es controlado y mantenido a un valor sensiblemente constante para un mismo régimen de vaporización, tiene una importante función a la hora de la regulación. Por encima de este plano se encuentra el vapor saturado o húmedo, que, por intermedio de separadores y secadores internos del domo, se envía al sobre-calentador.

3.1.6. Circuito agua/vapor

El agua entra en el pre-calentador de la caldera en unas condiciones de presión y temperatura determinadas. Un caudal de agua superior al caudal del agua de alimentación será recirculado a través de este componente, según se requiera, hasta obtener una temperatura de entrada de agua a los economizadores adecuada. Si la temperatura del agua, a través de los economizadores es demasiado baja, podría haber problemas de corrosión en los mismos.

En cada uno de los cuerpos del economizador, tanto de alta como de media presión, el agua realiza un único paso en contracorriente con el gas, aumentando su temperatura.

En los domos, el agua procedente del correspondiente economizador se mezcla con el agua que viene a través de los separadores de los circuitos de generación de vapor. Desde cada domo mediante los tubos *downcomers* el agua pasa a los paquetes de tubos de los generadores de vapor, de alta o de media presión.


El vapor producido se separa del agua en el interior de los domos, según se ha indicado, y llega a los sobre-calentadores.

Llegado a este punto, el comportamiento de los circuitos de alta y media presión difiere sustancialmente. El vapor sobrecalentado de alta presión va directamente a la turbina de vapor, para convertir la energía del vapor en energía mecánica a través de una fase de descompresión en la misma. Como el vapor a la salida de la etapa de alta presión de la turbina suele tener una presión dentro del rango de media presión, una posibilidad típica de diseño para el circuito de vapor sobrecalentado de media presión es diseñarlo para producir vapor en unas condiciones tales que ambas corrientes puedan unirse. Simplemente habría que dimensionar el circuito de media presión a una presión ligeramente mayor que la de sobrecalentado, para compensar el efecto de la pérdida de carga de la línea de transición.

A la salida el vapor se dirige a la etapa de media presión de la turbina de vapor.

3.1.7. Sistema de reducción de NOx

Con estrictas regulaciones ambientales para el monóxido de carbono y los óxidos de nitrógeno, el uso de **catalizadores** para controlar las emisiones se está volviendo común. El rendimiento del catalizador se ve afectado por la temperatura del gas en el mismo. Los catalizadores operan eficientemente en un rango estrecho de temperaturas de gas. Para los catalizadores de NOx, el rango de temperatura del gas es típicamente 600-750°F. Debe preverse una rejilla de inyección de amoníaco aguas arriba del catalizador de NOx. El catalizador también tiene una alta caída de presión de gas, en el rango de 2-4 pulg. wc, que debe considerarse en el diseño general y la evaluación del desempeño.

Revisión: 02 Fecha: 01/08/2020 Página 15/11

米

UNIVERSIDAD TECNOLÓGICA NACIONA - FACULTAD REGIONAL AVELLANEDA

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

3.2. Consideraciones de Diseño

En los HRSG de circulación natural, los tubos son verticales y el gas fluye horizontalmente. Los anchos de los diversos módulos están limitados por consideraciones de envío. Por lo tanto, los HRSG grandes pueden tener módulos de 12 pies de ancho y 30-50 pies de alto. Las tuberías descendentes llevan el agua saturada caliente al fondo de los módulos del evaporador y las tuberías ascendentes llevan la mezcla de vapor / agua al domo de vapor externo, donde se produce la separación. Luego se lleva el vapor saturado al sobre-calentador.

Los parámetros a ajustar mediante los cálculos, y que serán uno de los factores determinantes del diseño adecuado, son:

- Caudal de vapor bruto generado.
- Potencia térmica absorbida por cada intercambiador de calor.
- Punto de aproximación (approach point),
- Punto de pellizco (pinch point).
- Ratio de circulación (relación entre el caudal de agua suministrado al evaporador y el caudal de vapor generado).
- Temperaturas a la entrada y salida de cada paquete de tubos (sobre-calentador, evaporador y economizador), tanto en el lado gas como en el lado agua/vapor.

De modo que las variables consideradas para obtener el diseño adecuado, son:

- Disposición de los bancos de tubos en la caldera.
- Número de tubos en cada intercambiador.
- Diámetro y espesor de los tubos de cada intercambiador.
- Paso transversal de tubos en cada intercambiador.
- Paso longitudinal de tubos en cada intercambiador.
- Dimensiones de las aletas.
- Espaciado entre aletas.
- Materiales de aletas y cañería.

3.2.1. Cálculo de Circulación

Nos garantiza que los tubos ascendentes calentados sean adecuados y que el flujo de calor dentro de los tubos sea lo suficientemente bajo como para evitar la condición conocida como DNB salida de ebullición.

Para realizar los cálculos de circulación siendo un proceso iterativo para las calderas de circulación natural, el cabezal térmico estático disponible para mover la mezcla de vapor de agua a través del sistema se equilibra con las diversas pérdidas, tales como:

- Pérdidas por fricción en tuberías de bajada, tuberías verticales y sistema de caldera.
- Pérdidas por gravedad en la caldera y el sistema ascendente.
- Pérdidas de aceleración debido al cambio de fase.

Revisión: 02 Fecha: 01/08/2020 Página 16/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

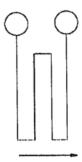
Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

Primero se supone una relación de circulación (CR) y se determinan las diversas pérdidas y equilibran con el cabezal térmico disponible. Si este equilibrio no ocurre realizaremos otra iteración.

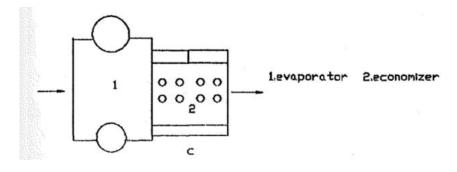
Una vez que se determina el CR, el flujo de calor y la calidad del vapor o la fracción de sequedad en los tubos ascendentes que se determinan a lo largo de su longitud y en puntos críticos se comparan con la fracción de sequedad permisible para el flujo de calor en cuestión.

Alternativamente, el flujo de calor permisible puede calcularse y compararse con el flujo de calor real en varios lugares.


El sistema es seguro siempre que el flujo de calor real sea inferior al permitido. El CR en calderas de circulación natural varía de 5 a 30 dependiendo de la presión y el diseño. No es necesario diseñar un sistema para un CR particular siempre que el flujo de calor real sea más bajo que el permitido para las condiciones de vapor existentes.

3.2.2. Pre-calentador

Fijaremos una velocidad del fluido entre 0,6 y 1,8 m/s considerando una fila por paso para lograr homogenizar la temperatura. La temperatura mínima de salida del pre-calentador para evitar condensación en los tubos de los economizadores es 85 °C.


3.2.3. Economizadores

Fijaremos una velocidad del fluido entre 0,6 y 1,8 m/s considerando una fila por paso para lograr homogenizar la temperatura. Se conoce las propiedades del agua líquida (sub-enfriada) como entalpía, calor específico, densidad, conductividad térmica y viscosidad del agua. La disposición se muestra en la siguiente figura.

Debe tenerse en cuenta que la temperatura del metal se decide por la temperatura del agua de alimentación y no por la temperatura del gas, ya que el coeficiente del lado del tubo es varias veces mayor que el coeficiente del lado del gas. Los tamaños de tubo varían de 1,5" a 3,5".

En la figura el economizador está en el paso de gas horizontal, con las últimas filas de los tubos ayudando al flujo de agua hacia arriba, minimizando así las preocupaciones por el vapor. Esta configuración da como resultado una disposición adecuada. El paquete podría ser independiente.

Revisión: 02 Fecha: 01/08/2020 Página 17/11

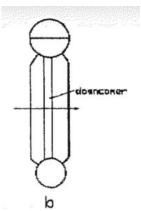
INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

3.2.4. Evaporadores

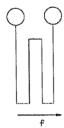

Deberemos verificar el correcto ratio de circulación en los paquetes de evaporadores de manera que aseguren la correcta circulación natural y refrigeración mínima de los tubos. Se logra fijando una proporción máxima de vapor en el agua, alrededor del 12% en peso de vapor en los tubos del evaporador.

El caudal del evaporador es superior al del resto de intercambiadores, debido a que debe tener una circulación mucho mayor para asegurar la producción de vapor necesaria.

El efecto de la presión de vapor es significativo: cuanto mayor es la presión de vapor, mayor es la temperatura del gas de salida del evaporador y menor es la tasa de generación de vapor, lo que lleva a un menor trabajo en el economizador y una mayor temperatura de salida del gas.

El fluido que circula en el interior es agua a temperatura de saturación con pequeñas cantidades de vapor. Las propiedades a estimar corresponden al estado de equilibrio agua/vapor.

La siguiente disposición es para un flujo único cruzado de gas. La altura no tiene limitaciones, pero el ancho dependerá del envío. Se deben usar bajantes y elevadores externos para promover la circulación.


3.2.5. Sobre-calentadores

Diseño similar al de los evaporadores, como el vapor que circula por los sobre-calentadores van a la turbina de alta presión tras el paso por la última etapa la superficie necesaria es inferior a la del evaporador por ello no presentara problemas de espacio. Debido a que, para dar la producción de vapor en una caldera de circulación natural, se requiere que el vapor circule varias veces por el paquete hasta convertirse totalmente en vapor.

El fluido que circula en el interior es vapor sobrecalentado.

La Figura muestra un sobre-calentador para unidades altas y menos anchas, como en nuestro caso. Los tubos son verticales y drenables. Al dividir el encabezado, se pueden organizar múltiples transmisiones. El flujo de gas es horizontal.

La unidad podría dividirse en dos o más módulos para fines de control de la temperatura del vapor y podría tener un flujo único o múltiple dependiendo de la caída de presión del lado del vapor y la temperatura de la pared del tubo.

Revisión: 02 Fecha: 01/08/2020 Página 18/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

3.2.6. Temperatura del agua de alimentación

La temperatura del agua de alimentación es típicamente fijada por la propiedad de la instalación. Con el fin de evitar los típicos problemas de corrosión de los tubos del economizador en operación a bajas cargas, las temperaturas de metal de los tubos en la parte fría no deben ser inferiores al punto de rocío de los gases en ninguna condición de operación. Obviamente, las temperaturas de los gases a la salida de la caldera también deben ser mayor que la temperatura de rocío de los mismos.

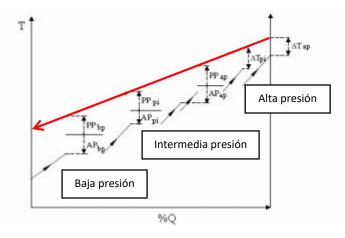
El punto de rocío de los gases de escape depende del contenido de azufre en el combustible de la turbina, pero en nuestro caso el combustible principal considerado es Gas Natural de alta calidad, por lo que no contiene azufre.

3.2.7. Pérdidas de carga

Primero se lleva a cabo un diseño válido y luego se ajustan algunos parámetros hasta conseguir valores de pérdidas de carga admisibles.

3.2.8. Perfiles de Temperaturas

3.2.8.1. Punto de Aproximación (approach point)


Se trata de la diferencia entre la temperatura de saturación y la temperatura de salida del agua del economizador. Esta última será inferior a la temperatura de saturación a la presión correspondiente al domo, con el fin de prevenir una cantidad inadecuada de vapor en los tubos del evaporador.

3.2.8.2. Punto de Pellizco (pinch point)

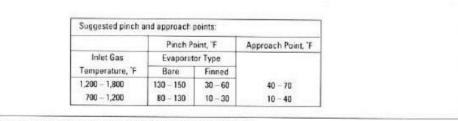
Es el salto térmico mínimo entre el gas y el vapor de agua en los paquetes de tubos de los evaporadores en el extremo de salida de los gases y de entrada del agua en el evaporador, considerada la temperatura de saturación. Cuanto menor es el valor del punto de pellizco, mayor es la superficie de evaporador necesaria; sin embargo, cuanto mayor es el punto de pellizco, menor es el calor recuperado de los gases a una presión específica de vapor.

El criterio típico para el dimensionamiento y disposición básica de los intercambiadores es maximizar la eficiencia global. Para ello, los puntos de pellizco y aproximación deben ser lo menores posibles, de manera que se maximice el caudal de vapor generado a cierta temperatura, es decir, la energía recuperada.

A continuación vemos el esquema de la configuración y diagrama T - %Q.

En la figura se observa la línea recta continua (color rojo) representa el enfriamiento de los gases de escape de la turbina de gas (TG) y la línea escalonada representa el calentamiento del agua. En el diagrama pueden distinguirse claramente las tres secciones de la Caldera de Recuperación.

Revisión: 02 Fecha: 01/08/2020 Página 19/11


INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

Estas temperaturas se seleccionan de la siguiente tabla, según el valor de temperatura de entrada de los gases:

[■] Figure 2. HRSG temperature profiles and suggested pinch and approach points.

3.3. Dimensionamiento Térmico

Con el caudal y temperatura de gas que circula por fuera del intercambiador además la temperatura y presión del fluido que circula internamente por el intercambiador podemos realizar el dimensionamiento según los siguientes pasos.

Previamente analizados los datos de entrada:

- (1) Se establece un diámetro y espesor de tubos (Parámetros geométricos de los tubos)
- (2) Para cada intercambiador se realizan los cálculos con el procedimiento Diferencia Media Logarítmica de Temperaturas. Las temperaturas se establecen (Pinch Point & Approach point).
- (3) Para cada intercambiador se establece el número de filas de tubos Nft(i)
- (4) Además, se fija la densidad de aleta df(i)
- (5) Se evalúa la U(i) con el área resultante Ares(i)
- (6) Se realiza el siguiente cálculo: A(i) = Nft(i) * Ares(i). Si no verifica volvemos al paso 3 realizando un ajuste fino.
- (7) Se verifica:
- Las condiciones de vapor en el sobre-calentador (Ti y Pi).
- Para evaporadores el caudal y el punto de pellizco.
- En economizadores el punto de aproximación. Si no verifica por demasía volvemos al punto 3. Pero si no verifica por una diferencia pequeña volvemos al punto 4.
- (8) Obtenemos los resultados del dimensionamiento térmico, que definirá las áreas de transferencia de calor y las pérdidas de carga. Con estos datos podemos dimensionar el sistema de reducción NOx.
- (9) Verificamos mecánicamente con ASME 1 el diseño. Si no verifica volvemos al punto 1.

En este desarrollo tendremos en cuenta los coeficientes de ensuciamiento de los tubos. La pérdida de calor varía entre 2% en HRSG pequeños a grandes unidades 0.5%. En nuestro caso adoptaremos 1%.

Revisión: 02 Fecha: 01/08/2020 Página 20/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

Entrando más en detalle el balance de energía viene dado por las siguientes igualdades:

$$Q_{1,2} = W_g * C_{pg} * (t_{g1} - t_{g3})(hl) = W_{sd} * [(h_{s2} - h_{w2}) + (bd) * (h_f - h_{w2})]$$

W_a: Flujo de gas

 W_{sd} : Flujo de vapor de diseño

 C_{pq} : C_p : Calor específico del gas t_{q1} : Temperatura de entrada del gas al sobrecalentador

 t_{a3} : Temperatura del gas a la salida del evaporizador y entrada al economizador

 h_{s2} : Entalpia del vapor sobrecalentado.

 h_{w2} : Entalpia del agua en la salida del economizador

 h_f : Entalpia del liquido saturado

 h_1 : Perdida de calor

bd: Purga (Blowdown, fraction)

Donde t_{g1} y t_{g3} son conocidos, $Q_{1,2}$ se calcula y se determina el flujo de vapor W_{sd} .

El balance energético del sobre-calentador es:

$$Q_1 = W_{sd} * (h_{s2} - h_v) = W_q * C_{pq} * (t_{q1} - t_{q2})(hl)$$

 W_g : Flujo de gas

 W_{sd} : Flujo de vapor de diseño C_{na} : C_n : Calor específico del gas

 t_{g1} : Temperatura de entrada del gas al sobrecalentador

 t_{g2} : Temperatura de salida del gas del sobrecalentador

 h_{s2} : Entalpia del vapor sobrecalentado.

 h_v : Entalpia del vapor saturado

 h_l : Perdida de calor

El balance energético del economizador es:

$$Q_3 = W_{sd} * (h_{w2} - h_{w1})(1 + bd) = W_a * C_{pa} * (t_{a3} - t_{a4})(hl)$$

 W_a : Flujo de gas

 W_{sd} : Flujo de vapor de diseño

 C_{pq} : C_p : Calor específico del gas

 t_{a3} : Temperatura del gas a la salida del evaporizador y entrada al economizador

 t_{a4} : Temperatura a la salida del economizador

 h_{w1} : Entalpia del agua en la entrada del economizador

 h_{w2} : Entalpia del agua en la salida del economizador

h₁: Perdida de calor

bd: Purga (Blowdown, fraction)

Revisión: 02 Fecha: 01/08/2020 Página 21/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

La temperatura del gas a la salida del economizador (t_{a4}) se obtiene de esta ecuación.

Por lo tanto, los perfiles completos de gas / vapor y la tasa de generación se pueden determinar asumiendo los puntos de pellizco y aproximación.

Una vez que se seleccionan los puntos de pellizco y de aproximación, se fijan las diferencias de temperatura promedio de registro (ΔT) en las diversas superficies. Dado que, a partir de los principios básicos de transferencia de calor, el área de superficie viene dada por la suma de las áreas de superficie de todos los componentes, como el sobre-calentador, el evaporador y el economizador, se fijan una vez que se calcula U.

Para calcular U, uno debe tener datos mecánicos como el tamaño del tubo, la densidad de la aleta, el paso del tubo, etc.

Si no se conoce U, entonces $\frac{Q}{\Delta T} = U * S$ fija indirectamente las superficies.

U: Coeficiente global de transferencia de calor (BTU/pies² * H * F)

S: Area de superficie de transferencia (pies²)

ΔT: Diferenia media logaritmica de temperaturas

Q: Calor total

3.4. Determinación de los Coeficientes de Transmisión

3.4.1. Coeficiente de Transmisión del lado Gas

El coeficiente de transmisión de calor en el lado gas se calcula mediante la expresión de Briggs y Young, que expresa con buena exactitud el comportamiento de este coeficiente en tubos aleteados.

$$h_c = 0,295 \left(rac{G^{0,681}}{d^{0,319}}
ight) \left(rac{k^{0,67}Cp^{0,33}}{\mu^{0,351}}
ight) \left(rac{S^{0,313}}{h^{0,2}b^{0,113}}
ight)$$

 h_c : Coeficiente convectivo el lado gas $[BTU/(ft^2 * h * {}^{\circ}F)]$

 $G: Velocidad \ m\'asica \ de \ gas \ [lb/(ft^2 * h)]$

S: paso de aleta [in]

h: altura de aleta [in]

b: espesor de aleta [in]

 C_p : Calor específico gas a presión constante [BTU/(lb * °F)]

 μ : Viscosidad del gas [lb/(ft*h)]

k: Conductividad térmica del tubo [BTU/($ft * h * {}^{\circ}F$)]

La velocidad que se emplea se calcula con la siguiente expresión:

$$G = \frac{w_G}{N_w * L * (S - A_o)}$$

N_w: Número de tubos a lo ancho

 w_G : peso molecular gas [lb/lb mol]

L: Longitud efectiva de los tubos [ft]

S: paso de aleta [in]

 A_0 : área obstrucción aleta $[ft^2/ft]$

Revisión: 02 Fecha: 01/08/2020 Página 22/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

3.4.2. Coeficiente de Transmisión del lado Tubo

La ecuación básica para obtener h_i, para fluidos monofásicos es la de Dittus-Boelter (vapor saturado)

$$h_i = 2,44 \, \mathrm{W}^{0,8} \, \mathrm{C}/{d_i}^{1,8}$$

Donde:

 d_i : diámetro interior del tubo [in]

 C_p : Calor específico gas a presión constante $[BTU/(lb * {}^{\circ}F)]$

El factor C sale de tabla donde T es en °F del fluido (fluido gaseoso / vapor de agua) que circula por los tubos:

$$C = 10^{[-1,318+0,214 Ln(T)]}$$

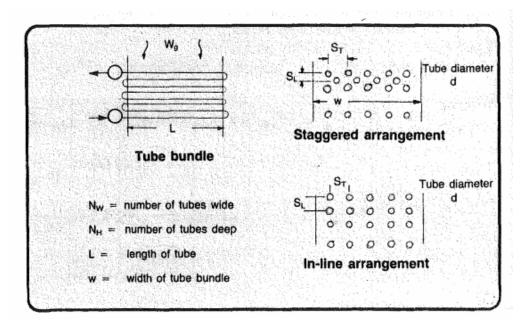
Pressure (psia):	100	500	1000	2000
Sat.:	0.244	0.417	0.490	0.900
Temp.		e.		
400	0.271		, n <u> </u>	
500	0.273	0.360	·	:
600	0.281 02 10	0.322	7 (0.413)	٠.
700	0.291	0.316	0.358	0.520
800	0.305	0.320	0.345	0.420
900	0.317	0.327	0.347	0.394
1000	0.325	0.340	0.353	0.386

En el caso de flujo bifásico o de ebullición dentro de los tubos, se puede utilizar un valor de 2000 a 3000 Btu/pie² * H * F para hi. Su efecto sobre U no es significativo.

Revisión: 02 Fecha: 01/08/2020 Página 23/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR


Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

3.4.3. Comportamiento y parámetro del Gas

Los haces de tubos utilizados en los sobre-calentadores, economizadores y evaporadores generan resistencia al paso de flujo del gas.

Dependiendo de la geometría de los tubos, la disposición del paso, la temperatura y la velocidad del gas utilizada, la caída de presión del gas variará.

Con el diámetro de los tubos, el caudal del gas y la temperatura en Fahrenheit determinamos en la siguiente tabla hallamos el valor de Reynolds.

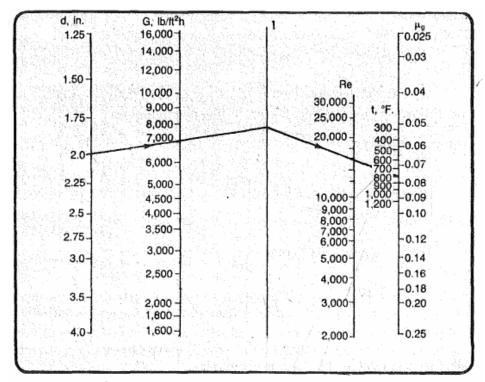


Figure 3-7. To Find Reynolds Number.[Oil and Gas Journal]

Revisión: 02 Fecha: 01/08/2020 Página 24/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

Con el número de Reynolds y St/d obtenemos fg para los tubos con geometría escalonada.



Figure 3-8. Friction Factor for Staggered Arrangement.

Cruzamos el caudal G con la temp en Fahrenheit, de ahí obtenemos la velocidad del gas (Vg).

Luego desde el cruce con 1 y la linea trazada previamnete, hacemos el cruce con la perdida de carga (fg) y obtenemos la perdida de presion (esta se multiplica por el numero de tubos para que de en pulgadas).

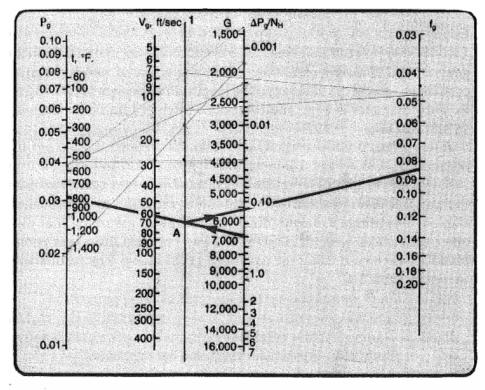


Figure 3-10. Gas Velocity, Pressure Drop.

Revisión: 02 Fecha: 01/08/2020 Página 25/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

3.4.4. Coeficiente de Transferencia de Calor para los Tubos

Con los coeficientes de transferencia del lado gas y lado agua/vapor, calcularemos el coeficiente global. Para verificar el área definitiva necesaria por intercambiador según la producción de vapor requerida.

Los coeficientes de ensuciamiento se basan en la experiencia práctica sobre distintos equipos en operación, estos salen de tablas. Estas constantes representan la disminución del coeficiente global de transmisión de calor debido a las pérdidas provocadas por los depósitos o la suciedad en los tubos.

El interior está condicionado por el tratamiento de agua adoptado, mientras que el exterior depende del tipo de combustible empleado en la turbina de gas.

La elección de la configuración de la aleta en aplicaciones de gas limpio, está determinada por varios factores, como el coeficiente de transferencia de calor del lado del tubo, el tamaño general, el costo y la caída de presión del gas, que afecta al costo operativo.

En los evaporadores o economizadores de calderas, el coeficiente del lado del tubo podría estar en el rango de 1500 a 3000 Btu/pie2hF, mientras que el coeficiente del lado del gas podría estar en el rango de 10 a 20 Btu/pie2hF.

En este caso, se justifica una gran densidad de aletas o una gran proporción de área de superficie externa a interna. A medida que disminuye la relación entre el coeficiente exterior e interior, se reduce la efectividad del uso de una gran proporción de área de superficie externa a interna.

El otro hecho importante a tener en cuenta es que más área de superficie no significa necesariamente más transferencia de energía. Es posible tener, a través de una mala elección de la configuración de la aleta, más área de superficie y transferir menos energía. Uno tiene que mirar el producto del área de superficie y el coeficiente general de transferencia de calor y no solo el área de superficie.

El coeficiente general de transferencia de calor se reduce significativamente a medida que aumentamos la superficie de la aleta o usamos más aletas/pulgadas.

$$\frac{1}{U} = \frac{A_T}{h_i * A_i} + f f_i x \frac{A_T}{A_i} + f f_0 + \frac{A_T * d}{A_w * 24 * Km} ln \frac{d}{di} + \frac{1}{\eta * h_0}$$

El cálculo de esta ecuación implica un procedimiento elaborado y resolución de varias ecuaciones las cuales dependerán del tipo de tubo y aleta que elijamos. Esto lo desarrollaremos en la sección de los cálculos.

Revisión: 02 Fecha: 01/08/2020 Página 26/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

3.5. Determinación de los Paquetes de Tubos

3.5.1. Consideraciones para seleccionar los Tubos

Las superficies extendidas son ampliamente utilizadas en el sobrecalentador, evaporador y economizador. Esto se debe a que se requiere un área de superficie grande en estos sistemas como resultado de los bajos puntos de pellizco y aproximación y las bajas diferencias de temperatura media en las diversas superficies de calentamiento.

Las superficies extendidas hacen que el diseño HRSG sea muy compacto. Y, se pueden lograr caídas de presión de gas más bajas con tubos aletados que con tubos desnudos (Tabla 3).

The Law Street of	Bare Tubes	Finned Tubes
es Flow Rete, Ib/h	150,000	150,000
let Gas Temperature, °F	1,000	1,000
ot Gas Temperature, *F	382	382
uty, MM Btu/h	24.25	24.25
leam Pressure, psig	150	150
ed Water Temperature, °F	240	240
team Flow Rate, lb/h	24,500	24,500
urlace Area, ft²	11,670	20,140
Btu/ft2=th=°F	12.86	7.17
as Pressure Drop, in. w.c.	4.5	3.15
umber of Rows Deep	124	21
eat Flux, Btu/ft2+h	9,213	52,295
be Wall Temperature, °F	385	484

Para evaporadores y economizadores con corrientes de gas limpias, como el escape de turbinas de gas se produce principalmente con gas natural y como secundario con petróleo destilado, se recomienda utilizar densidad de aletas de 4 a 5 aletas/pulgadas. La altura de la aleta puede variar de 0,5 a 1 pulgada. El espesor de la aleta es típicamente de 0,05 a 0,075 pulgadas.

Se recomienda utilizar una baja densidad de aletas para los sobrecalentadores debido a su bajo coeficiente de transferencia de calor en el lado del tubo.

El uso de aletas, en general, aumenta las temperaturas de la pared del tubo, la punta de la aleta y el flujo de calor dentro de los tubos.

Cuando el coeficiente del lado del tubo es bajo, la caída de temperatura a través de la película del lado del tubo es naturalmente alta, lo que resulta temperaturas altas de la pared del tubo y la punta de la aleta.

Cuanto mayor sea la densidad de aleta y la proporción del área de superficie del tubo externo a interno, menor será el coeficiente de transferencia de calor del lado del gas y, por lo tanto, menor será el coeficiente general de transferencia de calor.

Utilizaremos los materiales tabulados en la norma ASME 1.

Revisión: 02 Fecha: 01/08/2020 Página 27/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

Material, ASME Specification	Maximum Allowable Temperature, °F
SA-192	950
SA-210 gr A1	950
SA-210 gr C	850
SA-178 gr A	900
SA-178 gr C	950
SA-209 gr T1a	975
SA-213 gr T2	1,025
SA-213 gr T11	1,050
SA-213 gr T22	1,125
SA-213 gr T9	1,200
SA-213 gr TP 304 H	1,400
SA-213 gr TP 321 H	1,400

Los tubos aleteados tienen las siguientes ventajas sobre los tubos lisos:

- Se obtiene una caldera más compacta.
- Se genera menor pérdida de carga del lado gas. Logrando una mejor transferencia de calor, por ende, menor cantidad de tubos. En consecuencia, un menor peso y costo.

Para hallar el diámetro adecuado de tubos, minimizando la pérdida de carga a lo largo del lado gas, se tiene en cuenta:

- Velocidad de diseño del agua ≤ 3 m/s
- Velocidad de los gases: 20 m/s
- Velocidad del vapor ≤ 65 m/s

Esta diferencia de velocidades asegurará la correcta circulación natural entre los circuitos de la caldera, de manera que no se supere nunca la proporción máxima de vapor el evaporador.

El espesor mínimo necesario para los tubos se verifica según la siguiente expresión de la normativa ASME I:

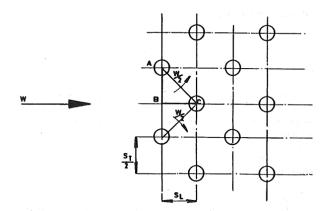
$$t = \frac{PD}{2SE + 2\gamma P} + C$$

- C: Margen minimo para roscado y estabilidad estructural (ver PG 27.4.3)
- D: Diámetro exterior del cilindro (ver PG 27.4.1)
- E: Eficiencia de la junta (ver PG 27.4.1)
- S: Presión máxima admisible a la temperatura del diseño del metal, especificado en las tablas PG
- 23 (ver PG 27.4.2)
- t: Espesor mínimo requerido (ver PG 27.4.7)
- y: Coeficiente de temperatura (ver PG 27.4.6)
- P: Máxima presión admisible de trabajo (ver PG 21)

Es muy importante que todos los tubos de un paquete tengan las mismas características geométricas externas para no crear desequilibrios o pérdidas de carga. Favoreciendo al paso del gas, sin provocar distribuciones de calor diferentes los tubos, generando una absorción del calor homogénea.

Revisión: 02 Fecha: 01/08/2020 Página 28/11

INGENIERÍA MECÁNICA


PROYECTO FINAL - GENERADOR DE VAPOR

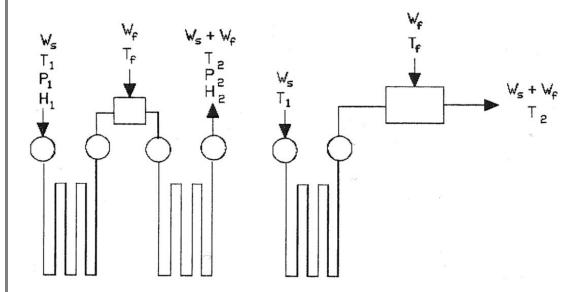
Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

3.5.2. Configuración de los Tubos

Disposición escalonada

Para el uso de tubos aleteados la mejor disposición es la escalonada como se muestra en la figura, ya que se maximiza el coeficiente de transmisión de calor por la superficie de intercambio.


La pérdida de carga del gas se mantiene, ya que se necesitan menos cantidades de tubos para obtener igual transferencia de calor debido a que el área es mayor.

La velocidad de gas depende de la sección de paso escogida que, a su vez, ésta depende del paso longitudinal (SL) y el transversal (ST).

3.6. Determinación del agua en spray para los Atemperadores

En las plantas de vapor, el vapor a menudo se sobrecalienta en atemperadores de tipo de pulverización para controlar las condiciones finales de vapor.

Estos permiten el enfriamiento del vapor recalentado mediante la inyección de dicha agua logrando una temperatura de salida unos grados por encima de las condiciones de saturación.

En la imagen se puede ver la disposición de atemperadores para el control de la temperatura del vapor: a) entre etapas b) a la salida del sobre-calentador

Revisión: 02 Fecha: 01/08/2020 Página 29/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

Nuestra disposición la seleccionaremos según los resultados de los cálculos termodinámicos y la cantidad de etapas que adoptemos

La ecuación para el balance de energía alrededor de un atemperador es:

$$W_s * H_1 + W_f * H_f = (W_s + W_f) * H_2$$

De la ecuación anterior, uno puede resolver la entalpía de vapor final (H2) y la temperatura del vapor. Dado Wf o obteniendo por Wf y dada la temperatura final de vapor, se puede determinar la entalpía.

Ws: Es el caudal a la entrada

Wf: Es el caudal a la entrada del atemperador

H1: Entalpia a la entrada

H2: Entalpia a la salida

Hf: Entalpia a la entrada del atemperador

Metodología para evaluar el rendimiento

3.7. Cálculo del Rendimiento

El procedimiento se desarrolla para una presión (luego se desarrollará para las 3 presiones de nuestra HRSG)

Se conoce el flujo de gas, la temperatura de entrada de gas y el análisis de la presión de vapor y la temperatura del agua de alimentación. Se estima que estos cálculos de diseño, son la base para establecer un diseño inicial, teniendo estos resultados posibles junto con los factores K1, K2, K3.

- 1. Asumir el flujo de vapor. Se obtiene una buena estimación utilizando una relación entre el "rendimiento", la caída de temperatura y el flujo de gas de "diseño".
- 2. Calcular el rendimiento del sobre-calentador, se trata de un proceso iterativo. Si el calor transferido y el supuesto no son iguales, se repite con otra temperatura de vapor hasta que coincidan.

Se realiza utilizando las siguientes ecuaciones:

Suponiendo que el flujo de vapor = W_s . Se obtiene el balance de energía:

$$Q_{1a} = W_s(h_{s2} - h_{s1}) = W_g(C_p)(hlf)(T_{g1}T_{g2})$$

Donde t_{s2} es la temperatura de salida del vapor y h_{s2} la entalpía. Se calcula de lo anterior la temperatura del gas de salida T_{g2}

El calor transferido entonces es:

$$Q_{1t} = (US)p \Delta T$$

Donde ΔT es la diferenia media logaritmica

$$\Delta T = \frac{\left(T_{g1} - t_{s2}\right) - \left(T_{g2} - t_{s1}\right)}{\ln\left(\frac{\left(T_{g1} - t_{s2}\right)}{\left(T_{g2} - t_{s1}\right)}\right)}$$

Revisión: 02 Fecha: 01/08/2020 Página 30/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

Asumiendo la configuración de contraflujo, que es ampliamente utilizada

(US)p es el producto de S(área des superficie) y U(Coeficiente global de transferencial de calor) en modo rendimiento y se obtiene el valor en el caso de diseño mediante el ajuste de la siguiente para las propiedades del flujo de gas.

$$(US)p = W_g^{0.65} F_g K_1 \left(\frac{W_s}{W_{sd}}\right)^{0.15}$$

 K_1 se obtiene con Q_1 , ΔT , W_g y F_g en caso de diseño:

$$K_1 = Q_1/(\Delta T(W_g^{0.65})(F_g))$$

$$F_a = (C_p^{0,33} k^{0,67} / \mu^{0,32})$$

Si para la temperatura de vapor supuesta Q_{1a} y Q_{1t} no se encuentran cera (dentro del 0,5%) entonces se debe realizar otra iteración. Todos los pasos anteriores se repiten hasata que Q_{1a} y Q_{1t} coincidan.

Calcular el rendimiento del evaporador, se obtiene el calor transferido y la temperatura del gas de salida.

Se realiza utilizando las siguientes ecuaciones:

Desde el balance de energía se obtiene:

$$Q_2 = W_g(C_p)(hlf)(T_{g2} - T_{g3}) = (US)p \Delta T$$

Donde ΔT es la diferenia media logaritmica

$$\Delta T = \frac{\left(T_{g2} - t_s\right) - \left(T_{g3} - t_s\right)}{\ln\left(\frac{\left(T_{g2} - t_s\right)}{\left(T_{g3} - t_s\right)}\right)} = \frac{\left(T_{g2} - T_{g3}\right)}{\ln\left(\frac{\left(T_{g2} - t_s\right)}{\left(T_{g3} - t_s\right)}\right)}$$

Desde las anteriores ecuaciones se tiene:

$$\frac{(T_{g2}-t_s)}{(T_{g3}-t_s)}=e^{[(US)p/(W_gC_ph_{lf})]}$$

Donde $(US)p = W_g^{0,65}F_gK_2$

 K_2 se calcula a partir de la siguiente ecuación para las condiciones de diseño.

$$K_2 = Q_1/(\Delta T(W_g^{0,65})(F_g))$$

 F_g se calcula para las condiciones de rendimiento

 T_{g3} se calcula a partir de la siguiente ecuación

$$\frac{(T_{g2} - t_s)}{(T_{g3} - t_s)} = e^{[(US)p/(W_gC_ph_{lf})]}$$

Q₂ se calcula a partir de la siguiente ecuación

$$Q_2 = W_g(C_p)(hlf)(T_{g2} - T_{g3}) = (US)p \Delta T$$

Revisión: 02 Fecha: 01/08/2020 Página 31/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

4. Calcular el rendimiento del economizador, se trata de un proceso iterativo. Se calcula el calor total transferido.

Se realiza utilizando las siguientes ecuaciones:

Suponiendo que tw₂, la temperatura de salida del agua. Luego:

$$Q_{3a} = W_s(hw_2 - hw_1)(1 + bd) = W_g(C_p)(hlf)(T_{g3} - T_{g4})$$

Se obtiene T_{a4} y luego ΔT , suponiendo condiciones de contraflujo

$$\Delta T = \frac{\left(T_{g4} - t_{w1}\right) - \left(T_{g3} - t_{w2}\right)}{\ln\left(\frac{\left(T_{g4} - t_{w1}\right)}{\left(T_{g3} - t_{w2}\right)}\right)}$$

Calor transferido:

$$Q_{3t} = (US)p \Delta T$$

Donde $(US)p = W_g^{0,65}K_3$

 K_3 se obtiene con la siguiente ecuación para las condidciones de disieño.

$$K_3 = Q_1/(\Delta T(W_g^{0,65})(F_g))$$

 $F_g = (C_p^{0,33}k^{0,67}/\mu^{0,32})$

Si Q_{3a} y Q_{3t} no se encuentran cera (dentro del 0,5%) entonces se repiten los pasos anteriores cambiando tw_2 , la temperatura de salida del agua.

El flujo de vapor es luego corregido de la siguiente manera:

$$W_{sc} = (Q_{1t} + Q_{2t} + Q_{3t})/[h_{s2} - h_{w1}) + bd(hf - h_{w1})]$$

Si W_{sc} no está cerca del flujo supuesto, W_s se vuelve a calcular todo desde el sobrecalentador. La caída de presión de gas es corregida por las condiciones de rendimiento:

$$\Delta P = (\Delta P)_d \, (W_{gd}/W_{gd})^2 [\big(T_{avg} + 460 \big) / \big(T_{avgd} + 460 \big)]$$

- **5.** El flujo de vapor se corrige en función del total transferido, aumento del calor y la entalpía, según la ecuación desarrollada anteriormente. Si el flujo no está cerca del flujo de vapor supuesto en el primer paso se deben repetir el desarrollo desde el primer paso.
- **6.** Si la temperatura del vapor final es mayor que la deseada, el flujo de vapor se corrige para la temperatura de vapor deseada.
- 7. Si el flujo de vapor deseado es cero o menor que el flujo corregido, continuamos con el paso 11.
- **8.** Si el flujo de vapor deseado es mayor que el flujo corregido. Se calcula la entrada de combustibles requerida para elevar la temperatura del gas al nivel requerido para lograr el flujo de vapor deseado. Esto nuevamente implica varias iteraciones, y para cada temperatura, todos los pasos del 1 al 8 deben repetirse hasta que coincidan.
- **9.** Si la temperatura final del vapor es más alta de lo deseado, calcule la cantidad de rociado entre etapas con un sobrecalentador dividido.
- 10. Se realiza otra ronda de ajuste fino para verificar los perfiles de temperatura y el flujo de vapor.
- 11. Se puede ver fácilmente que hay muchos cálculos iterativos involucrados. Para cada ronda, las propiedades de gas y vapor deben calcularse en función del análisis de gas y la temperatura. Si hay humedad en el economizador, el economizador se divide en dos etapas, un evaporador pequeño y un economizador y los cálculos son hechos para evaluar la extensión del vapor.

Revisión: 02 Fecha: 01/08/2020 Página 32/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

Nomenclatura de las ecuaciones:

 Q_1 : Calor sobrecalentador

 Q_{1t} : Calor transferido del sobrecalentador

 Q_{1a} : Balance de energía

 Q_2 : Calor evaporador

 Q_{2t} : Calor tranferido de evaporador

 Q_3 : Calor economizador Q_{3a} : Balance de energía

 Q_{3t} : Calor transferido de economizador

 h_{s2} : Entalpía h_{s1} : Entalpía

h_l: Pérdida de calor

 h_f : Entalpía del liquido saturado

 hw_2 : Entalpía de entrada del agua al economizador hw_1 : Entalpía de salida del agua al economizador

t_s: Temperatura de saturación

 t_{s1} : Temperatura de entrada del vapor del sobrecalentador

 t_{s2} : Temperatura de salida del vapor del sobrecalentador

 T_{g1} : Temperatura del gas entrada a la caldera

 T_{g2} : Temperatura de salida del gas del sobrecalentador

 T_{g3} : Temperatura de salida del gas del evaporador

 T_{a4} : Temperatura de salida del gas del economizador

ΔT: Diferenia media logaritmica de temperaturas

 t_{w1} : Temperatura de entrada al economizador del agua de alimentación

 tw_2 : Temperatura de salida al economizador del agua de alimentación

U: Coeficiente global de transferencia de calor

S: área de superficie de transferencia

 W_g : Flujo de gas

W_s: Flujo de vapor

W_{sd}: Flujo de vapor de diseño

 W_{sc} : Flujo de vapor corregido

W_{ad}: Flujo de gas de diseño

 K_1 : Factor definido para las condiciones de diseño (Se calcula)

 K_2 : Factor definido para las condiciones de diseño (Se calcula)

 K_3 : Factor definido para las condiciones de diseño (Se calcula)

 F_a : Factor definido para las condiciones de diseño (Se calcula)

 C_p : Calor específico del gas

k: Constante del gas

μ: densidad del gas

bd: Purga (Blowdown, fraction)

ΔP: Caída de presión de gas

Revisión: 02 Fecha: 01/08/2020 Página 33/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

3.7.1. Conclusiones en relación al procedimiento anterior

En un HRSG con un economizador, el punto de pellizco y de aproximación disminuyen con una disminución en la temperatura del gas de entrada y viceversa; para una turbina de gas HRSG, esto significa que como ambiente la temperatura disminuye los puntos de pellizco y de aproximación. La razón es que la capacidad de transferencia de energía del economizador no se ha reducido (es decir, U*S), ya que es una función del área de superficie y coeficiente de transferencia de calor general, que tiende a aumentar debido al mayor flujo de masa.

Con un flujo de vapor reducido, debido al trabajo del evaporador, el economizador ahora puede acercar el agua a temperatura de saturación que antes. De ahí la precaución de que al vapor es probable en condiciones de escape de turbina de gas ambiente sin fuego frío.

- El otro punto a tener en cuenta es que, debido al menor flujo de agua, la temperatura del gas de salida del economizador será mayor. Por lo tanto, la eficiencia HRSG se ve afectada. A medida que aumenta la temperatura del gas de entrada, se genera más vapor y se reduce la temperatura de la chimenea.
- El calor del sobrecalentador es más alto en comparación con la situación en la que el vapor es simplemente elevado de saturación a 650 ° F debido a la pulverización de inyección de agua para control de temperatura. De ahí la sugerencia de que los perfiles de temperatura deben seleccionarse en el modo sin fuego y el rendimiento verificado en el modo disparado.

3.8. Cálculo Mecánico de partes Sometidas a Presión

El diseño mecánico de las partes a presión de la caldera, como sucede con los tubos, se realiza según norma ASME sección I. Se trata de una verificación que debe hacerse luego del dimensionamiento térmico de la caldera y que indicará si los parámetros estructurales de las partes a presión de la caldera son capaces de soportar adecuadamente las condiciones de operación de la caldera durante la vida útil de la misma.

Aunque el cálculo de la resistencia mecánica de las partes a presión externas a la caldera (cañerías, válvulas, etc.) se considera excluido fuera del alcance del presente proyecto, es importante indicar que deberá cumplir con la normativa ASME B31.1.

Los parámetros de diseño considerados (presión, temperatura y materiales de partes sometidas a presión) deben tener en cuenta las condiciones más restrictivas en cuanto a presión y temperatura en la caldera. La temperatura de diseño considerada para cada paquete de tubos debe ser tal que soporte las mayores temperaturas de metal de los tubos, de acuerdo a ASME I. Las presiones de diseño dependerán de los requisitos de producción de vapor. Las condiciones de temperatura en el lado gas y en el lado agua/vapor no varían sustancialmente de una a otra alternativa, por lo que el diseño mecánico de colectores y domos será válido para ambas. La presión de diseño considerada para las verificaciones que se deben llevar a cabo según ASME I, deben ser al menos el 110% de las presiones del lado fluido alcanzadas en cada paquete.

Revisión: 02 Fecha: 01/08/2020 Página 34/11

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

3.8.1. Domos de alta, media y baja presión

Las expresiones aplicables serán las mismas en ambos casos, sólo difieren en los parámetros de entrada (presión y temperatura fundamentalmente). Los resultados del dimensionamiento mecánico de los domos de alta, media y baja presión los indicaremos más adelante en la memoria de cálculo.

3.8.1.1. Cuerpo

Se calcula según ASME I (ver PG-27.2.2):

$$P = \frac{S * E * t}{R + (1 - y) * t}$$
$$P > P_d$$

P: Presión de trabajo máxima admisible [psi]

 P_d : Presión de diseño [psi]

t: Espesor mínimo, decontando 0,118 in (3mm)por corosión [in]

R: Radio interior[in]

S: Tensión admisible a la temperatura de diseño, según ASME I,PG-23 [psi]

E: Eficiencia, según ASME I, PG - 52

y= Coeficiente de temperatura, según ASME I, PG-27.4

3.8.1.2. Fondos o Casquetes

Son las tapas que completan el cuerpo cilíndrico del domo, una a cada extremo.

Normalmente se fabrican en forma semiesférica. Cada uno incluye una puerta de acceso al interior del mismo, para labores de mantenimiento durante las paradas de la caldera.

Se calculan según ASME I, PG-29.11, considerando la expresión que tiene en cuenta la compensación para pasos de hombre en estos fondos, agrandando el espesor mínimo requerido:

$$P = \frac{S * t}{R + 0, 2 * t}$$

$$P > P_d$$

P: Presión de trabajo máxima admisible [psi]

Pd: Presión de diseño [psi]

t: Espesor mínimo real, descontada 0,1 in por corrosión [in]

R: Radio interior [in]

S: Tensión admisible a la temperatura de diseño, según ASME I, PG-23 [psi]

3.8.2. Colectores

Las entradas a cada paquete de tubos están definidas por colectores, que son tuberías (de mayor sección que los tubos) en las que el fluido se expande, repartiéndose de manera equitativa entre los tubos.

Al igual que los cuerpos de los domos, se calcula según ASME I, PG-27.2.2:

$$P = \frac{S * E * t}{R + (1 - y) * t}$$

$$P > P_d$$

P: Presión de trabajo máxima admisible [psi]

Pd: Presión de diseño [psi]

t: Espesor mínimo [in]

R: Radio interior [in]

S: Tensión admisible a la temperatura de diseño, según ASME I, PG-23 [psi]

E: Eficiencia, según ASME I, PG-52

y: Coeficiente de temperatura, según ASME I, PG-27.4

Revisión: 02 Fecha: 01/08/2020 Página 35/11

¥

UNIVERSIDAD TECNOLÓGICA NACIONA - FACULTAD REGIONAL AVELLANEDA

INGENIERÍA MECÁNICA

PROYECTO FINAL - GENERADOR DE VAPOR

Alumnos: Mastronardi - Silva - Songini - Schneider

Curso: 5°1

4. CONCLUSIÓNES

Se adoptarán los parámetros de la caldera del ciclo combinado desarrollado para realizar los cálculos del diseño.

Se decidió utilizar la caldera del tipo horizontal con disposición de los paquetes de tubos verticales, ya que en este tipo gas a la salida de la turbina sigue una trayectoria horizontal a través de los distintos pasos de calentamiento del agua (vaporización, sobrecalentamiento y recalentamiento) hasta su conducción a la chimenea de evacuación.

Sabiendo que los cálculos de la estructura y transferencia de calor se realizan con la condición de régimen, decidimos obviar los cálculos de los calentadores suplementarios, es decir utilizaremos el estilo UNFIRED, ya que solo se utilizan para el encendido de la caldera de recuperación, cuando se produce una baja del régimen de los humos de entrada o cuando la TG está apagada.

BIBLIOGRAFÍA

Procesos de Transferencia de Calor 31a Ed. by D.Q.Kern – CECSA (1999)

"Wase Heat Boiler Deskbook" (Extracción de capítulo 3 y 4)

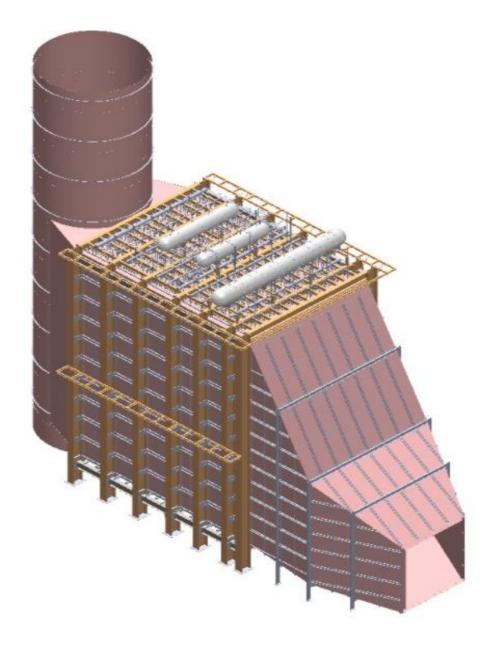
Exploitation problems and diagnostic of heat recovery steam boiler OU-192 (Paper)

Heat-Recovery Steam Generators: Understand the Basics (Paper)

Combustion fossil power - a reference book on fuel burning and steam generator

ASME BPVC I -2019

Libro: Design manual for Heat Recovery Steam Generators

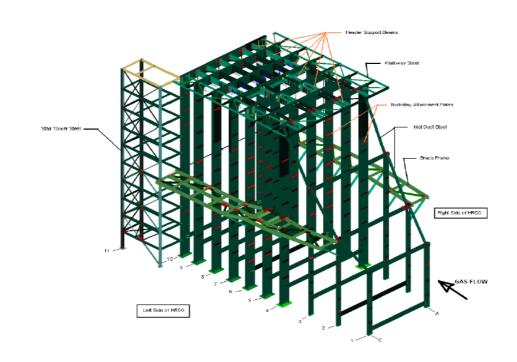

Revisión: 02 Fecha: 01/08/2020 Página 36/11

U.T.N F.R.A.		PROYECTO FINAL AÑO		
U.T.N F.K.A.		PROTECTO FINAL	GRUPO	
INGENIERIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	1

MEMORIA DE CÁLCULO

PROYECTO DE MÁQUINA ÚNICA

Caldera de recuperación de ciclo combinado de tres presiones

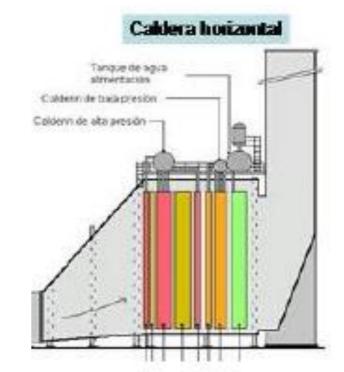


U.T.N	F.R.A.		PROYECTO FINAL	AÑO	2021
		Máguina lÍnica	Disaña da una Caldara da resunaración	GRUPO	Δ.
INGENIERIA	MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	A 1
		TITULO	de ciclo combinado de tres presiones	HOJA	1
Caldera de	Recuperac	ión de ciclo combina	do de tres presiones		
to dia a					
<u>Indice</u>					
Nro HOJA 2	Datos Inicia	ales			
3		-S en TermoGraf			
4		n del caudal en el circuit	0		
5	Materiales				
6 a 7	Calor reque				
8		o de Calor. Definición			
9	Cálculo del	Número de Reynolds			
10	Superficie (de Calefacción			
11	Diferencia	de Temperatura Media I	Logaritmica		
12	Propiedade	es de los gases de escape	e de la TG (humos)		
13	Coeficiente	de Transferencia del Eq	uipo (U)		
14	Intercambi	o de calor. Cálculo final	(Q)		
15	Masa / Vel	ocidades del fluido			
16	Selección d	el tubo aletado			
17	Distribució	n de los tubos aletados			
18	Domos. Cu				
19	Domos. Esp				
20	Domos. Sill				
21 a 24		eja de Izaje			
25	Domos. De				
26		ntrol de nivel			
27		eneral. Parámetros	and a side		
28 29 a 30		eneral. Cálculo calor tra			
29 a 30 31		amiento / Verificación d amiento Colectores / Ca			
32		n del fluido en cada com			
33		amiento colector secund			
34			entre colector secundario y principal		
35		amiento colector princip			
36			entre colector principal y domo		
37		los pesos de los compon			
38 a 39	Dimension	amiento Viga Longitudin	al		
40 a 41	Dimension	amiento Viga Transversa	al Company of the Com		
42 a 44	Dimension	amiento Columna			
45 a 46	Dimension	amiento del soporte de	los componentes		
47 a 52		/ análisis de la estructu			
53	Simulación	en SOLIDWORKS - Softv	vare de diseño CAD 3D		
Referencias					

U.T.N F.R.A.		PROYECTO FINAL AÑO		
U.T.N F.N.A.		PROTECTO FINAL	GRUPO	
INGENIERIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA WECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	2

Caldera de Recuperación de ciclo combinado de tres presiones

Tipo de cadera: Horizontal
Disposición de los tubos aletados: Vertical



Medidas contructivas*				
Longitud horizontal del cuuerpo	14250	mm		
Altura de tubos aletados dentro del cuerpo	23000	mm		
Ancho del cuerpo	16250	mm		

^{*}Estas medidas fueron tentativas para el predimensionamiento del cuerpo de la caldera

1- Propiedades de los humos a la salida de la Turbina de Gas (TG)

	Composición	Gas natur	·al		Composició	n Fuel Oil	
CO2	5,82	%		CO2	8,40	%	
N2	73,48	%		N2	71,21	%	
H2O	5,22	%		H2O	6,03	%	
02	14,26	%		02	13,15	%	
Ar	1,23	%		Ar	1,19	%	
				SO2	0,01	%	
Temperatu	ra [°C]		581,3	Temperatu	ıra [°C]		569
Pérdida de	Calor [MJ/se	g]	0,49	Pérdida de	Calor [MJ/se	g]	0,42
Presión [Ba	ar]		1,046				
Caudal [kg	/seg]		690,942				

2- Sistema de control de temperatura del vapor: rociado de agua de alimentación para vapor de alta presión y recalentador

3- Temperatura de agua de alimentación

HP entrada Economizador	136°C	LP entrada Economizador	138°C
IP entrada Economizador	137°C	entrada Precalentador	33,1°C
Temperatura ambiente	15°C	Humidad relativa	60%

4- Potencia requerida para la Turbina de Vapor

Fabricante ABB

POTENCIA BRUTA [MW] : 288,3 Etapas : 3 Alta-Media-Baja (doble flujo)

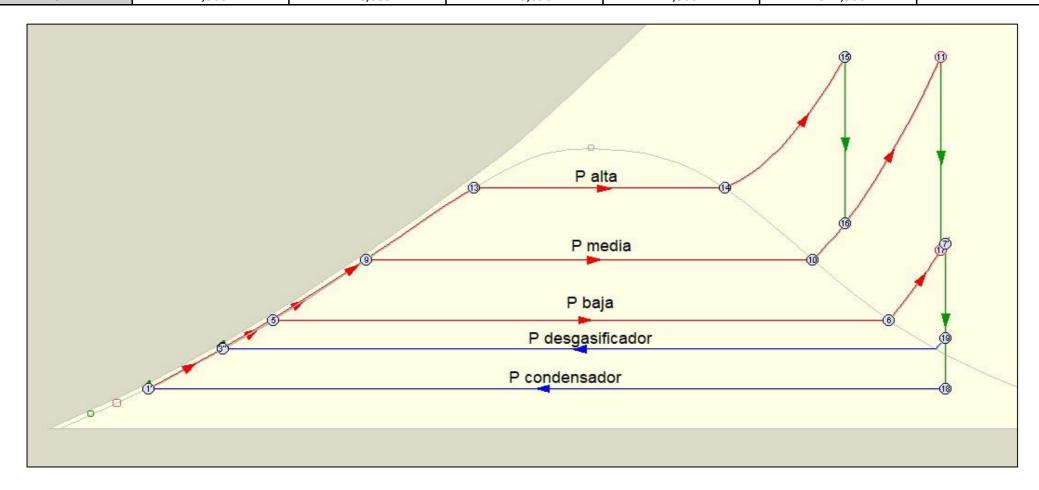
POTENCIA NOMINAL NETA [MW] : 288 Pérdidas de Calor [MJ/seg] : 0,49

Referencias

LITNI EDA		PROYECTO FINAL	AÑO	2021
U.T.N F.R.A.		PROTECTO FINAL	GRUPO	
	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	3

5- Propiedades del Vapor Generado (Dentro de la Caldera de Recuperación)

	Flujo máscio [kg/seg]	Presión [Bar]	Temperatura [°C]
High pressure (HP)	82,378	116,500	495,000
Intermediate pressure (IP)	91,096	27,200	495,000
Low pressure (LP)	8,463	4,700	149,490

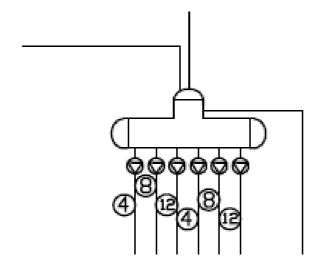

Presión de aprox. de funcionamiento

Desarrollo del diagrama T-S

Se utilizó el software TermoGraf para la simulación termodinámica. Se calcularon las propiedades termodinámicas dibujando los estados, procesos y ciclos directamente sobre el diagrama termodinámico (campana de Gaus).

Se importó la siguiente tabla, llamada panel de propiedades termodinámicas con las propiedades calculadas de estado (Presión, temperatura, entalpía, entropía, energía interna, título)

N°	Presión [Bar]	Temperatura [°C]	Entalpia [KJ/Kg]	Entropia [KJ/Kg*C]	Energia interna [KJ/Kg]	Título
1	0,196	59,600	250,180	0,823	250,160	0
2	1,500	59,600	250,312	0,823	250,160	-
3	1,500	111,320	467,179	1,435	467,337	0
4	4,700	111,350	467,674	1,435	467,179	-
5	4,700	149,490	629,785	1,836	629,272	0
6	4,700	149,490	2744,930	6,841	25,582	1
7	4,700	250,000	2960,880	7,300	2723,440	-
8	27,200	111,560	470,042	1,435	467,179	-
9	27,200	228,482	983,545	2,597	980,266	0
10	27,200	228,482	2802,800	6,224	2602,790	1
11	27,200	495,000	3447,560	7,267	3100,680	-
12	116,500	112,400	479,415	1,435	467,180	-
13	116,500	322,450	1477,300	3,474	1459,660	0
14	116,500	322,456	2690,960	5,512	2518,240	1
15	116,500	495,000	3338,380	6,487	3018,740	-
16	27,200	276,172	2940,640	6,487	2709,080	-
17	4,700	241,642	2943,540	7,267	2710,160	-
18	0,196	59,590	2403,680	7,300	2264,300	0,9
19	1,500	126,085	2723,090	7,300	2541,930	-

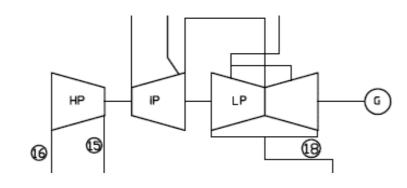


U.T.N F.R.A.		PROYECTO FINAL AÑO		2021
0.1.N F.N.A.		PROTECTO FINAL	GRUPO	
INGENIERIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	4

Análisis de los caudales en el circuito

Precalentador (HRSG 1)

Precalentador (HRSG 2)


Precalentador

Temperatura [°C]:

Velocidad del fluido [m/seg] : 0,6 a 1,8
Temperatura minima [°C] : 85

Masa del condensador

Temperatura [°C]: 45°C

Vapor de Calefacción

103 a 105

(TV)

15%

Fluido dentro de la caldera de recuperación

	Flujo másico [kg/seg]	Presión [Bar]	Temperatura [°C]
High pressure (HP)	82,378	116,5	495
Intermediate pressure (IP)	91,096	27,2	495
Low pressure (LP)	8,463	4,7	149

DIFERENCIA CON HUMOS (TG)

HUMOS (TG)

Temperatura [°C]	581,3
Presión [Bar]	1,0
Caudal [kg/seg]	691.356

Caudal de vapor de calefacción	0,3	kg/seg	105°C
--------------------------------	-----	--------	-------

U.T.N F.R.A.		AÑO	2021	
U. I.IV F.K.A.		PROYECTO FINAL	GRUPO	
INCENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	5

Materiales

Domo	
Chapas	

HP	IP	LP
SA299 Gr.A	SA515 Gr.65	SA515 Gr.65

Tubos según material A

Tubos

Sección	Colector Secundario	Unión entre colector secundario a colector principal	Colector Principal	Unión entre colector a domo	
	Material	Material	Material	Material	
Precalentador	SA178 Gr.A	SA192	SA192	SA192	
Bloque de Baja Presión					
Economizador	SA178 Gr.A	N/A	N/A	SA192	
Evaporador	SA178 Gr.A	SA192	SA192	SA192	
Sobrecalentador	SA106 Gr.A	N/A	N/A	SA192	
Bloque de Media Presión					
Economizador					
1ra presión	SA192	SA192	SA192	SA192	
2da presión	SA192	SA192	SA192	SA192	
Evaporador	SA192	SA192	SA192	SA192	
Sobrecalentador	SA192	SA192	SA192	SA192	
Bloque de "Alta" - Presión					
Economizador					
1ra presión	SA178 Gr.A	SA192	SA192	SA192	
2da presión	SA192	SA192	SA192	SA192	
3ra presión	SA192	SA213 T22	SA213 T22	SA213 T22	
Evaporador	SA213 T22	SA192	SA192	SA192	
Sobrecalentador					
1ra presión	SA213 T22	SA213 T12	SA213 T12	SA213 T12	
2da presión	SA213 T22	N/A	N/A	SA213 T12	
Recalentador					
1er presión	SA213 T22	N/A	N/A	SA213 T12	
2da presión	SA213 T22	N/A	N/A	SA213 T22	

Material	Tipo	código ASME
SA192	Tubo de acero al carbono sin costura	página 237
SA213 T12	Tubo de acero aleado austenítico y ferrítico sin costura	página 285
SA213 T22	Tubo de acero aleado austenítico y ferrítico sin costura	página 285
SA178 Gr.A	Tubos de acero al carbono sin costura	página 205
SA106 Gr.A	Tubos de acero al carbono sin costura	página 177

Tubos aletados con aleta de aluminio

Tubos aletados	ASTM A192
	7511417152

Estructura General

Perfiles	IRAM IAS U500-503 F26
Chapas para vigas	IRAM IAS U500-42 F26

REFERENCIAS

http://www.cn-steelplate.com/S-A299-Grade-B-A.html

ASTM A515 gr.65 acero acero placa, ASTM A515 gr.65 acero el precio de acero - BEBON INTERNATIONAL (bebonchina.com)

https://www.neelconsteel.com

https://www.fermetsac.com/wp-content/uploads/2016/08/Tubos-ASTM-CALDERO-A178.pdf

https://www.acero-tubo.com/astm-a106-gr-b-gr-c-acero-carbono-tubos-sin-costura-proveedores-exportadores.html

https://www.acero-tubo.com/astm-a 213-asme-sa 213-t 22-aleacion-acero-sincostura-tubos-proveedores-exportadores. html.

https://www.tubos-acero-aleacion.com/tubo-sin-soldadura-de-acero-de-aleacion-t12.html

											1
U.T.N F.R.	Α.					PROYECTO) FINAL			AÑO	2021
	, <u> </u>									GRUPO	
IGENIERIA MEC	CANICA	Máquin						era de recup		REV	А
		TITU	JLO			de ciclo	combinad	o de tres pre	siones	НОЈА	6
Calor requeri			, .		0 - m × C	n x AT					
Planteamos el Pi	rimer Principio	o de termodina	amica:		$Q = m \times C_1$	р х 🛚 ।					
N° P	resión [Bar]	Temperatura	Entalpia	Entropia	Energia interna	Cp [KJ/kg °C]	Título		Flujo Másico	[m]	[kg/seg]
		[°C]	[KJ/Kg]	[KJ/Kg*C]	[KJ/Kg]				Caudal Inicial		182
1	0,196	59,600	250,180	0,823	250,160	4,187	0	· •	Caudal bloque de baja presión		8,5
2	1,500	59,600	250,312	0,823	250,160	4,187 -			Caudal bloque de media presión		91,1
3	1,500	111,320	467,179	1,435	467,337	4,240	0	[Caudal bloque de alta presión		82,4
4	4,700	111,350	467,674	1,435	467,179	4,240 -	0				
5	4,700	149,490	629,785	1,836	629,272	2,314	0				
6	4,700	149,490	2744,930	6,841	25,582	2,314	1	Farese besi	a Turkina Vanar Baia nyasián		
7	4,700	250,000	2960,880	7,300	2723,440	3,950 -		rgreso nacia	a Turbina Vapor Baja presión		
8	27,200	111,560	470,042	1,435	467,179	4,240 -	0				
9	27,200	228,482	983,545	2,597	980,266	4,610	1				
10	27,200	228,482	2802,800	6,224	2602,790	4,610	1	Faresa hasi	a Turhina Vanor Modia proción		
11	27,200		3447,560		3100,680	14,601 -		rgieso nacia	a Turbina Vapor Media presión		
12	116,500	112,400	479,415	1,435	467,180	2,100 -	0				
13	116,500	322,450	1477,300	3,474	1459,660	7,900	1				
14	116,500	322,456	2690,960	5,512	2518,240	7,900	1	Fareso hasis	a Turbina Vapor Alta presión		
15	116,500	495,000	3338,380	6,487	3018,740	14,601 -		rgieso nacia	a ruruma vapor Aita presion		
16	27,200	276,172	2940,640	6,487	2709,080	4,860 -					
17	4,700	241,642	2943,540	7,267	2710,160	3,520 -	0.0				
18 19	0,196 1,500	59,590 126,085	2403,680 2723,090	7,300 7,300	2264,300 2541,930	0,000 2,120 -	0,9				
Precalentado Estado 2 a 3	<u>'r</u> [Q	39461,77	[KJ/seg]							
Bloque de Ba								Calor reque	rido	21.100 [KJ/seg]	
Economizado	or F							Liquido satu		111 [°C]	
Estado 4 a 5	L	Q	1371,95	[KJ/seg]				Vapor satura Vapor sobre		149 [°C] 250 [°C]	
Evaporador /	domo							·			
Estado 5 a 6		Q	17900,47	[KJ/seg]							
Sobrecalenta	dor										
Estado 6 a 7	L	Q	1827,58	[KJ/seg]							
Dia 1 55	adia Book	_						Calan	wi.do	225 074 544 - 3	
Bloque de Mo		<u>n</u>						Calor reque		225.071 [KJ/seg]	
Economizado	''' 		46762	fize / - 3				Liquido satu		112 [°C]	
Estado 8 a 9	L	Q	46780,12	[KJ/seg]				Vapor sobro		228 [°C]	
Evanored a. /	domo							Vapor sobre	satui du0	495 [°C]	
Evaporador / Estado 9 a 10		Q	165734,13	[KJ/seg]							
Sobrecalenta	dor										
Estado 10 a 1	_	_	12557.22	[V]/22=1							
Lotauu IV d I	· [Q	12557,22	[KJ/seg]							
EFERENCIAS											
											

U.T.N F.R	_					PROYECTO) FINIAI		AÑO	2021
U.1.IN F.K	.A.					PROTECTO) FINAL		GRUPO	
GENIERIA ME	CANICA -	Máquin						ra de recuperación	REV	Α
		TITU	JLO		de ciclo combinado de tres presiones		de tres presiones	НОЈА	7	
Calor requer		ncipio de te	rmodinámica	a:	Q = m x	<i>Ср х</i>				
N°	Presión [Bar]	Temperatura [°C]	Entalpia [KJ/Kg]	Entropia [KJ/Kg*C]	Energia interna [KJ/Kg]	Cp [KJ/kg °C]	Título	Flujo Másic	o [m]	[kg/seg]
1	0,196	59,600	250,180	0,823	250,160	4,187	0	Caudal bloque de baja presión		8,
2	1,500	59,600	250,312	0,823	250,160	4,187 -		Caudal bloque de media presión		91,
3	1,500	111,320	467,179	1,435	467,337	4,240	0	Caudal bloque de alta presión		82,
4	4,700	111,350	467,674	1,435	467,179	4,240 -				
5	4,700	149,490	629,785	1,836	629,272	2,314	0			
6	4,700	149,490	2744,930	6,841	25,582	2,314	1			
7	4,700	250,000	2960,880	7,300	2723,440	3,950 -		Egreso hacia Turbina Vapor Baja presión		
8	27,200	111,560	470,042	1,435	467,179	4,240 -				
9	27,200	228,482	983,545	2,597	980,266	4,610	0			
10	27,200	228,482	2802,800	6,224	2602,790	4,610	1	Egroco hacia Turhina Vanor Madia arcaiés		
11	27,200	495,000	3447,560	7,267	3100,680	14,601 -		Egreso hacia Turbina Vapor Media presión		
12 13	116,500 116,500	112,400	479,415 1477,300	1,435	467,180 1459,660	2,100 -	0			
13	116,500	322,450 322,456	2690,960	3,474 5,512	2518,240	7,900 7,900	1			
15	116,500	495,000	3338,380	6,487	3018,740	14,601 -		Egreso hacia Turbina Vapor Alta presión		
16	27,200	276,172	2940,640	6,487	2709,080	4,860 -				
17	4,700	241,642	2943,540	7,267	2710,160	3,520 -				
18	0,196	59,590	2403,680	7,300	2264,300	0,000	0,9			
19	1,500	126,085	2723,090	7,300	2541,930	2,120 -				
Bloque de A	ta Drociós							Calor requerido	221 UO2 [KI]	
Bloque de Al Economizado								Calor requerido Liquido saturado	231.083 [KJ/seg] 112 [°C]	
Estado 12 a 1	-	Q	77730,00	[KJ/seg]				Vapor saturado	322 [°C]	
	· [<u> </u>	77730,00	[10/368]				Vapor sobresaturado	495 [°C]	
Evaporador ,	/ domo									
Estado 13 a 1	Г	Q	100005,58	[KJ/seg]						
	_									
Sobrecalenta										
Estado 14 a 1	15	Q	53347,41	[KJ/seg]						
Pocalontada	roc							Calor roquorido	5602 27 [VI/com]	
Recalentado Primer Recal								Calor requerido	5692,27 [KJ/seg]	
Estado 16 a 1		Q	4410,20	[KJ/seg]		Ir	ngreso des	de Turbina de Alta presión (estado 16)		
	L	۷]	. +10,20	[10/308]			_	i Turbina de Vapor Media presión (estado 11)		
Segundo Rec	alentador							,		
Estado 17 a 7		Q	1282,07	[KJ/seg]			_	de la Turbina de Media presión (estado 17) Turbina de Baja presión (estado 7)		
								,		

REFERENCIAS

U.T.N F.R.A.		AÑO	2021	
U. I.IV F.K.A.		PROYECTO FINAL	GRUPO	
INCENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	8

Q: Intercambio de calor

El intercambio está determinado por la siguiente expreión:

$$Q = U x F x DTML^*$$

F: Superficie de Calefacción [m2]

DTML: Diferencia media logaritmica de temperatura corregida [°C]

U: Coeficiente de transmisión total del equipo [W/m2 °C]

DTML: <u>Diferencia de Temperatura Media Logaritmica</u>

$$\Delta T = \frac{\left(T_{g1} - t_{s2}\right) - \left(T_{g2} - t_{s1}\right)}{\ln\left(\frac{\left(T_{g1} - t_{s2}\right)}{\left(T_{g2} - t_{s1}\right)}\right)}$$

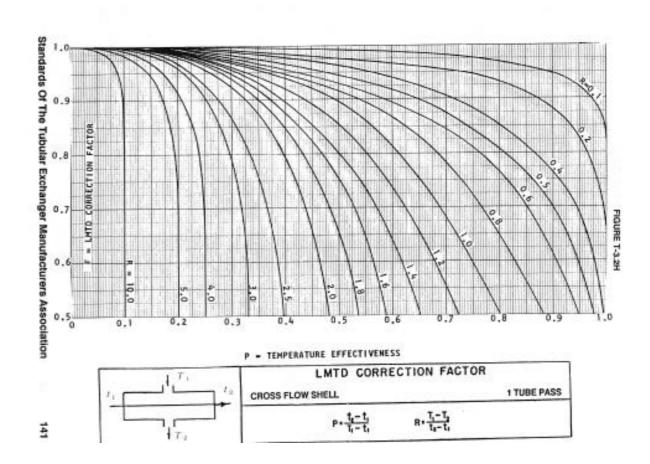
ts:Temperatura de saturación

t_{s1}: Temperatura de entrada del vapor del sobrecalentador

 t_{s2} : Temperatura de salida del vapor del sobrecalentador

T_{g1}: Temperatura del gas entrada a la caldera

 T_{g2} : Temperatura de salida del gas del sobrecalentador


 T_{g3} : Temperatura de salida del gas del evaporador

 T_{g4} : Temperatura de salida del gas del economizador

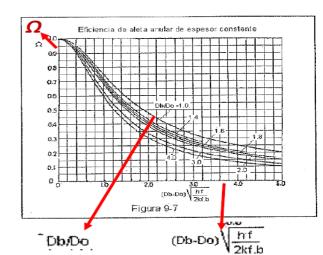
ΔT: Diferenia media logaritmica de temperaturas

 t_{w1} : Temperatura de entrada al economizador del agua de alimentación

tw2: Temperatura de salida al economizador del agua de alimentación

Ft > 0,75 aprox. **adoptamos Ft = 0,85**

Finalmente obtenemos:


DTML* = DTML X 0,85

U: Coeficiente de Transferencia del Equipo

$$U = (\frac{1}{(\frac{1}{h'f} + \frac{1}{hio} + Rfio)})$$
hio por cálculo Coeficiente pelicular lado interno corregido a la superficie exterior Coeficiente pelicular de tubo y aleta

Rfio 0,0005 [m2°C/W] resistencia de ensuciamiento lado interno

h'fo: Coeficiente final pelicular tubo y aleta

h'f: Coeficiente pelicular de tubo y aleta corregido por ensuciamiento

hf: Coeficiente pelicular de tubo y aleta

$$hf = 0.0959. \left(\frac{Re^{0.718}.k}{De.Pr^{-0.33}}\right)$$

$$= \begin{cases} Re & \text{por cálculo} \\ k & 44,13 & [\text{kcal/h m °C}] = [\text{W/m °C}] \\ De & \text{por cálculo} \\ Pr & \text{por tabla} \end{cases}$$

$$= \begin{cases} Re & \text{por cálculo} \\ hf = 0.0959. \left(\frac{Re^{0.718}.k}{De.Pr^{-0.33}}\right) \\ Pr & \text{por tabla} \end{cases}$$

$$= \begin{cases} Re & \text{por cálculo} \\ hf = 0.0959. \left(\frac{Re^{0.718}.k}{De.Pr^{-0.33}}\right) \\ Pr & \text{por tabla} \end{cases}$$

$$= \begin{cases} Re & \text{por cálculo} \\ hf = 0.0959. \left(\frac{Re^{0.718}.k}{De.Pr^{-0.33}}\right) \\ Hr & \text{por cálculo} \\ Pr & \text{por tabla} \end{cases}$$

$$= \begin{cases} Re & \text{por cálculo} \\ hf = 0.0959. \left(\frac{Re^{0.718}.k}{De.Pr^{-0.33}}\right) \\ Hr & \text{por tabla} \end{cases}$$

$$= \begin{cases} Re & \text{por cálculo} \\ hf = 0.0959. \left(\frac{Re^{0.718}.k}{De.Pr^{-0.33}}\right) \\ Hr & \text{por tabla} \end{cases}$$

$$= \begin{cases} Re & \text{por cálculo} \\ hf = 0.0959. \left(\frac{Re^{0.718}.k}{De.Pr^{-0.33}}\right) \\ Hr & \text{por tabla} \end{cases}$$

$$= \begin{cases} Re & \text{por cálculo} \\ hf = 0.0959. \left(\frac{Re^{0.718}.k}{De.Pr^{-0.33}}\right) \\ Hr & \text{por tabla} \end{cases}$$

$$= \begin{cases} Re & \text{por cálculo} \\ hf = 0.0959. \left(\frac{Re^{0.718}.k}{De.Pr^{-0.33}}\right) \\ Hr & \text{por tabla} \end{cases}$$

$$= \begin{cases} Re & \text{por cálculo} \\ hf = 0.0959. \left(\frac{Re^{0.718}.k}{De.Pr^{-0.33}}\right) \\ Hr & \text{por tabla} \end{cases}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por tabla} \end{cases}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por cálculo} \\ Hr & \text{por cálculo} \end{cases}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por cálculo} \\ Hr & \text{por cálculo} \end{cases}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por cálculo} \\ Hr & \text{por cálculo} \end{cases}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por cálculo} \\ Hr & \text{por cálculo} \\ Hr & \text{por cálculo} \end{aligned}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por cálculo} \\ Hr & \text{por cálculo} \end{aligned}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por cálculo} \\ Hr & \text{por cálculo} \end{aligned}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por cálculo} \end{aligned}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por cálculo} \end{aligned}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por cálculo} \end{aligned}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por cálculo} \end{aligned}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por cálculo} \end{aligned}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por cálculo} \end{aligned}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por cálculo} \end{aligned}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por cálculo} \end{aligned}$$

$$= \begin{cases} Re & \text{por cálculo} \\ Hr & \text{por cálculo} \end{aligned}$$

U.T.N F.R.A.		AÑO	2021	
U.T.N F.R.A.		PROYECTO FINAL	GRUPO	
INGENIERIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	9

Re: Número de Reynolds (Re)

Gs	De	por cálculo	Diámetro equivalente para la transferencia de calor
$Res = (De.\frac{ds}{u})$	Gs	por tabla	Densidad de flujo másico del gas
μ	ш	nor tabla	Viscosidad del gas

De: <u>Diámetro equivalente para la transferencia de calor</u>

(Ff+Fd)	Ff	por cálculo	área de aleta [m2/m]
$De = 2.\left(\frac{\sqrt{p_n}}{\pi P_n}\right)$	Fd	por cálculo	área de tubo desnudo [m2/m]
π.1 ρ	Рр	por cálculo	Perímetro proyectado que es la suma de todas las dimensines exteriores en vista en planta de una tubo aletado por
	_	•	metro de tubo.

Pp: Perímetro proyectado

$$Pp = 2. (Db - D0).Nm + 2. (1 - b.Nm)$$

$$Db dato diámetro ext. del tubo diámetro ext. del tubo número de aletas por metro de tubo espesor de aleta$$

Se desarrollan los cálculos correspondientes a cada término de la ecuación para hallar el Intercambio de calor dentro de la caldera entre el fluido que circula dentro de los tubos aletados y los humos que se generan desde la TG.

Cálculo del Número de Reynolds (GAS)

Sección	T° [°C]	Db Diametro exterior de aleta	D0 Diámetro ext. tubo [mm]	h Altura de la aleta [mm]	b Espesor de aleta [mm]		Fd área de aleta [m2/m]	Fo área de tubo desnudo	Pp Perimetro proyectad o [mm]	De Diámetro Equivalent e [m]	v Velocidad GAS [m/sg]	p Densidad de flujo [kg/m3]	Gs Densidad de flujo másico	μ Viscos. [kg/m*sg]	Re Nro Reynolds
Precalentador	156,0	51,8	31,8	10	0,80	4,40	0,05466	0,01384	6653,97	0,01	2,22	0,834	1,849	0,000023	525,46
Bloque de Baja Presión															
Economizador	177,0	51,8	31,8	10	0,80	3,50	0,04348	0,01101	5293,34	0,01	2,33	0,795	1,849	0,000024	509,39
Evaporador	205,0	51,8	31,8	10	0,80	4,30	0,05342	0,01353	6502,79	0,01	2,47	0,748	1,849	0,000025	489,54
Sobrecalentador	281,0	51,8	31,8	10	0,80	3,50	0,04348	0,01101	5293,34	0,01	2,86	0,646	1,849	0,000027	444,39
Bloque de Media Presión															
Economizador															
1era presión	177,0	51,8	31,8	10	0,80	3,50	0,04348	0,01101	5293,34	0,01	2,33	0,795	1,849	0,000024	509,39
2da presión	260,0	51,8	31,8	10	0,80	4,60	0,05715	0,01447	6956,33	0,01	2,75	0,671	1,849	0,000027	456,04
Evaporador	277,0	51,8	31,8	10	0,80	4,30	0,05342	0,01353	6502,79	0,01	2,84	0,650	1,849	0,000027	446,58
Sobrecalentador	281,0	51,8	31,8	10	0,80	3,50	0,04348	0,01101	5293,34	0,01	2,86	0,646	1,849	0,000027	444,39
Bloque de Alta Presión															
Economizador															
1era presión	177,0	51,8	31,8	10	0,80	3,50	0,04348	0,01101	5293,34	0,01	2,33	0,795	1,849	0,000024	509,39
2da presión	260,0	51,8	31,8	10	0,80	4,60	0,05715	0,01447	6956,33	0,01	2,75	0,671	1,849	0,000027	456,04
3era presión	341,0	51,8	31,8	10	0,80	6,00	0,07454	0,01888	9072,87	0,01	3,17	0,583	1,849	0,000029	414,80
Evapordador	494,0	51,8	31,8	10	0,80	3,90	0,04845	0,01227	5898,06	0,01	3,96	0,466	1,849	0,000034	357,07
Sobrecalentador															
1era presión	500,0	51,8	31,8	10	1,20	4,00	0,05994	0,01888	5923,26	0,01	4,00	0,463	1,849	0,000034	459,13
2da presión	581,3	58,1	38,1	10	1,20	3,50	0,06936	0,01979	5183,10	0,01	4,42	0,419	1,849	0,000037	554,18
Recalentradores															
1era presión	535,0	58,1	38,1	10	1,00	3,50	0,06433	0,01649	5238,22	0,01	4,18	0,443	1,849	0,000035	516,59
2da presión	581,3	58,1	38,1	10	1,20	3,50	0,06936	0,01979	5183,10	0,01	4,42	0,419	1,849	0,000037	554,18

REFERENTES

U.T.N F.R.A. Máguina Única		PROYECTO FINAL	AÑO	2021
U. I . IV F. N.A.		PROTECTO FINAL	GRUPO	
INGENIERIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA WIECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	10

F: Superficie de Calefacción

Fo: Superficie de calentamiento del tubo por metro

$$F_O = \pi * D_0 \left(1 - b * \frac{N}{0.0254} \right) \left[\frac{m^2}{m} \right]$$

Fd: Superficie de calentamiento de aletas por metro

$$F_d = \left(\frac{\pi}{4} * \left[(D_0 + 2h)^2 - {D_0}^2 \right] * 2 + \pi * (D_0 + 2h) * ft \right) * \frac{fn}{0.0254} \left[\frac{m^2}{m} \right]$$

F's: Superficie de calentamiento total por metro

$$F_{s}' = F_d + F_O \left[\frac{m^2}{m} \right]$$

N: Número total de tubo

$$N = STN * SLN$$

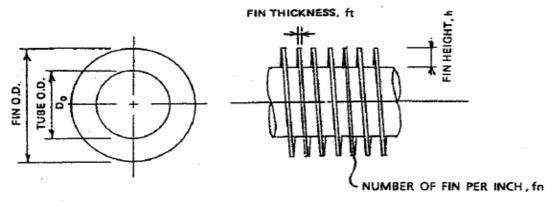
F: Superficie de calentamiento total

$$F = F_{S}' * L * N = (F_{d} + F_{O}) * L * STN * SLN [m^{2}]$$

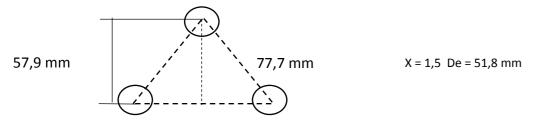
Nomenculaturas de tubo con aletas en espiral

D₀ Diámetro exterior de tubo [m]

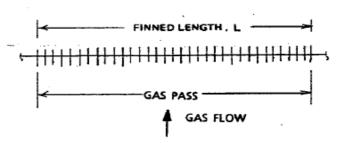
h Altura de la aleta [m]

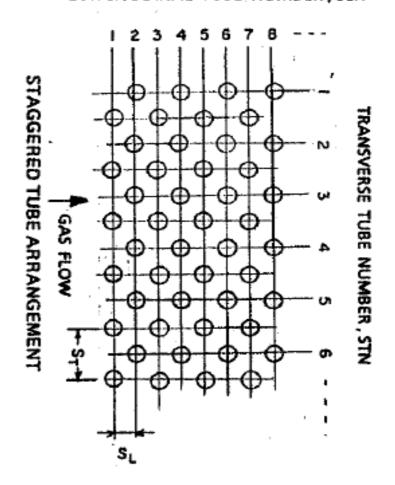

b Espesor de la aleta [m]

Número de aletas [por pulgada]


Longitud con aleta de un tubo [m]

STN Número de tubo transversal


SLN Númeo de tubo longitudinal


FIN DIMENSIONS

103,6 mm (Equivale a 2 veces el diámetro interno del tubo De = 51,8mm)

LONGITUDINAL TUBE NUMBER, SLN

REFERENTES

U.T.N F.R.A.		PROYECTO FINAL	AÑO	2021
U. I.IN F.K.A.		PROTECTO FINAL	GRUPO	
INICENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	11

Cálculo de Superficie de Calefacción (estimación)

 La especificación del tubo para cada sección y la superficie de calentamiento calculada se muestran en la siguiente tabla

$$F = F_S' * L * N = (F_d + F_O) * L * STN * SLN [m^2]$$

٠	STN	SLN	D0	h	-	N	L	F
	SIN	SLN		<u> </u>	В	N	L L	_
Sección	Nro tubo transversal	Nro tubo Iongitudinal	Diámetro exterior tubo [mm]	Altura de la aleta [mm]	Espesor de aleta [mm]	Nro aleta [por pulg.]	Longitud con aleta de tubo [m]	Superficie de calentamien to total
Precalentador	156,22	37	31,8	10	0,8	4,4	23	9107,124
Bloque de Baja Presión								
Economizador	130,00	2	31,8	10	0,8	3,5	23	325,868
Evaporador	147,14	14	31,8	10	0,8	4,3	23	3172,024
Sobrecalentador	110,00	2	31,8	10	0,8	3,5	23	275,735
Bloque de Media Presión								
Economizador								
1era presión	150,00	28	31,8	10	0,8	3,5	23	5264,02643
2da presión	151,11	18	31,8	10	0,8	4,6	23	4480,51012
Evaporador	154,29	7	31,8	10	0,8	4,3	23	1663,00264
Sobrecalentador	120,00	20	31,8	10	0,8	3,5	23	3008,0151
Bloque de Alta Presión								
Economizador								
1era presión	146,67	12	31,8	10	0,8	3,5	23	2205,87774
2da presión	154,00	20	31,8	10	0,8	4,6	23	5073,51881
3era presión	150,00	22	31,8	10	0,8	6	23	7090,32131
Evapordador	154,00	40	31,8	10	0,8	3,9	23	8602,92319
Sobrecalentador								
1era presión	155,00	8	31,8	10	1,2	4	23	2247,99824
2da presión	150,00	4	31,8	10	1,2	3,5	23	1230,28009
Recalentadores			SOLU		4			
1era presión	100,00		31,8	10	1,2	3,5	23	185,89014
2da presión	20,00	1 1	31,8	10	1,2	3,5	23	41,0093363
•					Total Super	ficie de calefacci	ón [m2]:	53974,12

DTML: <u>Diferencia de Temperatura Media Logaritmica</u>

El DTML calculada para cada sección se muestran en la siguiente tabla

DTML* = DTML * factor de correción = DTML * 0,85

Factor de corrección Ft = 0,85

		Tempera	tura gas	Temperatura	vapor/liquido]		
	SECCIÓN	Tg1	Tg2	Ts1	Ts2	DTML	DTML X 0,85	DTML"
		Entrada [°C]	Salida [°C]	Entrada [°C]	Salida [°C]			
1	Precalentador	156	83	59,60	111,32	32,901		27,966
Bloque	de Baja Presión							
4	Economizador	177	157	111,35	149,49	35,818	0,745	30,445
5	Evaporador	205	177	149,49	149,49	39,885	1,000	33,902
9	Sobrecalentador	281	277	149,49	250,00	68,243	0,598	58,007
Bloque	de Media Presión							
	Economizador	260	156	111,56	228,48	37,610	0,488	31,968
3	1era presión	177	156	111,56	149,49	35,301	0,746	30,006
6	2da presión	260	204	149,49	228,48	41,971	0,654	35,675
8	Evaporador	277	260	228,48	228,48	39,409	1,000	33,497
10	Sobrecalentador	300	279	228,48	276,17	35,517	0,827	30,190
Bloque	de Alta Presión							
	Economizador	341	155	112,40	322,45	28,928	0,349	24,589
2	1era presión	177	155	112,40	149,49	34,507	0,752	29,331
7	2da presión	260	205	149,49	228,48	42,390	0,654	36,031
11	3era presión	341	281	228,48	322,45	32,641	0,709	27,745
12	Evapordador	494	341	322,45	322,45	68,782	1,000	58,465
	Sobrecalentador							
13	1era presión	500	494	322,45	495,00	47,109	0,651	40,042
16	2da presión	581	528,5	322,45	495,00	137,598	0,651	116,958
	Recalentadores							
14	1era presión	535	500	245,64	276,17	155,726	0,889	132,367
15	2da presión	581	531,2	276,17	495,00	256,588	0,558	218,099

REFERENTES

IITN FDA	U.T.N F.R.A. Máquina Única	PROYECTO FINAL	AÑO	2021
U.I.N F.K.A.		PROTECTO FINAL	GRUPO	
	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	12

Propiedades de los humos

Se realizao el cálculo de las propiedades de los humos de combustión de la turbina de gas (TG) para incorporar dichos valores a el cálculo del número de Reynolds (desarrollo en hojas 9)

μ: Viscosidad

 $\mu_{m} = \frac{\sum y_{i}\mu_{i} \sqrt{MW_{i}}}{\sum y_{i} \sqrt{MW_{i}}}$

	Composición	1	Peso Molar [gr/mol]	Fracción Molar	Volumen [%]	Σy _i MW _i	$\Sigma y_i\sqrt{MW_i}$	Yi	√MW _i
CO2	5,818	%	44	0,1322	3%	2,56	0,386	0,058	6,634
N2	73,4787	%	22	3,3380	79%	16,17	3,447	0,735	4,692
H2O	H2O 5,218 %		18	0,2899	7%	0,94	0,221	0,052	4,243
02	O2 14,2585 %		32	0,4456	11%	4,56	0,807	0,143	5,657
Ar	Ar 1,2288 %		40	0,0307	1%	0,49	0,078	0,012	6,325
C +	an amaaitia ba	at Day /I b I	,	4.24	100%	24.73	4.94		

 C_p - gas specific heat-Btu/Lb F,

μ - viscosity-Lb/ft h,

k - thermal conductivity-Btu/ft h F.

		CO2			H2O			N2			02	
Temp. [F]	Ср	μ	K	Ср	μ	К	Ср	μ	K	Ср	μ	K
200	0,2162	0,0438	0,0125	0,4532	0,0315	0,0134	0,2495	0,0518	0,0189	0,2250	0,0604	0,0186
400	0,2369	0,0544	0,0177	0,4663	0,0411	0,0197	0,2530	0,0608	0,0219	0,2332	0,0716	0,0229
600	0,2543	0,0645	0,0277	0,4812	0,0506	0,0261	0,2574	0,0694	0,0249	0,2404	0,0823	0,0272
800	0,2688	0,0749	0,0274	0,4975	0,0597	0,0326	0,2624	0,0776	0,0279	0,2468	0,0924	0,0313
1000	0,2807	0,0829	0,0319	0,5147	0,0687	0,0393	0,2678	0,0854	0,0309	0,2523	0,1021	0,0352

Metric To American Metric To Metric

American To Metric American To American

VISCOSITY, absolute, µ: $0.1 \text{ Pa} \cdot \text{s} = 1 \text{ dyne} \cdot \text{s/cm}^2 = 360 \text{ kg/h} \cdot \text{m}$

= 1 poise = 100 centipoise = 242.1 lb mass/hr · ft

= 0.002 089 lb force · sec/ft2 1 kg/h·m = 0.672 lb/hr·ft = 0.002 78 g/s·cm = 0.000 005 81 lb force sec/ft²

= 0.413 centipoise = 0.000 413 Pa·s

1 lb force · sec/ft² = 115 800 lb mass/hr · ft = 47 880 centipoise

lb force · sec/ft²

= 47.88 Pa ·s 1 reyn = 1 lb force · sec/in.1

 μ of water \dagger = 1.124 centipoise = 2.72 lb mass/hr · ft

= 2.349 x 10" lb sec/ft2

= 6.890 × 10* centipoise μ of air t = 0.0180 centipoise

1 lb mass/hr · ft = 0.000 008 634

= 0.0436 lb/hr·ft = 3.763 × 107 lb sec/ft

Se interpoló el valor de la temperatura, según la tabla anterior

Tempe	eratura	,	Viscosidad a	bs. [Lb/ft.h]]		Viscosi	dad abs. [Kg	g/m.sg]	
[°C]	[F]	CO2	H2O	N2	02	CO2	H2O	N2	02	Ar
156	313	0,04978	0,03691	0,05688	0,06672	0,000020	0,000015	0,000023	0,000027	0,000002
177	351	0,05178	0,03873	0,05858	0,06883	0,000021	0,000016	0,000024	0,000028	0,000002
205	401	0,05445	0,04115	0,06084	0,07165	0,000022	0,000017	0,000025	0,000029	0,000001
281	538	0,06136	0,04765	0,06673	0,07897	0,000025	0,000020	0,000027	0,000032	0,000001
177	351	0,05178	0,03873	0,05858	0,06883	0,000021	0,000016	0,000024	0,000028	0,000002
260	500	0,05945	0,04585	0,06510	0,07695	0,000024	0,000019	0,000027	0,000032	0,000001
277	531	0,06100	0,04730	0,06642	0,07859	0,000025	0,000019	0,000027	0,000032	0,000001
281	538	0,06136	0,04765	0,06673	0,07897	0,000025	0,000020	0,000027	0,000032	0,000001
177	351	0,05178	0,03873	0,05858	0,06883	0,000021	0,000016	0,000024	0,000028	0,000002
260	500	0,05945	0,04585	0,06510	0,07695	0,000024	0,000019	0,000027	0,000032	0,000001
341	646	0,06688	0,05268	0,07128	0,08461	0,000027	0,000022	0,000029	0,000035	0,000001
494	921	0,07975	0,06515	0,08233	0,09828	0,000033	0,000027	0,000034	0,000040	0,000001
500	932	0,08018	0,06564	0,08275	0,09880	0,000033	0,000027	0,000034	0,000041	0,000001
581	1078	0,08603	0,07223	0,08846	0,10590	0,000035	0,000030	0,000036	0,000043	0,000001
535	995	0,08270	0,06848	0,08521	0,10186	0,000034	0,000028	0,000035	0,000042	0,000001
581	1078	0,08603	0,07223	0,08846	0,10590	0,000035	0,000030	0,000036	0,000043	0,000001

U.T.N F.R.A.		PROYECTO FINAL	AÑO	2021
0.1.N F.N.A.		PROTECTO FINAL	GRUPO	
INICENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	13

Coeficiente de Transferencia del Equipo

$$U = \frac{1}{\frac{1}{h'f} + \frac{1}{hio + Rfio}}$$

	Т°	GAS	Re	De	Pr	hf	h′f	Fd	Fo	h′fo	hio	U
Sección	[°C]	[°F]	Nro Reynolds	Nro Reynolds [m] Diámetro [m] Diámetro [m] Diámetro [m] Coeficiente pelicular de tubo y aleta corregido por [w/m2 °C] ensuciamiento [m2/m] área de tubo y aleta aleta [m2/m] área de tubo y aleta [m2/m] área de tubo y aleta [m2/m] fraz °C/w] fraz °C/w]		l interno corregido a	Coeficiente de Transferenc ia del Equipo [W/m2 °C]					
Precalentador	156,00	312,80	525,46	0,01	0,7014	51587,55	0,000019	0,054661	0,013845	0,000077	1522	0,0001570
Bloque de Baja Pro	esión											
Economizador	177,00	350,60	509,39	0,01	0,6992	50401,65	0,000020	0,043480	0,011013	0,000078	1522	0,0001607
Evaporador	205,00	401,00	489,54	0,01	0,6974	48937,96	0,000020	0,053418	0,013530	0,000081	1522	0,0001655
Sobrecalentador	281	537,8	444,385684	0,00655377	0,6935	45572,0124	2,19433E-05	0,04348014	0,01101289	8,6635E-05	1521,5311	0,00017772
Bloque de Media	Presión											
Economizador												
1era presión	177,00	350,60	509,39	0,01	0,6992	50401,65	0,000020	0,043480	0,011013	0,000078	1522	0,0001607
2da presión	260,00	500,00	456,04	0,01	0,6946	46447,21	0,000022	0,057145	0,014474	0,000085	1522	0,0001744
Evaporador	277,00	530,60	446,58	0,01	0,6940	45741,39	0,000022	0,053418	0,013530	0,000086	1522	0,0030000
Sobrecalentador	dor 281,00 537,80 444,39 0,01 0,6935 45572,01 0,000022 0,043480		0,011013	0,000087	1522	0,0001777						
Bloque de Alta Pre	esión											
Economizador												
1era presión	177,00	350,60	509,39	0,01	0,6992	50401,65	0,000020	0,043480	0,011013	0,000078	1522	0,0001607
2da presión	260,00	500,00	456,04	0,01	0,6946	46447,21	0,000022	0,057145	0,014474	0,000085	1522	0,0001744
3era presión	341,00	645,80	414,80	0,01	0,6937	43369,46	0,000023	0,074537	0,018879	0,000091	1522	0,0001868
Evapordador	494,00	921,20	357,07	0,01	0,6980	39029,93	0,000026	0,048449	0,012272	0,000101	1522	0,0002075
Sobrecalentador												
1era presión	500,00	932,00	459,13	0,01	0,6986	36178,85	0,000028	0,059943	0,018879	0,000088	1522	0,0002223
2da presión	581,30	1078,34	554,18	0,01	0,7077	32175,74	0,000031	0,069359	0,019792	0,000109	1584	0,0002516
Recalentadores												
1era presión	535,00	995,00	516,59	0,01	0,6990	33965,97	0,000029	0,064328	0,016493	0,000115	1584	0,0002391
2da presión	581,30	1078,34	554,18	0,01	0,7077	32175,74	0,000031	0,069359	0,019792	0,000109	1584	0,0002516
k 44,:	13 [w/m °C]	coeficiente de	conductivida	d del tubo								
Rfo 0,00			oeficiente de conductividad del tubo esistencia de ensuciamiento lado aleta									
Ω 0,5		coeficiente de										

k44,13[w/m °C]coeficiente de conductividad del tuboRfo0,0002[m2°C/w] πesistencia de ensuciamiento lado aletaΩ0,55coeficiente de densidad de aletaRfio0,0005[m2°C/w] πεesistencia de ensuciamiento lado internohio2000[w/m2 °C]Di/De0,79209979Corresponde al Sobrecalentor 2da presión y Recalentadores

0,76076555 Corresponde al resto de los componentes

Prandtls Number $P_r = \mu C_p/k$

(2-6)

Table 2-1: Gas Data and F₁ Factors for Air and Flue Gas

	A	<u> ir</u>				Flue C	<u>las</u>	
temp, F	C_p	μ	\boldsymbol{k}	F_1	C_p	μ	k	F_1
200	.2439	.05369	.01878	.1687	.2570	.0492	.0174	.1702
400	.2484	.0632	.02211	.1756	.2647	.0587	.0211	.1805
800	.2587	.0809	.0287	.1865	.2800	.0763	.0286	.1991
1200	.2696	.0968	.0350	.2015	.2947	.0922`	.0358	.2159
1600	.2800	.1109	.0412	.2138	.3080	.1063	.0429	.2314
2000	.2887	.1232	.0473	.2235	.3190	.1188	.0499	.2456

(flue gas analysis used above: % vol $CO_2 = 12$, $H_2O = 12$, $N_2 = 70$, $O_2 = 6$)

REFERENCIAS

Di/De

U.T.N F.R.A.		DROVECTO FINAL	AÑO	2021			
U.T.N F.K.A.		PROYECTO FINAL	GRUPO				
INICENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А			
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	14			

Cálculo del Intercambio de calor

 Comparamos el Intercambio de calor teórico, obtenido del análisis en termograf, con el Intercambio de calor generado por el equipo, según la disposición, tamaño de tubos aletados y comportamiento de los humos de la Turbina de Gas.

$$Q = U x F x DTML^*$$

	U	F	DTML	Qreal transferido	Qrequerido	
Sección	Coeficiente de Transferencia del Equipo [W/m2°C]	Superficie de calentamiento total [m2]	Diferencia de Temperatura Media Logaritmica [°C]	Intercambio de calor del equipo [W] =[J/seg]	Intercambio de calor teórico requerido[J/seg]	VERIFICA
Precalentador	0,000157	9107,124	1 27,966	39,99	1 39,46	ok
Bloque de Baja Presión						
Economizador	0,000161	325,868	30,445	1,59	1,37	ok
Evaporador	ador 0,000165 3172,024		33,902	17,80	17,50	ok
Sobrecalentador	0,000178	275,735	58,007	2,84	1,83	ok
Bloque de Media Presió	n					
Economizador						
1era presión	0,000161	5264,026	30,006	25,38	46,78	ok
2da presión 0,000174		4480,510	35,675	27,87	-	ok
Evaporador	0,003000	1663,003	33,497	167,12	165,73	ok
Sobrecalentador	0,000178	3008,015	30,190	16,14	12,56	ok
Bloque de Alta Presión						
Economizador						
1era presión	0,000161	2205,878	29,331	10,40	77,73	ok
2da presión	0,000174	5073,519	36,031	31,88	-	ok
3era presión	0,000187	7090,321	27,745	36,74	-	ok
Evapordador	0,000208	8602,923	58,465	104,37	100,01	ok
Sobrecalentador						
1era presión	0,000222	2247,998	40,042	20,01	53,35	ok
2da presión	0,000252	1230,280	116,958	36,20	-	ok
Recalentadores						
1era presión	0,000239	185,890	132,367	5,88	4,41	ok
2da presión	0,000252	41,009	218,099	2,25	1,28	ok
		Verifica	Qreal > Qrequerido	546,46	522,01	

Finalmente, se obtiene que el calor Q real transferido es mayor al Q requerido, verificando asi la superficie de calefacción y demás parámetros calculados anteriormente.

Recordando el cálculo de cada parámetro:

Coeficiente de Transferencia del Equipo [W/m2 °C] $U = \frac{1}{\frac{1}{h'f} + \frac{1}{hio + Rfio}}$

Superficie de calentamiento total [m2] $F = F_S' * L * N = (F_d + F_O) * L * STN * SLN [m^2]$

Diferencia de Temperatura Media Logaritmica [°C] DTML* = DTML * factor de correción = DTML * 0,85

LITN FDA		PROYECTO FINAL	AÑO	2021
U.T.N F.R.A.		PROTECTO FINAL	GRUPO	
	Máquina Única	Diseño de una Caldera de recuperación	REV	Α
INGENIERIA MECANIO	TITULO	de ciclo combinado de tres presiones	HOJA	15

Cálculo de masas y velocidades

		_				,	.h		Velocidad		
Sección		vapor/	atura del liquido	Pote	encia Generada		ATT	MASAS	Colector	Colector a	Tubos
Section						Inicial	Final		principal	domo	aletados
		Entrada[°C]	Salida [°C]	[W]=[J/seg]	[KJ/seg]	[KJ/I	kg °C]	[kg/seg]	[m/seg]	[m/seg]	[m/seg]
Precalentador		59,60	111,32	39,986	39985,928	250,180	467,674	183,8484	1,478	1,497	2,000
Bloque de Baja Presión											
Economizador	4 a 5	111,35	149,49	1,594	1594,215	467,674	629,785	9,834094	N/A	1,139	2,000
Evaporador	5 a 6	149,49	149,49	17,798	17797,732	629,785	2744,930	8,414426	0,977	0,974	3,000
Sobrecalentador	6 a 7	149,49	250,00	2,843	2842,527	2744,930	2960,880	13,1629	N/A	12,064	23,000
Bloque de Media Presión											
Economizador	8 a 9	111,56	149,49	53,254	53253,906	470,042	983,545	103,7071			
1era presión		111,56	228,48	25,381	25381,193	470,042	983,545	49,42755	1,407	1,037	2,000
2da presión		111,56	149,49	27,873	27872,714	470,042	983,545	54,27955	1,545	1,139	2,000
Evaporador	9 a 10	149,49	228,48	167,119	167119,069	983,545	2802,800	91,86127	1,272	1,865	3,000
Sobrecalentador	11 a 16	228,48	276,17	16,139	16139,060	2802,800	2940,640	117,0855	8,629	8,094	23,000
Bloque de Alta Presión											
Economizador	12 a 13	112,40	322,45	79,011	79011,294	479,415	1477,300	79,17876			
1era presión		112,40	149,49	10,397	10396,665	479,415	1477,300	10,4187	1,210	1,070	2,000
2da presión		149,49	228,48	31,877	31876,679	479,415	1477,300	31,94424	1,560	1,057	2,000
3era presión		228,48	322,45	36,738	36737,950	479,415	1477,300	36,81582	1,798	1,218	2,000
Evapordador	13 a 14	322,45	322,45	104,372	104371,809	1477,300	2690,960	85,99757	1,108	1,026	3,000
Sobrecalentador	14 a 15	322,45	495,00	56,212	56212,117	2690,960	3338,380	86,82481			
1era presión		322,45	495,00	20,012	20011,917	2690,960	3338,380	30,91025	8,867	12,142	23,000
2da presión		322,45	495,00	36,200	36200,201	2690,960	3338,380	55,91455	N/A	8,616	23,000
Recalentradores											
1era presión	16 a 11	245,64	276,17	5,882	5882,069	2940,640	3447,560	11,60355	N/A	8,788	23,000
2da presión	17 a 7	276,17	495,00	2,250	2250,160	2943,540	2960,880	129,767	N/A	8,549	23,000

	[kg/seg]
Caudal Inicial	182
Caudal evaporador baja presión	8,5
Caudal evaporador media presión	91,1
Caudal evaporador alta presión	82.4

Para el cálculo de las velocidades se establecieron los siguientes parámetros:

Fluido en los colectores

Liquido

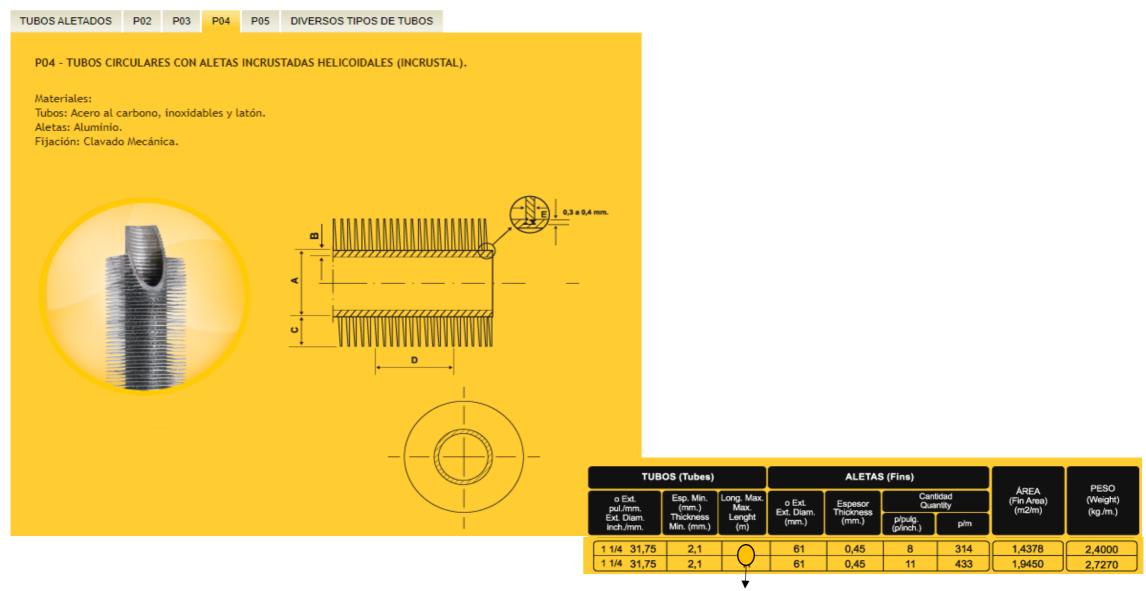
Vapor

> 2 [m/seg] 8,41 a 25,908 [m/seg]

Fluido en los tubos aletados

#	Liquido	2 a 3	[m/seg]
#	Vapor	23	[m/seg]

Tamaños de líneas


Fluido	≥ 6 in	8 in – 12 in	≥ 14 in
Vapor Saturado			
0 a 50 psig	30 – 115	50 – 125	60 - 145
Gas o vapor			
sobrecalentado			
0 a 10 psig	50 – 140	90 – 190	110 – 250
11 a 100 psig	40 – 115	75 – 165	95 – 225
101 a 900 psig	30 - 85	60 - 150	85 – 165

30 - 85 [fps]

U.T.N F.R.A.		PROYECTO FINAL	AÑO	2021
U.T.N F.N.A.		PROTECTO FINAL	GRUPO	
INGENIERIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	Α
INGENIERIA WIECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	16

Selección de Tubos Aletados

 Se seleccionó por catálogo los tubos aletados, en el mismo por el fabricando nos indica los diversos tipos de fabricación, dimensiones y materiales utilizados en sus tubos y aletas, área de rendimiento térmico y peso por metro.

Se solicitarán con un largo de 23m

Descripción: ASTM A192 / ASME SA192 implementos de tubo de caldera de acero al carbono sin costura para caldera. Se usa típicamente para fabricar calderas (la presión de trabajo no es más de 9.8 MPa y la temperatura significativa está entre 450 °C y 650 °C) Paquetes de tubos aletados de superficie de calentamiento, economizador, sobrecalentador, recalentador y tubería de vapor. Possen un alto límite elástico, alta resistencia a la tracción y alto alargamiento. La presión para lograr la resistencia está garantizada en el material interior.

Tubos de intercambiadores de calor estirados en frío con un espesor de pared mínimo (tamaños en pulgadas)

Afi	uera	Espesor míni	mo de parec												
diáme	tro	BWG (pulgadas)	20 (.035)	18 (.049)	16 (.065	14 (.083)	13 (.095)	12 (.109)	11 (.120)	10 (.134)	9 (.148)	8 (.165)	7 (.180)	6 (.203)	5 (.220
[mm]	[pulgada]	[mi	m]0,89	1,24	1,65	2,11	2,41	2,77	3,05	3,40	3,76	4,19	4,57	5,16	5,59
	1/2	libras / pie	0,190	0,256	0,327	0,209	0,441	0,487	0,519	0,555	0,586				
12,70	.500	kg/m	0,283	0,381	0,487	0.584	0,657	0,725	0,773	0,826	0,873				
	5/8	libras / pie	0,242	0,328	0,423	0,521	0,581	0,647	0,696	0,752	0,804				
15,88	.625	kg/m	0,360	0,488	0,630	0,7	0,865	0,964	1.036	1,120	1,198				
	3/4	libras / pie		0,400	0,518	0,613	0,720	0,807	0,872	0,948	1.021				
19,05	.750	kg/m		0,595	0,771	0,957	1.072	1.202	1.299	1.412	1,521				
	7/8	libras / pie		0,472	0,614	0,767	0,864	0,973	1.056	1,158					
22,23	.875	kg/m		0,702	0,913	1,14	1,285	1,448	1,571	1,722					
	1	libras / pie		0,543	0,709	0,887	0,998	1.128	1,225	1,342	1,456	1,587	1,696		
25,40	1.000	kg/m		0,808	1.056	1.321	1,487	1,680	1.824	1,998	2,169	2,363	2.526		
	11/4	ibras / pie		0,686	0,900	1,131	1,277	1,448	1,577	1,734	1,891	2.071	2,225	2,451	2.607
31,75	1.250	kg/m		1.022	1.340	1,684	1.902	2,157	2,349	2.583	2.816	3,085	3.313	3.650	3,882
	11/2	libras / pie		0,830	1.090	1.375	1,556	1,769	1.930	2.128	2,326	2.556	2,753	3,047	3,253
38.10	1500	kø/m		1236	1624	2.048	2 317	2,634	2 875	3 169	3.464	3.807	4100	4.538	4.845

U.T.N F.R.A.		PROYECTO FINAL	AÑO	2021			
U.I.N F.K.A.		PROTECTO FINAL	GRUPO				
	Máquina Única	Diseño de una Caldera de recuperación	REV	А			
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA				

Distribución de los tubos dentro de la caldera

Largo del transporte (camión):23 m23.000 mmAncho del transporte (camión):2,5 m2.500 mm

Diámetro tubos aletados :51,8mmDistancia ente tubos aletados :103,6mm

Cantidad de tubos aletados por paquete : 20 tubos

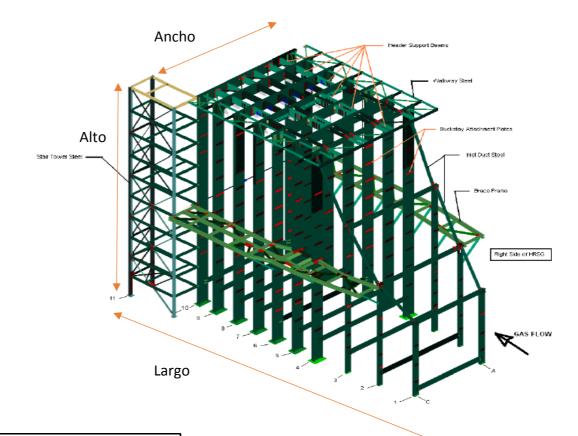
<u>Ancho del transporte - diámetro tubos aletados</u> = Cantidad de tubos aletados por paquete Distancia ente tubos aletados

Ancho paquete de tubos aletados :

(Cantidad de tubos aletados por paquete * Distancia entre tubos aletados) + (1,5 * Diámetro tubos aletados) = Ancho paquete de tubos

Cantidad de paquetes de tubos aletados : 6 paquetes

Ancho interno = Cantidad de paquetes de tubos aletados
Ancho paquete de tubos aletados


<u>Finalmente se establece la distribución de cada componente</u>

	Finalmente se establece la distribu	<u>cion de cada componen</u>	<u>ie</u>	_	_	_	_
	SECCION	Cantidad total de tubos aletados	Ancho Tranversal (STN)	Largo Longitundinal (SLN)	Cantidad paquetes de tubos (120)	Cantidad paquetes de tubos*	Cantidad tubos en una fila para completar ancho transversal
1	Precalentador	5780,00	120	48,17	5	1	20
	Bloque de Baja Presión	•					
4	Economizador	260,00	120	2,17	5	1	20
5	Evaporador	2060,00	120	17,17	5	1	20
9	Sobrecalentador	220,00	120	1,83	1	5	20
	Bloque de Media Presión						
	Economizador						
3	1era presión	4200,00	120	35	6	-	
6	2da presión	2720,00	120	22,67	2	4	20
8	Evaporador	1080,00	120	9	6	-	
10	Sobrecalentador	2408,00	120	20,07	4	2	20
	Bloque de Alta Presión	•					
	Economizador						
2	1era presión	1760,00	120	14,67	2	4	20
7	2da presión	3080,00	120	25,67	2	4	20
11	3era presión	3300,00	120	27,5	2	3	20
12	Evapordador	6160,00	120	51,33	4	2	20
	Sobrecalentador						
13	1era presión	1240,00	120	10,33	4	2	20
16	2da presión	600,00	120	5	6	-	
	Recalentradores						
14	1era presión	100,00	120	1	6	-	
15	2da presión	20,00	120	1	6	-	

mm

REFERENCIAS

 Medidas contructivas del cuerpo
Largo Interrno 14250 mm
Alto Interno 23000 mm
Ancho Interno 16250 mm

^{*}en estas medidas no se consideran la chimenea ni el cono de entrada

^{*} Se trata de la cantidad de paquetes de tubos al que se le agrega una fila con 20 tubos para lograr la cantidad de 120 tubos de ancho.

	U.T.N F.R.A.		AÑO	2021	
	U.T.N F.N.A.		GRUPO		
ſ		Máquina Única	Diseño de una Caldera de recuperación	REV	А
	INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	18

Dimensionamiento Domos: Cuerpo

El dimensionamiento del tambor se basa generalmente en las tasas de liberación de vapor y la pureza del vapor que se puede alcanzar con los internos requeridos del tambor. Además, se debe cumplir el criterio del tiempo de retención.

	Fluio mássio [l/g/sog]	Presió	n [Bar]	Tomporatura [°C]	Generación Vapor	Volumen especifico del	
	Flujo máscio [kg/seg]	bar	psig	Temperatura [°C]	[lb/min]	agua [ft3/lb]	
High pressure (HP)	82,378	116,5	1689	322,45	653.793	0,0014260	
Intermediate pressure (IP)	91,096	27,2	400	228,48	722.984	0,0006668	
Low pressure (LP)	re (LP) 8,463		68	149,49	67.167	0,0037490	

	Diámetro	(Nominal)	Largo	Nivel de Agua [pulg]			
	[mm]	[pulg]	[mm]	[pulg]	H1	H2	
High pressure (HP)	1830	72	15000	590	34	32	
Intermediate pressure (IP)	1520	60	7500	296	28	26	
Low pressure (LP)	1520	60	8500	335	28	26	

Liquid volume in straight section $V_* = (LR^4/231)[(a/57.3) \cdot sinecose$ Liquid yolume in each end $V_{\bullet} = 0.261 H^{4}(3R - H)/231$ Total liquid volume

Figure 5-3. Partial volume of liquids in pressure vessels.

Volumen líquido en sección recta

$$Vs = \left(\frac{LR^2}{231}\right) * \left(\frac{\alpha}{57,3}\right) - [sen(\alpha) * \cos(\alpha)]$$

Volumen de líquido en cada extremo

$$Ve = \frac{\frac{4}{3} * R^3 * \pi}{2}$$

Volumen de líquido total

$$V = 2 * V_{ce} + V_r$$

H2 * C	OS $(\alpha) = 2/R$	0,0556
α =	2/R	86,550
	sen	0,9982
	cos	0,0697

Aplicando las fórmulas para el cálulo del volumen, tratandos de dos niveles dentro del domo, se calcula para el H1 (volumen total 1) y para el H2 (volumen total 2). Tener en cuenta que H1 corresponde al nivel medio mientras que e H2 al nivel bajo.

Finalmente si el tiempo de retención es menor a 3 minutos, verificamos que el domo dimensionado cumple.

Volumen especifico del agua [ft3/lb] Tasa de evaporación = Generación Vapor [lb/min] *

V1 - V2 [ft3] Tiempo de retención = Tasa de evaporación [ft3/min]

	Tasa de evaporación	Volumen (1)			Volumen (2)			V1 - V2	[pulg ³]	Tiempo de retención
	[ft3/min]	Vs [pulg ³]	Ve [pulg ³]	Vt [pulg ³]	Vs [pulg ³]	Ve [pulg ³]	Vt [pulg ³]	[pulg3]	ft3	[min]
High pressure (HP)	15,54	1.154.967	82.112,31	1.319.191	1.154.967	68.457,57	1.291.882	27.309,49	15,80	1,017094427
Intermediate pressure (IP)	8,03	402.389	45.861,22	494.112	402.389	36.719,06	475.828	18.284,32	10,58	1,316928084
Low pressure (LP)	4,20	455.407	45.861,22	547.129	455.407	36.719,06	528.845	18.284,32	10,58	2,521244391

REFERENCIAS

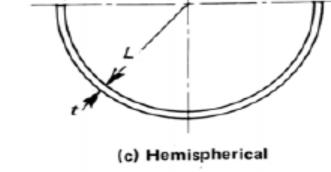
Waste Heat Boiler Deskbook (V. Ganapathy)

Chapter 5 "Specifying Waste Heat Boilers"

U.T.N F.R.A.		AÑO	2021	
0.1.N F.K.A.		GRUPO		
	Máquina Única	Diseño de una Caldera de recuperación	REV	Α
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	19

<u>Dimensionamiento Domos: Espesor</u>

	Low pressure (LP)	Intermediate pressure (IP)	High pressure (HP)
Diametro nominal (mm)	1520	1520	1830
Espesor calculado de la envolvente (mm)	5,168	14,711	57,953
Espesor adoptado de la envolvente (pulg)	1/4	5/8	2 1/2
Material	SA-515-65	SA-515-65	SA-299-A
Largo	8500	7500	15000
Presión (kg/mm²)	0,047	0,272	1,165
Tension admisible del material (kg/mm²)	12,8	12,8	13,9
Eficiencia de ligamentos	1,000	1,000	1,000
Coeficiente de temperatura adimensional	0,400	0,400	0,400
Factor de Dimension "L"	760	760	915
Sobre espesor por corrosion (envolvente en mm)	3,175	3,175	3,175
Sobre espesor por corrosion (Casquetes en mm)	3,175	3,175	3,175
Espesor calculado Casquetes (mm)	4,571	11,267	41,844
Espesor adoptado casquetes (pulg)	1/5	1/2	1 3/4
Temperatura (°C)	149,490	228,48	322,45


PG-27.2.2 Piping, Drums, Shells, and Headers.

Based on strength of weakest course.

$$t = \frac{PD}{2SE + 2yP} + C \quad \text{or} \quad \frac{PR}{SE - (1 - y)P} + C$$

(e) Hemispherical Heads. When the thickness of a hemispherical head does not exceed 0.356L, or P does not exceed 0.665SE, the following formulas shall apply:

$$t = \frac{PL}{2SE - 0.2P} \quad \text{or} \quad P = \frac{2SEt}{L + 0.2t}$$
 (3)

Selección del Factor Y, en base del material y temperatura del equipo

PG-27.4.6 Nota 6 y = un coeficiente que tiene los siguientes valores:

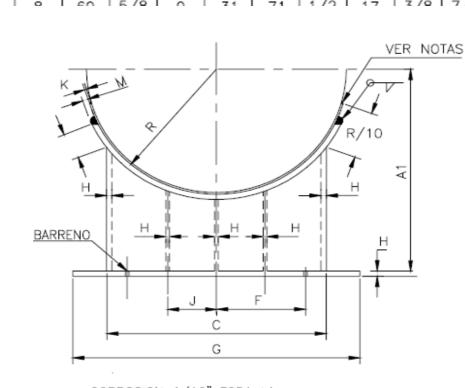
			Te	mperati	иа, °F (°C)		
	900 (480) e inferior	950 (510)	1,000 (540)	1,050 (565)	1,100 (595)	1,150 (620)	1,200 (650)	1,250 (675) y superior
Ferrítico	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7
Austenítico	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
Aleación 800,	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
801								
800H, 800HT	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
825	0.4	0.4	0.4					
230 Aleación	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
N06022	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
N06045	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
N06600	0.4	0.4	0.4	0.4	0.5	0.7	0.7	
N06601	0.4	0.4	0.4	0.4	0.5	0.7	0.7	
N06625	0.4	0.4	0.4	0.4	0.4			
N06690	0.4	0.4	0.4	0.4	0.5	0.7	0.7	
Aleación 617	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
S31803	0.4							
	-							

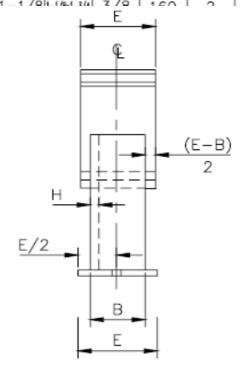
Tabla de Ch	Tabla de Chapas Negras Gruesas									
Espesor	Espesor									
Pulgadas	mm	por m2								
1/8	3.17	25.12								
3/16	4.76	37.68								
1/4	6.35	50.24								
-5/16	7.94	62.80								
3/8	9.52	75.36								
7/16	11.11	87.92								
1/2	12.70	100.48								
9/16	14.29	113.04								
5/8	15.87	125.60								
3/4	19.06	150.72								
7/8	22.22	175.84								
1 1/4	25.40	200.90								
	31.75	251.20								
1 1/2	38.10 44.45	301.44 351.44								
1 3/4	50.80	401.92								
2 1/2	63.50	502.40								
- 1/2	76.20	602.88								
3 1/2	88.90	703.36								
- 1/2	101.60	803.84								
1	101.60	803.84								

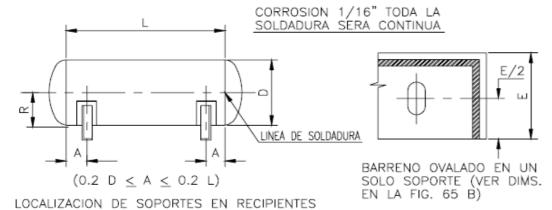
REFERENCIAS

U.T.N F.R.A.		AÑO	2021	
0.1.N F.N.A.		PROYECTO FINAL	GRUPO	
INGENIERIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	Α
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	20

Dimensionamiento Domos: Silletas


Domos	Diámetro [m]	Largo [m]	Pi	Espesor [m]	Peso específico [Kg/m³]	Peso envolvente [Kg]	Diámetro interior [m]	Volumen [m³]	casquete	Peso total vacío [Kg]	Volumen envolvente [m³]	Volumen casquete [m³]		Peso total Ileno [Kg]
HP	1,83	15	3,14	0,0635	7850	42965,056	1,703	0,622469	4886,381	47851,44	34,149961	2,584773	36734,73	84586,17
IP	1,52	7,5	3,14	0,01587	7850	4459,4478	1,48826	0,112744	885,0404	5344,488	13,040329	1,725102	14765,43	20109,92
LP	1,52	8,5	3,14	0,00635	7850	2022,2533	1,5073	0,045683	358,6134	2380,867	15,159608	1,792163	16951,77	19332,64


ΙP Intermediate pressure


LP Low pressure Ambos domos verifican su peso para dos silletas

ΗP High pressure No verifica su peso para 2 silletas, entonces utilizaremos 4 silletas

						С	ARA	A C T	ΕR	IST	I C A	S						
DIAM. RECIPIENTE	CARCA VAXIVA PARA 2 SOPORTES		T O D	AS	L A	S D	I M E	NS	0 N	ΕS	ΕN	P U	L G A		S	PESO DE UN SOPORTE	CARTABONES INTERNIEDIOS	ž
D	SOPORTES Kg	A1	В	С	D	Ε	F	G	Н	J	K	ANCLA	DIAMETRO BARRENO	BARRENO OVALADO	FILETE DE SOLDADURA	Kg	INTERMEDICS	
24	3410	19	6	22	3/8	7	8	23	5/16	11	3/16	3/4	1	1x1-1/2	1/4	23	1	ES.A
30	4545	22	6	27	7/16	7	10-1/2	29	5/16	13-1/2	3/16	3/4	1	1x1-1/2	1/4	30	1	
36	6818	25	6	32	1/2	7	12-1/2	34	3/8	16	1/4	3/4	1	1x1-1/2	1/4	41	1	
42	9090	28	6	38	9/16	7	16	40	1/2	19	5/16	3/4	1	1x1-1/2	5/16	50	1	
48	18180	31	8	43	5/8	9	18	45	1/2	21-1/2	3/8	7/8	1-1/8	1-1/8x1-3/4	3/8	91	1	
54	22727	34	8	48	5/8	9	20	50	1/2	12	3/8	7/8	1-1/8	1-1/8x1-3/4	3/8	110	2	
60	27270	37	8	53	5/8	9	23	55	1/2	13	3/8	7/8	1-1/8	1-1/8x1-3/4	3/8	123	2	
66	34090	40	8	58	5/8	9	25	60	1/2	14	3/8	7/8	1-1/8	1-1/8x1-3/4	3/8	136	2	
72	38636	43	8	63	5/8	9	28	65	1/2	16	3/8	7/8	1-1/8	1-1/8x1-3/4	3/8	148	2	
					F /0		- 4		4 /0	4-	7 /0	7.70	4 4 40	1 1 10 1 7 1	7./0	400		

NOTAS:

1.— LA PLACA DE REFUERZO O DE CORROSION SERA SOLDADA AL RECIPIENTE CON CORDON CORRIDO, Y SE EXTENDERA R/10 (R EN PULG.) A CADA LADO DE

2.- HACER BARRENO DE 1/4" EN PLACA DE REFUERZO O CORROSION Y TAPARLO

HORIZONTAI

DESPUES DE SOLDAR.

3.— SI EL MATERIAL DEL RECIPIENTE NO ES DE ACERO AL CARBON, LA PLACA SERA DEL MISMO MATERIAL DEL RECIPIENTE, Y DEBERA SOLDARSE AL MISMO CON LA SOLDADURA ADECUADA.

4.- MATERIALES OPTATIVOS: ASTM A-283 Gr. "C", ASTM A-36.

Domos	Diámetro	netro Largo 0,2*L 0,2*D		A	
HP	1,83 15,0		3,00	0,37	Entre 0,37M y 3,00M
IP	1,52	7,50	1,50	0,30	Entre 0,3M y 1,5M
LP	1,52	8,50	1,70	0,30	Entre 0,3M y 1,7M

Medida A establecida [mm]

2 pares soportes equidistantes con 3333 mm de distancia en el medio

2 soportes con 5700mm de distancia

2 soportes con 6700mm de distancia

REFERENCIAS

Ver pagina 131 del PDF Diseño y calculos de recipientes a presión

U.T.N F.R.A.		PROYECTO FINAL	AÑO	2021
U.T.N F.K.A.		GRUPO		
INCENTEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	21

<u>Dimensionamiento Domos: Orejas de Izaje</u> (IP-LP)

Domos	To [mm]	W [KG]	S [Kg/mm²]	D [mm]	C [mm]	Tc [mm]	As	Ar	Es mayor?	Verifica?
Intermediate pressure	10,327	5036,350	12,8	38,1	190,5	0,00976	2782,190	393,465	Si	Si
Low pressure	3,987	1944,510	12,8	38,1	114,3	0,01086	644,514	151,915	Si	Si

		Material	Cantidad orejas de izaje	Distancia minima desde la soldadura		
IP	Intermediate pressure	SA 515 Gr 65	2	74,76	mm	
LP	Low pressure	SA 515 Gr 65	2	25,925	mm	

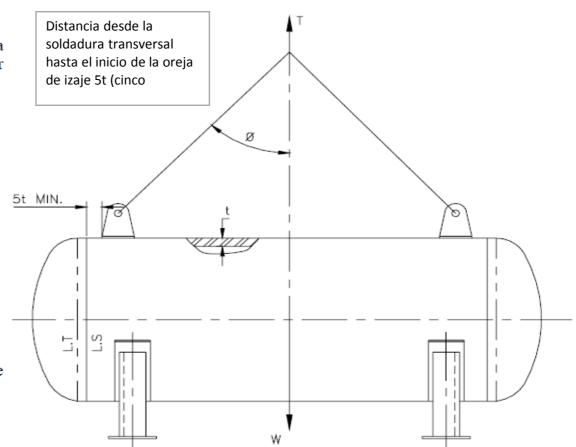
Nota (1) Para el Domo de baja / media se adopta el espesor 19,05 mm como espesor de oreja de izaje

2.5. CÁLCULO DE OREJAS DE IZAJE

Con el fin de transportar, localizar, dar mantenimiento, etc,. a los recipientes a presión, es necesario equiparlos por lo menos con dos orejas de izaje, el espesor de éstas se calcula por medio de la siguiente ecuación:

$$t_o = \frac{W}{SD}$$

DONDE:


to = Espesor mínimo requerido en la oreja de izaje.

 $\mathbf{W} = \text{Peso del equipo vacío.}$

S = Esfuerzo a la tensión del material de la oreja.

D = Distancia mostrada en la Figura No. 66

En la Figura No. 67, se muestra un croquis de localización de las orejas de izaje.

Es conveniente verificar que el espesor del recipiente será suficiente para soportar las fuerzas aplicadas en la oreja de izaje, el espesor mínimo requerido en el cuerpo o en la placa de respaldo de la oreja está dado por la ecuación:

$$t_c = \frac{W}{S(C+t_o)2}$$

DONDE:

t_c = Espesor mínimo requerido en la placa de respaldo o en el cuerpo.

W = Peso del equipo vacío.

S = Esfuerzo a la tensión del material del cuerpo o placa de respaldo.

C = Longitud mostrada en la Figura No. 66

 t_0 = Espesor de la oreja de izaje.

Finalmente, debemos verificar que la soldadura aplicada para fijar la oreja de izaje sea suficiente, ello lo haremos con las siguientes ecuaciones:

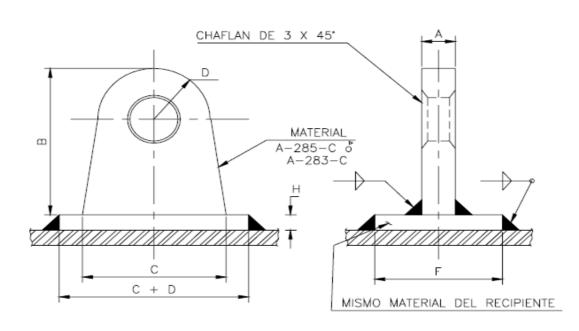
$$A_s = 1.4142 \ (t_o)C$$
 y $A_r = \frac{W}{S}$

DONDE:

As = Área de soldadura aplicada.

 A_r = Área mínima de soldadura requerida.

Siempre se deberá cumplir con la condición $A_s \ge A_r$.


En la Figura No. 66, se muestran las dimensiones de algunas orejas de izaje recomendables, las cuales están dadas en función del peso del recipiente.

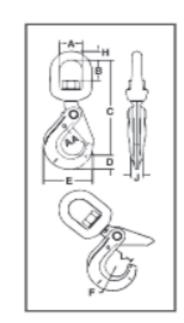
Debemos considerar que la capacidad máxima está dada para cada una de las orejas.

REFERENCIAS

	U.T.N F.R.A.		AÑO	2021	
	U.1.N F.K.A.		GRUPO		
ſ	INCENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
	INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	22

<u>Dimensionamiento Domos: Orejas de Izaje</u> (IP-LP)

NOTA:


1.— LA MAXIMA DIMENSION DE SOLDADURA
SERA IGUAL AL MENOR ESPESOR DE LA
PLACA BASE.

			OREJA	AS DE I	ZAJE			NORN	/AS
INGLESA			DIMENSIO	─ FI	FIGURA No. 66				
CAPACIDAD MAX. Kgs.	A	В	С	D	F	DIAMETRO DE BARRENOS	G	Н	CANT, PZAS. P/RECIPIENTE
2000	3/4	4-1/2	4-1/2	1-1/2	2-1/4	1-1/2	3/4	3/8	2
4500	3/4	7-3/4	7-3/4	1-1/2	2-1/4	1-1/2	3/4	3/8	2
5800	1	8-7/16	8-7/16	1-1/2	2-1/2	1-1/2	3/4	3/8	2
13500	1-1/2	8-3/4	8-3/4	1-1/2	3-1/2	1-1/2	3/4	1/2	2
24500	2	9-3/4	9-3/4	1-5/8	3-1/2	1-11/16	3/4	1/2	4

Nota (1) Capacidad max. 2000kg para el Domo de baja por oreja

Nota (2) Capacidad max. 4500kg para el Domo de media por oreja

S-1326 SHUR-LOC® Swivel Hooks • Suitable for infrequent, non-continuous rotation under load. —

Cha Siz			Grade 100 Alloy Chain Working	Working				Dimensions (in)								
(in)	(mm)	Frame code	Load Limit (lb) 4:1*	Load Limit (lb) 5:1*	S-1326 Stock No.	Weight Each (lb)	А	В	С	D	E	F	н	J	L	AA**
-	6	D	3200	2560	1004304	1.26	1.50	1.32	6.13	.79	2.60	.67	.50	.63	1.13	1.50
1/4 - 5/16	7-8	G	5700	4560	1004313	2.62	1.75	1.59	7.60	1.10	3.50	.87	.63	.81	1.38	2.00
3/8	10	Н	8800	7040	1004322	4.70	2.00	1.73	8.83	1.17	4.39	1.10	.75	.94	1.75	2.50
1/2	13	1	15000	12000	1004331	8.64	2.50	2.38	11.20	1.67	5.45	1.26	1.00	1.16	2.11	3.00
5/8	16	-	22600	18000	1004340	17.00	2.75	2.70	12.90	2.05	6.56	1.50	1.13	1.50	2.49	3.50
3/4	18 - 20	-	35300	28240	1004349	24.00	2.83	2.52	14.10	2.22	7.76	2.01	1.10	2.03	3.52	5.00
7/8	22		42700	34160	1004358	29.00	3.44	3.19	16.40	2.45	8.75	2.26	1.30	2.20	3.83	6.00

*Ultimate Load is 4 times the Working Load Limit. ** Deformation Indicators.

U.T.N F.R.A.		AÑO	2021	
U.I.N F.K.A.		PROYECTO FINAL	GRUPO	
	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	23

Dimensionamiento Domos: Orejas de Izaje (HP)

Domos	To [mm]	W [KG]	S [Kg/mm²]	D [mm]	C [mm]	Tc [mm]	As	Ar	Es mayor?	Verifica?
НР	15,529	46545,000	23,6	127	254	0,02715	5578,300	1972,246	Si	Si

		Material	Cantidad orejas de izaje	Distancia minima desd	e la soldadura
HP	High pressure	SA 372 Gr e Ale. Desig. K1304-70	2	158,75	mm

Nota (1) Para el Domo de alta se adopta el espesor 50,8 mm como espesor de oreja de izaje

2.5. CÁLCULO DE OREJAS DE IZAJE

Con el fin de transportar, localizar, dar mantenimiento, etc., a los recipientes a presión, es necesario equiparlos por lo menos con dos orejas de izaje, el espesor de éstas se calcula por medio de la siguiente ecuación:

$$t_o = \frac{W}{SD}$$

DONDE:

to = Espesor mínimo requerido en la oreja de izaje.

W = Peso del equipo vacío.

S = Esfuerzo a la tensión del material de la oreja.

D = Distancia mostrada en la Figura No. 66

En la **Figura No. 67,** se muestra un croquis de localización de las orejas de izaje.

Finalmente, debemos verificar que la soldadura aplicada para fijar la oreja de izaje sea suficiente, ello lo haremos con las siguientes ecuaciones:

$$A_s = 1.4142 (t_o)C$$
 y $A_r = \frac{W}{S}$

DONDE:

As = Área de soldadura aplicada.

 A_r = Área mínima de soldadura requerida.

Siempre se deberá cumplir con la condición $A_s \ge A_{r^*}$

En la Figura No. 66, se muestran las dimensiones de algunas orejas de izaje recomendables, las cuales están dadas en función del peso del recipiente.

Debemos considerar que la capacidad máxima está dada para cada una de las orejas.

Es conveniente verificar que el espesor del recipiente será suficiente para soportar las fuerzas aplicadas en la oreja de izaje, el espesor mínimo requerido en el cuerpo o en la placa de respaldo de la oreja está dado por la ecuación:

$$t_c = \frac{W}{S(C+t_o)2}$$

DONDE:

 $\mathbf{t_c} = \mathrm{Espesor}$ mínimo requerido en la placa de respaldo o en el cuerpo.

W = Peso del equipo vacío.

S = Esfuerzo a la tensión del material del cuerpo o placa de respaldo.

C = Longitud mostrada en la Figura No. 66

 t_0 = Espesor de la oreja de izaje.

REFERENCIAS

U.T.N F.R.A.		PROYECTO FINAL	AÑO	2021
U. I. IN F.K.A.		PROTECTO FINAL	GRUPO	
	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	24

<u>Dimensionamiento Domos: Orejas de Izaje</u> (HP)

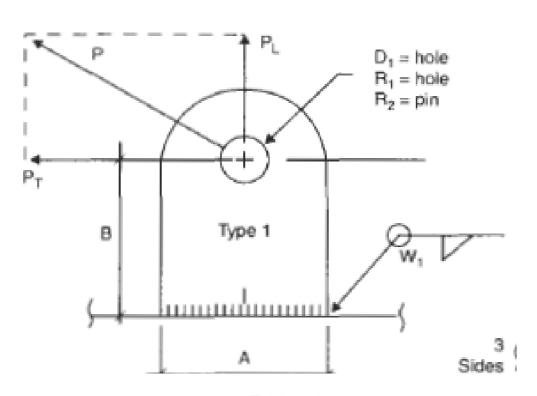
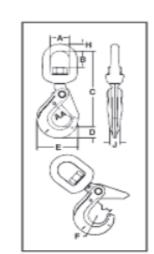



Table 7-5 Lug Dimensions

W _L kips	Α	D ₁	В	С	t _L	W ₁	W _L kips	Α	D ₁	В	С	tL	W ₁
4	3	0.88	1.5	2	0.5	0.25	20	7	1.75	3	3	1	0.38
6	3.5	1	1.63	2	0.63	0.25	25	7	2.38	4	4	1	0.44
8	4	1.13	1.75	2	0.63	0.25	35	8	2.38	4	4	1.125	0.5
10	4.5	1.25	2	2	0.75	0.25	40	8	2.38	4	4	1.125	0.63
12	5	1.38	2.13	3	0.88	0.25	45	8	2.88	4	4	1.125	0.63
14	5.5	1.5	2.38	3	1	0.38	50	10	2.88	4	4	1.25	0.75
16	6.5	1.63	2.5	3	1	0.38	55	10	2.88	4	4	1.25	0.75
18	7	1.75	2.75	3	1	0.38	60	10	2.88	4	4	1.25	0.88

S-1326 SHUR-LOC® Swivel Hooks • Suitable for infrequent, non-continuous rotation under load. —

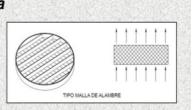
Cha Siz			Grade 100 Alloy Chain Working	Working			Dimensions (in)									
(in)	(mm)	Frame code	Load Limit (lb) 4:1*	Load Limit (lb) 5:1*	S-1326 Stock No.	Weight Each (lb)	А	В	С	D	E	F	н	J	L	AA**
-	6	D	3200	2560	1004304	1.26	1.50	1.32	6.13	.79	2.60	.67	.50	.63	1.13	1.50
1/4 - 5/16	7-8	G	5700	4560	1004313	2.62	1.75	1.59	7.60	1.10	3.50	.87	.63	.81	1.38	2.00
3/8	10	Н	8800	7040	1004322	4.70	2.00	1.73	8.83	1.17	4.39	1.10	.75	.94	1.75	2.50
1/2	13	1	15000	12000	1004331	8.64	2.50	2.38	11.20	1.67	5.45	1.26	1.00	1.16	2.11	3.00
5/8	16	-	22600	18000	1004340	17.00	2.75	2.70	12.90	2.05	6.56	1.50	1.13	1.50	2.49	3.50
3/4	18 - 20	-	35300	28240	1004349	24.00	2.83	2.52	14.10	2.22	7.76	2.01	1.10	2.03	3.52	5.00
7/8	22	-	42700	34160	1004358	29.00	3.44	3.19	16.40	2.45	8.75	2.26	1.30	2.20	3.83	6.00

*Ultimate Load is 4 times the Working Load Limit. $^{\pm\pm}$ Deformation Indicators.

U.T.N F.R.A.		AÑO	2021	
U.I.N F.K.A.		PROYECTO FINAL	GRUPO	
INCENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	25

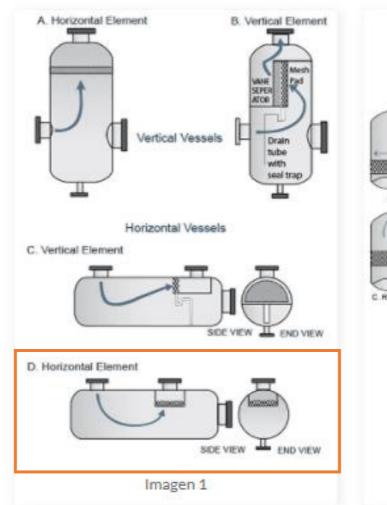
Dimensionamiento Domos: Eliminador de niebla

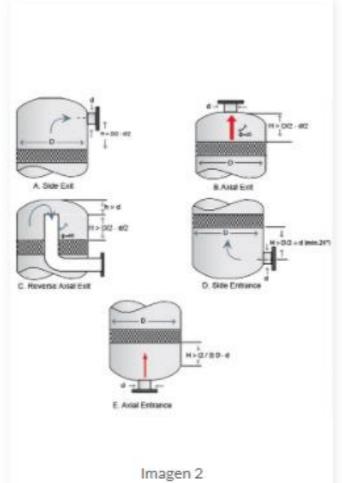
También llamado desnebulizador (demister). Se trata de un separador secundario.


Domos	Diametro [mm]	Largo [mm]	Espesor [pulg]	Diámetro [mm]*	H1 [pulg]	H2 [pulg]		
High pressure (HP)	1830	15000	3	33	34	32		
Intermediate pressure (IP)	1520	7500	1	89	28	26		
Low pressure (LP)	1520	8500	0	33	28	26		

DDP-01: Almohadilla antivaho para cajón de rejilla de acero inoxidable.

Eliminador de niebla tipo malla


Retienen las partículas líquidas hasta que adquieren un tamaño suficientemente grande como para que el peso supere tanto la tensión superficial como la acción de arrastre producida por el gas.



*Salida al sobrecalentador

Especificaciones de la almohadilla antivaho del cajón

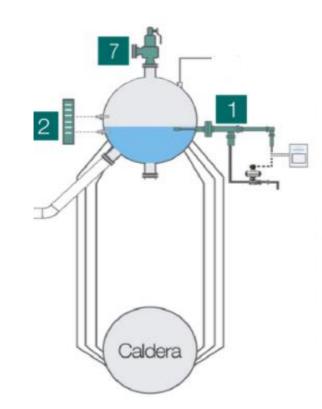
- Material: acero inoxidable, cobre, Monel, PP, PE, PVC, etc.
- Diámetro del alambre: 0,2 mm, 0,22 mm, 0,23 mm, 0,25 mm, 0,28 mm, 0,3 mm, 0,35 mm.
- Tamaño de la malla: 2 mm × 3 mm, 4 mm × 6 mm a 12 mm × 6 mm.
- Altura del panel: 100 mm o 150 mm.
- Diámetro del panel: 300 mm 5000 mm.
- Componente: 1, 2, 4, 6, 8 y otras partes.

	Especificaciones de la almohadilla antivaho del cajón												
Artículo	Diámetro del panel (mm)	Altura del panel (mm)	Área del desempañador efectivo (m)										
DDPS-01	300	100/150	0,04										
DDPS-02	400	100/150	0,09										
DDPS-03	500	100/150	0,15										
DDPS-04	600	100/150	0,21										
DDPS-05	700	100/150	0,27										
DDPS-06	800	100/150	0,38										

Utilizaremos el mismo para las salidas de los tres domos: Alta - Intermedia - Baja

REFERENCIAS

https://www.demisterpads.com/demister-pad/drawer-demister-pad.html

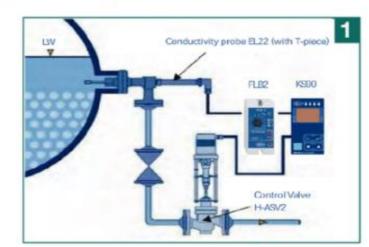

https://www.demisterpads.com/service/installation-maintenance/specific-installation-position.html

U.T.N F.R.A.		AÑO	2021	
U.I.N F.K.A.		PROYECTO FINAL	GRUPO	
INGENIERIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA WECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	26
				•

Dimensionamiento Domos: Control de nivel

Domos	Diametro	Largo	Espesor	Diámetro	Nivel d	e Agua	Flujo máscio	Pres	sión	Temperatura		Generación Vapor
Donios	[mm]	[mm]	[pulg]	[mm] *	H1 [mm]	H2 [mm]	[kg/seg]	bar	psig	°C	°F	[lb/min]
HP	1830	15000	2 1/2	33,40	863,60	812,80	82,378	116,5	1689	322,45	612,41	653793
IP	1520	7500	5/8	88,90	711,20	660,40	91,096	27,2	400	228,48	443,26	722984
LP	1520	8500	1/4	33,40	711,20	660,40	8,463	4,7	68	149,49	301,08	67167

^{*}Salida al sobrecalentador



Control sólidos en suspensión, superficie agua en domo

Todas las calderas acumulan sólidos en la superficie del agua dentro del domo, cambiando la conductividad del agua proporcional a esta concentración.

Los operadores de caldera mantienen parcialmente abiertas válvulas de purga con el propósito de limitar la concentración de sólidos en superficie. Esto implica altas perdidas de agua, energía y químicos.

Para minimizar éstas pérdidas se instalan sistemas de monitoreo y control que abren una válvula sólo cuando la conductividad excede un valor predeterminado (una concentración de sólidos predeterminada).

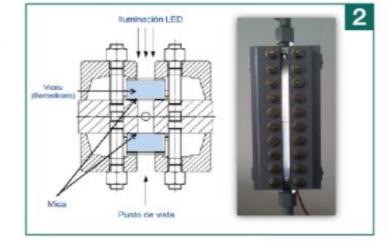
Ver más

Visores para Nivel agua en Domo Calderas Alta Presión

La empresa *Igema*, fabricante alemán de estos visores, lleva más de 100 años desarrollando la tecnología que asegura productos confiables.

Fabrican indicadores de varios tipos:

Mecánicos:


Tipo Réflex

Tipo transparente

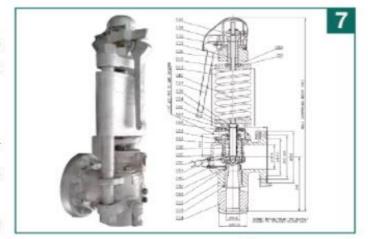
Tipo magnético

Tipo bicolor Tipo remoto

Electrónicos

Ver más

Válvulas de seguridad para altas presiones y temperaturas


Problema:

Altos costos y largos tiempos de entrega para válvulas de seguridad en calderas operando a más de 900PSI y temperaturas superiores a 450°C.

Solución:

Ofrecemos válvulas de muy alta calidad que hemos visto operar por más de 5 años sin presentar problemas de falla de los asientos por disparos repetitivos.

Brindamos garantía de un año, cubriendo los gastos de reparación y calibración.

Ver más

REFERENCIAS

 $\underline{\text{http://www.valvexport.com/soluciones-control-de-agua-y-vapor-en-calderas-acuotubulares.html}}$

U.T.N F.R.A.		AÑO	2021	
U.T.N F.K.A.		GRUPO		
INICENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	Α
INGENIERIA MECANICA	TITULO	HOJA	27	

Aislación General: Parámetros

Previamente al cálculo del calor transferido, determinamos los factores principales de la aislación a utilizar

Material

1

2

3

4

8

10

11

12

13

14

15

16

17

18

20

21

22

23

24

252627

28 29

3031323334

35

36373839

49505152535455565758

59 60

CONTROL Y PROTECCION DE TEMPERATURA

CAJA MANTA CERAMICA KAOWOOL

Código :

Marca : WILLIAMSON INDISTRIAL

Descripción

La manta de fibra cerámica es aislante con agujas de alta resistencia que está hecha de fibra cerámica a granel. La combinación de largas fibras hiladas y la operación de punción producen mantas más resistentes, elásticas y fuertes, que resisten el desgarro tanto antes como después del calentamiento.

La manta de fibra de cerámica es completamente inorgánica y está disponible en una variedad de grados de temperatura, densidades y tamaños. La manta se puede doblar, comprimir y encapsular para producir el módulo.

Rango de altas temperaturas (más de 550°C)

En general, dentro de este rango, además de las altas temperaturas, las condiciones de servicio suelen ser severas, y el material debe resistir abrasión, erosión producida por materiales fundidos, contacto directo con llamas, atmósferas corrosivas y shocks térmicos.

La aplicación de estos materiales requiere técnicas especiales, que escapan de las tareas de un montaje industrial corriente

Los materiales que se pueden utilizar son

Fibra mineral o silicato de calcio hasta aprox 900°C

Fibras cerámicas de Al2O3-SiO2 hasta 1400°C Refractarios cerámicos moideados nasta 1600°C

Fibras de óxidos metálicos como Al2O3 o ZrO2 hasta 1650°C

Fibras de carbón hasta 2000°C

Espesor de pared [L]

En concordancia con el libro Cao - Transferencia de calor en ingenieria y teniendo en cuenta la protección personal de los operarios para obtener del lado externo del recipiente una temperatura máxima de 55°C, el espesor seleccionado será de L = 300 mm

Cuando la razón para el aislamiento es la protección del personal, los cálculos se realizan de modo de asegurar que la temperatura externa de la superficie aislada no sea superior a 55 °C. En este caso los espesores resultantes son diferentes como se aprecia en la tabla 3-4

Tabla 3-4 - Eduardo Cao

Dia								Tempe	ratura (°C					
(in)	50	75	100	125	150	175	200	250	300	350	400	450	500	550	600
1/2	0	25	25	25	25	25	25	25	25	25	38	38	38	50	50
3/4	0	25	25	25	25	25	25	25	25	25	38	38	50	50	63
1	0	25	25	25	25	25	25	25	25	38	38	38	50	50	63
1 1/2	0	25	25	25	25	25	25	25	25	38	38	50	50	63	75
2	0	25	25	25	25	25	25	25	38	38	50	50	63	63	75
3	0	25	25	25	25	25	25	25	38	38	50	63	75	75	89
4	0	25	25	25	25	25	25	38	38	50	50	63	75	89	100
6	0	25	25	25	25	25	25	38	50	50	63	75	89	100	125
8	0	25	25	25	25	25	25	38	50	63	75	75	89	100	125
10	0	25	25	25	25	25	25	38	50	63	75	89	100	114	125
12	0	25	25	25	25	25	38	38	50	63	75	89	114	125	140
14	0	25	25	25	25	25	38	50	63	75	89	100	114	125	140
16	0	25	25	25	25	25	38	50	63	75	89	100	114	140	150
18	0	25	25	25	25	25	38	50	63	75	89	100	125	140	150
20	0	25	25	25	25	25	38	50	63	75	89	114	125	140	165
plano	0	25	25	38	38	50	63	75	100	125	150	189	216	250	300

REFERENCIAS

https://www.williamsonindustrial.cl/index.php/product/caja-manta-ceramica-kaowool/

Libro Eduardo Cao - Transferencia de calor en ingenieria (página 27/30)

U.T.N F.R.A.		AÑO	2021	
0.1.N F.N.A.		GRUPO		
INGENIERIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	Α
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	28

Aislación General: Cálculo del calor transferido

Conductividad termica [K]

Description		STD BLANKET		HP BL	ANKET	HA BL	ANKET	HZ BL	ANKET	
Classification Temperature (°C)		1260		12	260	13	50	1430		
'				Chemical Co	mposition (%)					
Al ₂ O ₃		≥43		≥	44	2	52	≥35		
SiO ₂		≥54		2	55	>	47	2	49	
ZrO ₂		-	:		-		-	≥	15	
Color		White		W	hite	W	nite	White		
Shot Content (%)	≤15			<	15	<	15	≤12		
Density (kg/ m³)	64	96	128	96	128	96	128	96	12	
Tensile Strength (kPa)	30	50	70	50	70	50	70	50	7	
Permanent Linear Shrinkage (%)		1000°C x 24h ≤2.5		1100°C x	24h ≰2.5	1200°C x	24h ≤3.0	1350°C x 24h ≤3.0		
				Thermal Condu	uctivity (W/m·K)					
200°C	0.07	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.0	
400°C	0.12	0.11	0.10	0.11	0.10	0.11	0.10	0.11	0.	
600°C	0.20	0.19	0.18	0.19	0.17	0.18	0.16	0.16	0.	
800°C	0.30	0.23	0.20	0.23	0.20	0.22	0.20	0.21	0.	
1000°C	0.40 0.32 0.27			0.31	0.26	0.30	0.26	0.30	0.3	

Q: Calor transferido

$$Q = k \frac{A}{L} \Delta t$$

Flujo de calor [Btu/hs] Q [Btu/hs x pie x °F] Conductividad termica [pie²] Area de la pared [pie] Espesor de la pared [°F] Diferencia de temperatura Δt [Lb/h]s Masa

			,		CP cada	CP de la	k	Tempe	eratura	Δ ν.	Area*			Q con la
Compo	sición [%]	Peso Molar [gr/mol]	Fracción Molar	% Volumen	componente	mezcla	[Btu/hs x	Inicial	Final] AII	ca		_	aislacion
		[8:7:::0:]	Wiolai		[Btu/Lb°F]	[Btu/Lb°F]	pie°F]	[°F]	[°F]	[pie2]	[mm2]	[pie]	[mm]	[Btu/hs]
CO2	5,818	44	0,1322	3	0,0125									
N2	73,4787	22	3,3380	79	0,0309									
H2O	5,218	18	0,2899	7	0,5147	0,382417	0,2	1077,08	131	91,49315	8500000	0,9842	300	-17589,89
02	14,2585	32	0,4456	11	0,2523									
Ar	1,2288	40	0,0307	1	0,5207									
			4,24	100%	*área más desfavorble y grande									

REFERENCIAS

 https://www.williamsonindustrial.cl/index.php/product/caja-manta-ceramica-kaowool/

U.T.N F.R.A.		DROVECTO FINAL	AÑO	2021
U.T.N F.N.A.		PROYECTO FINAL GRUPO		
INGENIERIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	29

<u>Dimensionamiento Chimenea: Parámetros - Verificación</u>

Tiro Natural: Este sistema depende de la diferencia de temperaturas medias entre las columnas de humos del interior de la chimenea y la columna de aire del exterior del equipo.

Si reducimos este sistema de tiro de un hogar a sus elementos básicos, tendremos una columna de aire y otra de humos donde la presión hidrostática depende de los pesos específicos de los fluidos y de la altura de las columnas. Por el pincipio esta diferencia de presiones origina el movimiento de los fluidos de la zona de más a presión a la de menos presión.

H [m]	δ aire [N/m 3]	Ta [K]	Pa [Kg/m²]	δ gas [N/m³]	Tg [K]	Pg [Kg/m²]
40	5,97	313	111,22	10,83	429	168,42

Peso especifico del aire o gas

 $Pe = \rho \cdot g$

Pe = Peso específico [N/m³]

 $\rho = Densidad [kg/m^3]$ g = Aceleración de la gravedad [m/s²] # Presión del aire o gas

 $Pg = \left(H.\delta g. \frac{273}{Tg}\right)$ Presión de gases:

 $Pg = \left(H.\delta g. \frac{273}{273 + tg}\right)$

 $Pa = \left(H.\delta a. \frac{273}{Ta}\right)$ Presión de aire: $Pa = \left(H.\delta a. \frac{273}{273 + ta}\right)$ Altura de la chimenea

 δ_{ϵ} Peso especifico del aire o gas

Ta Temperatura del Aire

Pa Presión del Aire Tg Temperatura del Gas

Pg Presión del Gas

Pérdida de carga

La expresión de Hagen-Poiseuille es:

$$h = rac{64}{Re} imes \left(rac{L}{D}
ight) imes \left(rac{v_{media}^2}{2 imes g}
ight)$$

En donde:

h: pérdida de carga o de energía (m)

vmedia: la velocidad media del fluido a lo largo del eje z del sistema de coordenadas cilíndrico (m/s)

D: diámetro interno de la tubería (m)

L: longitud de la tubería (m)

g: aceleración de la gravedad (m/s2)

Re: número de Reynolds, cuya expresión es:

$$Re = \frac{v_{media} \times D \times \rho}{\eta}$$
 (14)

H: altura chimenea 40 m ancho chimenea 11 m área Chimenea 379,94 m2 L: Longitud de la tubería 25 m V : Velocidad media del m/s 1,50 g: Aceleración de la m/s² 9,81 Rugosidad relativa 0,00008 adimensional Re: Número de Reynolds 524,46 adimensional

kg/cm² h : Pérdida de carga 0,0509 0,0050 mca =

Pa [Kg/Cm²]	Pg [Kg/Cm²]	[presión del gas - pérdida de carga]	presión del gas > presión del aire	[presión del gas - pérdida de carga] > presión del aire
0,011	0,017	0,012	CUMPLE	CUMPLE

REFERENCIAS

1 2

Dimensionamiento Chimenea: Parámetros - Verificación

Caso 1 - Compresión longitudinal

Material	P (libras)	Factor Seguridad	A [pulg²]	Scl [psi]	E [psi]	t [pulg]	Y [adim]	D [pulg]	FS [adim]	Fy [psi]	t/D	Verificación 1	P/A	Verificación final
ASTM-A387 Gr 11	456304	1,4	339,961	3680,112	28500000	0,25	1,19	433,071	1,33	30700	0,000577	0,003016	1879,116	VERIFICA
											Ver	ifica		

$$Y = 1$$

$$when \frac{L_e}{r} \le 60 \text{ and } F_y \le 50 \text{ ksi}$$

$$When \frac{L_e}{r} \le 60 \text{ and } F_y \le 50 \text{ ksi}$$

$$Y = \frac{and}{18,000 + \left(\frac{L_e}{r}\right)^2}$$

$$K_s = \left(\frac{\frac{10F_y}{E} - \frac{t}{D}}{\frac{7.2F_y}{E}}\right)^2$$

$$K_s = \left(\frac{\frac{10F_y}{E} - \frac{t}{D}}{\frac{7.2F_y}{E}}\right)^2$$

$$Verificacion 1$$

$$S_{cl} = \frac{EtY}{4D \text{ (F. S.)}} \text{ when } \frac{t}{D} \le \frac{2.8 \text{ F}_y}{E}$$

$$S_{cl} = \frac{EtY}{4D \ (F. \ S.)} \ when \ \frac{t}{D} \le \frac{2.8 \ F_y}{E}$$

Verificación final

$$\frac{P}{A} \le S_{cl}$$

B - Typical Annealed Properties (Class/Cond/Temper = 1)

Tempe	Temperature		um Yield	Minimu	m Tensile	Modulus of Elasticity		
°F	°C	ksi	MPa	ksi	MPa	ksi	MPa	
-20	-29	35.0	241.2	60.0	413.4	30,076	207,227	
100	38	35.0	241.2	60.0	413.4	29,462	202,990	
150	66	33.3	229.4	60.0	413.4	29,231	201,400	

Caso 2 - Compresión y flexión longitudinal

Material	M [psi]	D [pulg]	P [Lib]	A [pulg²]	I seccion [pulg4]	Verificación [psi]	Sbl [psi]	Verificación Final
ASTM-A387 Gr 11	13110000	433,071	456304	339,960735	7.959.514,33	1.698,88	3680,1125	VERIFICA

$$\frac{P}{A} + \frac{MD}{2I_{section}} \le S_{bl}$$

Caso 3 - Tensión circunferencial

Material	Fc [PSI]	Qz [psi]	D [m]	t [m]	K (Adim)	FS	Ls (Pulg)	Scc	Verificación Final
ASTM-A387 Gr 11	0,720	0,120	433,071	0,250	3,587	1,330	649,600	924,075	VERIFICA

The circumferential stress shall be less than the allowable stress, S_{cc} , calculated as

$$f_c = \frac{q_z D}{288t}$$

$$S_{cc} = \frac{1.30EK\left(\frac{t}{\overline{D}}\right)^{1.5}}{(F.S.)\left(\frac{l_s}{\overline{\Sigma}}\right)}$$
(4-12)

$$K = 1.68 \frac{F_y D}{Et} + 0.465 - \frac{0.0232 Et}{F_y D}$$

where q_z = external wind pressure on stack shell at elevation under consideration, psf and $C_f = 1.0$

when
$$0 \le \frac{t}{D} \le \frac{2.8 F_y}{E}$$
, $K = 1$

when
$$\frac{2.8 \ F_y}{E} < \frac{t}{D} \le \frac{10 F_y}{E}$$
,

Table 4.4.6 Factors of Safety

Load Combination			
Dead + Live + Other + Thermal + Along or Across Wind	1.50		
Dead + Live + Other + Thermal + Seismic	1.50		
Dead + Live + Other + Abnormal Thermal + Along Wind/4	1.33		
Construction	1.33		

Caso 4 - Tension de compresión longitudinal y circunferencial combinada

Cálculo	Comparativa	Verificación final
0,46163814	1	VERIFICA

$$\frac{\left(\frac{P}{A}\right) + \frac{MD}{2I_{section}}}{S_{bl}} + \left(\frac{f_c}{S_{cc}}\right)^2 \leq 1.0$$

Table 4.4.7 Minimum Structural Plate Thickness and Maximum Stiffener Spacing

Inside Diameter, <i>D</i> ft	Minimum Structural Plate Thickness, in. [Note (1)]	Maximum Stiffener Spacing, ft
D ≤ 3.5	0.125	5 D
$3.5 < D \le 6.5$	0.1875	3 D
$6.5 < D \le 18.0$	0.1875	2 D
D > 18.0	0.25	$1^{1}/_{2}D$

REFERENCIAS

ASME STS - 1 - 2006: Steel Stacks

U.T.N F.R.A.		DROVECTO FINAL	AÑO	2021
U. I.IN F.K.A.		PROYECTO FINAL		
INGENIERIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	31

<u>Dimensionamiento de Colectores - Caños de unión</u>

Comenzamos nuestro dimensionamiento sectorizando en seis partes la caldera, entonces se realizan los cálculos para un paquete de tubos aletados que representa 1/6 de la caldera completa.

	Caudal [kg/seg]
High pressure (HP)	82,378
Intermediate pressure (IP)	91,096
Low pressure (LP)	8,463

diámetro del tubo aletado (mm)	27,580
área del tubo aletado (mm2)	597,115

		DISTRIB	UCION DE	TUBOS	ALETADOS	DISTE	RIBUCION TU	BOS POR (COLECTO	R SECUNDA	ARIO		MENSIONE	ES COLEC	TOR SECU	JNDARIC)
	Sección	Cantidad de tubos	ancho (STN)	largo (SLN)	Se agrega una fila de 20 tubos por paquete para completar el total de STN	Particiones	Cantidad de colectores por paquete de tubos	Cantidad de tubos por colector	Cantidad de tubos por colector	División transversal por colector	Tubos por división transversa I	Diámetro mínimo intrior requerido [mm]	Diámetro nominal [pulg]	Diámetro exterior [mm]	Espesores [mm]	área interior [mm²]	Diámetro interior [mm]
1	Precalentador	5780	120	48,17	20,00	6	8	120	140	3	60	123,3	8	219,10	3,76	35141,39	211,58
	Bloque de Baja Presió	n															
4	Economizador	260	120	2,17	20,00	6	1	40	60	3	20	71,2	4	114,30	4,78	8611,82	104,74
5	Evaporador	2060	120	17,17	20,00	6	3	113	133	3	57	119,9	8	219,10	6,35	33441,75	206,40
_ 9	Sobrecalentador	220	120	1,83	100,00	6	1	20	40	3	10	50,4	4	114,30	4,78	8611,82	104,74
	Bloque de Media Pres	ión															
	Economizador																
3	1era presión	4200	120	35,00		6	6	117		3	58	121,6	8	219,10	3,76	35141,39	211,58
6	2da presión	2720	120	22,67	80,00	6	4	110	130	3	55	118,1	8	219,10	3,76	35141,39	211,58
8	Evaporador	1080	120	9,00		6	2	90		3	45	106,8	8	219,10	8,18	32266,25	202,74
_10	Sobrecalentador	7000	120	58,33	40,00	6	12	97	117	3	48	110,7	8	219,10	8,18	32266,25	202,74
	Bloque de Alta Presió	ņ															
	Economizador																
2	1era presión	1760	120	14,67	80,00	6	3	93	113	3	47	108,8	8	219,10	3,76	35141,39	211,58
7	2da presión	3080	120	25,67	80,00	6	5	100	120	3	50	112,6	8	219,10	3,76	35141,39	211,58
11	3era presión	3300	120	27,50	60,00	6	5	108	128	3	54	117,0	8	219,10	3,76	35141,39	211,58
12	Evaporador	6160	120	51,33	40,00	12	5	102	122	3	51	113,7	8	219,10	22,23	23941,82	174,64
	Sobrecalentador																
13	1era presión	1240	120	10,33	40,00	6	2	100	120	3	50	112,6	8	219,10	23,01	23516,00	173,08
16	2da presión	600	120	5,00		6	1	100		3	50	112,6	8	219,10	20,62	24832,83	177,86
	Recalentadores																
14	1era presión	100	120			5	1	20		3	10	50,4	6	168,30	21,95	12148,16	124,40
15	2da presión	20	120			1	1	20		3	10	50,4	5	141,30	28,00	5711,73	85,30

CAÑOS UNION COLECTORES (SECUNDARIO - PRINCIPAL						L)	DII	MENSIO	NES COL	ECTOR F	RINCIPA	L	C	:AÑOS U	INION CO	LECTOR	- DOMO				
	Sección	Cantidad caños por colector secundario	área interior requerida • [mm³]	Diámetro interior requerido [mm]	Diámetro nominal [pulg]	Diámetro exterior [mm]	Espesores [mm]	Diámetro interior [mm]	área interior [mm²]	Diámetro exterior [mm]	Diámetro exterior [pulg]	Espesor [mm]	Diámetro interior [mm]	área interior [mm²]	área interior [m²]	Diámetro exterior [mm]	Diámetro exterior [pulg]	Espesores [mm]	Diámetro interior [mm]	área interior [mm²]	área interior [m²]
1	Precalentador	3,00	11713,80	122,16	5,00	73,00	4,78	63,44	3159,34	406,40	16	4,19	398,02	124359,64	0,12	168,30	6	3,40	161,50	20474,57	0,0205
	Bloque de Baja Presión																				
4	Economizador															60,30	2	8,74	42,82	1439,34	0,0014
5	Evaporador	3,00	11147,25	119,17	5,00	60,30	3,91	52,48	2162,01	114,30	4	4,78	104,74	8611,82	0,01	60,30	2	8,74	42,82	1439,34	0,0014
9	Sobrecalentador															33,40	1	9,09	15,22	181,84	0,0002
	Bloque de Media Presión																				
	Economizador																				1
3	1era presión	3,00	11713,80	122,16	5,00	73,00	4,78	63,44	3159,34	219,10	8	3,76	211,58	35141,39	0,04	88,90	3	5,49	77,92	4766,15	0,0048
6	2da presión	3,00	11713,80	122,16	5,00	73,00	4,78	63,44	3159,34	219,10	8	3,76	211,58	35141,39	0,04	88,90	3	5,49	77,92	4766,15	0,0048
8	Evaporador	3,00	10755,42	117,05	5,00	73,00	4,78	63,44	3159,34	323,90	12	10,31	303,28	72203,33	0,07	114,30	4	6,02	102,26	8208,83	0,0082
10	Sobrecalentador	3,00	10755,42	117,05	5,00	73,00	4,78	63,44	3159,34	219,10	8	8,18	202,74	32266,25	0,03	88,90	3	5,49	77,92	4766,15	0,0048
	Bloque de Alta Presión																				
	Economizador																				1
2	1era presión	3,00	11713,80	122,16	5,00	60,30	3,91	52,48	2162,01	114,30	4	4,78	104,74	8611,82	0,01	33,40	1	4,55	24,30	463,53	0,0005
7	2da presión	3,00	11713,80	122,16	5,00	60,30	3,91	52,48	2162,01	168,30	6	3,40	161,50	20474,57	0,02	60,30	2	8,74	42,82	1439,34	0,0014
11	3era presión	3,00	11713,80	122,16	5,00	60,30	3,91	52,48	2162,01	168,30	6	3,40	161,50	20474,57	0,02	60,30	2	8,74	42,82	1439,34	0,0014
12	Evaporador	3,00	7980,61	100,83	5,00	73,00	9,53	53,94	2283,98	273,10	10	25,40	222,30	77585,15	0,08	114,30	4	13,49	87,32	5985,45	0,0060
	Sobrecalentador																				1
13	1era presión	3,00	7838,67	99,93	5,00	48,30	7,14	34,02	908,53	88,90	3	11,13	66,64	3486,10	0,0035	33,40	1	9,09	15,22	181,84	0,0002
16	2da presión															33,40	1	4,55	24,30	463,53	0,0005
	Recalentadores																				
14	1era presión															33,40	1	4,55	24,30	463,53	0,0005
15	2da presión															114,30	4	13,49	87,32	5985,45	0,0060

área interior requerida": La suma del área de los 3 caños de unión es igual al área del colector

Diámetro interior requerido: Se utilizó para su cálculo la fórmula del área.

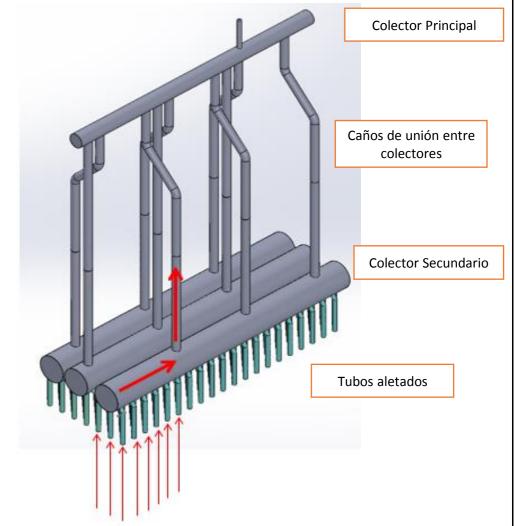
\$\frac{\para = \frac{\pi \text{XD}^2}{4}}{\para \text{SUB}} \quad \text{Caños union colectores}\$

Diámetro exterior: Se utilizó para su cálculo la fórmula de velocidad.

Q = área x velocidad \quad \text{Dimensiones colector principal}\$

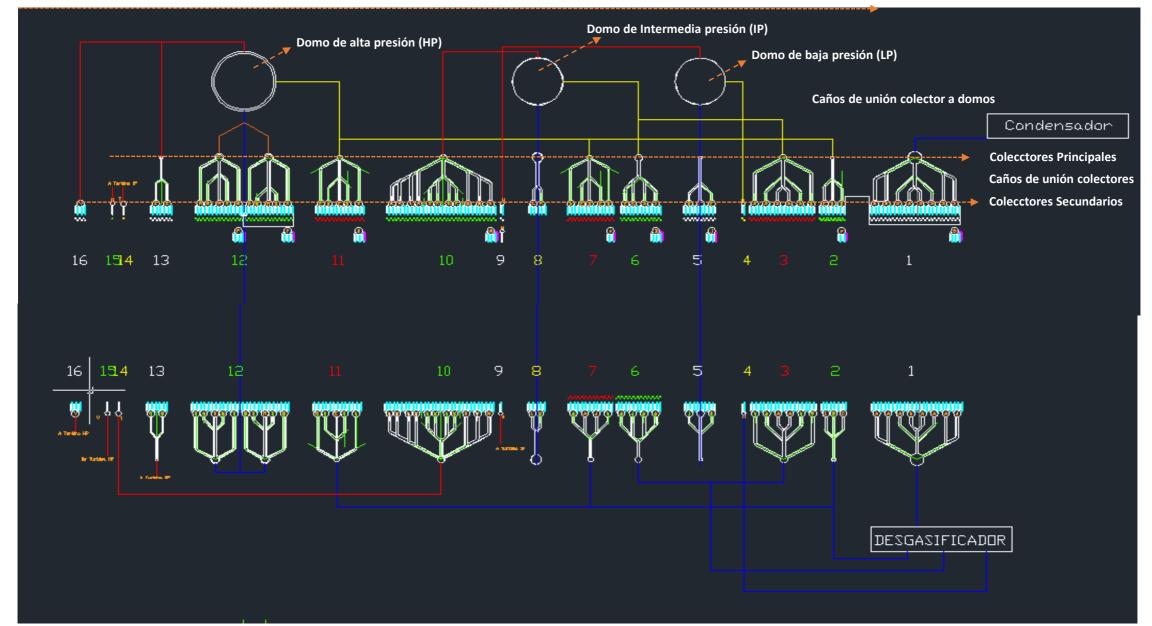
Detallaremos a continuación, el cálculo de cada colector principal, colector secundario, caños de unión entre colectores, caños de unión entre colector y domo.

REFERENCIAS


	IITN FDA		DROVECTO FINAL	AÑO	2021
	U.T.N F.R.A.		PROYECTO FINAL	GRUPO	
Ī	INICENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
	INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	32

Circulación del fluido dentro de los tubos aletados en cada componente

Previamente se muestra en el siguiente diagrama el flujo del fluido dentro de los tubos aletados, colectores y caños de unión.


Detalle de cada componente

		Circulación del fluido	en cada componente
	Sección	Entrada (Desde)	Salida (hacia)
1	Precalentador	Condensador	Desgasificador
	Bloque de Baja Presión		
4	Economizador	Desgasificador	Domo de baja (liquido)
5	Evaporador	Domo de baja (liquido)	Domo de baja (vapor saturado)
9	Sobrecalentador	Domo de baja (vapor saturado)	Un punto previo a la salida TV baja
	Bloque de Media Presión		
	Economizador		
3	1era presión	Desgasificador	Domo de media (liquido)
6	2da presión	Desgasificador	Domo de media (liquido)
8	Evaporador	Domo de media (liquido)	Domo de media (vapor saturado)
10	Sobrecalentador	Domo de media (vapor saturado)	TV media
	Bloque de Alta Presión		
	Economizador		
2	1era presión	Desgasificador	Domo de alta (liquido)
7	2da presión	Desgasificador	Domo de alta (liquido)
11	3era presión	Desgasificador	Domo de alta (liquido)
12	Evaporador	Domo de alta (liquido)	Domo de alta (vapor saturado)
	Sobrecalentador		
13	1era presión	Domo de alta (vapor saturado)	Turbina Vapor de alta
16	2da presión	Domo de alta (vapor saturado)	Turbina Vapor de alta
	Recalentadores		
14	1era presión	Sobrecalentador de media	Turbina Vapor de alta
15	2da presión	Turbina Vapor de media	Turbina Vapor de alta

Sentido del fluido desde los tubos aletados hacia domo

<u>Distribución de tubos aletados, colectores principal y secundario, caños de unión entre colectores y caños de unión entre colector y domo.</u>

U.T.N F.R.A.		PROYECTO FINAL	AÑO	2021
0.1.IV F.R.A.		PROTECTO FINAL	GRUPO	
INCENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	Α
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	33

Dimensionamiento de Colector Secundario

Los cálculos se realizaron bajo el código ASME 2010 para calderas y recipientes a presión

PG-27.2.2 Tubería, tambores, cuerpos, y cabezales. (basado en la resistencia del recorrido más débil)

$$t = \frac{PD}{2SE + 2yP} + C \qquad o \qquad \frac{PR}{SE - (1 - y)P} + C$$

$$P = \frac{2SE(t - C)}{D - 2y(t - C)} \qquad o \qquad \frac{SE(t - C)}{R + (1 - y)(t - C)}$$

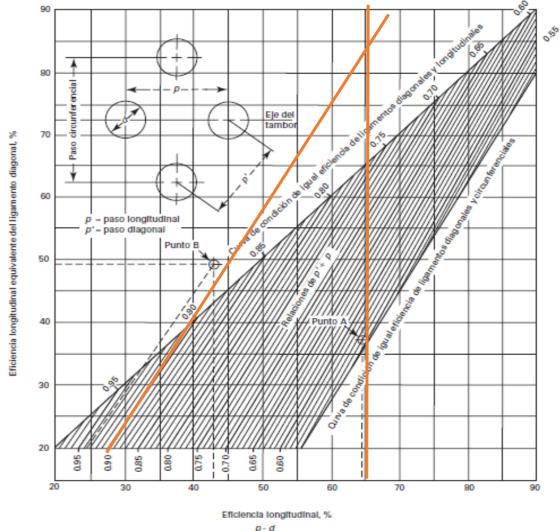
Vea PG-27.4.1, PG-27.4.3, y PG-27.4.5 hasta PG-27.4.9.

Selección del factor Y, según el materia y la temperatura [°C]

PG-27.4.6 Nota 6 y = un coeficiente que tiene los siguientes valores:

			Te	mperati	ıra, °F (°C)		
	900 (480) e inferior	950 (510)	1,000 (540)	1,050 (565)	1,100 (595)	1,150 (620)	1,200 (650)	1,250 (675) y superior
Ferrítico	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7
Austenítico	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
Aleación 800, 801	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
800H, 800HT	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
825	0.4	0.4	0.4					
230 Aleación	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
N06022	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
N06045	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
N06600	0.4	0.4	0.4	0.4	0.5	0.7	0.7	
N06601	0.4	0.4	0.4	0.4	0.5	0.7	0.7	
N06625	0.4	0.4	0.4	0.4	0.4			
N06690	0.4	0.4	0.4	0.4	0.5	0.7	0.7	
Aleación 617	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
S31803	0.4							
	-							

Selección del factor E


PG-52.2 Aberturas paralelas al eje del recipiente

PG-52.2.1 Cuando el paso de los orificios es igual en cada fila de tubos (como en la Fig. PG-52.2), la ecuación es

$$E = \frac{p - d}{p}$$

PG-52.4 Orificios a lo largo de una diagonal. Cuando un cuerpo o tambor se perfora con los orificios para tubos como se representa en la Fig. PG-52.5, la eficiencia de estos ligamentos es aquella obtenida con el diagrama de la Fig. PG-52.1. Se deben calcular la abscisa (p - d)/p y la relación p'/p. Con estos valores la eficiencia puede leerse en la ordenada. Si el punto cae arriba de la curva de eficiencia de ligamentos diagonales y longitudinales iguales, los ligamentos longitudinales serán más débiles, en cuyo caso la eficiencia se calcula con la siguiente ecuación:

FIG. PG-52.1 DIAGRAMA PARA DETERMINAR LA EFICIENCIA DE LOS LIGAMENTOS LONGITUDINALES Y DIAGONALES ENTRE ABERTURAS EN CUERPOS CILÍNDRICOS

 $\frac{p-d}{p} \times 100$

	Sección	Material	Temperatura [°C]	S [Mpa]	P [Mpa]	Paso longitudinal (p)	Paso Diagonal (p')	(d) Diámetro del tubo [pulg]	Relacion p'/p	(E) Eficiencia de soldadura	(D) Diámetro del colector [pulg]	Y	C [pulg]	Espesor mínimo [pulg]	T minimo [mm]	T nominal [mm]	SCH
1	Precalentador	SA178-A	156	92,4	0,02	4,078	3,676	1,25	0,9014	0,693477	8	0,4	0,125	0,1262234	3,2061	3,76	10
	Bloque de Baja Presión																\neg
4	Economizador	SA178-A	177,00	92,4	0,15	4,078	3,676	1,25	0,9014	0,693477	4	0,4	0,125	0,1296775	3,2938	4,78	30
5	Evaporador	SA178-A	205,00	92,4	0,47	4,078	3,676	1,25	0,9014	0,693477	8	0,4	0,125	0,1542537	3,9180	6,35	20
9	Sobrecalentador	SA106-A	281,00	94,5	0,47	4,078	3,676	1,25	0,9014	0,693477	4	0,4	0,125	0,1393028	3,5383	4,78	30
	Bloque de Media Presión																\neg
	Economizador																
3	1era presión	SA192	177,00	92,4	0,15	4,078	3,676	1,25	0,9014	0,693477	8	0,4	0,125	0,1343549	3,4126	3,76	10
6	2da presión	SA192	260,00	92,4	0,15	4,078	3,676	1,25	0,9014	0,693477	8	0,4	0,125	0,1343549	3,4126	3,76	10
8	Evaporador	SA192	277,00	91,9	2,72	4,078	3,676	1,25	0,9014	0,693477	8	0,4	0,125	0,2928532	7,4385	8,18	40
10	Sobrecalentador	SA192	281,00	91,9	2,72	4,078	3,676	1,25	0,9014	0,693477	8	0,4	0,125	0,2928532	7,4385	8,18	40
	Bloque de Alta Presión																\neg
	Economizador																
2	1era presión	SA178-A	177,00	92,4	0,15	4,078	3,676	1,25	0,9014	0,693477	8	0,4	0,125	0,1343549	3,4126	3,76	10
7	2da presión	SA192	260,00	92,4	0,15	4,078	3,676	1,25	0,9014	0,693477	8	0,4	0,125	0,1343549	3,4126	3,76	10
11	3era presión	SA192	341,00	88,9	0,15	4,078	3,676	1,25	0,9014	0,693477	8	0,4	0,125	0,1347229	3,4220	3,76	10
12	Evaporador	SA213-T22	494,00	80,9	11,65	4,078	3,676	1,25	0,9014	0,693477	8	0,5	0,125	0,8774952	22,2884	22,23	xxs
	Sobrecalentador																
13	1era presión	SA213-T12	500,00	88,3	11,65	4,078	3,676	1,25	0,9014	0,693477	8	0,5	0,125	0,8199101	20,8257	23,01	160
16	2da presión	SA213-T12	581,30	24,21	2,72	4,078	3,676	1,25	0,9014	0,693477	8	0,7	0,125	0,7070335	17,9587	20,62	140
	Recalentadores																
14	1era presión	SA213-T12	535,00	57,6	11,65	4,078	3,676	1,25	0,9014	0,693477	6	0,7	0,125	0,8516220	21,6312	21,95	XXS
15	2da presión	SA213-T22	581,30	31,63	11,65	4,078	3,676	1,25	0,9014	0,693477	5	0,7	0,125	1,0928951	27,7595	28	•

*Este colectar sera enviado a fabricar a medida teniendo en cuanta las dimensiones calculadas

REFERENCIAS

U.T.N F.R.A.		PROYECTO FINAL	AÑO	2021
0.1.N 1.N.A.		PROTECTO FINAL	GRUPO	
	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	34

<u>Dimensionamiento de los caños de unión entre Colector Secundario - Colector Principal</u>

Los cálculos se realizaron bajo el código ASME 2010 para calderas y recipientes a presión

PG-27.2.2 Tubería, tambores, cuerpos, y cabezales. (basado en la resistencia del recorrido más débil)

$$t = \frac{PD}{2SE + 2yP} + C \qquad o \qquad \frac{PR}{SE - (1 - y)P} + C$$

$$P = \frac{2SE(t - C)}{D - 2y(t - C)} \qquad o \qquad \frac{SE(t - C)}{R + (1 - y)(t - C)}$$

Vea PG-27.4.1, PG-27.4.3, y PG-27.4.5 hasta PG-27.4.9.

Selección del factor Y, según el materia y la temperatura [°C]

PG-27.4.6 Nota 6 y = un coeficiente que tiene los siguientes valores:

Temperatura, °F (°C) 950 1,000 1,050 1,100 1,150 1,200 (480) e (510) (540) (565) (595) (620) (650) inferior superior 0.4 0.7 Ferrítico 0.5 0.7 Austenítico 0.4 0.4 0.4 0.4 0.7 0.7 Aleación 800, 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.7 800H, 800HT 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.7 825 0.4 0.4 0.4 230 Aleación 0.4 0.4 N06022 0.4 0.4 0.4 0.4 0.5 0.7 N06045 0.4 0.4 0.4 0.4 0.5 0.7 0.7 N06600 N06601 0.4 0.4 0.4 0.5 0.4 0.4 N06625 N06690 0.4 0.4 0.4 0.4 0.5 0.4 Aleación 617 0.4 0.4 0.4 0.4 0.5 0.7 S31803 0.4

Selección del factor E

1 2

3 4

5

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29

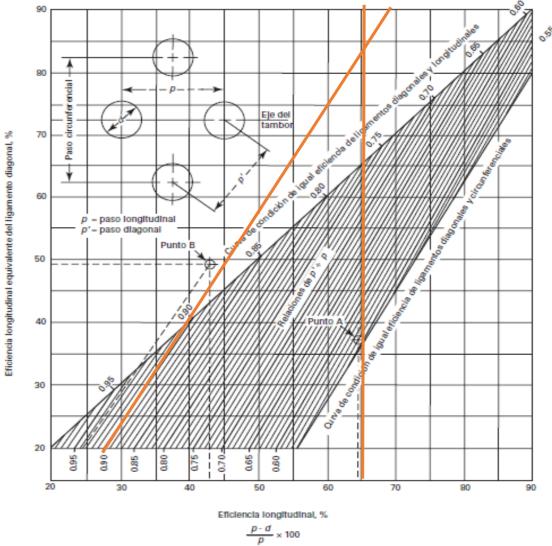
30

31 32

33 34 35

36 37 38

59 60


PG-52.2 Aberturas paralelas al eje del recipiente

PG-52.2.1 Cuando el paso de los orificios es igual en cada fila de tubos (como en la Fig. PG-52.2), la ecuación es

$$E = \frac{p - d}{p}$$

PG-52.4 Orificios a lo largo de una diagonal. Cuando un cuerpo o tambor se perfora con los orificios para tubos como se representa en la Fig. PG-52.5, la eficiencia de estos ligamentos es aquella obtenida con el diagrama de la Fig. PG-52.1. Se deben calcular la abscisa (p - d)/p y la relación p'/p. Con estos valores la eficiencia puede leerse en la ordenada. Si el punto cae arriba de la curva de eficiencia de ligamentos diagonales y longitudinales iguales, los ligamentos longitudinales serán más débiles, en cuyo caso la eficiencia se calcula con la siguiente ecuación:

FIG. PG-52.1 DIAGRAMA PARA DETERMINAR LA EFICIENCIA DE LOS LIGAMENTOS LONGITUDINALES Y DIAGONALES ENTRE ABERTURAS EN CUERPOS CILÍNDRICOS

	Sección	Material	Temperatura [°C]	S [Mpa]	P [Mpa]	Paso longitudinal (p)	Paso Diagonal (p')	(d) Diámetro del tubo [pulg]	Relacion p'/p	(E) Eficiencia de soldadura	(D) Diámetro del colector [pulg]	Y	C [pulg]	Espesor mínimo [pulg]	T minimo [mm]	T nominal [mm]	SCH
1	Precalentador	SA192	111,32	92,4	0,02	4,078	3,676	1,25	0,9014	0,693477	2,5	0,4	0,125	0,1253823	3,1847	4,78	30
	Bloque de Baja Presión																
4	Economizador	SA192	149,49	92,4	0,15	4,078	3,676	1,25	0,9014	0,693477	2,5	0,4	0,125	0,1279234	3,2493	4,78	30
5	Evaporador	SA192	149,49	92,4	0,47	4,078	3,676	1,25	0,9014	0,693477	2	0,4	0,125	0,1323134	3,3608	3,91	40
9	Sobrecalentador																
	Bloque de Media Presión																
	Economizador																
3	1era presión	SA192	228,48	92,4	0,15	4,078	3,676	1,25	0,9014	0,693477	2,5	0,4	0,125	0,1279234	3,2493	4,78	30
6	2da presión	SA192	149,49	92,4	0,15	4,078	3,676	1,25	0,9014	0,693477	2,5	0,4	0,125	0,1279234	3,2493	4,78	30
8	Evaporador	SA192	228,48	92,4	2,72	4,078	3,676	1,25	0,9014	0,693477	2,5	0,4	0,125	0,1771750	4,5002	4,78	30
10	Sobrecalentador	SA192	276,16	92,4	2,72	4,078	3,676	1,25	0,9014	0,693477	2,5	0,4	0,125	0,1771750	4,5002	4,78	30
	Bloque de Alta Presión																
	Economizador																
2	1era presión	SA192	149,49	92,4	0,15	4,078	3,676	1,25	0,9014	0,693477	2	0,4	0,125	0,1273387	3,2344	3,91	40
7	2da presión	SA192	228,48	92,4	0,15	4,078	3,676	1,25	0,9014	0,693477	2	0,4	0,125	0,1273387	3,2344	3,91	40
11	3era presión	SA213-T22	322,45	80,9	0,15	4,078	3,676	1,25	0,9014	0,693477	2	0,4	0,125	0,1276708	3,2428	3,91	40
12	Evaporador	SA192	322,45	92,4	11,65	4,078	3,676	1,25	0,9014	0,693477	2,5	0,5	0,125	0,3333265	8,4665	9,53	160
	Sobrecalentador																
13	1era presión	SA213-T12	495,00	124	11,65	4,078	3,676	1,25	0,9014	0,693477	1,5	0,5	0,125	0,2201630	5,5921	7,14	160
16	2da presión																
	Recalentadores																
14	1era presión																
15	2da presión																

IITN FDA		PROYECTO FINAL	AÑO	2021
U.T.N F.R.A.		PROTECTO FINAL	GRUPO	
INICENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	HOJA	35	

Dimensionamiento de Colector Principal

1 2

3

5

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

31 32

333435

363738

49505152535455565758

59 60 Los cálculos se realizaron bajo el código ASME 2010 para calderas y recipientes a presión

PG-27.2.2 Tubería, tambores, cuerpos, y cabezales. (basado en la resistencia del recorrido más débil)

$$t = \frac{PD}{2SE + 2yP} + C \qquad o \qquad \frac{PR}{SE - (1 - y)P} + C$$

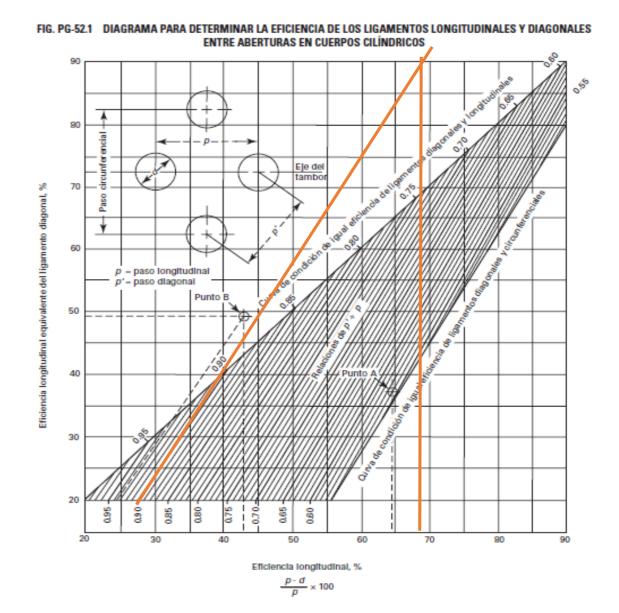
$$P = \frac{2SE(t - C)}{D - 2y(t - C)} \qquad o \qquad \frac{SE(t - C)}{R + (1 - y)(t - C)}$$

Vea PG-27.4.1, PG-27.4.3, y PG-27.4.5 hasta PG-27.4.9.

Selección del factor Y, según el materia y la temperatura [°C]

PG-27.4.6 Nota 6 y = un coeficiente que tiene los siguientes valores:

Temperatura, °F (°C) 950 1,000 1,050 1,100 1,150 1,200 (480) e (510) (540) (565) (595) (620) (650) inferior superior 0.4 0.7 Ferrítico 0.5 0.7 Austenítico 0.4 0.4 0.4 0.4 0.7 0.7 Aleación 800, 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.7 800H, 800HT 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.7 825 0.4 0.4 0.4 230 Aleación 0.4 0.4 N06022 0.4 0.4 0.4 0.4 0.5 0.7 N06045 0.4 0.4 0.4 0.4 0.5 0.7 0.7 N06600 N06601 0.4 0.4 0.4 0.5 0.4 N06625 0.4 N06690 0.4 0.4 0.4 0.4 0.5 0.4 Aleación 617 0.4 0.4 0.4 0.4 0.5 0.7 S31803 0.4


Selección del factor E

PG-52.2 Aberturas paralelas al eje del recipiente

PG-52.2.1 Cuando el paso de los orificios es igual en cada fila de tubos (como en la Fig. PG-52.2), la ecuación es

$$E = \frac{p - d}{p}$$

PG-52.4 Orificios a lo largo de una diagonal. Cuando un cuerpo o tambor se perfora con los orificios para tubos como se representa en la Fig. PG-52.5, la eficiencia de estos ligamentos es aquella obtenida con el diagrama de la Fig. PG-52.1. Se deben calcular la abscisa (p-d)/p y la relación p'/p. Con estos valores la eficiencia puede leerse en la ordenada. Si el punto cae arriba de la curva de eficiencia de ligamentos diagonales y longitudinales iguales, los ligamentos longitudinales serán más débiles, en cuyo caso la eficiencia se calcula con la siguiente ecuación:

	Sección	Material	Temperatura [°C]	S [Mpa]	P [Mpa]	Paso Iongitudinal (p)	Paso Diagonal (p')	(d) Diámetro del tubo [pulg]	Relacion p'/p	(E) Eficiencia de soldadura	(D) Diámetro del colector [pulg]	Y	C [pulg]	Espesor mínimo [pulg]	Tminimo [mm]	Tnominal [mm]	SCH
1 Pr	recalentador	SA192	111,32	92,4	0,02	4,078	3,676	1,25	0,9014	0,693477	16	0,4	0,125	0,1274467	3,2371	4,19	5
BI	loque de Baja Presión																
4	Economizador																
5	Evaporador	SA192	149,49	92,4	0,47	4,078	3,676	1,25	0,9014	0,693477	4	0,4	0,125	0,1396269	3,5465	4,78	30
9	Sobrecalentador																
ВІ	loque de Media Presión																
	Economizador																
3	1era presión	SA192	228,48	92,4	0,15	4,078	3,676	1,25	0,9014	0,693477	8	0,4	0,125	0,1343549	3,4126	3,76	10
6	2da presión	SA192	149,49	92,4	0,15	4,078	3,676	1,25	0,9014	0,693477	8	0,4	0,125	0,1343549	3,4126	3,76	10
8	Evaporador	SA192	228,48	92,4	2,72	4,078	3,676	1,25	0,9014	0,693477	12	0,4	0,125	0,3754401	9,5362	10,31	40
10	Sobrecalentador	SA192	276,16	92,4	2,72	4,078	3,676	1,25	0,9014	0,693477	8	0,4	0,125	0,2919600	7,4158	8,18	STD
BI	loque de Alta Presión																
	Economizador																
2	1era presión	SA192	149,49	92,4	0,15	4,078	3,676	1,25	0,9014	0,693477	4	0,4	0,125	0,1296775	3,2938	4,78	30
7	2da presión	SA192	228,48	92,4	0,15	4,078	3,676	1,25	0,9014	0,693477	6	0,4	0,125	0,1320162	3,3532	3,4	10
11	3era presión	SA213-T22	322,45	80,9	0,15	4,078	3,676	1,25	0,9014	0,693477	6	0,4	0,125	0,1330125	3,3785	3,4	10
12	Evaporador	SA192	322,45	92,4	11,65	4,078	3,676	1,25	0,9014	0,693477	10	0,5	0,125	0,9583060	24,3410	25,4	140
	Sobrecalentador																
13	1era presión	SA213-T12	495,00	124	11,65	4,078	3,676	1,25	0,9014	0,693477	3	0,5	0,125	0,3153259	8,0093	11,13	160
16	2da presión																
	Recalentadores																
14	1era presión																
15	2da presión																

U.T.N F.R.A.		PROYECTO FINAL	AÑO	2021			
U. I.IN F.K.A.		GRUPO					
INCENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А			
INGENIERIA MECANICA	TITULO	TITULO de ciclo combinado de tres presiones					

Dimensionamiento de los caños de unión entre Colector (Secundario o Principal) - Domo (baja, media o alta)

Los cálculos se realizaron bajo el código ASME 2010 para calderas y recipientes a presión

PG-27.2.2 Tubería, tambores, cuerpos, y cabezales. (basado en la resistencia del recorrido más débil)

$$t = \frac{PD}{2SE + 2yP} + C \qquad o \qquad \frac{PR}{SE - (1 - y)P} + C$$

$$P = \frac{2SE(t - C)}{D - 2y(t - C)} \qquad o \qquad \frac{SE(t - C)}{R + (1 - y)(t - C)}$$

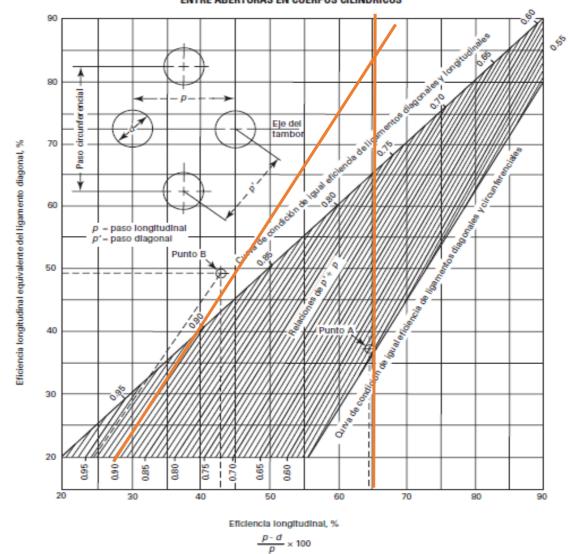
Vea PG-27.4.1, PG-27.4.3, y PG-27.4.5 hasta PG-27.4.9.

Selección del factor Y, según el materia y la temperatura [°C]

PG-27.4.6 Nota 6 y = un coeficiente que tiene los siguientes valores:

			Te	mperati	ura, °F (°C)		
	900 (480) e inferior	950 (510)	1,000 (540)	1,050 (565)	1,100 (595)	1,150 (620)	1,200 (650)	1,250 (675) y superior
Ferrítico	0.4	0.5	0.7	0.7	0.7	0.7	0.7	0.7
Austenítico	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
Aleación 800, 801	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
800H, 800HT	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
825	0.4	0.4	0.4					
230 Aleación	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
N06022	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
N06045	0.4	0.4	0.4	0.4	0.5	0.7	0.7	0.7
N06600	0.4	0.4	0.4	0.4	0.5	0.7	0.7	
N06601	0.4	0.4	0.4	0.4	0.5	0.7	0.7	
N06625	0.4	0.4	0.4	0.4	0.4			
N06690	0.4	0.4	0.4	0.4	0.5	0.7	0.7	
Aleación 617	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.7
S31803	0.4							

Selección del factor E


PG-52.2 Aberturas paralelas al eje del recipiente

PG-52.2.1 Cuando el paso de los orificios es igual en cada fila de tubos (como en la Fig. PG-52.2), la ecuación es

$$E = \frac{p - d}{p}$$

PG-52.4 Orificios a lo largo de una diagonal. Cuando un cuerpo o tambor se perfora con los orificios para tubos como se representa en la Fig. PG-52.5, la eficiencia de estos ligamentos es aquella obtenida con el diagrama de la Fig. PG-52.1. Se deben calcular la abscisa (p-d)/p y la relación p'/p. Con estos valores la eficiencia puede leerse en la ordenada. Si el punto cae arriba de la curva de eficiencia de ligamentos diagonales y longitudinales iguales, los ligamentos longitudinales serán más débiles, en cuyo caso la eficiencia se calcula con la siguiente ecuación:

FIG. PG-52.1 DIAGRAMA PARA DETERMINAR LA EFICIENCIA DE LOS LIGAMENTOS LONGITUDINALES Y DIAGONALES ENTRE ABERTURAS EN CUERPOS CILÍNDRICOS

(d) Diámetro Relacion (E) Eficiencia (D) Diámetro Material Sección del tubo del colecto SCH [°C] [Mpa] [Mpa] [pulg] [mm] [mm] (p') (p) [pulg] [pulg] [pulg] 0,1259175 0,693477 3,1983 1 Precalentador SA192 111,32 92,4 0,02 4,078 3.676 1,25 0.9014 0,4 0,125 3,4 10 Bloque de Baja Presión 0,4 0,125 0,1273387 Economizador SA192 149,49 92,4 0,15 4,078 3,676 1,25 0,9014 0,693477 2 3,2344 8,74 160 2 160 Evaporador SA192 149,49 92,4 0,47 4,078 3,676 1,25 0,9014 0,693477 0,4 0,125 0,1323134 3,3608 8,74 SA192 250,00 92,4 0,47 4,078 3,676 1,25 0,9014 0,693477 0,4 0,125 0,1286567 3,2679 9,09 160 Bloque de Media Presión Economizador 0,1285081 1era presión SA192 228,48 92,4 0,15 4,078 3,676 1,25 0,9014 0,693477 0,125 3,2641 5,49 40 3,676 0,1285081 SA192 149.49 92.4 0,15 4,078 1,25 0,9014 0,693477 0,4 0,125 3.2641 5,49 40 2da presión Evaporador SA192 228,48 92,4 2,72 4,078 3,676 1,25 0,9014 0,693477 0,4 0,125 0,2084800 5,2954 6,02 40 10 Sobrecalentador 0,1876100 SA192 276,16 92,4 2,72 4,078 3,676 1,25 0,9014 0,693477 0,4 0,125 4,7653 5,49 40 Bloque de Alta Presión 0,4 0,125 0,1261694 2 SA192 0,15 149,49 92,4 4,078 3,676 1,25 0,9014 0,693477 1 3,2047 4,55 90 1era presión 2da presión SA192 228,48 92,4 0,15 4,078 3,676 1,25 0,9014 0,693477 0,4 0,125 0,1273387 3,2344 8,74 160 SA213-T22 322,45 0,693477 0,1276708 8,74 11 3era presión 80,9 0,15 4,078 3,676 1,25 0,9014 0,4 0,125 3,2428 160 4,078 3,676 12 Evaporador SA192 322.45 92,4 11,65 1,25 0.9014 0.693477 0.5 0.125 0,4583224 11.6414 13,49 160 Sobrecalentador 13 1era presión SA213-T12 495,00 124 11,65 4,078 3,676 1,25 0,9014 0,693477 1 0,5 0,125 0,1884420 4,7864 9,09 160 3,676 0,693477 0,1404730 SA213-T12 495,00 16 124 2,72 1,25 0,9014 0,7 0,125 3,5680 160 2da presión 4,078 1 4,55 Recalentadores 14 SA213-T12 276,17 120 11,65 4,078 3,676 1,25 0,9014 0,7 0,125 0,1887502 4,7943 4,55 80 1era presión 0,693477 1 1,25 15 2da presión SA213-T22 495,00 80,9 11,65 4,078 3,676 0,9014 0,693477 0,7 0,125 0,4876047 12,3852 13,49 160

REFERENCIAS

1 2

3

5

6

7

8

9

10

11

U.T.N F.R.A.		PROYECTO FINAL	AÑO	2021
U.1.IN F.N.A.		GRUPO		
INICENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	37

Cálculo de los pesos de los componentes

	[Tub	os aletado	s		Colector secundario							
	Sección	Peso aleta [kg/m]	Peso tubo [kg/m]	Peso total por metro	Cantidad de tubos	Volumen interior [dm²]	Peso total de los tubos por componente [kg]	Particiones	Cantidad de colector por paquete de tubos aletados	Peso por metro	Diámetro interior [dm]	Volumen interior [dm²]	Peso total (Colector secundario superior e Inferior) [kg]		
1	Precalentador	0,549	1,54	2,09	5780	82405,26	360116,92	6	8	19,97	2,1158	742,19	4959,85		
	Bloque de Baja Presión														
4	Economizador	0,481	1,54	2,02	260	3706,81	15792,39	6	1	12,91	1,0474	22,74	363,56		
5	Evaporador	0,542	1,54	2,08	2060	29369,35	128014,51	6	3	33,31	2,064	264,86	2903,01		
9	Sobrecalentador	0,481	1,54	2,02	220	3136,53	13362,79	6	1	12,99	1,0474	22,74	365,67		
	Bloque de Media Presión														
	Economizador														
3	1era presión	0,481	1,54	2,02	4200	59879,26	255107,86	6	6	19,97	2,1158	556,64	3719,89		
6	2da presión	0,564	1,54	2,10	2720	38778,95	170405,19	6	4	19,97	2,1158	371,09	2479,93		
8	Evaporador	0,542	1,54	2,08	1080	15397,52	67114,40	6	2	42,54	2,0274	170,37	2416,48		
_10	Sobrecalentador	0,481	1,54	2,02	2400	34216,72	145775,92	6	4	42,54	2,0274	340,73	4832,96		
	Bloque de Alta Presión														
	Economizador														
2	1era presión	0,481	1,54	2,02	1760	25092,26	106902,34	6	3	19,97	2,1158	278,32	1859,94		
7	2da presión	0,564	1,54	2,10	3080	43911,45	192958,81	6	5	19,97	2,1158	463,87	3099,91		
11	3era presión	0,67	1,54	2,21	3300	47047,99	214786,99	6	5	19,97	2,1158	463,87	3099,91		
12	Evaporador	0,512	1,54	2,05	6160	87822,91	378550,27	6	10	107,91	1,7464	632,06	29120,30		
	Sobrecalentador														
13	1era presión	0,757	1,54	2,30	1240	17678,64	83189,08	6	2	111,26	1,7308	124,16	5998,69		
16	2da presión	0,703	1,54	2,24	600	8554,18	39507,58	6	1	100,91	1,7786	65,56	2729,58		
	Recalentadores														
14	1era presión	N/A	1,54	1,54	100	1425,70	4967,70	5	1	79,21	1,244	26,73	1769,35		
15	2da presión	N/A	1,54	1,54	20	285,14	993,54	1	1	84,41	0,853	2,51	373,92		
	•						2177546,29						70092,94		

	1	Caños de unión colectores (secundario - principal)										Colector principal						
				Callos de dil	ion colecto	es (secu	ilualio - p	illicipalj						Colec	tor princ	ıpaı		
	Sección	Cantidad caños por colector secundario	Diámetro exterior [mm]	Espesores [mm]	Distancias [m]	Largo total del caño	Peso por metro	Diámetro interior [dm]	Volumen interior (dm²)	Peso total [kg]	Diámetro exterior [mm]	Diámetro interior [mm]	Espesores [mm]	Volumen [m²]	Peso [kg]	Diametro interior (dm)	Volumen interior (dm²)	Peso total (Colector principal superior e Inferior) [kg]
1	Precalentador	3	73	4,78	11,366	204,59	8,05	0,63	129,27	3423,14	406,40	398,02	4,19	0,069	542,43	3,98	54,72	1139,58
	Bloque de Baja Presión																	
4	Economizador																	
5	Evaporador	3	60,3	3,91	4,027	72,49	5,44	0,52	31,34	819,99	114,30	104,74	4,78	0,021	168,50	1,05	3,79	340,79
9	Sobrecalentador																	
	Bloque de Media Presión																	
	Economizador																	
3	1era presión	3	73	4,78	10,174	183,13	8,05	0,63	115,72	3064,14	219,10	211,58	3,76	0,033	260,61	2,12	15,46	536,68
6	2da presión	3	73	4,78	6,172	111,10	8,05	0,63	70,20	1858,84	219,10	211,58	3,76	0,033	260,61	2,12	15,46	536,68
8	Evaporador	3	73	4,78	2,526	45,47	8,05	0,63	28,73	760,76	323,90	303,28	10,31	0,133	1040,63	3,03	31,77	2113,03
10	Sobrecalentador	3	73	4,78	4,684	84,31	8,05	0,63	53,27	1410,70	219,10	198,48	10,31	0,088	692,86	1,98	27,21	1412,93
	Bloque de Alta Presión																	
	Economizador																	
2	1era presión	3	60,3	3,91	3,961	71,30	5,44	0,52	30,83	806,55	114,30	104,74	4,78	0,021	168,50	1,05	3,79	340,79
7	2da presión	3	60,3	3,91	5,898	106,16	5,44	0,52	45,91	1200,97	168,30	161,50	3,4	0,023	180,46	1,62	9,01	369,92
11	3era presión	3	60,3	3,91	7,594	136,69	5,44	0,52	59,11	1546,31	168,30	161,50	3,4	0,023	180,46	1,62	9,01	369,92
12	Evaporador	3	73	9,53	15,1	271,80	14,92	0,54	124,16	8234,67	273,10	222,30	25,4	0,258	2025,05	2,22	17,07	4067,17
	Sobrecalentador																	
13	1era presión	3,00	141,30	7,14	2,75	49,43	40,28	1,27	125,20	4107,12	88,90	66,64	11,13	0,035	278,60	0,67	1,53	558,74
16	2da presión																	-
	Recalentadores																	
14	1era presión																	
15	2da presión																	
										27233,20								11786,22
									L		ı						- 1	

Domo	Diámetro [m]	Largo [m]	Pi	Espesor [m)	Peso Especifico ([kg/m²]	Peso envolvente [Kg]	Diámetro interior [m]		Peso casquetes [kg]	Peso total vacio [Kg]	Volumen envolvente [m²]	Volumen casquete [m²]	Volumen total [dm²]	Peso total lleno [kg]
Low pressure (LP)	1,52	8,50	3,14	0,005185	7850	1651,24	1,50963	0,037359	293,27	1944,51	15,21	1,800	17006,999	18952
Intermediate pressure (IP)	1,52	7,50	3,14	0,014952	7850	4201,49	1,49010	0,106352	834,86	5036,35	13,07	1,731	14804,018	19840
High pressure (HP)	1,83	15,00	3,14	0,061754	7850	41783,69	1,70649	0,606536	4761,31	46544,99	34,29	2,601	36890,859	83436

REFERENCIAS

U.T.N F.R.A.		PROYECTO FINAL	AÑO	2021
U. I. N F. K.A.		GRUPO		
	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	38

<u>Dimensionamiento de las Vigas: Longitudinales (Componentes)</u>

Material : F-26

Límite de Fluencia : 2498,3 kg/cm2 σ adm : 1319,1024 kg/cm2

Límite de Fluencia [Mpa]

Se selecciona el Límite de Fluencia en la norma IRAM IAS U500-42 (página 9) según el material y el rango de espesores a utilizar

Tabla 1 - Características mecánicas

Características mecánicas	Espesor e	Designación								
mecanicas	(mm)	F-22	F-24	F-26		F-30	F-36			
Resistencia a la	e ≤ 100	310-460	360-510	400	550	450-600	490-640			
tracción (MPa)	100 < e ≤ 150	300-450	340-490	380	530	430-580	470-620			
	e≤ 16	215	235	2	0	295	355			
	16 < e ≤ 40	205	225	245		285	345			
Límite de fluencia	40 < e ≤ 63	205	215	245		275	335			
mínimo (MPa)	63 < e ≤ 80	195	215	235		265	325			
	80 < e ≤ 100	195	215	23	35	255	315			
	100 < e ≤ 150	185	195	215		245	295			

Gadm: Sigma Admisible [kg/cm²]

Para establecer el sigma admisible nos basamos en el cálculo de la norma AISC Código de diseño estructural (página 805)

σadm = Límite de fluencia * 0,66 * (0,8 Se establece un 20% de sobredimensionamiento por diversos esfuerzos

Finalmente este valor será verificado con el análisis en STAAD Pro - Software de análisis estructural y diseño 3D

Momento Resistente [Nm] o [kgcm]

Se calculo en base a las dimensiones pre establecidas utilizando la siguiente página online:

https://www.aprenderengenharia.com.br/viga-online

W mínimo [cm3]

Wmin = Momento Resistente [kg.cm] / Sigma admisible [Kg/cm²]

(1) Se calculan los pesos a soportar por cada viga, se divide con doble raya cada viga correspondiente a uno o más componentes. Cada colector tendrá dos ganchos de donde son soportados.

[kg] tag/mm secundario [kg] [N] 1 Precalentador 61606,58 39962,43 9,660157 8 3850,41 37759,4 2 Economizador Alta Presión (1) 18318,27 3 3053,05 29939,9 3 Economizador Media Presión (1) 43738,09 34221,90 8,331605 6 3644,84 35743,5
2 Economizador Alta Presión (1) 18318,27 3 3053,05 29939,9 3 Economizador Media Presión (1) 43738,09 34221,90 8,331605 6 3644,84 35743,5
3 Economizador Media Presión (1) 43738,09 34221,90 8,331605 6 3644,84 35743,5
4
4 Economizador Baja Presión 2692,66 1 1346,33 13202,9
5 Evaporador Baja Presión 22013,05 3 3668,84 35978,8
6 Economizador Media Presión (2) 29213,44 37109,58 8,791197 4 3651,68 35810,5
7 Economizador Alta Presión (2) 32938,27 5 3293,83 32301,2
8 Evaporador Media Presión 12067,45 2 3016,86 29585,1
9 Sobrecalentador Baja Presión 2288,08 32247,01 9,061177 1 1144,04 11219,1
10 Sobrecalentador Media Presión 25572,08 4 3196,51 31346,9
11 Economizador Alta Presión (3) 36633,86 5 3663,39 35925,3
12 Evaporador Alta Presión 69995,40 34997,70 10,29344 10 3499,77 34320,8
13 Sobrecalentador Alta Presión (1) 15642,27 12698,33 5,989779 2 3910,57 38349,3
14 Recalentadores (1) 1347,41 1 673,70 6606,74
15 Recalentadores (2) 1367,46 1 683,73 6705,04
16 Sobrecalentador Alta Presión (2) 7039,53 1 3519,76 34516,9

REFERENCIAS

Norma IRAM IAS U500-42

Norma IRAM IAS U500-503

AISC Código de diseño estructural

U.T.N F.R.A.		AÑO	2021	
U. I.IN F.K.A.		GRUPO		
INICENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	39

<u>Dimensionamiento de las Vigas: Longitudinales (Componentes)</u>

 (2) Se dimensiona el momento resistente teniendo en cuenta los puntos de distancia entre los pesos y el largo total.

			D	IMENSIONA	MIENTO VIGA	- MOMENT	0				RESISTENCIA	
Sección	LARGO TOTAL [m]	1	2	3	4	5	6	7	8	Momento	Resistente	W mínimo [cm3]
					puntos de d	istancia [m]				[Nm]	[kgcm]	
1 Precalentador	4,136830	0,36078	0,70818	1,05558	1,4029800	1,7504	2,09778	2,4452	2,79258	219701,9	2240300,27	1698,352
2 Economizador Alta Presión (1)		3,37178	3,60338	3,83498								
3 Economizador Media Presión (1)	4,107480	0,30262	0,65157	1,00052	1,3494700	1,6984	2,04737			211947,6	2161229,68	1638,409
4 Economizador Baja Presión		2,45287										
5 Evaporador Baja Presión		3,11627	3,46367	3,81107								
6 Economizador Media Presión (2)	4,221220	0,36052	0,70792	1,05532	1,4027200					287624,6	2932908,05	2223,412
7 Economizador Alta Presión (2)		1,92325	2,15485	2,38645	2,6180500	2,8497						
8 Evaporador Media Presión		3,51305	3,74465									
9 Sobrecalentador Baja Presión	3,558810	0,24498								175935,4	1794013,27	1360,026
10 Sobrecalentador Media Presión		0,65023	0,88183	1,11343	1,3450300							
11 Economizador Alta Presión (3)		1,86659	2,21399	2,56139	2,9087900	3,2562						
12 Evaporador Alta Presión	3,400000	0,36078	0,59238	0,82398	1,0555800	1,2872				143522,2	1463495,87	1109,463
12 Evaporador Alta Presion		1,85858	2,20598	2,55338	2,9007800	3,2482						
13 Sobrecalentador Alta Presión (1)	2,120000	0,2896	0,637							33982,5	346519,553	262,6934
14 Recalentadores (1)		1,01342										
15 Recalentadores (2)		1,24522										
16 Sobrecalentador Alta Presión (2)		1,6219										

(3) Se dimensionan las medidas geómetricas de la viga, este paso se realizó iterando varios valores hasta lograr cumplir con la verificación: Sigma de la viga < Sigma admisible.

	DIMENSIONAMIENTO DE LA VIGA [cm]										Sigma < σadm = 1319,10 kg/cm2		
Sección	Ht	b	e	ha	ea	Ymax	lx alas	Ix alma	Ix total	W [cm3]	Sigma [kg/cm2]	Cumple?	
1 Precalentador	45	20	2,54	39,92	3,81	22,5	22923,53	20198,32	43121,85	1916,527	1168,937679	SI	
2 Economizador Alta Presión (1)													
3 Economizador Media Presión (1)	45	20	2,54	39,92	3,81	22,5	22923,53	20198,32	43121,85	1916,527	1127,680442	SI	
4 Economizador Baja Presión													
5 Evaporador Baja Presión													
6 Economizador Media Presión (2)	45	20	4,445	36,11	5,08	22,5	36700,01	19932,64	56632,65	2517,007	1165,236403	SI	
7 Economizador Alta Presión (2)													
8 Evaporador Media Presión													
9 Sobrecalentador Baja Presión	45	20	2,54	39,92	2,54	22,5	22923,53	13465,55	36389,08	1617,292	1109,269673	SI	
10 Sobrecalentador Media Presión													
11 Economizador Alta Presión (3)													
12 Evaporador Alta Presión	45	20	2,54	39,92	2,54	22,5	22923,53	13465,55	36389,08	1617,292	904,9050039	SI	
13 Sobrecalentador Alta Presión (1)	40	15	1,27	37,46	1,27	20	7146,372	5563,214	12709,59	635,4793	545,2884856	SI	
14 Recalentadores (1)													
15 Recalentadores (2)													
16 Sobrecalentador Alta Presión (2)													

U.T.N F.R.A.		AÑO	2021	
U.T.N F.N.A.		PROYECTO FINAL	GRUPO	
INCENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	40

<u>Dimensionamiento de las Vigas: Transversales</u>

Material : F-26

Límite de Fluencia : 2498,3 kg/cm2 σ adm : 1319,1024 kg/cm2

Límite de Fluencia [Mpa]

Se selecciona el Límite de Fluencia en la norma IRAM IAS U500-42 (página 9) según el material y el rango de espesores a utilizar

Tabla 1 - Características mecánicas

Características mecánicas	Espesor e	Designación								
mecanicas	(mm)	F-22	F-24	F-26		F-30	F-36			
Resistencia a la	e ≤ 100	310-460	360-510	400	550	450-600	490-640			
tracción (MPa)	100 < e ≤ 150	300-450	340-490	380	530	430-580	470-620			
	e≤ 16	215	235	25	0	295	355			
	16 < e ≤ 40	205	225	24	5	285	345			
Límite de fluencia	40 < e ≤ 63	205	215	245		275	335			
mínimo (MPa)	63 < e ≤ 80	195	215	235		265	325			
-	80 < e ≤ 100	195	215	23	5	255	315			
	100 < e ≤ 150	185	195	21	5	245	295			

Gadm: Sigma Admisible [kg/cm²]

Para establecer el sigma admisible nos basamos en el cálculo de la norma AISC Código de diseño estructural (página 805)

σadm = Límite de fluencia * 0,66 * 0.8 Se establece un 20% de sobredimensionamiento por diversos esfuerzos

Finalmente este valor será verificado con el análisis en STAAD Pro - Software de análisis estructural y diseño 3D

Momento Resistente [Nm] o [kgcm]

Se calculo en base a las dimensiones pre establecidas utilizando la siguiente página online:

https://www.aprenderengenharia.com.br/viga-online

W mínimo [cm3]

Wmin = Momento Resistente [kg.cm] / Sigma admisible [Kg/cm²]

(1) Se calculan los pesos a soportar por cada viga, se divide con doble raya cada viga transversal, en este caso se suma el peso de uno o más componentes y el peso del domo (alta, intermedia o baja) según la ubicación de los soportes.

		VIGA	POR COMPON	ENTES				
Sección	Peso por paquete [kg]	Peso por	colector	Fuerza del domo [N]	Fuerza por paquete [N]	División para la Viga Transversal	Cargas con domo [N]	Carga Total [N]
1 Precalentador	61606,58	79924,85	783791,05		32657,96	5		32657,9605
2 Economizador Alta Presión (1)	18318,27				60624,67			60624,6684
3 Economizador Media Presión (1)	43738,09	68443,80	671200,99			11	24271,335	84896,0034
4 Economizador Baja Presión	2692,66			48542,67				
5 Evaporador Baja Presión	22013,05				58293,27			58293,273
6 Economizador Media Presión (2)	29213,44	74219,15	727837,56	48542,67		11	49523,33	107816,603
7 Economizador Alta Presión (2)	32938,27			50503,99				
8 Evaporador Media Presión	12067,45				56679,36			56679,3576
9 Sobrecalentador Baja Presión	2288,08	64494,02	632467,02	48542,67		11	49523,33	106202,688
10 Sobrecalentador Media Presión	25572,08			50503,99				
11 Economizador Alta Presión (3)	36633,86				54953,5	12		54953,497
12 Evaporador Alta Presión	69995,40	69995,40	686416,91	210841,9		12	130672,95	185626,442
13 Sobrecalentador Alta Presión (1)	15642,27	18357,14	180021,10		36101,58	11		36101,5835
14 Recalentadores (1)	1347,41						105420,95	141522,534
15 Recalentadores (2)	1367,46				10377,29	13		10377,2884
16 Sobrecalentador Alta Presión (2)	7039,53	7039,53	69033,83			15		

VIGA POR COMPONENTES

REFERENCIAS

Norma IRAM IAS U500-42

Norma IRAM IAS U500-503

AISC Código de diseño estructural

U.T.N F.R.A.		AÑO	2021	
U.I.N F.K.A.		PROYECTO FINAL	GRUPO	
	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	41

<u>Dimensionamiento de las Vigas: Transversales</u>

 (2) Se dimensiona el momento resistente teniendo en cuenta los puntos de distancia entre los pesos y el largo total.

					D	IMENSIONA	MIENTO VIG	A - MOMENT	О						RESISTENCIA	
Sección	LARGO TOTAL [m]	1	2	3	4	5	6	7	8	9	10	11	12	Momento	Resistente	W mínimo [cm3]
							puntos de d	listancia [m]						[Nm]	[kgcm]	
1 Precalentador														780223	7955933,93	6031,32
2 Economizador Alta Presión (1)														1575236	16062681,49	12176,98
3 Economizador Media Presión (1)																
4 Economizador Baja Presión																
5 Evaporador Baja Presión														1651530	16840651,41	12766,75
6 Economizador Media Presión (2)																
7 Economizador Alta Presión (2)																
8 Evaporador Media Presión	15,200	0,908	2,228	3,320	4,641	5,733	7,053	8,145	9,465	10,557	11,877	12,969	14,289	1612972	16447475,48	12468,69
9 Sobrecalentador Baja Presión	15,200	0,908	2,220	3,320	4,041	5,755	7,055	0,143	9,403	10,557	11,0//	12,909	14,209			
10 Sobrecalentador Media Presión																
11 Economizador Alta Presión (3)]													2114757	21564177,13	16347,61
12 Evaporador Alta Presión																
13 Sobrecalentador Alta Presión (1)														1509411	15391463,97	11668,13
14 Recalentadores (1)																
15 Recalentadores (2)														247921	2528050,44	1916,49
16 Sobrecalentador Alta Presión (2)																

(3) Se dimensionan las medidas geómetricas de la viga, este paso se realizó iterando varios valores hasta lograr cumplir con la verificación: Sigma de la viga < Sigma admisible.

				DIMENS	SIONAMIEN	TO DE LA VI	GA [cm]				Sigma < σadm =	1319,10 kg/cm2
Sección	Ht	b	e	ha	ea	Ymax	lx alas	Ix alma	Ix total	W [cm3]	Sigma [kg/cm2]	Cumple?
1 Precalentador	80	45	2,54	74,92	3,175	40	171512,93	111264,29	282777,21	7069,43	1125,400	SI
2 Economizador Alta Presión (1)3 Economizador Media Presión (1)4 Economizador Baja Presión	80	45	6,35	67,3	7,62	40	388460,22	193561,47	582021,69	14550,54	1103,923	SI
5 Evaporador Baja Presión 6 Economizador Media Presión (2) 7 Economizador Alta Presión (2)	80	45	6,35	67,3	7,62	40	388460,22	193561,47	582021,69	14550,54	1157,390	SI
8 Evaporador Media Presión 9 Sobrecalentador Baja Presión 10 Sobrecalentador Media Presión	80	45	6,35	67,3	7,62	40	388460,22	193561,47	582021,69	14550,54	1130,369	SI
11 Economizador Alta Presión (3) 12 Evaporador Alta Presión	90	45	7,62	74,76	7,62	45	583428,85	265327,10	848755,95	18861,24	1143,306	SI
13 Sobrecalentador Alta Presión (1) 14 Recalentadores (1)	80	45	6,35	67,3	7,62	40	388460,22	193561,47	582021,69	14550,54	1057,793	SI
15 Recalentadores (2) 16 Sobrecalentador Alta Presión (2)	80	45	1,27	77,46	1,27	40	88567,51	49187,52	137755,03	3443,88	734,071	SI

Dimensionamiento de las Vigas: Domos

Se dimensionan las vigas longitudinales correspondientes a los soportes de cada domo (baja, intermedia y alta).

								Puntos de d	listancia [m]	RESISTENCIA		
	Peso del domo [N]	Peso por silleta [N]	Peso por silleta [kg]	W [kg/mm]	Longitud silleta [m]	q [N/m]	LARGO (m)	1	2	Momento [Nm]	Momento [kgcm]	W minimo [cm3]
Low pressure (LP)	194170,68	97085,34	9900	7,0866	1,397	69495,591	2,1	0,3515	1,7485	34014,55	346846,366	262,9412
Intermediate pressure (IP)	202015,96	101007,98	10300	7,3729	1,397	72303,493	2,1	0,3515	1,7485	35388,87	360860,307	273,565
High pressure (HP)	843367,60	210841,90	21500	13,0145	1,652	127628,269	2,75	0,549	2,201	101410,5	1034082,87	783,9292

											Sigma < σadm = 1319,10 kg/cm2	
				DIM	MENSIONES	DE LA VIG	A [cm]				Sigma	Cumple?
	ΗŁ	Ь	e	ha	ea	Ymax	lx alas	lx alma	lx total	W[cm3]	[kg/cm2]	cumple:
Low pressure (LP)	30	20	0,635	28,73	1,27	15	2738,239486	2509,743585	5247,983	349,865538	991,3704798	SI
Intermediate pressure (IP)	30	20	0,635	28,73	1,27	15	2738,239486	2509,743585	5247,983	349,865538	1031,4257	SI
High pressure (HP)	30	20	2,54	24,92	2,54	15	9603,767093	3275,643158	12879,41	858,62735	1204,344199	SI

U.T.N F.R.A.		AÑO	2021	
U. I.IV F.N.A.		PROYECTO FINAL	GRUPO	
INGENIERIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	Α
INGENIERIA WIECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	42

<u>Dimensionamiento de las Vigas: Columnas</u>

Material : F-26

Límite de Fluencia : 2498,3 kg/cm2 = 35,5341 ksi σ adm : 1319,1024 kg/cm2 = 18,7620 ksi

Límite de Fluencia [Mpa]

Se selecciona el Límite de Fluencia en la norma IRAM IAS U500-42 (página 9) según el material y el rango de espesores a utilizar

Tabla 1 - Características mecánicas

Características mecánicas	Espesor e	Designación								
mecanicas	(mm)	F-22	F-24	F-26		F-30	F-36			
Resistencia a la	e ≤ 100	310-460	360-510	400	550	450-600	490-640			
tracción (MPa)	100 < e ≤ 150	300-450	340-490	380	530	430-580	470-620			
	e≤ 16	215	235	2	50	295	355			
	16 < e ≤ 40	205	225	2	45	285	345			
Límite de fluencia	40 < e ≤ 63	205	215	2	45	275	335			
mínimo (MPa)	63 < e ≤ 80	195	215	235		265	325			
	80 < e ≤ 100	195	215	2	35	255	315			
	100 < e ≤ 150	185	195	2	15	245	295			

Gadm: Sigma Admisible [kg/cm²]

Para establecer el sigma admisible nos basamos en el cálculo de la norma AISC Código de diseño estructural (página 805)

Finalmente este valor será verificado con el análisis en STAAD Pro - Software de análisis estructural y diseño 3D

(1) Se calcula la carga total a soportar por cada columna, se toma la separación con doble raya correspondiente a cada columna. Se sumo el peso por componentes, por colector y domo según su ubicación.

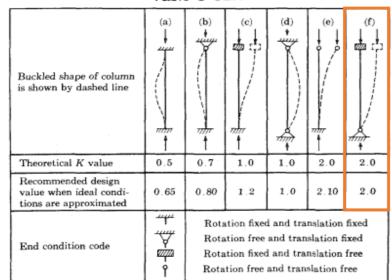
	COMPO	NENTES		COLUMNAS	i
Sección	Peso por paquete [kg]	Peso Total [kg]	Cargas colectores [kg]	Cargas domos [kg]	Carga Total por columna [kg]
1 Precalentador	61606,58	79924,85	19981,213	-	19981,21
2 Economizador Alta Presión (1)	18318,27		37092,163	4950	42042,16
3 Economizador Media Presión (1)	43738,09	68443,80			
4 Economizador Baja Presión	2692,66				
5 Evaporador Baja Presión	22013,05		35665,739	10100	45765,74
6 Economizador Media Presión (2)	29213,44	74219,15			
7 Economizador Alta Presión (2)	32938,27				
8 Evaporador Media Presión	12067,45		34678,293	5150	39828,29
9 Sobrecalentador Baja Presión	2288,08	64494,02			
10 Sobrecalentador Media Presión	25572,08				
11 Economizador Alta Presión (3)	36633,86		33622,355	5150	38772,35
12 Evaporador Alta Presión	69995,40	69995,40			
13 Sobrecalentador Alta Presión (1)	15642,27	24032,55	23506,988	21500	45006,99
14 Recalentadores (1)	1122,84				
15 Recalentadores (2)	227,91		6008,1371		6008,14
16 Sobrecalentador Alta Presión (2)	7039,53				
Low pressure (LP)					4950
Intermediate pressure (IP)					5150
High pressure (HP)					10750

REFERENCIAS Norma IRAM IAS U500-42

Norma IRAM IAS U500-503

AISC Código de diseño estructural

U.T.N F.R.A.		AÑO	2021	
		PROYECTO FINAL	GRUPO	
INCENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	Α
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	43


Dimensionamiento de las Vigas: Columnas

 (2) Se dimensionan las medidas geómetricas de la viga, este paso se realizó iterando varios valores hasta lograr cumplir con las verificaciones.

			I	DIMENSIONA	MIENTO DE L	A VIGA [cm]	l	1									
Sección	LARGO TOTAL [m]	Lpy [cm]	Ht	b	e	ha	ea	Área [cm2]	Iz alas [cm4]	Iz alma [cm4]	Iz total [cm4]	ly alas [cm4]	ly [cm4]	ry [cm]	λу	rz [cm]	λz
1 Precalentador			120	80	8,81	102,38	6,35	1354,913	2182957,3	567855,52	2750812,9	1503573,3	2071428,9	33,31	174,11	45,06	128,72
Economizador Alta Presión (1) Economizador Media Presión (1) Economizador Baja Presión			120	80	10,81	98,38	6,35	1489,513	2586056,4	503863,54	3089920,0	1844906,7	2348770,2	35,19	164,80	45,55	127,34
5 Evaporador Baja Presión 6 Economizador Media Presión (2) 7 Economizador Alta Presión (2)			120	80	10,81	98,38	6,35	1489,513	2586056,4	503863,54	3089920,0	1844906,7	2348770,2	35,19	164,80	45,55	127,34
Evaporador Media Presión Sobrecalentador Baja Presión Sobrecalentador Media Presión	29,000	5800	120	80	10,81	98,38	6,35	1489,513	2586056,4	503863,54	3089920,0	1844906,7	2348770,2	35,19	164,80	45,55	127,34
11 Economizador Alta Presión (3) 12 Evaporador Alta Presión			120	80	10,81	98,38	6,35	1489,513	2586056,4	503863,54	3089920,0	1844906,7	2348770,2	35,19	164,80	45,55	127,34
13 Sobrecalentador Alta Presión (1) 14 Recalentadores (1)			120	80	10,81	98,38	6,35	1489,513	2586056,4	503863,54	3089920,0	1844906,7	2348770,2	35,19	164,80	45,55	127,34
15 Recalentadores (2) 16 Sobrecalentador Alta Presión (2)			120	80	10,81	98,38	6,35	1489,513	2586056,4	503863,54	3089920,0	1844906,7	2348770,2	35,19	164,80	45,55	127,34
Low pressure (LP) Intermediate pressure (IP) High pressure (HP)	0,70541	0,493787	20 20 20	20 20 20	1,27 1,27 1,905	17,46 17,46 16,19	1,27 1,27 1,905	47,57 47,57 68,94	2231,08 2231,08 3130,28	563,32 563,32 673,68	2794,40 2794,40 3803,96	3386,67 3386,67 5080,00	3949,99 3949,99 5753,68	8,44 8,44 8,58	0,06 0,06 0,06	7,66 7,66 7,43	0,06 0,06 0,07

Longitud de pandeo según el caso (f)

Table C-C2.1

Condición de λy - λz

B7. LIMITING SLENDERNESS RATIOS

For members whose design is based on compressive force, the slenderness ratio *Kl/r* preferably should not exceed 200. If this limit is exceeded, the allowable stress shall not exceed the value obtained from Equation (E2-2).

(3) Limitación de la realción ancho-espesor, depende de los valores geómetricos pre estrablecidos y la relación máxima seleccionada de AISC. Finalmente la verificación de sigma admisible.

	LIMITA	ACION DE LA RELA	CION ANCHO - ES	SPESOR			VERIFIC	CACIÓN		
Sección	Кс	h/t	b/t	Relación Máxima [b/t]	Сс	(K*I/r)/Cc	σadm [ksi]	σ [ksi]	w	σ [ksi]
1 Precalentador		13,62	9,08			1,3524	1,6366	0,2098	6,330	1,327745
2 Economizador Alta Presión (1)		11,10	7,40]		1,2801	3,4198	0,4015	5,620	2,256199
3 Economizador Media Presión (1)										
4 Economizador Baja Presión]						
5 Evaporador Baja Presión		11,10	7,40]		1,2801	3,4198	0,4370	5,620	2,456025
6 Economizador Media Presión (2)										
7 Economizador Alta Presión (2)										
8 Evaporador Media Presión	1	11,10	7,40	15.93680013	128,75	1,2801	3,4198	0,3803	5,620	2,137392
9 Sobrecalentador Baja Presión	1			15,53000013	120,75					
10 Sobrecalentador Media Presión]						
11 Economizador Alta Presión (3)		11,10	7,40]		1,2801	3,4198	0,3702	5,620	2,080724
12 Evaporador Alta Presión										
13 Sobrecalentador Alta Presión (1)		11,10	7,40]		1,2801	3,4198	0,4298	5,620	2,415307
14 Recalentadores (1)										
15 Recalentadores (2)		11,10	7,40]		1,2801	3,4198	0,0574	5,620	0,322428
16 Sobrecalentador Alta Presión (2)										
Low pressure (LP)		15,75	15,75			0,000455	21,40	1,48		
Intermediate pressure (IP)	1	15,75	15,75	15,93680013	128,75	0,000455	21,40	1,54		
High pressure (HP)		10,50	10,50			0,000447	21,40	2,22		

Continua en la siguiente página

		AÑO	2021	
U.T.N F.R.A.		PROYECTO FINAL	GRUPO	
Máquina Única		Diseño de una Caldera de recuperación	REV	Α
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	44

Dimensionamiento de las Vigas: Columnas

Se determinan los coeficientes para la limitación de la relación ancho - espesor

Coeficiente Kc

 a For hybrid beams, use the yield strength of the flange F_{yf} instead of F_{y} . ^bAssumes net area of plate at widest hole.

°For design of slender sections that exceed the noncompact limits see Appendix B5. dSee also Sect. F3.1.

$$^{6}k_{c}=\frac{4.05}{(h/t)^{0.48}}$$
 if $h/t>$ 70, otherwise $k_{c}\approx$ 1.0.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Verificación

E1. EFFECTIVE LENGTH AND SLENDERNESS RATIO

The effective-length factor K shall be determined in accordance with Sect. C2.

In determining the slenderness ratio of an axially loaded compression member, the length shall be taken as its effective length Kl and r as the corresponding radius of gyration. For limiting slenderness ratios, see Sect. B7.

Relación máxima b/t

TABLE B5.1 Limiting Width-Thickness Ratios for Compression Elements

	Width- Thick- ness	Limiting Width Thickness Rati	
Description of Element	Ratio	Compact	Noncompact ^c
Flanges of I-shaped rolled beams and channels in flexure ^a	b/t	65./√F _y	95.∕√ <i>F_y</i>
Flanges of I-shaped welded beams in flexure	b/t	65./√ <i>F_y</i>	95/√F _{y1} /k _c °
Outstanding legs of pairs of angles in continu- ous contact; angles or plates projecting from rolled beams or columns; stiffeners on plate girders	b/t	NA	95/√ <i>F</i> _y
Angles or plates projecting from girders, built- up columns or other compression members; compression flanges of plate girders	b/t	NA	95.∕√ <i>F_y/k</i> _c

E2. ALLOWABLE STRESS

On the gross section of axially loaded compression members whose cross sections meet the provisions of Table B5.1, when Kl/r, the largest effective slenderness ratio of any unbraced segment is less than C_c , the allowable stress is:

$$F_{a} = \frac{\left[1 - \frac{(Kl/r)^{2}}{2C_{c}^{2}}\right] F_{y}}{\frac{5}{3} + \frac{3(Kl/r)}{8C_{c}} - \frac{(Kl/r)^{3}}{8C_{c}^{3}}}$$

$$C_{c} = \sqrt{\frac{2\pi^{2}E}{F_{y}}}$$
(E2-1)

where

On the gross section of axially loaded compression members, when Kl/r exceeds C_c , the allowable stress is:

$$F_a = \frac{12\pi^2 E}{23(Kl/r)^2}$$
 (E2-2)

Selección del Coeficiente de pandeo W

UNIVERSIDAD TECNOLÓGICA NACIONAL – Facultad Regional Avellaneda Ingeniería Civil – Cátedra: Resistencia de Materiales Docente: Ing. Alfredo Omar López

λ	0	1	2	3	4	5	6	7	8	9	λ
20	1,20	1,20	1,21	1,21	1,22	1,22	1,23	1,23	1,24	1,24	20
30	1,25	1,26	1,26	1,27	1,28	1,28	1,29	1,30	1,30	1,31	30
40	1,32	1,33	1,33	1,34	1,35	1,36	1,37	1,38	1,38	1,39	40
50 60 70 80 90	1,40 1,51 1,65 1,82 2,02	1,41 1,53 1,67 1,84 2,04	1,42 1,54 1,68 1,86 2,06	1,43 1,55 1,70 1,88 2,09	1,44 1,56 1,71 1,89 2,11	1,46 1,58 1,73 1,91 2,13	1,47 1,59 1,75 1,94 2,16	1,48 1,61 1,76 1,96 2,18	1,49 1,62 1,78 1,98 2,20	1,50 1,64 1,80 2,00 2,23	70 80 90
100	2,25	2,28	2,31	2,33	2,36	2,38	2,41	2,44	2,47	2,49	100
110	2,53	2,58	2,62	2,67	2,72	2,77	2,81	2,86	2,91	2,96	110
120	3,01	3,06	3,11	3,16	3,21	3,27	3,32	3,37	3,43	3,48	120
130	3,53	3,59	3,64	3,70	3,75	3,81	3,87	3,92	3,98	4,04	130
140	4,10	4,16	4,22	4,28	4,34	4,40	4,46	4,52	4,58	4,64	140
150	4,70	4,77	4,83	*4,89	4,96	5,02	5,09	5,15	5,22	5,29	150
160	5,35	5,42	5,49	5,55	5,62	5,69	5,76	5,83	5,90	5,97	160
170	6,04	6,11	6,19	6,26	6,33	6,40	6,48	6,55	6,62	6,70	170
180	6,77	6,85	6,93	7,00	7,08	7,16	7,23	7,31	7,39	7,47	180
190	7,55	7,63	7,71	7,79	7,87	7,95	8,03	8,11	8,20	8,28	190
200	8,36	8,45	8,53	8,62	8,70	8,79	8,87	8,96	9,05	9,13	200
210	9,22	9,31	9,40	9,49	9,57	9,66	9,75	9,85	9,94	10,03	210
220	10,12	10,21	10,30	10,40	10,49	10,58	10,68	10,77	10,87	10,96	220
230	11,06	11,16	11,25	11,35	11,45	11,55	11,64	11,74	11,84	11,94	230
240	12,04	12,14	12,24	12,35	12,45	12,55	12,65	12,76	12,86	12,96	240
250	13,07	н						170			250

U.T.N F.R.A.		AÑO	2021	
U.I.N F.K.A.		PROYECTO FINAL	GRUPO	
INGENIERIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	Α
INGENIERIA WECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	45

Dimensionamiento del soporte de los componentes

Reliazamos el predimensionamiento de un soporte para cada componente tipo gancho con perno en los colectores secundarios contra las vigas de la estructura general.

Material : F-26 Material : SA - 192

 Límite de Fluencia
 : 2498,3
 kg/cm2
 Límite de Fluencia
 : 942,2178
 kg/cm2

 σ adm
 : 1319,1024
 kg/cm2
 σ adm
 : 753,7742
 kg/cm2

 τ adm
 : 1055,2821
 kg/cm2
 τ adm
 : 603,0194
 kg/cm2

Límite de Fluencia [Mpa]

Se selecciona el Límite de Fluencia en la norma IRAM IAS U500-42 (página 9) según el material y el rango de espesores a utilizar.

Tabla 1 - Características mecánicas

Espesor	Designación									
(mm)	F-22	F-24	F-26	F-30	F-36					
e ≤ 100	310-460	360-510	400 55	450-600	490-640					
$100 < e \le 150$	300-450	340-490	380 53	0 430-580	470-620					
e≤ 16	215	235	250	295	355					
16 < e ≤ 40	205	225	245	285	345					
40 < e ≤ 63	205	215	245	275	335					
63 < e ≤ 80	195	215	235	265	325					
80 < e ≤ 100	195	215	235	255	315					
100 < e ≤ 150	185	195	215	245	295					
	e (mm) e ≤ 100 100 < e ≤ 150 e ≤ 16 16 < e ≤ 40 40 < e ≤ 63 63 < e ≤ 80 80 < e ≤ 100	e (mm) F-22 $e \le 100$ $310-460$ $100 < e \le 150$ $300-450$ $e \le 16$ 215 $16 < e \le 40$ 205 $40 < e \le 63$ 205 $63 < e \le 80$ 195 $80 < e \le 100$ 195	$\begin{array}{c} e \\ (mm) \end{array} \qquad \begin{array}{c} F-22 \qquad F-24 \\ \\ e \leq 100 \qquad 310460 360510 \\ \\ 100 < e \leq 150 \qquad 300450 340490 \\ \\ e \leq 16 \qquad 215 \qquad 235 \\ \\ 16 < e \leq 40 \qquad 205 \qquad 225 \\ \\ 40 < e \leq 63 \qquad 205 \qquad 215 \\ \\ 63 < e \leq 80 \qquad 195 \qquad 215 \\ \\ 80 < e \leq 100 \qquad 195 \qquad 215 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Gadm : Sigma Admisible [kg/cm²]

Para establecer el sigma admisible nos basamos en el cálculo de la norma AISC Código de diseño estructural (página 805)

σadm = Límite de fluencia * 0,66 * 0,8 Se establece un 20% de sobredimensionamiento por diversos esfuerzos

Finalmente este valor será verificado con el análisis en STAAD Pro - Software de análisis estructural y diseño 3D

(1) Se determinan el peso correspondiente a los componentes, colector y por sujeción. Luego se determina el diámetro de la barra verificando que sea menor al sigma admisible y la chapa de unión.

							BAF	RRA		CHAPA	
	Sección	Peso por paquete [kg]	Cantidad de colector secundario	Diámetro exterior [mm]	Peso por colector [kg]	Peso por sujeción [kg]	Diámetro [cm]	σ [kg/cm2]	espesor [cm]	ancho [cm]	largo [cm]
1	Precalentador	61606,581	8	219,10	7700,823	3850,411	6	641,735	1,906	12,00	7,62
2	Economizador alta 1	18318,270	3	219,10	6106,090	3053,045	10	305,305	1,906	12,00	12,00
3	Economizador media 1	43738,094	6	219,10	7289,682	3644,841	6	607,474	1,906	12,00	7,62
4	Economizador baja	2692,658	1	114,30	2692,658	1346,329	3	448,776	1,111	7,00	4,44
5	Evaporador baja	22013,050	3	219,10	7337,683	3668,842	6	611,474	1,906	12,00	7,62
6	Economizador media 2	29213,439	4	219,10	7303,360	3651,680	6	608,613	1,906	12,00	7,62
7	Economizador alta 2	32938,269	5	219,10	6587,654	3293,827	10	329,383	1,906	12,00	12,00
8	Evaporador media	12067,446	2	219,10	6033,723	3016,862	10	301,686	1,906	12,00	12,00
9	Sobrecalentador baja	2288,077	1	114,30	2288,077	1144,039	3	381,346	1,111	7,00	4,44
10	Sobrecalentador media	25572,083	4	219,10	6393,021	3196,510	10	319,651	1,906	12,00	12,00
11	Economizador alta 3	36633,855	5	219,10	7326,771	3663,386	6	610,564	1,906	12,00	7,62
12	Evaporador alta	69995,402	10	219,10	6999,540	3499,770	10	349,977	1,906	12,00	12,00
13	Sobrecalentador alta 1	15642,272	2	219,10	7821,136	3910,568	6	651,761	1,906	12,00	7,62
14	Recalentador 1	1122,840	1	168,30	1347,409	673,704	3	224,568	1,111	6,00	4,44
15	Recalentador 2	227,909	1	141,30	1367,456	683,728	3	227,909	1,111	6,00	4,44
16	Sobrecalentador alta 2	7039,527	1	219,10	7039,527	3519,764	6	586,627	1,906	12,00	7,62

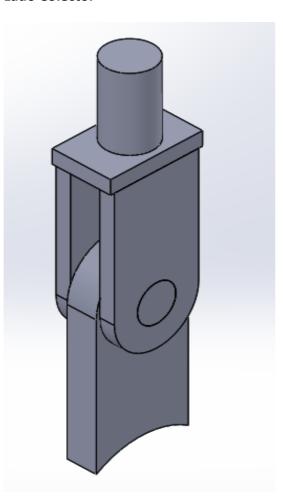
REFERENCIAS Norma IRAM IAS U500-42
Norma IRAM IAS U500-503

AISC Código de diseño estructural

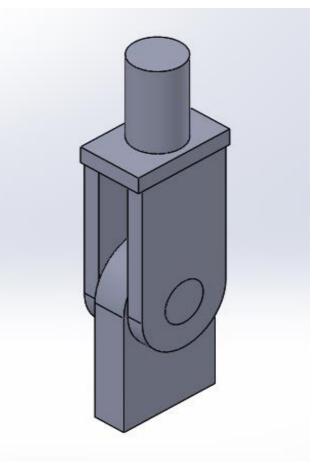
		PROYECTO FINAL	AÑO	2021
U.T.N F.R.A.		GRUPO		
INICENHEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	HOJA	46	

Dimensionamiento del soporte de los componentes

(2) Se dimensionan las medidas geómetricas del perno, oreja y gancho. Se realizó iterando varios valores hasta verificar que sea menor al sigma y tao admisible.

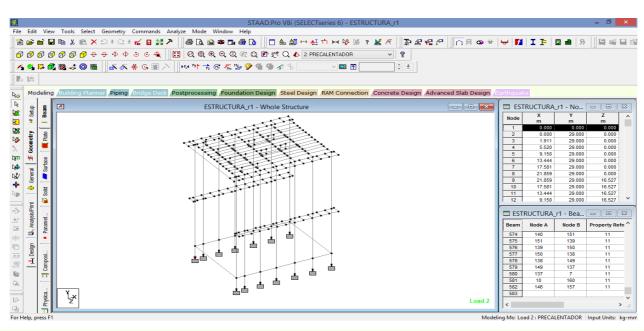

	Sección
1	Precalentador
2	Economizador alta 1
3	Economizador media 1
4	Economizador baja
5	Evaporador baja
6	Economizador media 2
7	Economizador alta 2
8	Evaporador media
9	Sobrecalentador baja
10	Sobrecalentador media
11	Economizador alta 3
12	Evaporador alta
13	Sobrecalentador alta 1
14	Recalentador 1
15	Recalentador 2
16	Sobrecalentador alta 2

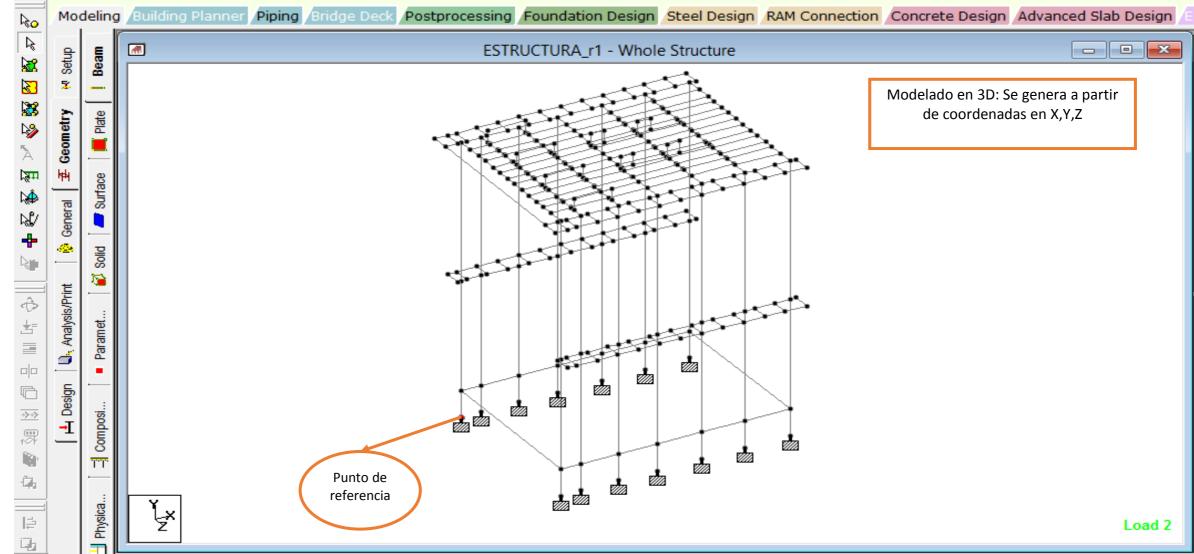
	LADO COLECTOR													
	PERNO		OREJA						GANCHO					
Diámetro [cm]	Largo [cm]	τ [kg/cm2]	e [cm]	b [cm]	h [cm]	τ [kg/cm2]	σ [kg/cm2]	e [cm]	b [cm]	h [cm]	τ [kg/cm2]	σ [kg/cm2]		
5	7,622	523,198	3,810	3,50	3,50	433,117	144,372	1,906	3	3	505,038	336,692		
5	7,622	414,851	3,810	3,50	3,50	343,425	114,475	1,906	3	3	400,452	266,968		
5	7,622	495,265	3,810	3,50	3,50	409,993	136,664	1,906	3	3	478,075	318,716		
3	4,444	508,169	2,222	2,00	2,00	454,432	151,477	1,111	2	2	454,432	302,954		
5	7,622	498,526	3,810	3,50	3,50	412,693	137,564	1,906	3	3	481,223	320,815		
5	7,622	496,194	3,810	3,50	3,50	410,763	136,921	1,906	3	3	478,972	319,314		
5	7,622	447,569	3,810	3,50	3,50	370,509	123,503	1,906	3	3	432,034	288,023		
5	7,622	409,934	3,810	3,50	3,50	339,355	113,118	1,906	3	3	395,706	263,804		
3	4,444	431,815	2,222	2,00	2,00	386,152	128,717	1,111	2	2	386,152	257,434		
5	7,622	434,345	3,810	3,50	3,50	359,562	119,854	1,906	3	3	419,269	279,513		
5	7,622	497,785	3,810	3,50	3,50	412,079	137,360	1,906	3	3	480,507	320,338		
5	7,622	475,553	3,810	3,50	3,50	393,675	131,225	1,906	3	3	459,046	306,031		
5	7,622	531,372	3,810	3,50	3,50	439,884	146,628	1,906	3	3	512,929	341,952		
3	4,444	254,288	2,222	1,50	1,50	303,197	101,066	1,111	2	2	227,398	151,599		
3	4,444	258,072	2,222	1,50	1,50	307,708	102,569	1,111	2	2	230,781	153,854		
5	7,622	478,269	3,810	3,50	3,50	395,924	131,975	1,906	3	3	461,669	307,779		


	Sección
1	Precalentador
2	Economizador alta 1
3	Economizador media 1
4	Economizador baja
5	Evaporador baja
6	Economizador media 2
7	Economizador alta 2
8	Evaporador media
9	Sobrecalentador baja
10	Sobrecalentador media
11	Economizador alta 3
12	Evaporador alta
13	Sobrecalentador alta 1
14	Recalentador 1
15	Recalentador 2
16	Sobrecalentador alta 2

						LADO VIGA						
	PERNO				OREJA					GANCHO		
Diámetro [cm]	Largo [cm]	τ [kg/cm2]	e [cm]	b [cm]	h [cm]	τ [kg/cm2]	σ [kg/cm2]	e [cm]	b [cm]	h [cm]	τ [kg/cm2]	σ [kg/cm2]
5	7,622	523,198	3,810	3,50	3,50	433,117	144,372	1,906	3	3	505,038	336,692
5	7,622	414,851	3,810	3,50	3,50	343,425	114,475	1,906	3	3	400,452	266,968
5	7,622	495,265	3,810	3,50	3,50	409,993	136,664	1,906	3	3	478,075	318,716
3	4,444	508,169	2,222	2,00	2,00	454,432	151,477	1,111	2	2	454,432	302,954
5	7,622	498,526	3,810	3,50	3,50	412,693	137,564	1,906	3	3	481,223	320,815
5	7,622	496,194	3,810	3,50	3,50	410,763	136,921	1,906	3	3	478,972	319,314
5	7,622	447,569	3,810	3,50	3,50	370,509	123,503	1,906	3	3	432,034	288,023
5	7,622	409,934	3,810	3,50	3,50	339,355	113,118	1,906	3	3	395,706	263,804
3	4,444	431,815	2,222	2,00	2,00	386,152	128,717	1,111	2	2	386,152	257,434
5	7,622	434,345	3,810	3,50	3,50	359,562	119,854	1,906	3	3	419,269	279,513
5	7,622	497,785	3,810	3,50	3,50	412,079	137,360	1,906	3	3	480,507	320,338
5	7,622	475,553	3,810	3,50	3,50	393,675	131,225	1,906	3	3	459,046	306,031
5	7,622	531,372	3,810	3,50	3,50	439,884	146,628	1,906	3	3	512,929	341,952
3	4,444	254,288	2,222	1,50	1,50	303,197	101,066	1,111	2	2	227,398	151,599
3	4,444	258,072	2,222	1,50	1,50	307,708	102,569	1,111	2	2	230,781	153,854
5	7,622	478,269	3,810	3,50	3,50	395,924	131,975	1,906	3	3	461,669	307,779

Lado Colector

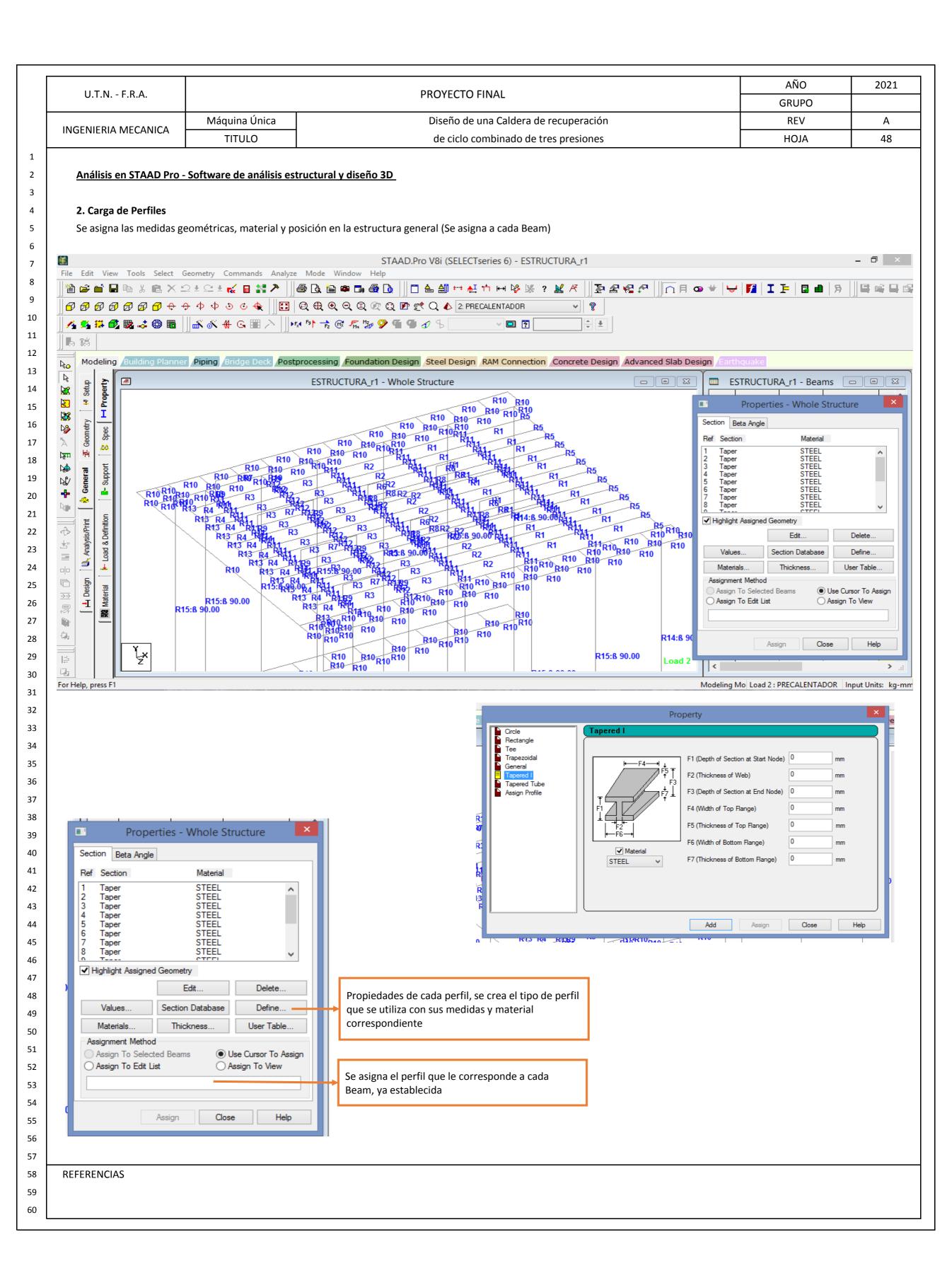

IITN FDA		DROVECTO FINAL	AÑO 2021 GRUPO REV A HOJA 47	
U.T.N F.R.A.		PROYECTO FINAL	GRUPO	
INICENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	Α
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	47

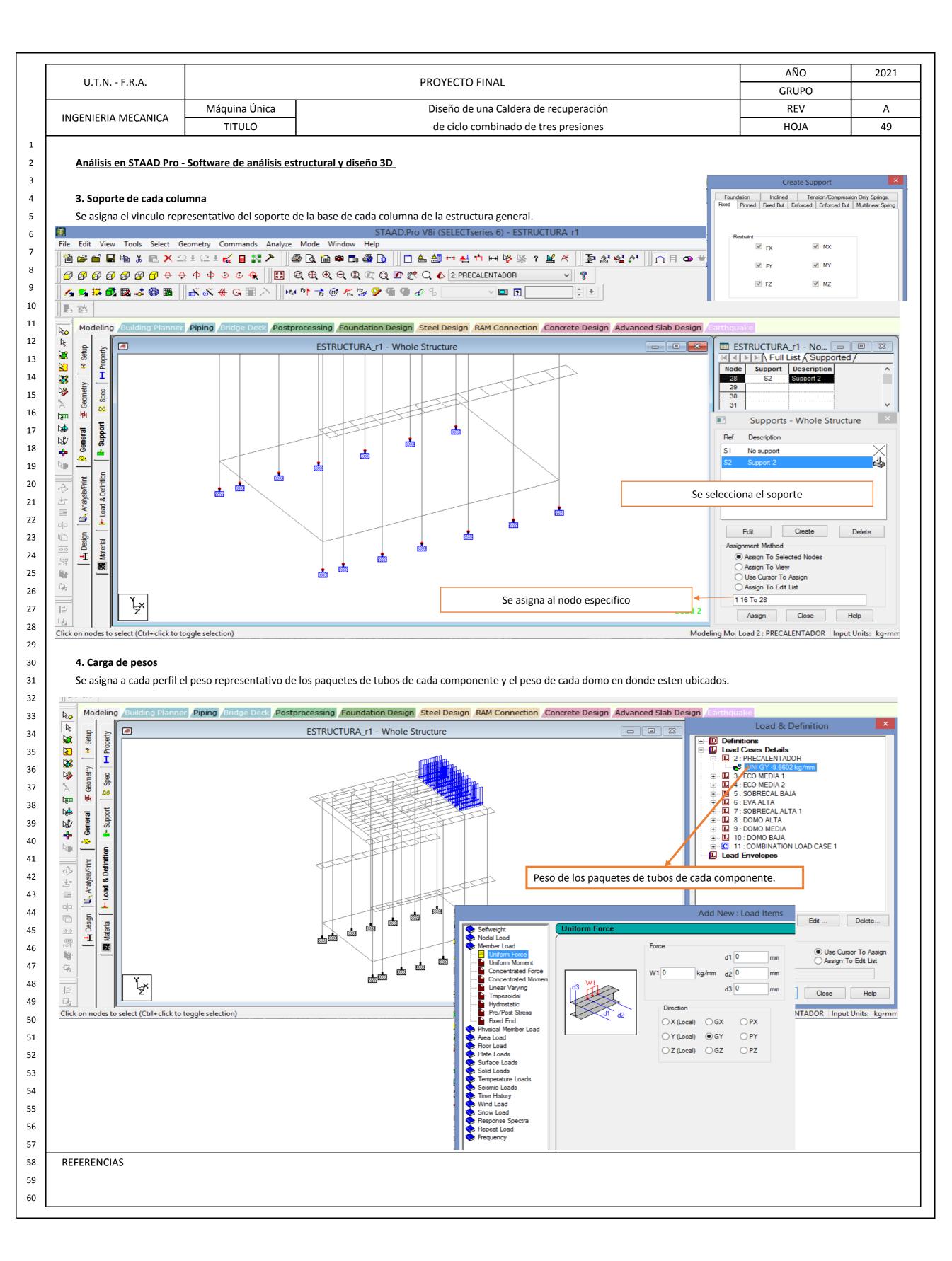

Análisis en STAAD Pro - Software de análisis estructural y diseño 3D

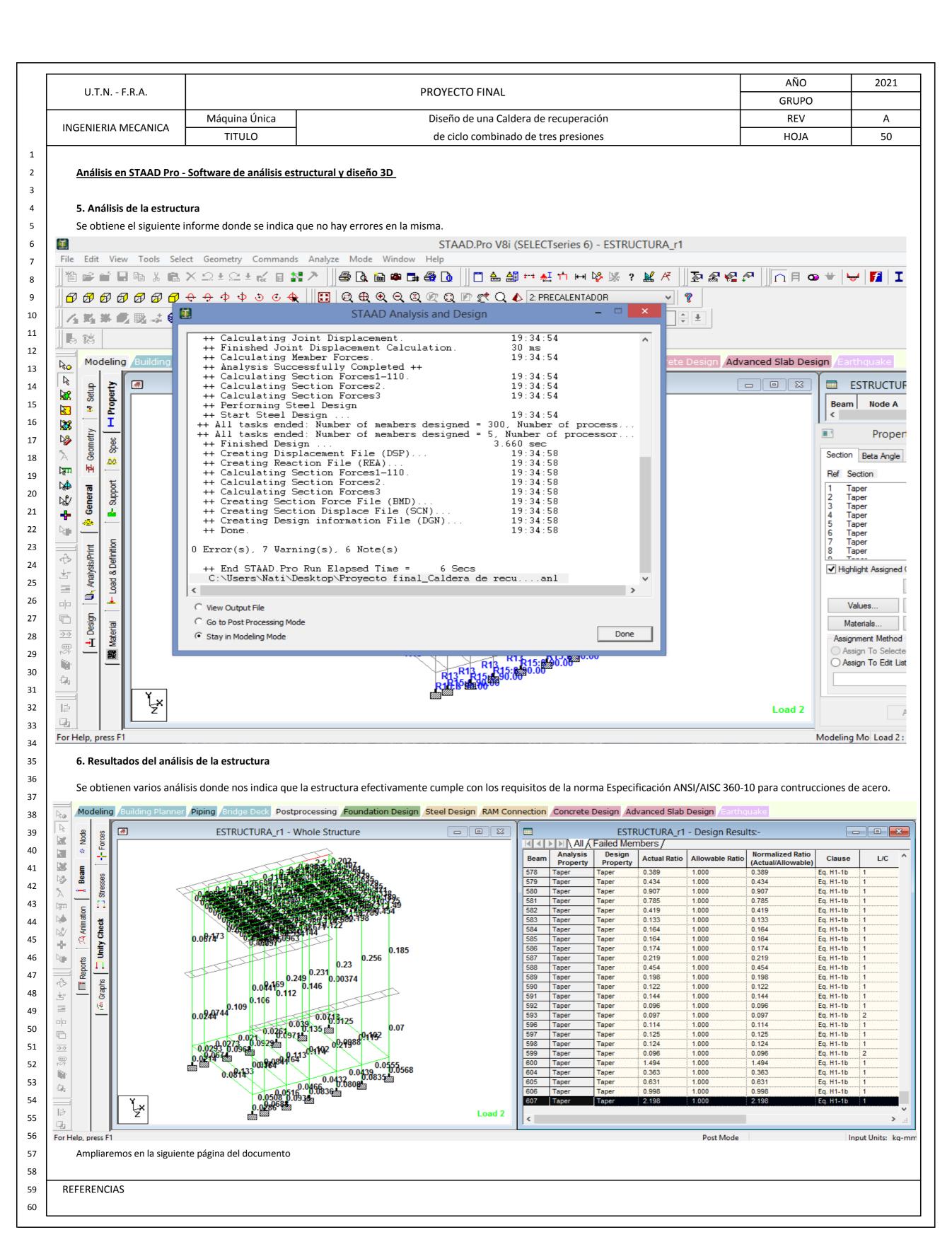
1. Carga de estructura

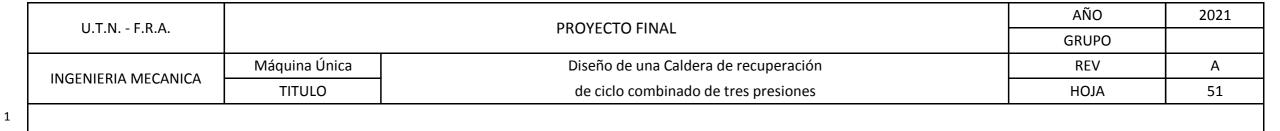
 Se modela la estructura, cargando los nodos correspondientes a los extremos de cada perfil.

Visulización del modelado en 3D

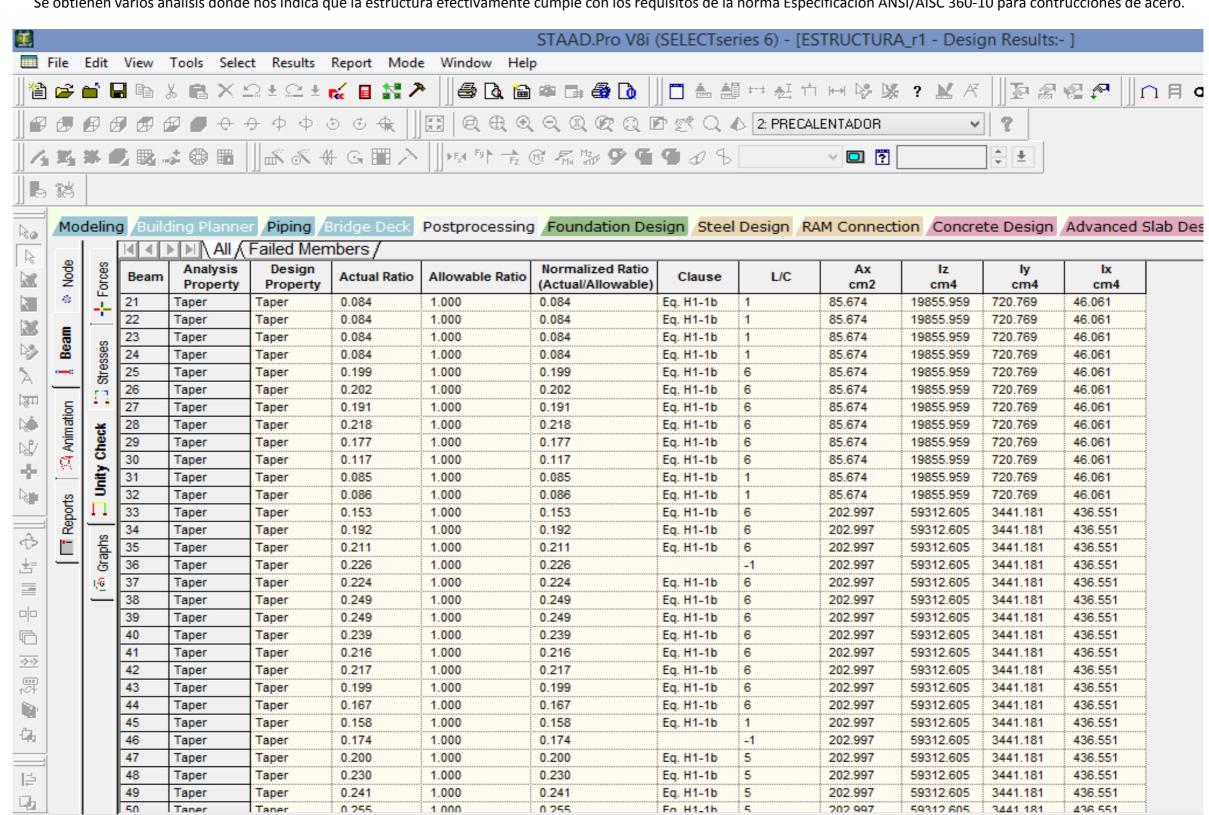


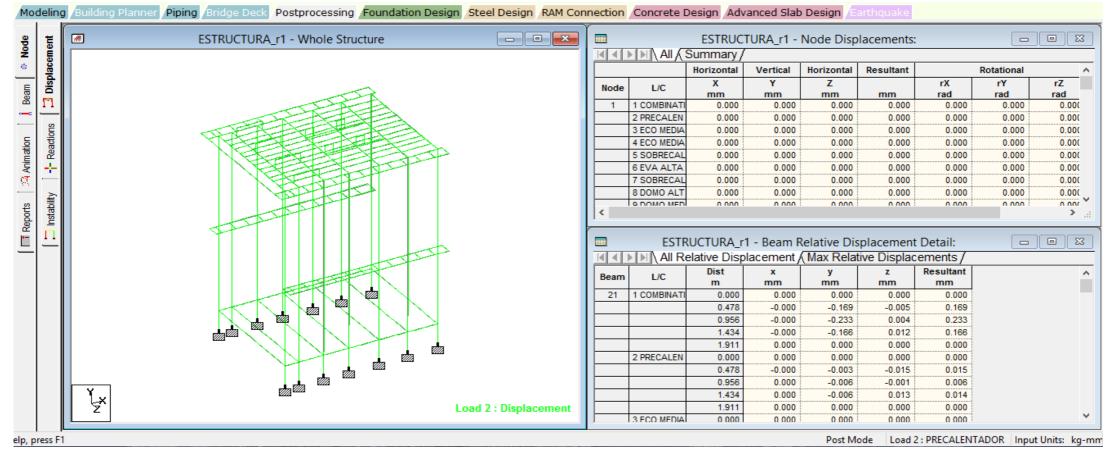

Node: Se trata de los nodos con coordenadas en X,Y,Z según corresponda

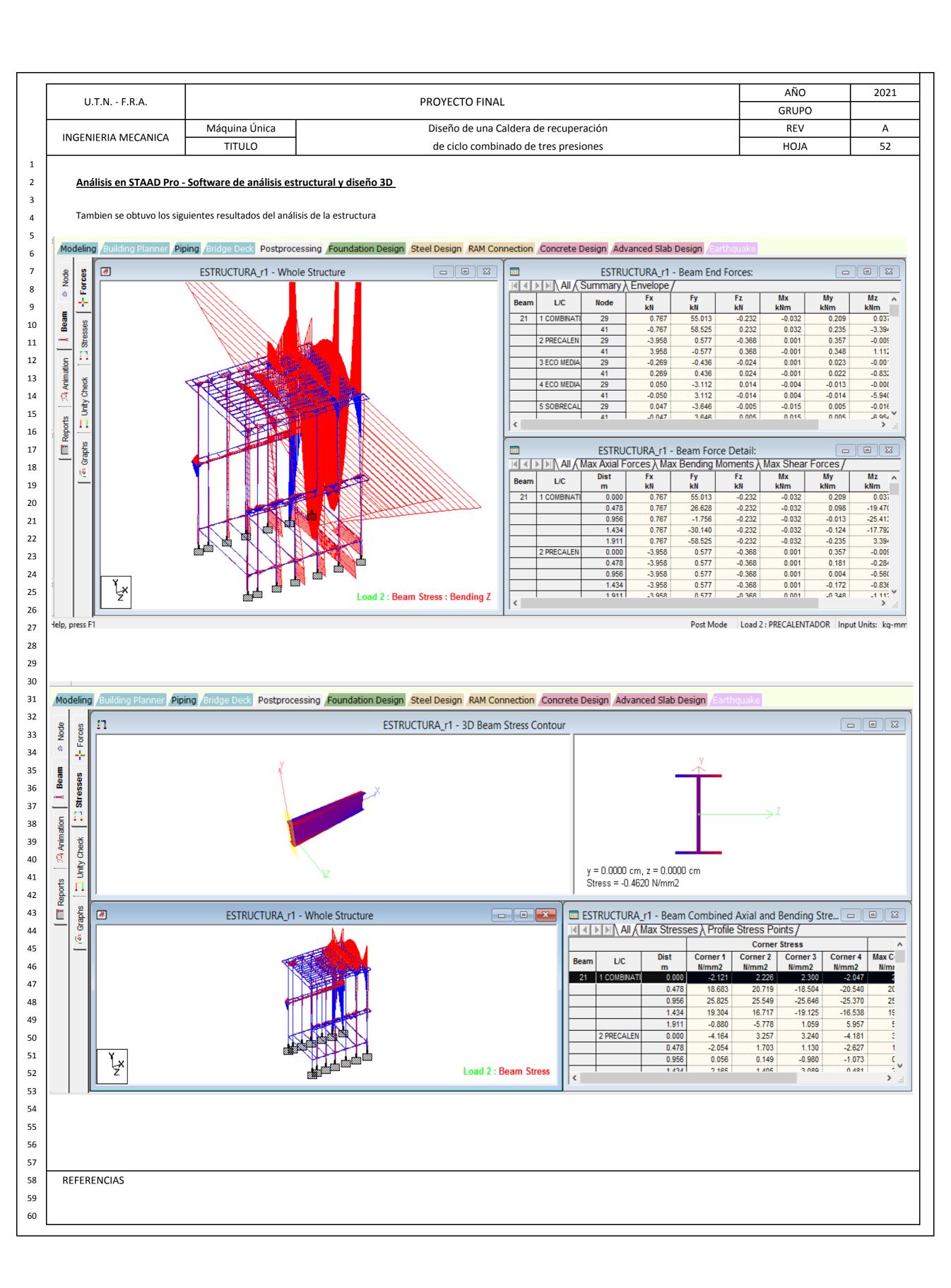

ES"	TRUCTURA	_r1 - No		×
Node	X m	Y m	Z m	^
1	0.000	0.000	0.000	
2	0.000	29.000	0.000	
3	1.911	29.000	0.000	
4	5.520	29.000	0.000	
5	9.150	29.000	0.000	
6	13.444	29.000	0.000	
7	17.581	29.000	0.000	
8	21.859	29.000	0.000	
9	21.859	29.000	16.527	
10	17.581	29.000	16.527	
11	13.444	29.000	16.527	
12	9.150	29.000	16.527	~

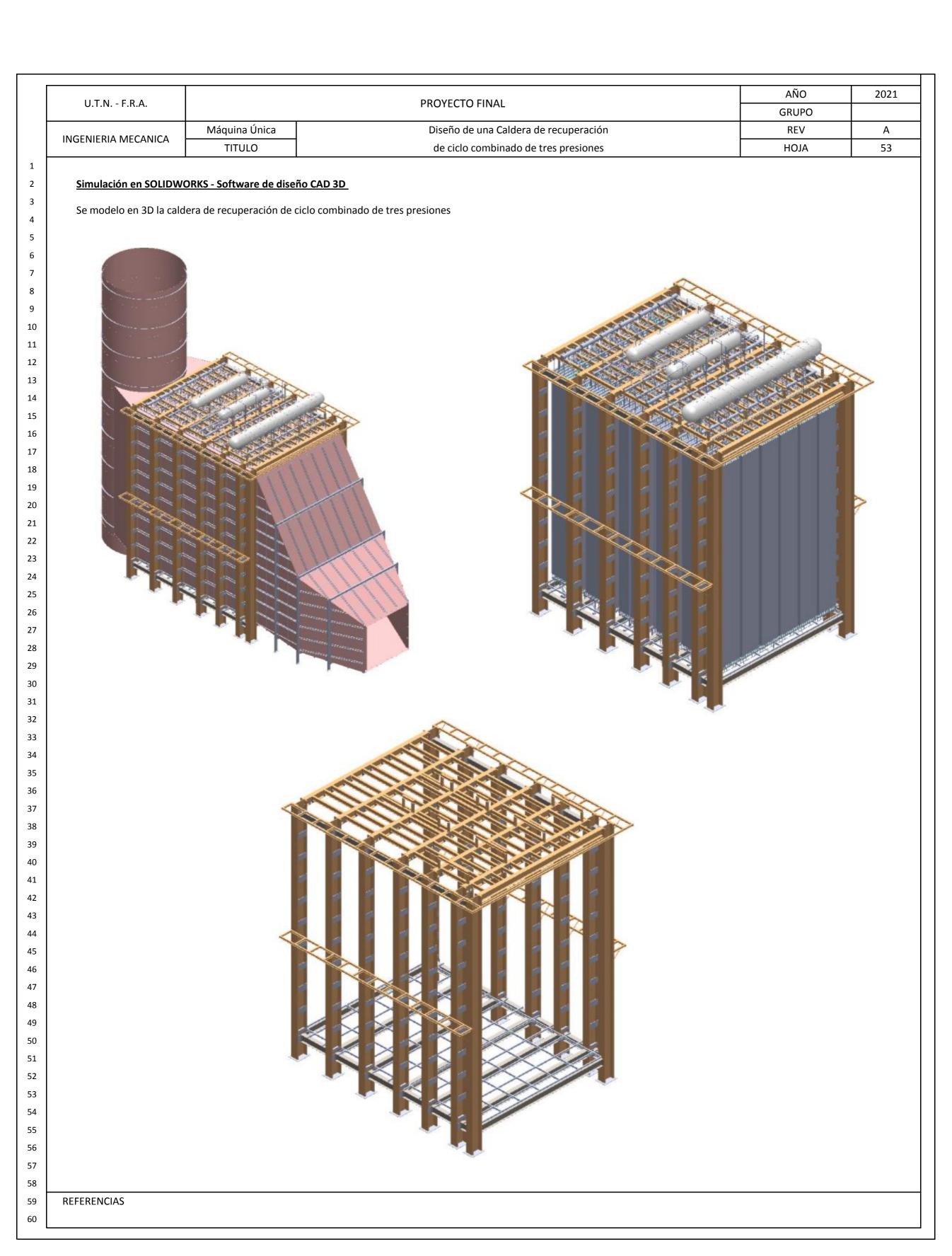

Beam: Se trata de las barras que unen los nodos. En el siguiente paso se asigna el perfil

Beam	Node A	Node B	Property Refn
574	140	151	11
575	151	139	11
576	139	150	11
577	150	138	11
578	138	149	11
579	149	137	11
580	137	7	11
581	10	160	11
582	146	157	11
583			

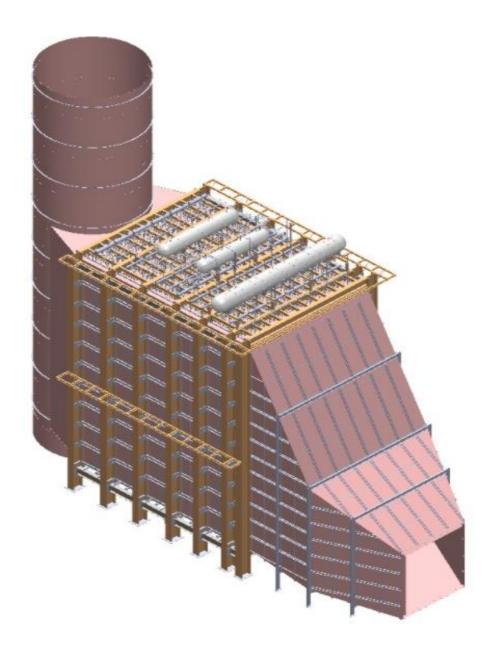



Análisis en STAAD Pro - Software de análisis estructural y diseño 3D


6. Resultados del análisis de la estructura


 Se obtienen varios análisis donde nos indica que la estructura efectivamente cumple con los requisitos de la norma Especificación ANSI/AISC 360-10 para contrucciones de acero.

Tambien se obtuvo los siguientes resultados del análisis de la estructura



U.T.N F.R.A.		PROYECTO FINAL	AÑO	2021
U.T.N F.K.A.		PROTECTO FINAL	GRUPO	
INCENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	1

COSTO TOTAL

PROYECTO DE MÁQUINA ÚNICA

Caldera de recuperación de ciclo combinado de tres presiones

U.T.N F.R.A.		PROYECTO FINAL	AÑO	2021
U. I.IN F.K.A.		PROTECTO FINAL	GRUPO	
INCENIEDIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA MECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	2

Cálculo de los costos totales de la caldera de recuperación

Cálculo de la estructura general, domos, soportes y accesorios

Parte	ltem	Largo [mm]	Ancho [mm]	Cantidad [unidades]	Cantida d [kg]	Material	Espesor [cm]	Largo [cm]	Ancho [cm]	Densidad [gr/cm3]	Peso Total [Tn]	Costo Unitario	Costo tot
	Chapa espesor 1/4"	6000	1500	1		IRAM IAS U500-42 F26	0,635	600	150	7,85	0,4486275	USD 660,00	USD 2:
	Chapa espesor 1/2"	12000	4000	4		IRAM IAS U500-42 F26	1,27	1200	400	7,85	19,14144	USD 660,00	USD 12.63
	Chapa espesor 3/4"	12000	4000	4		IRAM IAS U500-42 F26	1,906	1200	400	7,85	28,727232	USD 660,00	USD 18.99
	Chapa espesor 1"	12000	4000	3		IRAM IAS U500-42 F26	2,54	1200	400	7,85	28,71216	USD 660,00	USD 18.95
	Chapa espesor 11/4"	12000	4000	2		IRAM IAS U500-42 F26	3,175	1200	400	7,85	23,9268	USD 660,00	USD 15.7
	Chapa espesor 11/2"	12000	4000	2		IRAM IAS U500-42 F26	3,81	1200	400	7,85	28,71216	USD 660,00	USD 18.99
	Chapa espesor 13/4"	6000	1500	3		IRAM IAS U500-42 F26	4,445	600	150	7,85	9,4211775	USD 660,00	USD 6.2
	Chapa espesor 2"	12000	4000	1		IRAM IAS U500-42 F26	5,08	1200	400	7,85	19,14144	USD 660,00	USD 12.63
	Chapa espesor 2 1/2"	12000	4000	7		IRAM IAS U500-42 F26	6,35	1200	400	7,85	167,4876	USD 660,00	USD 110.5
igas y columnas armadas	Chapa espesor 3"	12000	4000	2		IRAM IAS U500-42 F26	7,62	1200	400	7,85	57,42432	USD 660,00	USD 37.9
	Chapa espesor 3 1/2"	12000	4000	2		IRAM IAS U500-42 F26	8,89	1200	400	7,85	66,99504	USD 660,00	USD 44.2
	Chapa espesor 4 1/4"	12000	4000	8		IRAM IAS U500-42 F26	10,795	1200	400	7,85	325,40448	USD 660,00	USD 214.7
	Tornillo M32 x 160mm			400		ASTM A 325						USD 3,00	USD 1.2
	Tornillo M20 x 120 mm			200		ASTM A 325						USD 3,00	USD 6
	Arandela M32			400		ASTM F 436						USD 0,05	USD :
İ	Arandela M20			200		ASTM F 436						USD 0,05	USD
İ	Tuerca M32			400		ASTM A 194 Gr.2H						USD 0,30	USD 1
	Tuerca M20			200		ASTM A 194 Gr.2H						USD 0,30	USD
	Perfil W 200 x 15	30654			459,81	IRAM IAS U500-503 F26					0,4598	USD 680,00	USD 3
Soporte piso	Perfil W 200 x 15	186747			2801,205	IRAM IAS U500-503 F26					2,8012	USD 680,00	USD 1.9
	Perfil V 200 x 15	144620			2169,3	IRAM IAS U500-503 F26					2,1693	USD 680,00	USD 1.4
D l.	Perfil W 200 x 31,3	246183			7680,91	IRAM IAS U500-503 F26					7,6809	USD 680,00	USD 5.23
Pasarela	Perfilr L 2" x 1/4"	72590			351,3356	IRAM IAS U500-503 F26					0,3513	USD 490,00	USD 1
Piso	Chapa espesor 1/4"	12000	4000	29		SA 515 Gr.65	0,635	1200	400	7,85	69,38772	USD 660,00	USD 45.73
D d	Chapa espesor 1/4"	12000	4000	51		SA 515 Gr.65	0,635	1200	400	7,85	122,02668	USD 660,00	USD 80.5
Paredes	Perfil UPN 120	1090760			14616,18	IRAM IAS U500-503 F26					14,616184	USD 550,00	USD 8.03
T 1 -	Chapa espesor 1/4"	12000	4000	29		SA 515 Gr.65	0,635	1200	400	7,85	69,38772	USD 660,00	USD 45.73
Techo	Perfil UPN 120	440400			5901,36	IRAM IAS U500-503 F26					5,90136	USD 550,00	USD 3.2
Diagram de constante	Chapa espesor 1/4"	12000	4000	9		SA 515 Gr.65	0,635	1200	400	7,85	21,53412	USD 660,00	USD 14.2
Piso cono de entrada	Perfil UPN 120	185364			2483,88	IRAM IAS U500-503 F26					2,4838776	USD 550,00	USD 1.3
	Chapa espesor 1/4"	12000	12000	12		SA 515 Gr.65	0,635	1200	1200	7,85	86,13648	USD 660,00	USD 56.8
Paredes cono de entrada	Perfil UPN 120	463410			6209,69	IRAM IAS U500-503 F26					6,209694	USD 550,00	USD 3.4
	Chapa espesor 1/4"	12000	4000	15		SA 515 Gr.65	0,635	1200	400	7,85	35,8902	USD 660,00	USD 23.6
Techo cono de entrada	Perfil UPN 120	278046			3725,82	IRAM IAS U500-503 F26					3,7258164	USD 550,00	USD 2.0
Aislacion	Rollo aislante	15000	1200	660		Manta de ribra ceramica Naowooi						USD 16,00	USD 10.5
01:	Chapa espesor 1/4"	6000	3000	82		SA 515 Gr.65	0,635	600	300	7,85	73,57491	USD 660,00	USD 48.5
Chimenea	Perfil L 5" x 3/8"	229931			4230,73	IRAM IAS U500-503 F26					4,2307304	USD 490,00	USD 2.0
	Chapa espesor 5/8"	6000	1500	6		SA 515 Gr.65	0,635	600	150	7,85	2,691765	USD 660,00	USD 1.7
i	Chapa espesor 1/2"	6000	1500	10		SA 515 Gr.65	0,635	600	150	7,85	4,486275	USD 660,00	USD 2.9
i	Brida ciega 24"			4		AISI 304 L						USD 150,00	USD 6
İ	Espárrago M30	170		40		ASTM A325						USD 0,50	USD
ľ	Tuerca M30			80		ASTM A194 Gr.2H							USD
ľ	Chapa espesor 1/4"	6000	1500	8		SA 515 Gr.65	0,635	600	150	7,85	3,58902	USD 660,00	USD 2.3
Cuerpo	Chapa espesor 1/5"	6000	1500	10		SA 515 Gr.65	0,635	600	150	7,85	4,486275		USD 2.9
·	Chapa espesor 2 1/2"	12000	4000	8		SA 299 Gr.A	0,635	1200	400	7,85	19,14144		USD 12.6
ľ	Chapa espesor 13/4"	12000	4000	15		SA 299 Gr.A	0,635	1200	400	7,85	35,8902		USD 23.6
ľ	Espárrago M18	120		20		ASTM A325							USD
ŀ	Tuerca M18			40		ASTM A194 Gr.2H							USD
ŀ	Espárrago M20			20		ASTM A325						· ·	USD
ŀ	Tuerca M20			40		ASTM A194 Gr.2H						·	USD
Soporte	Chapa espesor 1/2"	12000	6000	8		IRAM IAS U500-42 F26	0,635	1200	600	7,85	28,71216	<u> </u>	USD 18.9
				· •			-1244				STO TOTAL		USD 935.16

<u>Chapas</u>

USD 660 /Tn <a href="https://spanish.alibaba.com/product-detail/boiler-and-pressure-vessel-plate-sa515-gr65-1600129925904.html?spm=a2700.7735675.normal_offer.d_image.53305bd0igXnlt_alibaba.com/product-detail/boiler-and-pressure-vessel-plate-sa515-gr65-1600129925904.html?spm=a2700.7735675.normal_offer.d_image.53305bd0igXnlt_alibaba.com/product-detail/boiler-and-pressure-vessel-plate-sa515-gr65-1600129925904.html?spm=a2700.7735675.normal_offer.d_image.53305bd0igXnlt_alibaba.com/product-detail/boiler-and-pressure-vessel-plate-sa515-gr65-1600129925904.html?spm=a2700.7735675.normal_offer.d_image.53305bd0igXnlt_alibaba.com/product-detail/boiler-and-pressure-vessel-plate-sa515-gr65-1600129925904.html?spm=a2700.7735675.normal_offer.d_image.53305bd0igXnlt_alibaba.com/product-detail/boiler-and-pressure-vessel-plate-sa515-gr65-1600129925904.html?spm=a2700.7735675.normal_offer.d_image.53305bd0igXnlt_alibaba.com/product-detail/boiler-and-pressure-vessel-plate-sa515-gr65-1600129925904.html?spm=a2700.7735675.normal_offer.d_image.53305bd0igXnlt_alibaba.com/product-detail/boiler-and-pressure-vessel-plate-sa515-gr65-1600129925904.html?spm=a2700.7735675.normal_offer.d_image.53305bd0igXnlt_alibaba.com/product-detail/boiler-and-pressure-vessel-plate-sa515-gr65-1600129925904.html?spm=a2700.7735675.normal_offer.d_image.53305bd0igXnlt_alibaba.com/product-detail/boiler-and-pressure-vessel-plate-sa515-gr65-1600129925904.html?spm=a2700.7735675.normal_offer.d_image.53305bd0igXnlt_alibaba.com/product-detail/boiler-and-pressure-vessel-plate-sa515-gr65-1600129925904.html?spm=a2700.7735675.normal_offer.d_image.53305bd0igXnlt_alibaba.com/product-detail/boiler-and-pressure-vessel-plate-sa515-gr65-1600129925904.html?spm=a2700.7735675.normal_offer.d_image.53305bd0igXnlt_alibaba.com/product-detail/boiler-and-pressure-vessel-plate-sa515-gr65-1600129925904.html?spm=a2700.7735675.html?spm=a2700.7735675.html?spm=a2700.7735675.html?spm=a2700.7735675.html?spm=a2700.7735675.html?spm=a2700.7735675.html?spm=a2700.7735675.html?spm=a2700.7735675.html?spm=a27

<u>Tornillo</u>

USD 3 unidad https://es.made-in-china.com/co 0374ff1eb1f2b3aa/product HDG-ASTM-F3125-A325-A490-A449-A490-A490m-High-Strength-Heavy-Hex-Structural-Bolt ouougyyeg.html

<u>Arandela</u>

USD 0,05 unidad <a href="https://spanish.alibaba.com/product-detail/1-4-3-8-3-4-stainless-steel-astm-f436-flat-washer-60399532631.html?spm=a2700.7735675.normal_offer.d_image.150723dchBcsO6

<u>Tuerca</u>

<u>Perfil W</u>

 $\frac{\text{USD 680 / Tn}}{\text{https://spanish.alibaba.com/product-detail/astm-a572-q345-h-i-steel-profiles-iron-beams-for-building-structural-1600343969036.html?spm=a2700.galleryofferlist.normal offer.d title.479b6f10jQTBxP\&s=p}{\text{https://spanish.alibaba.com/product-detail/astm-a572-q345-h-i-steel-profiles-iron-beams-for-building-structural-1600343969036.html?spm=a2700.galleryofferlist.normal offer.d title.479b6f10jQTBxP\&s=p}{\text{https://spanish.alibaba.com/product-detail/astm-a572-q345-h-i-steel-profiles-iron-beams-for-building-structural-1600343969036.html?spm=a2700.galleryofferlist.normal offer.d title.479b6f10jQTBxP\&s=p}{\text{https://spanish.alibaba.com/product-detail/astm-a572-q345-h-i-steel-profiles-iron-beams-for-building-structural-1600343969036.html?spm=a2700.galleryofferlist.normal offer.d title.479b6f10jQTBxP&s=p}{\text{https://spanish.alibaba.com/product-detail/astm-a572-q345-h-i-steel-profiles-iron-beams-for-building-structural-1600343969036.html?spm=a2700.galleryofferlist.normal offer.d title.479b6f10jQTBxP&s=p}{\text{https://spanish.alibaba.com/product-detail/astm-a572-q345-h-i-steel-profiles-iron-beams-for-building-structural-1600343969036.html?spm=a2700.galleryofferlist.normal offer.d title.479b6f10jQTBxP&s=p}{\text{https://spanish.alibaba.com/product-detail/astm-a572-q345-h-i-steel-profiles-iron-beams-for-building-structural-1600343969036.html?spm=a2700.galleryofferlist.normal offer.d title.479b6f10jQTBxP&s=p}{\text{https://spanish.alibaba.com/product-detail/astm-a572-q345-h-i-steel-profiles-iron-beams-for-building-structural-1600343969036.html?spm=a2700.galleryofferlist.normal offer.d title.479b6f10jQTBxP&s=p}{\text{https://spanish.alibaba.com/product-detail/astm-a572-q345-h-i-steel-profiles-iron-beams-for-building-structural-1600343969036.html?spm=a2700.galleryofferlist.normal offer.d title.479b6f10jQTBxP&s=p}{\text{https://spanish.alibaba.com/product-detail/astm-a572-q345-h-i-steel-profiles-iron-beams-for-building-structural-astm-a572-q345-h-i-steel-profiles-iron-beams-for-building-structural-astm-a572-q345-h-i-steel-profiles$

Aislante
USD 16

 $\underline{\text{https://spanish.alibaba.com/product-detail/1260c-thermal-insulation-ceramic-fiber-wool-blanket-50mm-white-ceramic-fiber-blanket-1600350266001.\text{html?spm=a2700.galleryofferlist.normal}} \quad \underline{\text{offer.d title.13f9551bvEkWwH\&s=p}} \\ \underline{\text{https://spanish.alibaba.com/product-detail/1260c-thermal-insulation-ceramic-fiber-wool-blanket-50mm-white-ceramic-fiber-blanket-1600350266001.\text{html?spm=a2700.galleryofferlist.normal}} \\ \underline{\text{offer.d title.13f9551bvEkWwH\&s=p}} \\ \underline{\text{https://spanish.alibaba.com/product-detail/1260c-thermal-insulation-ceramic-fiber-wool-blanket-50mm-white-ceramic-fiber-blanket-1600350266001.\text{html?spm=a2700.galleryofferlist.normal}} \\ \underline{\text{offer.d title.13f9551bvEkWwH\&s=p}} \\ \underline{\text{https://spanish.alibaba.com/product-detail/1260c-thermal-insulation-ceramic-fiber-wool-blanket-50mm-white-ceramic-fiber-blanket-1600350266001.\text{html?spm=a2700.galleryofferlist.normal}} \\ \underline{\text{offer.d title.13f9551bvEkWwH\&s=p}} \\ \underline{\text{https://spanish.alibaba.com/product-detail/1260c-thermal-insulation-ceramic-fiber-wool-blanket-50mm-white-ceramic-fiber-wool$

<u>Perfil UPN</u>

USD 550 / Tn $\,$

<u>Perfil L</u>

USD 490 / Tn

https://spanish.alibaba.com/product-detail/high-quality-hot-rolled-low-carbon-steel-bar-price-galvanized-iron-45-degree-steel-angle-bar-size-60640992955.html?spm=a2700.galleryofferlist.normal offer.d title.77ff50af1LeKtV

<u>Espárrago</u>

USD 0,50 unidad https://spanish.alibaba.com/p-detail/entrega-r%C3%A1pida-esp%C3%A1rrago-m30-300008026711.html?spm=a2700.galleryofferlist.normal_offer.d_title.4d396428yHF9mz

Referencias

U.T.N F.R.A.		PROYECTO FINAL	AÑO	2021
U. I. N F.K.A.		PROTECTO FINAL	GRUPO	
INGENIERIA MECANICA	Máquina Única	Diseño de una Caldera de recuperación	REV	А
INGENIERIA WIECANICA	TITULO	de ciclo combinado de tres presiones	HOJA	3

Cálculo de los costos totales de la caldera de recuperación

Cálculo de los tubos aletados, tubos lisos, caños de unión, colectores principales, colectores secundarios y accesorios

Item	Peso [kg/m]	Largo [m]	Peso Total [kg]	Peso Total [tn]	Material	Codos 90° [unidades]	Costo un			sto total		unitario AÑOS	(Costo total CAÑOS
T.b I-t- I- 01						[umaaacs]	-	-					Hen	
Tubo aletado 2"	3,45	790500,00	2729596,50	2729,60	ASTM A192 con aleta de aluminio						USD	840,00	USD	2.292.86
Tubo liso 2"	2,45	49250,00	120810,25	120,81	ASTM A192						USD	840,00	USD	101.48
Caño 3" SCH 160	21,30	26,00	553,80	0,55	SA 213 T12						USD	990,00	USD	54
	16,06	27,00	433,62	0,43	SA 178 Gr.A						USD	700,00	USD	30
Caño 4" SCH 40	16,06	27,00	433,62	0,43	SA 106 Gr.A						USD	650,00	USD	28
	16,06	27,00	433,62	0,43	SA 192						USD	840,00	USD	3
Caño 6" SCH 10	13,84	17,00	235,28	0,24	SA 192						USD	840,00	USD	19
	13,84	17,00	235,28	0,24	SA 213 T22						USD	990,00	USD	2
Caño 6" SCH XXS	79,32	27,00	2141,64	2,14	SA 213 T12						USD	990,00	USD	2.1
Caño 8" SCH 10	25,30	146,00	3693,80	3,69	SA 178 Gr.A						USD	700,00	USD	2.5
Canob Schild	25,30	724,00	18317,20	18,32	SA 192						USD	840,00	USD	15.3
Caño 8" SCH 20	33,28	80,00	2662,40	2,66	SA 178 Gr.A						USD	700,00	USD	1.8
Caño 8" SCH 40	42,49	160,00	6798,40	6,80	SA 192						USD	840,00	USD	5.7
Caño 8" SCH XXS	108,06	264,00	28527,84	28,53	SA 213 T22						USD	990,00	USD	28.2
Caño 8" SCH 140	100,89	30,00	3026,70	3,03	SA 213 T12						USD	990,00	USD	2.9
Caño 8" SCH 160	111,27	55,00	6119,85	6,12	SA 213 T12						USD	990,00	USD	6.0
Caño 8" SCH STD	42,49	27,00	1147,23	1,15	SA 192						USD	840,00	USD	9
Caño 10" SCH 140	155,00	26,00	4030,00	4,03	SA 192						USD	840,00	USD	3.3
Caño 12" SCH 40	79,70	26,00	2072,20	2,07	SA 192						USD	840,00	USD	1.7
Caño 16" SCH 5	42,41	26.00	1102,56	1.10	SA 192						USD	840.00	USD	9:
Caño 2 1/2" SCH 40	8,62	630,00	5430,60	5,43	SA 192						USD	840,00	USD	4.5
•	5,43	254,00	1379,22	1,38	SA 192						USD	840,00	USD	1.1
Caño 2" SCH 40	5,43	136,00	738,48	0,74	SA 213 T22						USD	990.00	USD	7
Caño 2 1/2" SCH 160	14,90	275,00	4097,50	4,10	SA 213 T12						USD	990,00	USD	4.0
Caño 1" SCH 80	3,23	6,00	19,38	0,02	SA 213 T12						USD	990,00	USD	
Caño 1" SCH 80	3,23	105,00	339,15	0,34	SA 192						USD	840,00	USD	2
	4,23	69,00	291,87	0,29	SA 192						USD	840,00	USD	2
Caño 1" SCH 160	4,23	85,80	362,93	0,36	SA 213 T12						USD	990,00	USD	3
	11.10	304.90	3384,39	3,38	SA 192						USD	840.00	USD	2.8
Caño 2" SCH 160	11,10	21.60	239,76	0.24	SA 213 T22						USD	990.00	USD	2.0
Caño 3" SCH 40	11,10	91,60	1033,25	1,03	SA 192						USD	840.00	USD	8
Caño 4" SCH 40	16,06	198,00	3179,88	3,18	SA 192		 				USD	840,00	USD	2.6
22110 1 2011 70	33,51	373.20	12505,93	12,51	SA 192						USD	840.00	USD	10.5
Caño 4" SCH 160	33,51	0.60	20.11	0.02	SA 213 T22						USD	990.00	USD	10.5
Caño 1 1/2" SCH 160	7,23	102,00	737,46	0,02	SA 213 T22		 				USD	990,00	USD	7
Caño 1"SCH 80	7,23	102,00	737,40	0,74	SA 234 Gr. Wpb	18	USD	10,00	USD	180.00	330	330,00	030	- /
Caño 1"SCH 160					SA 234 Gr. Wpb	42	USD	10,00	USD	420.00	 		\vdash	
	-	-				74		-		,			_	
Caño 2" SCH 160					SA 234 Gr.Wpb		USD	10,00	USD	740,00			_	
Caño 3" SCH 40					SA 234 Gr. Wpb	52		10,00	USD	520,00			_	
Caño 4" SCH 40		-			SA 234 Gr.Wpb	36	USD	10,00	USD	360,00				
Caño 4" SCH 160					SA 234 Gr.Wpb	48		100,00		4.800,00		~		
						COSTO	CODOS		USD	7.020,00	COSTO	CANOS	USD	2.497.5

Tabla peso [kg/m]

https://inoxidable.com/canos.htm

https://www.prilux.com.ar/productos-tubos-sin-costura.html

<u>CAÑOS</u>

https://spanish.alibaba.com/product-detail/finned-tube-astm-a192-high-quality-finned-tube-1600292309152.html

https://spanish.alibaba.com/product-detail/asme-sa-178-gr-a-c-carbon-steel-boiler-tubing-supplier-1600110216893.html

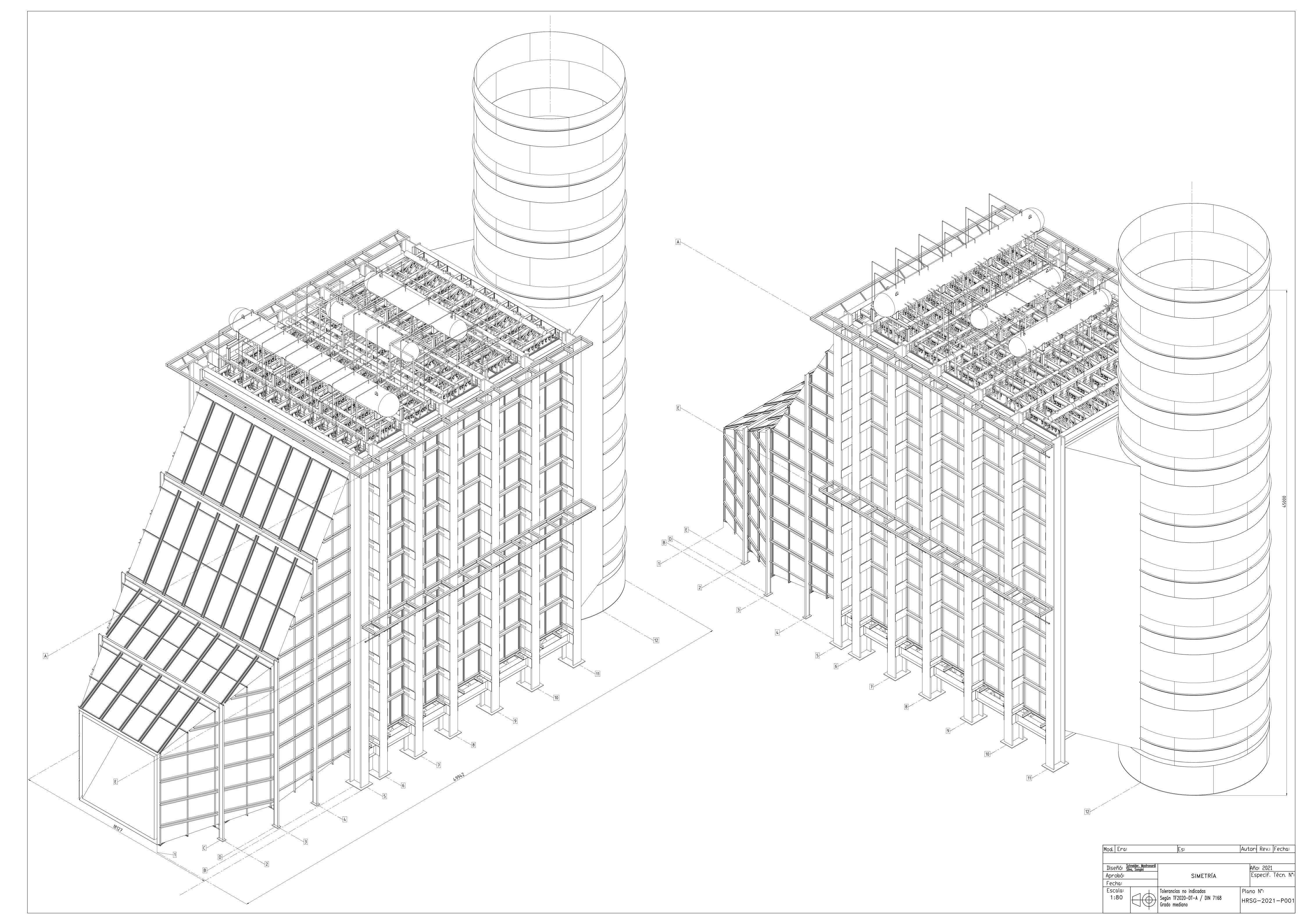
USD 650/tn

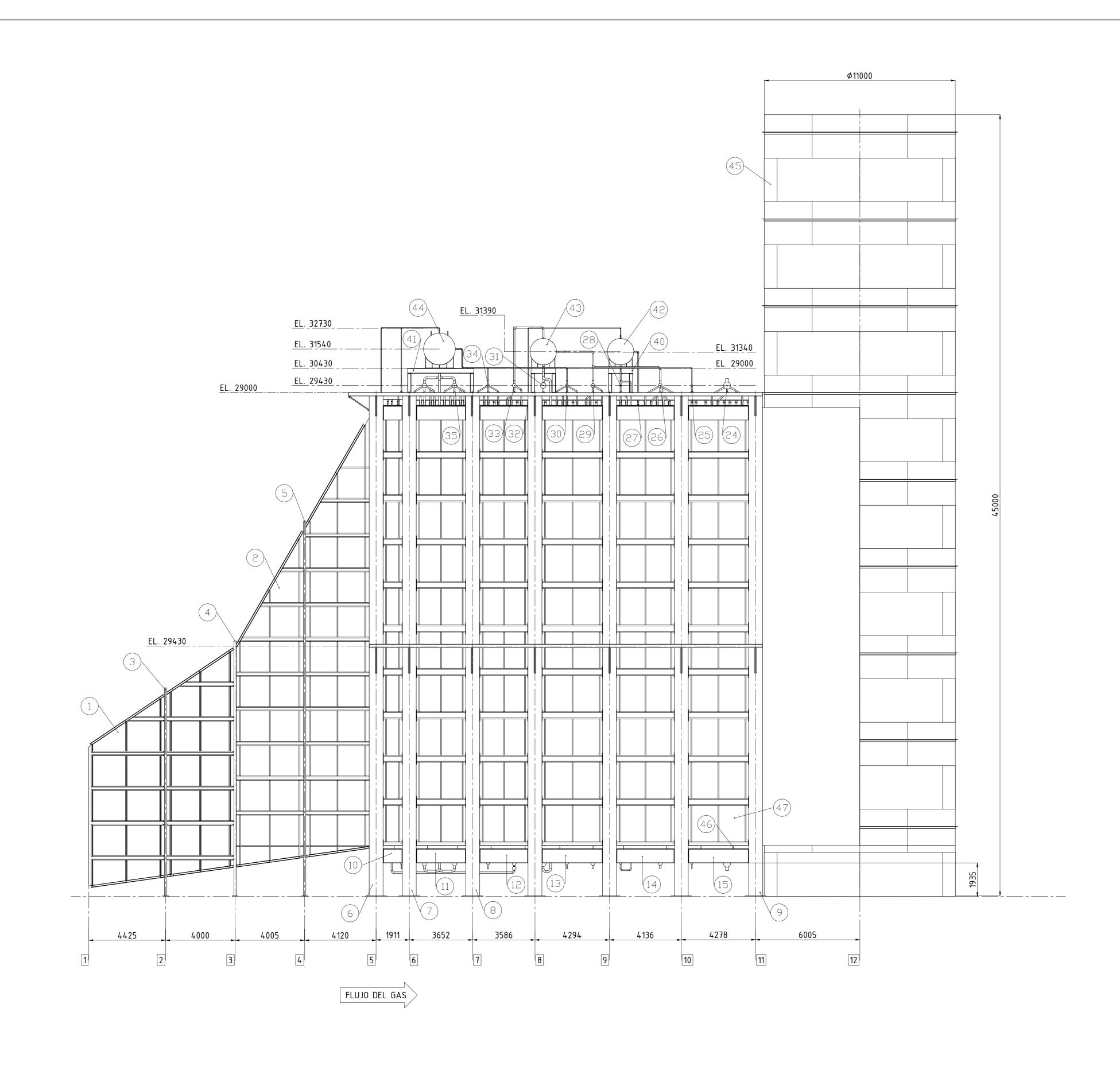
 $\underline{https://spanish.alibaba.com/product-detail/affordable-atm-sa106-sa210-boiler-tube-37mm-seamless-steel-pipe-1600370579026.html?spm=a2700.7735675.normal offer.d title.2e0d2f1eClGYci&s=particle.2e0d2$

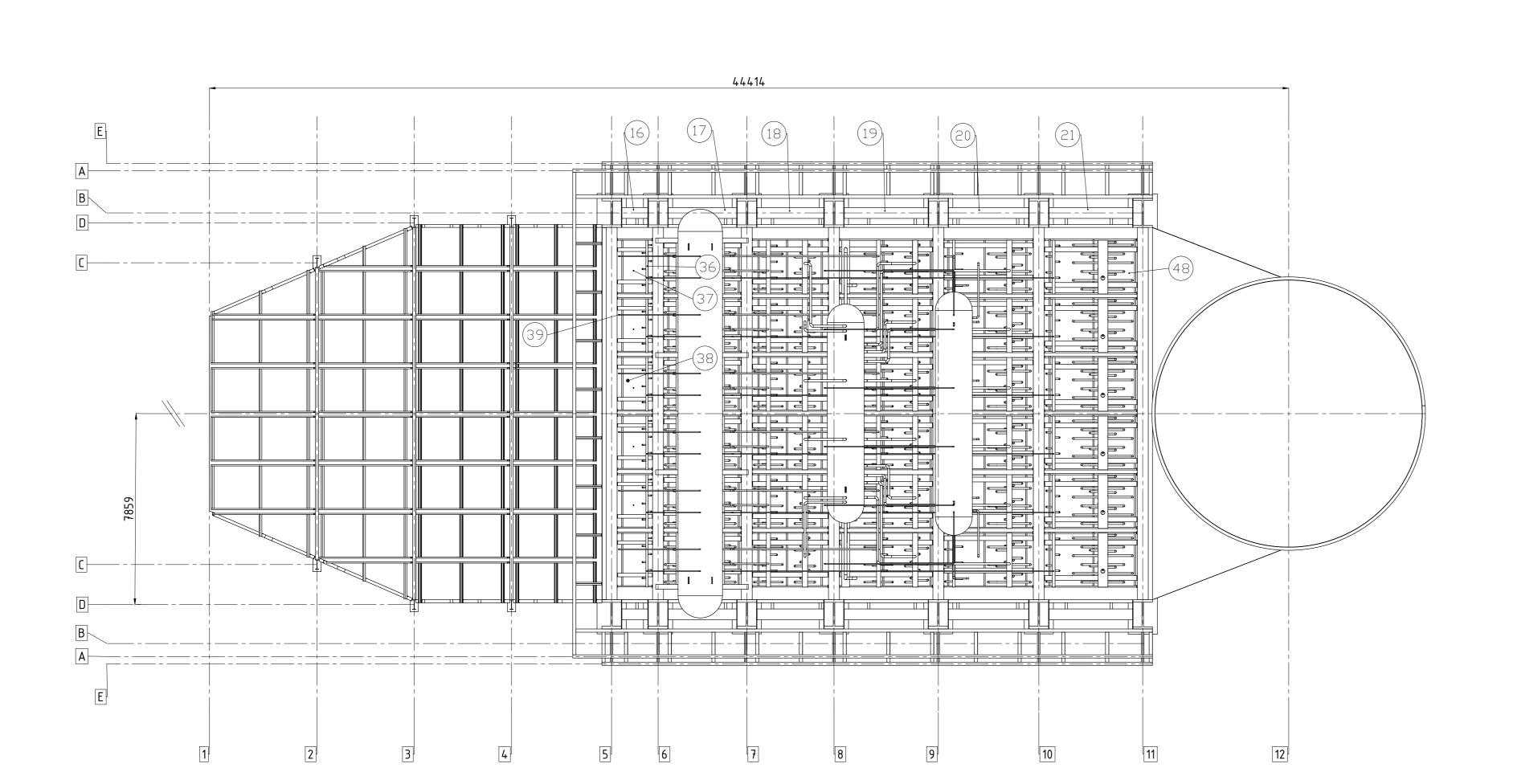
USD 840/tn

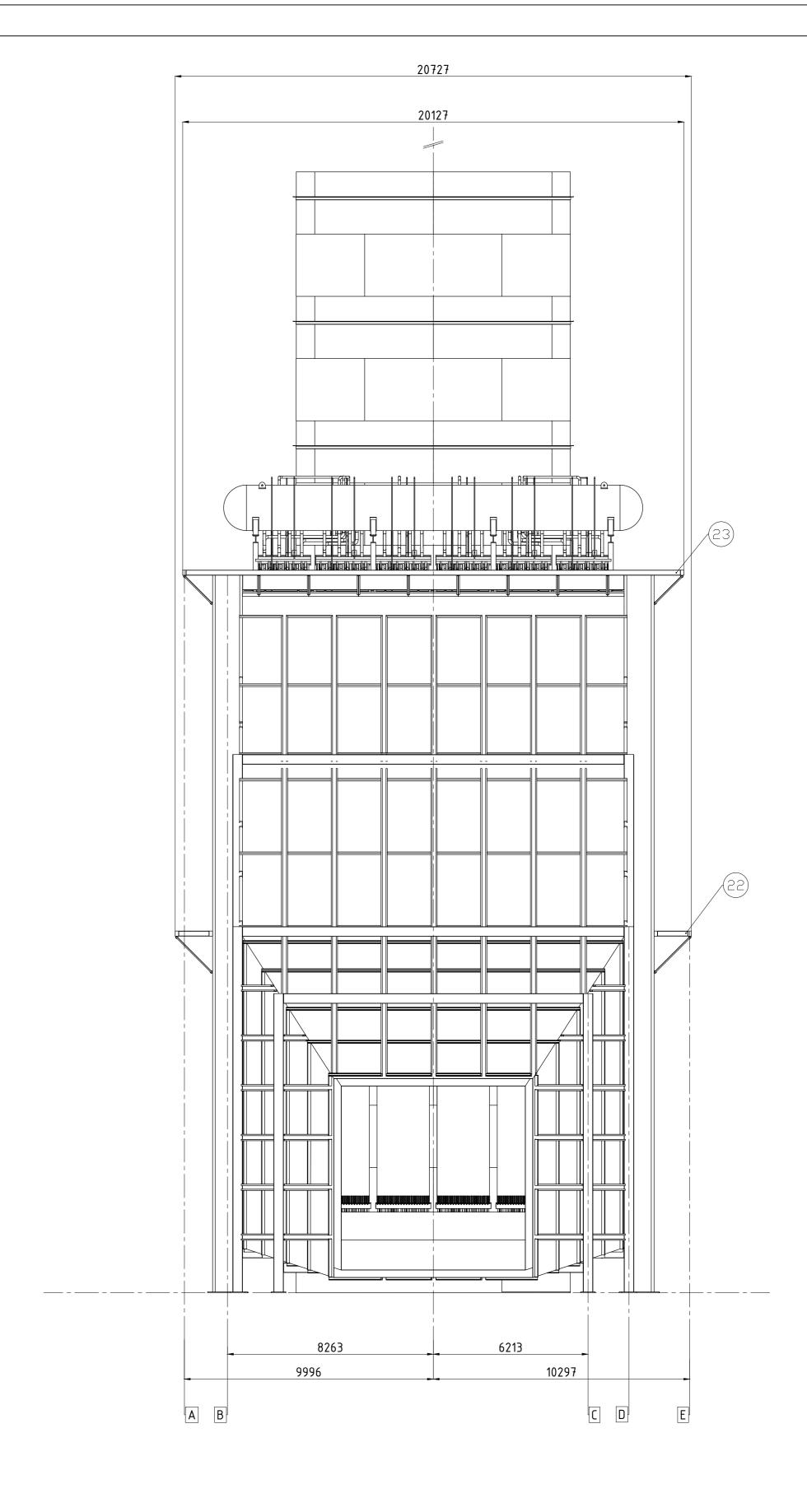
 $\underline{https://spanish.alibaba.com/product-detail/high-quality-seamless-carbon-steel-boiler-tube-pipe-astm-a192-1600243986283.html?spm=a2700.7735675.normal offer.d title.2e0d2f1eClGYci&s=partial formula of the following the following product of the$

USD 990/tn


 $\underline{https://spanish.alibaba.com/product-detail/astm-a213-t2-t5-t9-t11-t12-t22-t23-t91-t92-astm-a335-p92-seamless-alloy-steel-tube-and-pipe-in-stock-1600067073491. \underline{httml?spm=a2700.galleryofferlist.normal}. \underline{offer.d.} \underline{title.783e2bc1v280Q7}$


CODOS


USD 100/unidad


COSTO TOTAL DEL PROYECTO USD 4.119.468,05

Referencias

Pos.:	Denominación:	Cant
1	Ducto de entrada tramo 1	1
2	Ducto de entrada tramo 2	1
3	Marco soporte ducto de entrada - tramo 1	1
4	Marco soporte ducto de entrada - tramo 1	1
5	Marco soporte ducto de entrada - tramo 2	1
6	Marco estructura 01	1
7	Marco estructura 02	1
8	Marco estructura 03	4
9	Marco estructura 04	1
10	Viga longitudinal inferior 01	2
11	Viga longitudinal inferior 02	2
12	Viga longitudinal inferior 03	2
13	Viga longitudinal inferior 04	2
14	Viga longitudinal inferior 05	2
15	Viga longitudinal inferior 06	2
16	Viga longitudinal superior 01	2
17	Viga longitudinal superior 02	2
18	Viga longitudinal superior 03	2
19	Viga longitudinal superior 04	2
20	Viga longitudinal superior 05	2
21	Viga longitudinal superior 06	2
22	Estructura pasarela inferior	1
23	Estructura pasarela superior	1
24	1 Precalentador	1

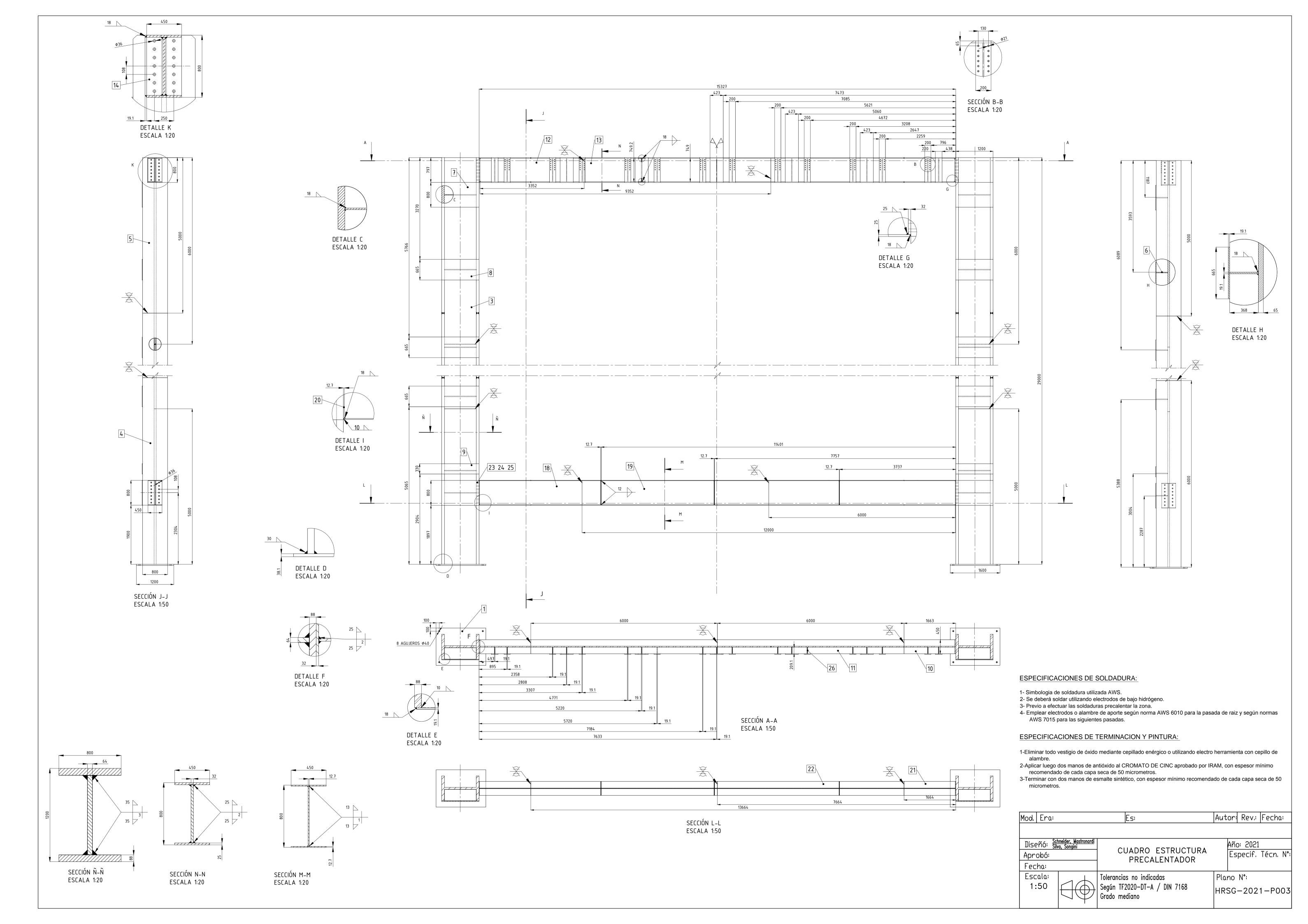
Pos.:	Denominación:	Cant.
25	2 Economizador alta 1	1
26	3 Economizador media 1	1
27	4 Economizador baja	1
28	5 Evaporador baja	1
29	6 Economizador media 2	1
30	7 Economizador alta 2	1
31	8 Evaporador media	1
32	9 Sobrecalentador baja	1
33	10 Sobrecalentador media	1
34	11 Economizador alta 3	1
35	12 Evaporador alta	1
36	13 Sobrecalentador alta	1
37	14 Recalentador 1	1
38	15 Recalentador 2	1
39	16 Sobrecalentador alta	1
40	Base domo de baja y media	4
41	Base domo de alta	4
42	Domo de baja	1
43	Domo de media	1
44	Domo de alta	1
45	Chimenea	1
46	Piso con estructura	1
47	Pared y estructura de pared	2
48	Techo y estructura de techo	1

		MATERIALES				
	SECCION	COLECTOR SECUNDARIO	CAÑO UNION	COLECTOR PRIMARIO	CAÑO UNION	
	PRECALENTADOR	SA178 Gr.A	SA192	SA192	SA192	
BAJA PRESIÓN	ECONOMIZADOR	SA178 Gr.A	N/A	N/A	SA192	
	EVAPORADOR	SA178 Gr.A	SA192	SA192	SA192	
	SOBRECALENTADOR	SA178 Gr.A	N/A	N/A	SA192	
MEDIA PRESIÓN	ECONOMIZADOR	SA192	SA192	SA192	SA192	
	EVAPORADOR	SA192	SA192	SA192	SA192	
	SOBRECALENTADOR	SA192	SA192	SA192	SA192	
ALTA PRESIÓN	ECONOMIZADOR	SA178 Gr.A	SA192	SA192	SA192	
	EVAPORADOR	SA213 T22	SA192	SA192	SA192	
	SOBRECALENTADOR	SA213 T22	SA213 T12	SA213 T12	SA213 T12	
	RECALENTADOR	SA213 T22	N/A	N/A	SA213 T22	

	DATOS	OPERATIVOS			
DATOS DE HRSG	LP	IP	HP		
PRESIÓN	4,7	27,2	116,50	[Bar]	
TEMPERATURA	149,49	495	495	[°C]	
CAUDAL MÁSICO	8,46	91,09	82,34	[kg/seg]	
DATOS DE TURBINA DE GA		ı			
PRESIÓN	1,046	[Bar]			
TEMPERATURA	581,30	[0°]			
CAUDAL MÁSICO	690,942	[kg/seg]			
DATOS DE TURBINA DE VA	APOR				
POTENCIA BRUTA		MW]			
	LP	IP	HP		
CAUDAL MÁSICO	13,16	117,08	129,77	[Bar]	
			1		
		TICACIONEC DE	DISEÑO		
	ESPECI	FILALIUNES DE			
CARGA DE DISEÑO	ESPECI	FILALIUNES DE			
CARGA DE DISEÑO CARGA DE VIENTO según O		FILALIUNES DE			
	CIRSOC 102	FILALIUNES DE			
CARGA DE VIENTO según O	CIRSOC 102 RSOC 103				
CARGA DE VIENTO según C CARGA DE SISMO según CI RECIPIENTES SOMETIDOS A	CIRSOC 102 RSOC 103 PRESIÓN según ASI				
CARGA DE VIENTO según C CARGA DE SISMO según CII	CIRSOC 102 RSOC 103 PRESIÓN según ASI				
CARGA DE VIENTO según C CARGA DE SISMO según CI RECIPIENTES SOMETIDOS A	CIRSOC 102 RSOC 103 PRESIÓN según ASI O AISC360				
CARGA DE VIENTO según C CARGA DE SISMO según CI RECIPIENTES SOMETIDOS A	CIRSOC 102 RSOC 103 PRESIÓN según ASI O AISC360	ME VIII Div.1	HP		
CARGA DE VIENTO según C CARGA DE SISMO según CI RECIPIENTES SOMETIDOS A	CIRSOC 102 RSOC 103 PRESIÓN según ASI O AISC360	ME VIII Div.1	HP 116,50	[Bar]	
CARGA DE VIENTO según CI CARGA DE SISMO según CI RECIPIENTES SOMETIDOS A ESTRUCTURA según CÓDIGO	CIRSOC 102 RSOC 103 PRESIÓN según ASI D AISC360 DATOS DI LP	ME VIII Div.1 SEÑO DOMOS		[Bar] [°C]	
CARGA DE VIENTO según CI CARGA DE SISMO según CII RECIPIENTES SOMETIDOS A ESTRUCTURA según CÓDIGO PRESIÓN	CIRSOC 102 RSOC 103 PRESIÓN según ASI D AISC360 DATOS DI LP 4,7	ME VIII Div.1 SEÑO DOMOS IP 27,2	116,50		
CARGA DE VIENTO según CI CARGA DE SISMO según CII RECIPIENTES SOMETIDOS A ESTRUCTURA según CÓDIGO PRESIÓN TEMPERATURA	DATOS DI LP 4,7 149,49	SEÑO DOMOS IP 27,2 228,48	116,50 322,45	[°C]	
CARGA DE VIENTO según CI CARGA DE SISMO según CII RECIPIENTES SOMETIDOS A ESTRUCTURA según CÓDIGO PRESIÓN TEMPERATURA DIÁMETRO INTERIOR	DATOS DI LP 4,7 149,49 1.520	SEÑO DOMOS IP 27,2 228,48 1.520	116,50 322,45 1.830	[°C]	
CARGA DE VIENTO según CI CARGA DE SISMO según CII RECIPIENTES SOMETIDOS A ESTRUCTURA según CÓDIGO PRESIÓN TEMPERATURA DIÁMETRO INTERIOR ESPESOR ENVOLVENTE	DATOS DI LP 4,7 149,49 1.520 1/4	SEÑO DOMOS IP 27,2 228,48 1.520 5/8	116,50 322,45 1.830 2 1/2	[°C] [mm] [mm]	
CARGA DE VIENTO según CI CARGA DE SISMO según CII RECIPIENTES SOMETIDOS A ESTRUCTURA según CÓDIGO PRESIÓN TEMPERATURA DIÁMETRO INTERIOR ESPESOR ENVOLVENTE ESPESOR CASQUETE	DATOS DI LP 4,7 149,49 1.520 1/4 1/5	ME VIII Div.1 SEÑO DOMOS IP 27,2 228,48 1.520 5/8 1/2	116,50 322,45 1.830 2 1/2 1 3/4 15.000	[°C] [mm] [mm] [mm]	
CARGA DE VIENTO según CI CARGA DE SISMO según CII RECIPIENTES SOMETIDOS A ESTRUCTURA según CÓDIGO PRESIÓN TEMPERATURA DIÁMETRO INTERIOR ESPESOR ENVOLVENTE ESPESOR CASQUETE LARGO TOTAL	DATOS DI LP 4,7 149,49 1.520 1/4 1/5 8.500	1E VIII Div.1 SEÑO DOMOS IP 27,2 228,48 1.520 5/8 1/2 7.500	116,50 322,45 1.830 2 1/2 1 3/4 15.000	[°C] [mm] [mm] [mm]	
CARGA DE VIENTO según CI CARGA DE SISMO según CII RECIPIENTES SOMETIDOS A ESTRUCTURA según CÓDIGO PRESIÓN TEMPERATURA DIÁMETRO INTERIOR ESPESOR ENVOLVENTE ESPESOR CASQUETE LARGO TOTAL MATERIAL	DATOS DI 1/5 8.500 DATOS DI 1/5 8.500 DATOS A DATOS A	1E VIII Div.1 SEÑO DOMOS IP 27,2 228,48 1.520 5/8 1/2 7.500 SA515 Gr.65	116,50 322,45 1.830 2 1/2 1 3/4 15.000 SA299 GrA	[°C] [mm] [mm]	
CARGA DE VIENTO según CI CARGA DE SISMO según CII RECIPIENTES SOMETIDOS A ESTRUCTURA según CÓDIGO PRESIÓN TEMPERATURA DIÁMETRO INTERIOR ESPESOR ENVOLVENTE ESPESOR CASQUETE LARGO TOTAL	DATOS DI LP 4,7 149,49 1.520 1/4 1/5 8.500 SA515 Gr.65 DATOS A fibras ce	1E VIII Div.1 SEÑO DOMOS IP 27,2 228,48 1.520 5/8 1/2 7.500 SA515 Gr.65	116,50 322,45 1.830 2 1/2 1 3/4 15.000 SA299 GrA	[°C] [mm] [mm]	
CARGA DE VIENTO según CI CARGA DE SISMO según CII RECIPIENTES SOMETIDOS A ESTRUCTURA según CÓDIGO PRESIÓN TEMPERATURA DIÁMETRO INTERIOR ESPESOR ENVOLVENTE ESPESOR CASQUETE LARGO TOTAL MATERIAL	DATOS DI 1/5 8.500 DATOS DI 1/5 8.500 DATOS A DATOS A	1E VIII Div.1 SEÑO DOMOS IP 27,2 228,48 1.520 5/8 1/2 7.500 SA515 Gr.65	116,50 322,45 1.830 2 1/2 1 3/4 15.000 SA299 GrA	[°C] [mm] [mm]	

CONJUNTO - VISTAS

Tolerancias no indicadas


Año: 2021 Especif. Técn. N°:

HRSG-2021-P002

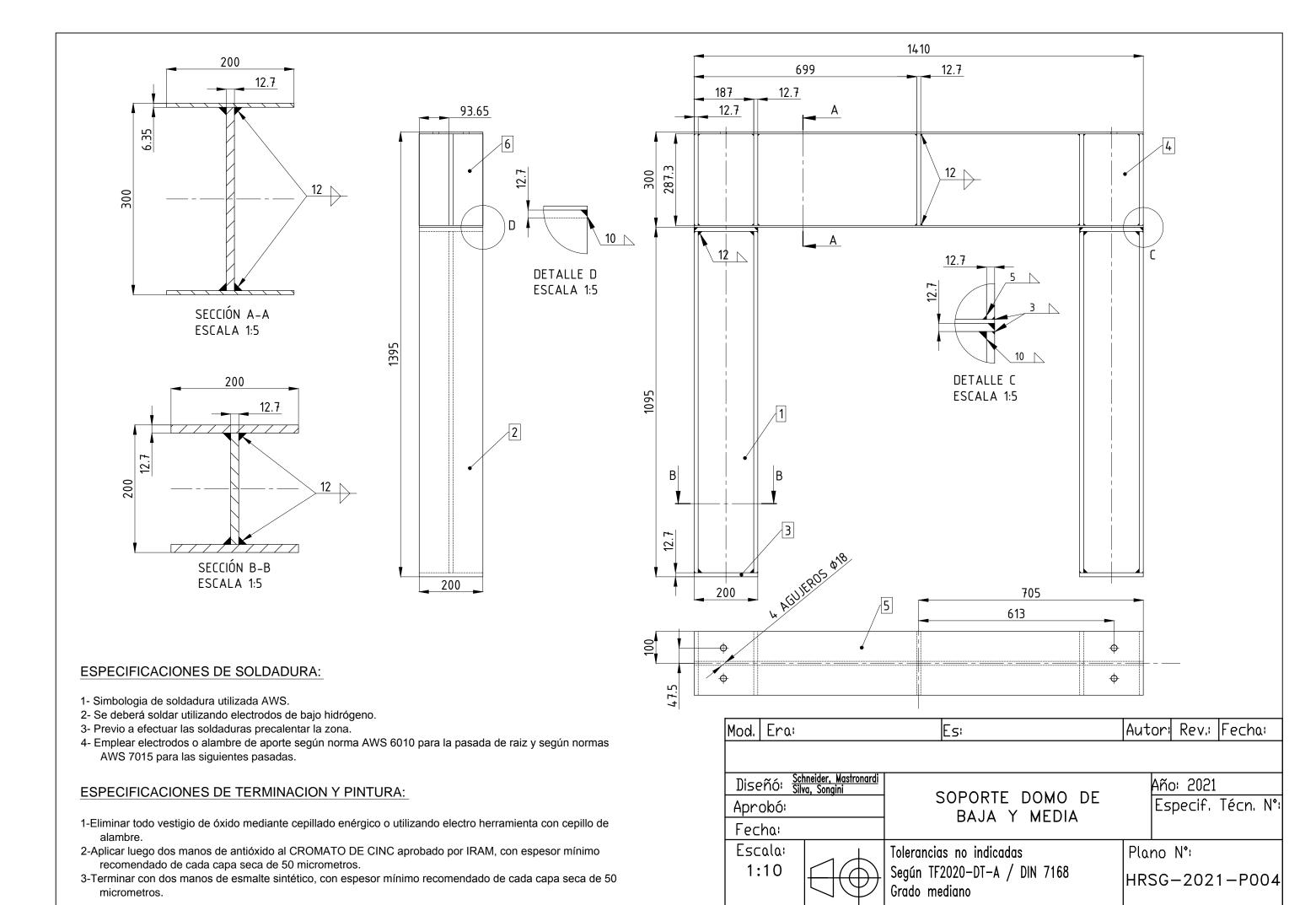
Plano N°:

Diseñó: Schneider, Mastronardi Silva, Songini

Escala: 1:80

HRSG - 3 Presiones

Schneider - Mastronardi - Silva - Songini


HRSG-2021-P003

Hoja: 1 de 1

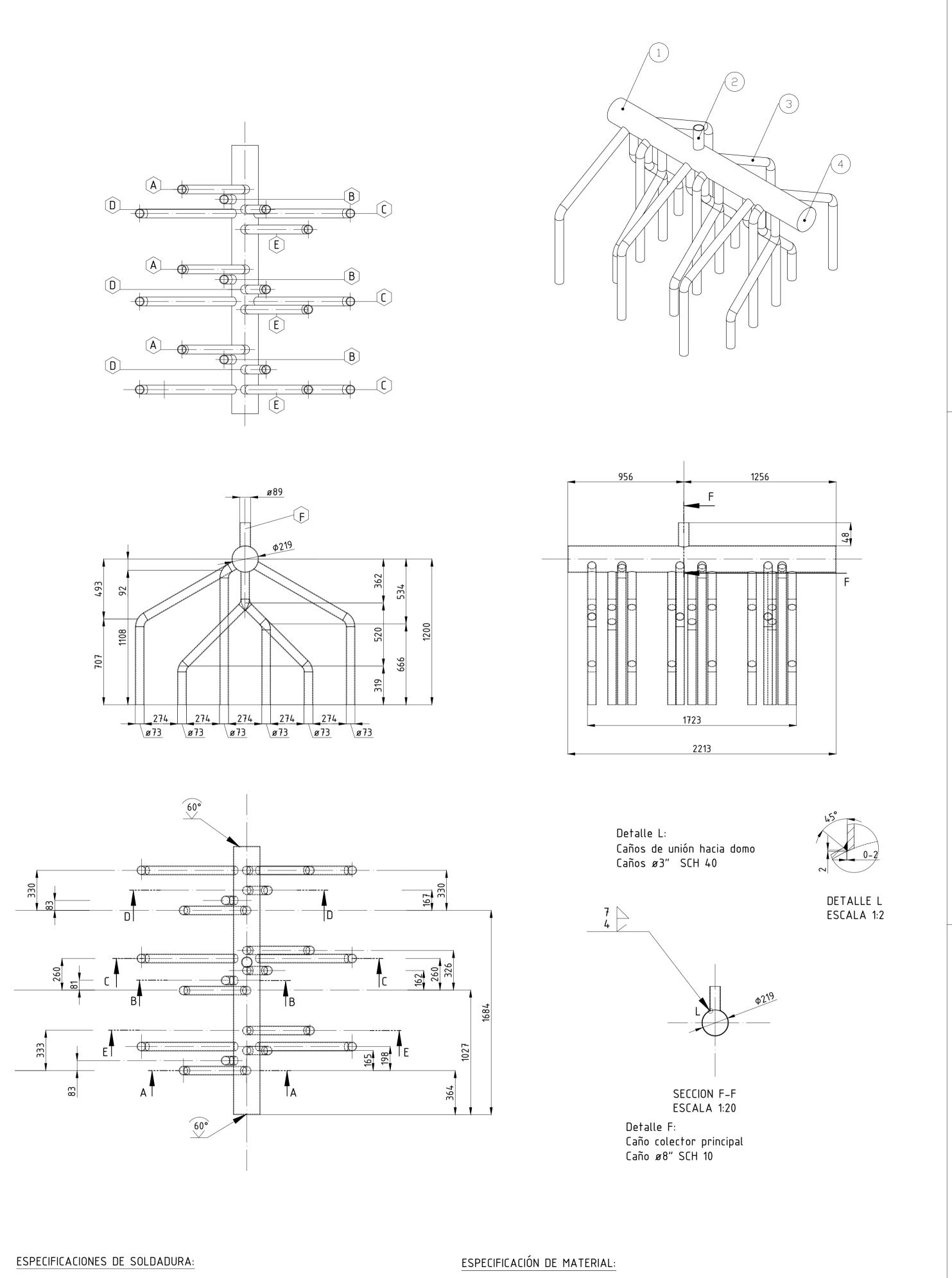
Pos.:	Denominación:	Cant.:	Material:	Plano N°:	Frm.:	Α	Т	С	Obs.
1	Chapa 38mm 1200 x 1600	2	IRAM IAS U 500-42 F26	_	_	-	-	-	_
2	Chapa 64mm 1018 x 5000	2	IRAM IAS U 500-42 F26	_	_	_	_	-	-
3	Chapa 64mm 1018 x 6000	8	IRAM IAS U 500-42 F26	_	_	_	_	_	_
4	Chapa 88mm 800 x 6000	16	IRAM IAS U 500-42 F26	_	_	_	_	_	_
5	Chapa 88mm 800 x 5000	4	IRAM IAS U 500-42 F26	_	_	_	_	-	_
6	Chapa 19mm 368 x 1024	24	IRAM IAS U 500-42 F26	_	_	_	-	-	-
7	Chapa 19mm 1162 x 800	4	IRAM IAS U 500-42 F26	_	_	_	_	-	_
8	Chapa 19mm 1162 x 665	18	IRAM IAS U 500-42 F26	_	_	_	_	-	-
9	Chapa 19mm 1162 x 330	2	IRAM IAS U 500-42 F26	_	_	_	_	-	_
10	Chapa 25mm 1663 x 450	4	IRAM IAS U 500-42 F26	_	_	_	_	-	_
11	Chapa 25mm 6000 x 450	4	IRAM IAS U 500-42 F26	_	_	_	_	-	_
12	Chapa 32mm 3352 x 745	2	IRAM IAS U 500-42 F26	_	_	_	_	-	_
13	Chapa 32mm 6000 x 745	2	IRAM IAS U 500-42 F26	_	_	_	_	-	_
14	Chapa 32mm 800 x 450	2	IRAM IAS U 500-42 F26	_	_	_	_	-	_
15	Chapa 19mm 762 x 220	2	IRAM IAS U 500-42 F26	_	_	_	_	-	-
16	Chapa 19mm 762 x 200	12	IRAM IAS U 500-42 F26	_	_	_	_	-	_
17	Chapa 19mm 762 x 423	5	IRAM IAS U 500-42 F26	_	_	_	_	-	_
18	Chapa 1/2" 3302 x 775	1	IRAM IAS U 500-42 F26	_	_	_	_	-	_
19	Chapa 1/2" 6000 x 775	2	IRAM IAS U 500-42 F26	_	_	_	_	_	_
20	Chapa 1/2" 800 x 450	2	IRAM IAS U 500-42 F26	_	_	_	_	-	_
21	Chapa 1/2" 1663 x 450	4	IRAM IAS U 500-42 F26	_	_	_	_	_	_
22	Chapa 1/2" 6000 x 450	4	IRAM IAS U 500-42 F26	_	_	_	_	_	_
23	Tornillo M32 – largo 165mm	56	ASTM A-325	_	_	_	_	_	_
24	Arandela M32	56	ASTM F-436	_	_	_	_	-	_
25	Tuerca M32	56	ASTM A-194 Gr. 2H	_	_	_	_	-	_
26	Chapa 3/4" 749.2 x 209.1	19	IRAM IAS U 500-42 F26	_	_	_	_	-	_

Observaciones:

Plano N°:HRSG-2021-P003

HRSG - 3 Presiones

Schneider - Mastronardi - Silva - Songini


HRSG-2021-P004

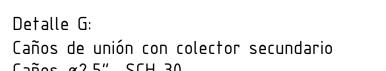
Hoja: 1 de 1

				,						
Pos.:	Denominación:	Cant.:	Material:		Plano N°:	Frm.:	Α	Т	С	Obs.
1	Chapa 1/2" 1069.6 x 174.6	8	IRAM IAS U 500-	42 F26	_	_	_	_	_	_
2	Chapa 1/2" 1095 x 200	16	IRAM IAS U 500-	42 F26	_	_	_	_	_	-
3	Chapa 1/2" 200 x 200	16	IRAM IAS U 500-	42 F26	_	_	_	_	_	_
4	Chapa 1/2" 1397.3 x 287.3	4	IRAM IAS U 500-	42 F26	_	_	_	_	_	-
5	Chapa 1/4" 1410 x 200	8	IRAM IAS U 500-	42 F26	_	_	_	_	_	_
6	Chapa 1/2" 287.3 x 93.65	40	IRAM IAS U 500-	42 F26	_	_	_	_	-	_
	nsarvacionas:									<u> </u>

Observaciones:

Plano N°:HRSG-2021-P004

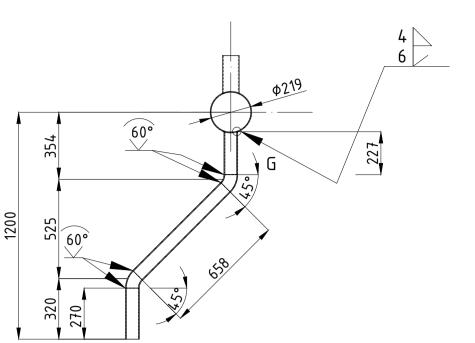
1- Simbologia de soldadura utilizada AWS.


2- Se deberá soldar utilizando electrodos de bajo hidrógeno.

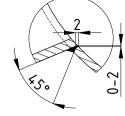
4- Emplear electrodos o alambre de aporte según norma AWS 6010 para la

pasada de raiz y según normas AWS 7015 para las siguientes pasadas.

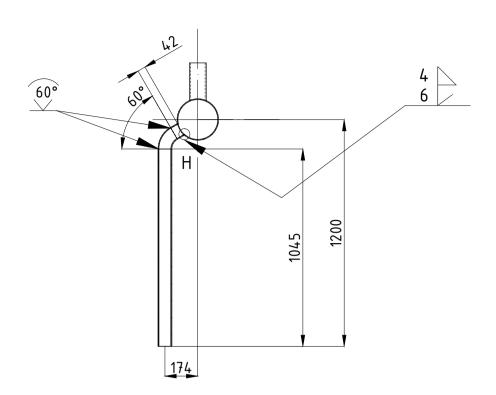
3- Previo a efectuar las soldaduras precalentar la zona.


SA192. Se especifica las medidas de los caños en cada corte de unión caño con colector principal. Esto mismo se repite en todos los colectores a los ancho de la caldera.

Detalle G:

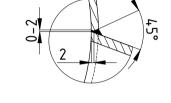

Caños ø2,5" SCH 30

DETALLE G ESCALA 1:2

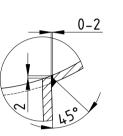


SECCIÓN A-A ESCALA 1:20

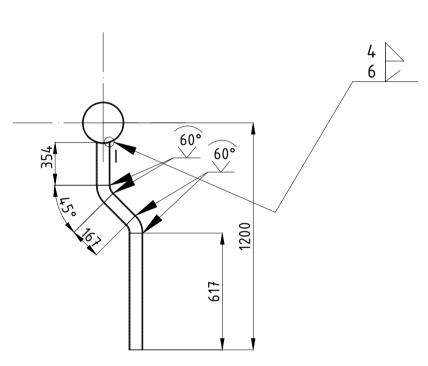
Detalle H: Caños de unión con colector secundario Caños ø2,5" SCH 30


DETALLE H ESCALA 1:2

SECCIÓN B-B ESCALA 1:20

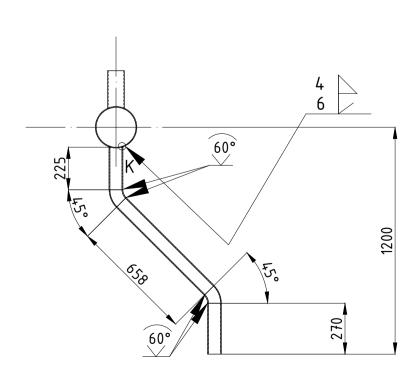

Detalle I:

Detalle J: Caños de unión con colector secundario Caños ø2,5" SCH 30

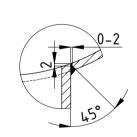


DETALLE J ESCALA 1:2

Caños de unión con colector secundario Caños ø2,5" SCH 30



DETALLE I ESCALA 1:2



SECCIÓN C-C ESCALA 1:20

SECCIÓN D-D ESCALA 1:20

Detalle K: Caños de unión con colector secundario Caños ø2,5" SCH 30

DETALLE K ESCALA 1:2

Mod. Era: Autor: Rev.: Fecha: Es

Diseñó: Schneider, Mastronardi Silva, Songini Año: 2021 COLECTOR PRINCIPAL ECONOMIZADOR MEDIA Especif, Técn, N°: Aprobó: Fecha: Escala: Tolerancias no indicadas Plano N°: Según TF2020-DT-A / DIN 7168 Grado mediano 1:20

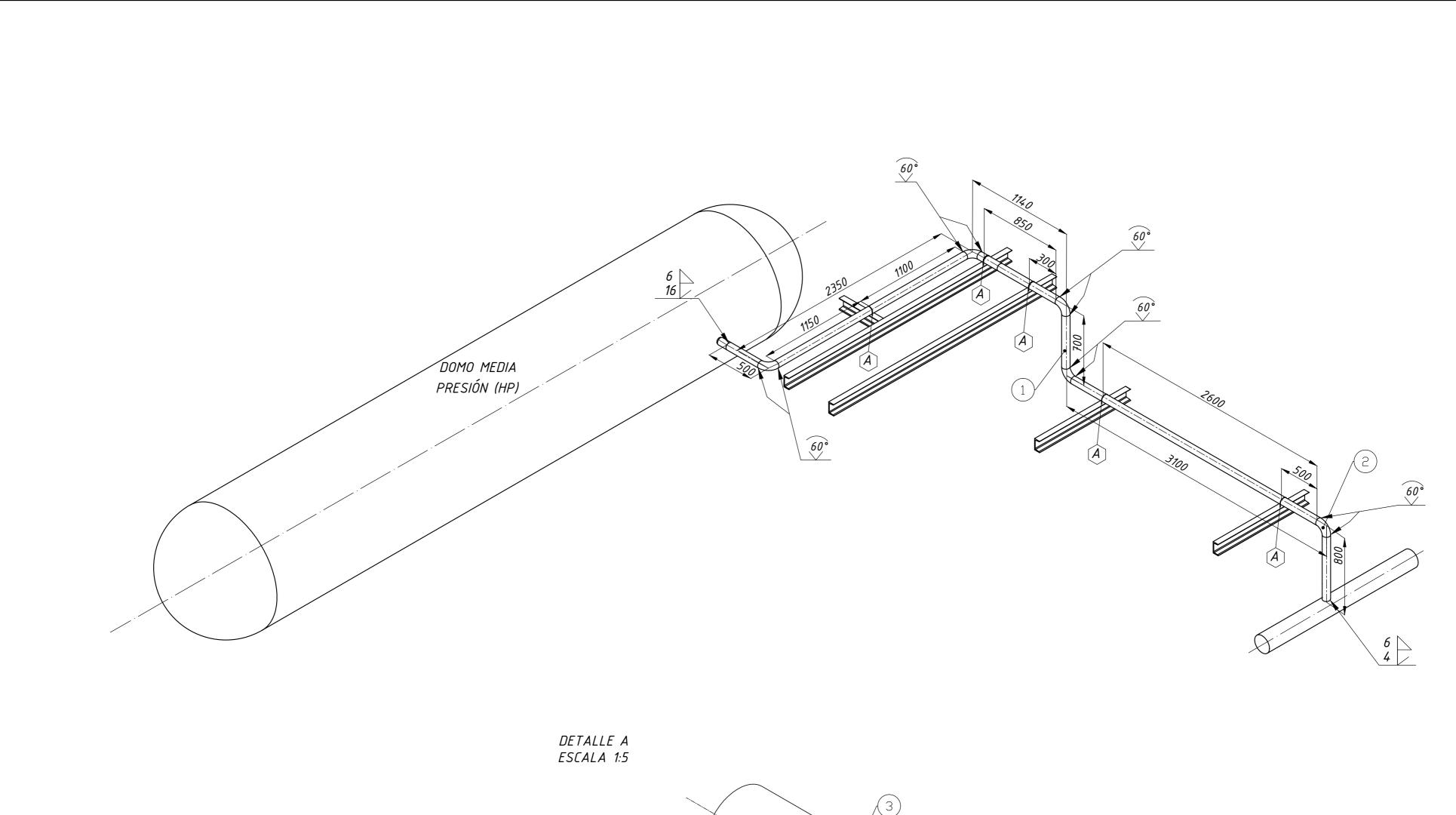
HRSG-2021-P005

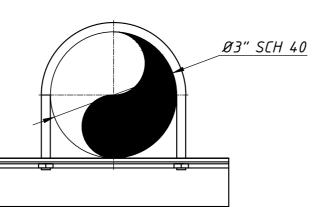
SECCIÓN E-E ESALA 1:20

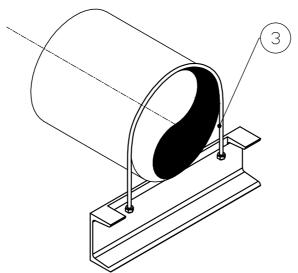
HRSG - 3 Presiones

Schneider - Mastronardi - Silva - Songini

HRSG-2021-P005


Hoja: 1

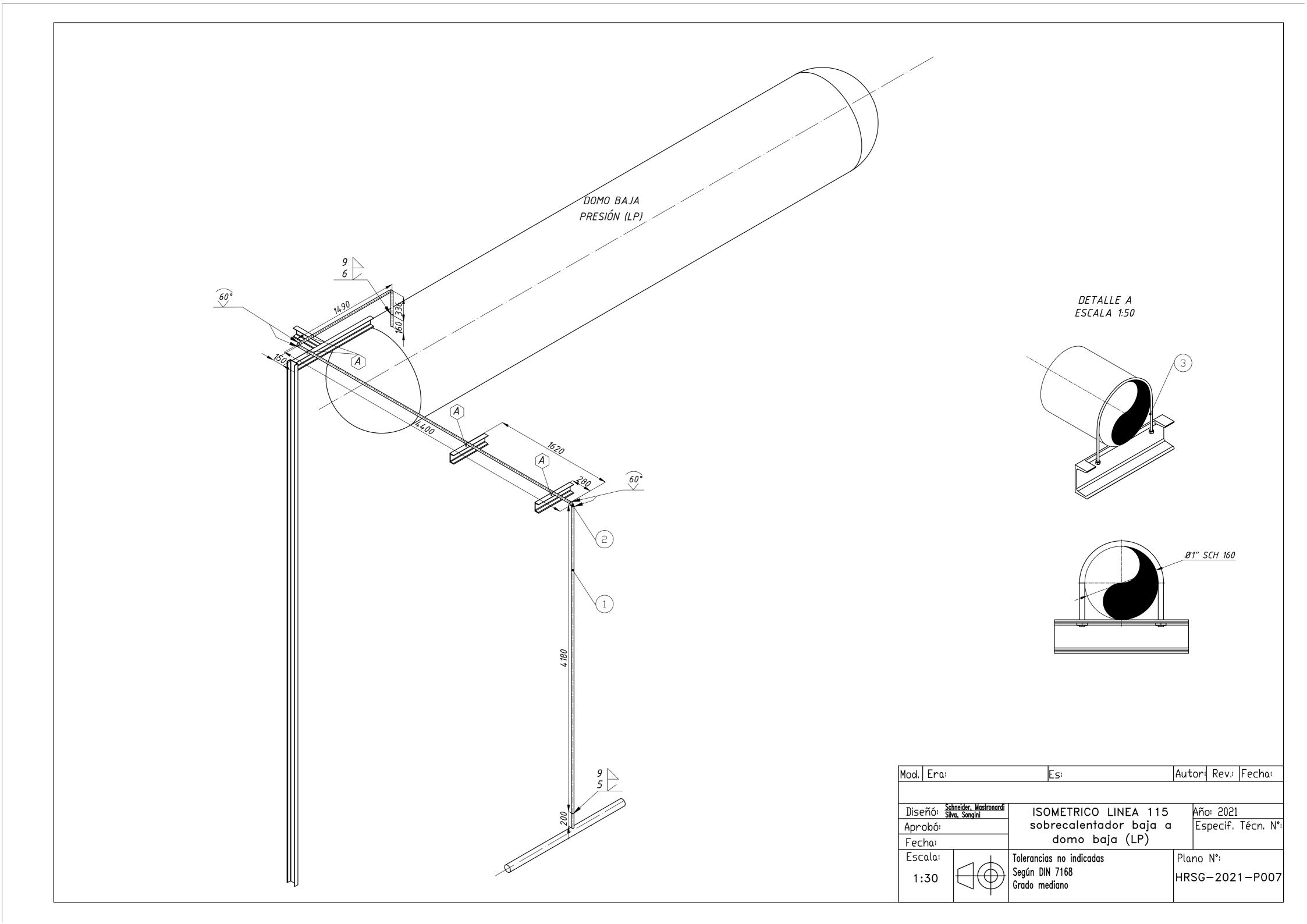

				110,4						
Pos.:	Denominación:	Cant.:	Material:		Plano N°:	Frm.:	Α	Т	С	Obs.:
1	Caño ø8" SCH10	1	SA192		5	_	_	_	_	Α
2	Caño ø2,5" largo: 50mm SCH30	1	SA192		5	_	_	-	_	-
3	Caño ø3" largo: 2200mm SCH40	1	SA192		5	_	_	_	_	_
4	Tapas de cierre ø3" espesor 6,35mm	2	SA515 Gr 65		5	_	_	-	_	_
5	Codos 45° SCH40	54	SA234 Gr. Wpb		5	_	_	_	_	_
6	Codos 60° SCH40	9	SA234 Gr. Wpb		5	_	_	-	_	_


Observaciones:

NOTA A: Largo total 23000mm. Se deben realizar los cortes según cada detalle de sección.

Plano N°HRSG-2021-P005

Mod. E	rai		Esı	Aut	or:	Rev	Fecho	λ;
Diseño	ó: <u>Sch</u> Silv	nneider, Mastronardi va, Songini	ISOMETRICO LINEA 135)	Año	o: 2021		
Aprob	ó١	•	economizador media (ב	Es	pecif.	Técn.	N*:
Fecho	l,		domo media (IP)					
Escal	۵۱		Tolerancias no indicadas	Pla	no	N°:		
1:3	0		Según DIN 7168 Grado mediano	HR	SG.	-202	1-P0	06


HRSG - 3 Presiones

Schneider – Mastronardi – Silva – Songini

HRSG-2021-P006

Hoja: 1

Pos.:	Denominación:	Cant.:	Material:	Plano N°:	Frm.:	Α	Т	С	Obs.:
1	Caño ø3" SCH40	1	SA192	6	_	_	_	-	Α
2	Codo 90° SCH40	5	SA234 Gr Wpb	6	_	_	_	_	_
3	Abrazadera "U-BOLT" + tuerca y arandela para caño diámetro 3" M16	5	comercial galvanizado EATON	6	_	_		_	_
Not	a argo total 8200mm. Se especifican las cotas del	largo	de cada sección. Plano	N°HRS0	G-20)21	F	,00	16

HRSG - 3 Presiones

Schneider - Mastronardi - Silva - Songini

HRSG-2021-P007

Hoja: 1

Pos.:	Denominación:	Cant.:	Material:	Plano N°:	Frm.:	Α	Т	С	0bs
1	Caño ø1" SCH160	1	SA178	7	_	_	-	_	Α
2	Codo 90° SCH160	5	SA234 Gr Wpb	7	_	_	-	-	_
4	Abrazadera "U-BOLT" + tuerca y arandela para caño diámetro 1" M16	5	comercial galvanizado EATON	7	_	_	_	_	_
\dashv									

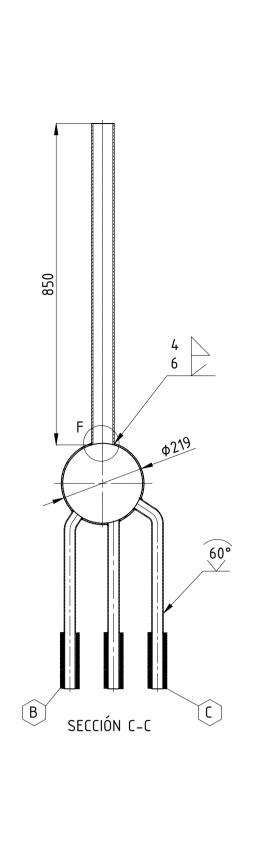
Nota

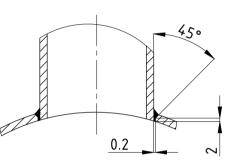
(A) Largo total 12000mm. Se especifican las cotas del largo de cada sección.

Plano N°: HRSG-2021-P007

ESPECIFICACIÓN	DEL TUBO ALETADO
Tipo	Tubos circulares con aletas incrustadas helicoidales
Materiales	Tubos de acero al carbono (ASTM A192)
	Aletas de aluminio
Fijación	Clavado mecánico

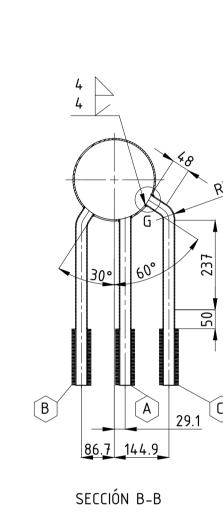
ESPECIFICACIÓN DISEÑO DEL TUBO ALETADO
Diámetro Exterior con aletas = 51,8 mm
Diámetro Exterior tubo = 31,8 mm
Altura de aleta = 5 mm
Espesor de aleta = 0,8 mm
Número de aleta por pulgada = 3,50

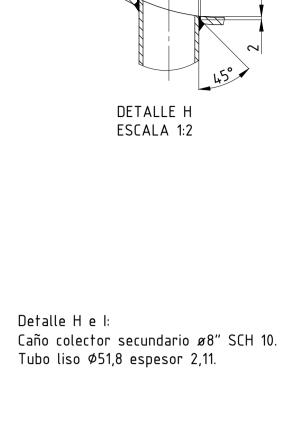

ESPECIFICACIONES DE SOLDADURA:

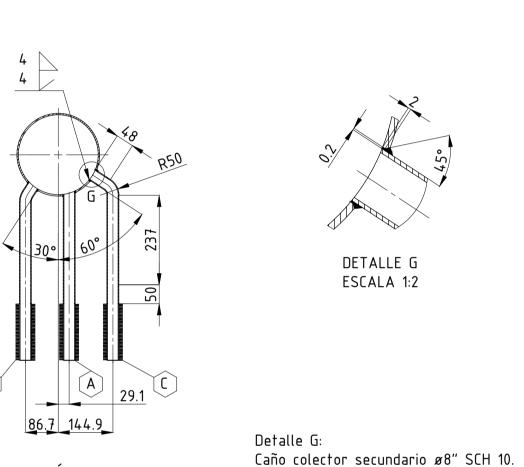

- 1- Simbologia de soldadura utilizada AWS.
- 2- Se deberá soldar utilizando electrodos de bajo hidrógeno.
- 3- Previo a efectuar las soldaduras precalentar la zona. 4- Emplear electrodos o alambre de aporte según norma AWS 6010 para la pasada de raiz

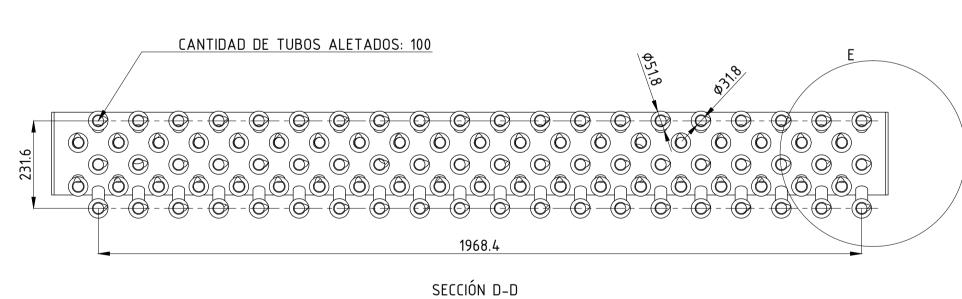
y según normas AWS 7015 para las siguientes pasadas.

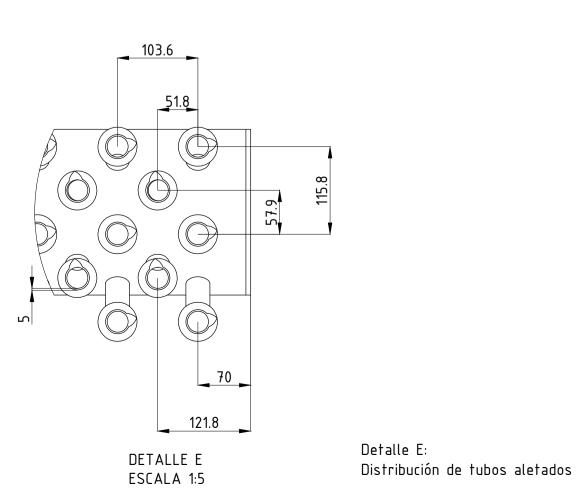
ESPECIFICACIÓN DE MATERIAL:


Se especifica las medidas de los caños en cada corte de unión caño con colector principal. Esto mismo se repite en todos los mazos del componente 2 economizador de alta.


DETALLE F ESCALA 1:2


Detalle F: Caño colector secundario ø8" SCH 10. Caño salida colector secundario Ø2" SCH 40.


SECCIÓN A-A


DETALLE I ESCALA 1:2

Tubo liso ϕ 51,8 espesor 2,11.

М	lod.	Erai		Es		Autor	Rev	Fecha:
4	Dise Apro Feck	no: <u>silv</u> bbó:	nneider, Mastronardi ra, Songini	COLECTOR SECU 2- ECONOMIZADO		F	o: 2021 specif.	Técn. N°:
	1:			Tolerancias no indicadas Según TF2020-DT-A / DIN 716 Grado mediano	68	Plano HRSG		1-P008

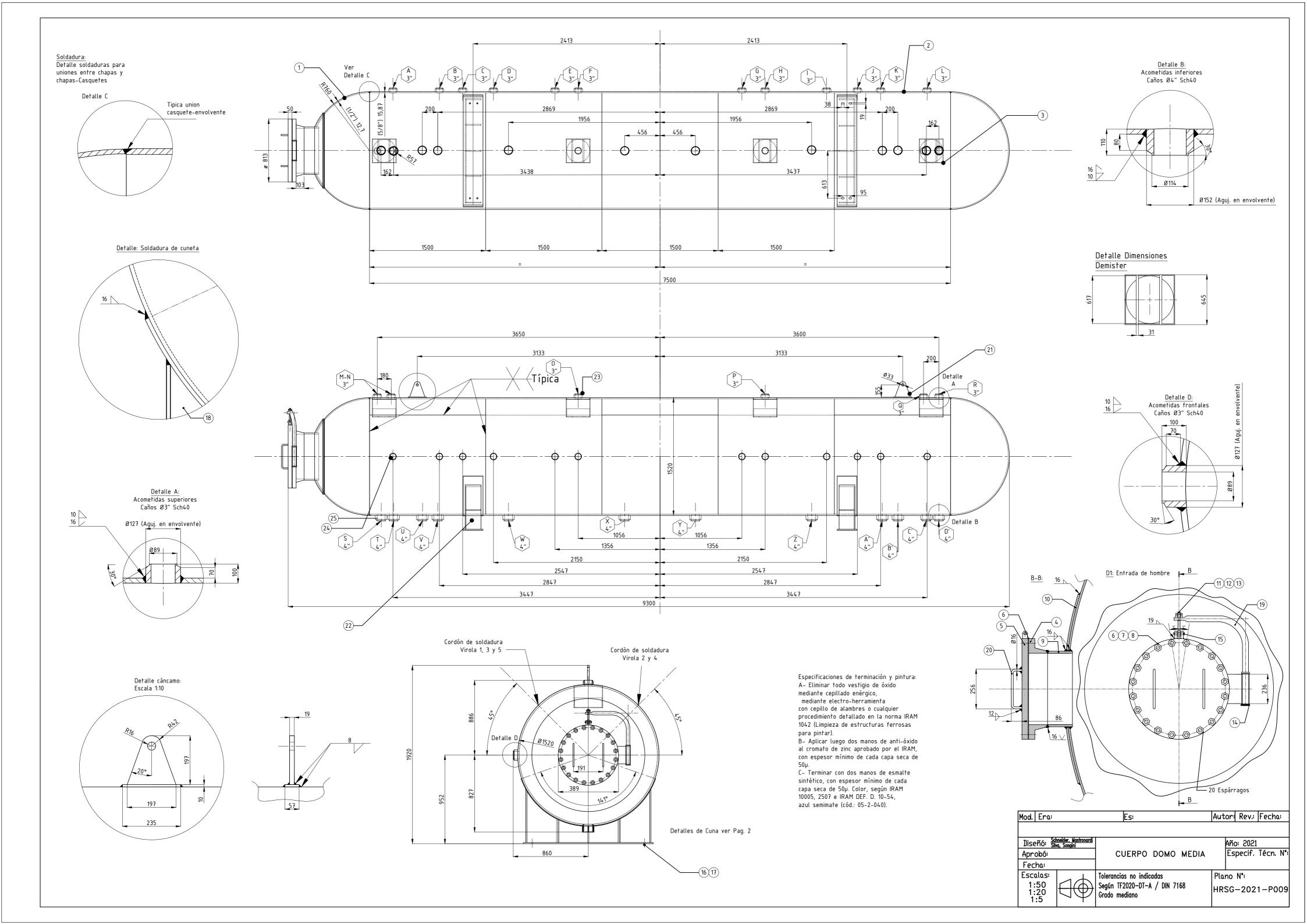
HRSG - 3 Presiones

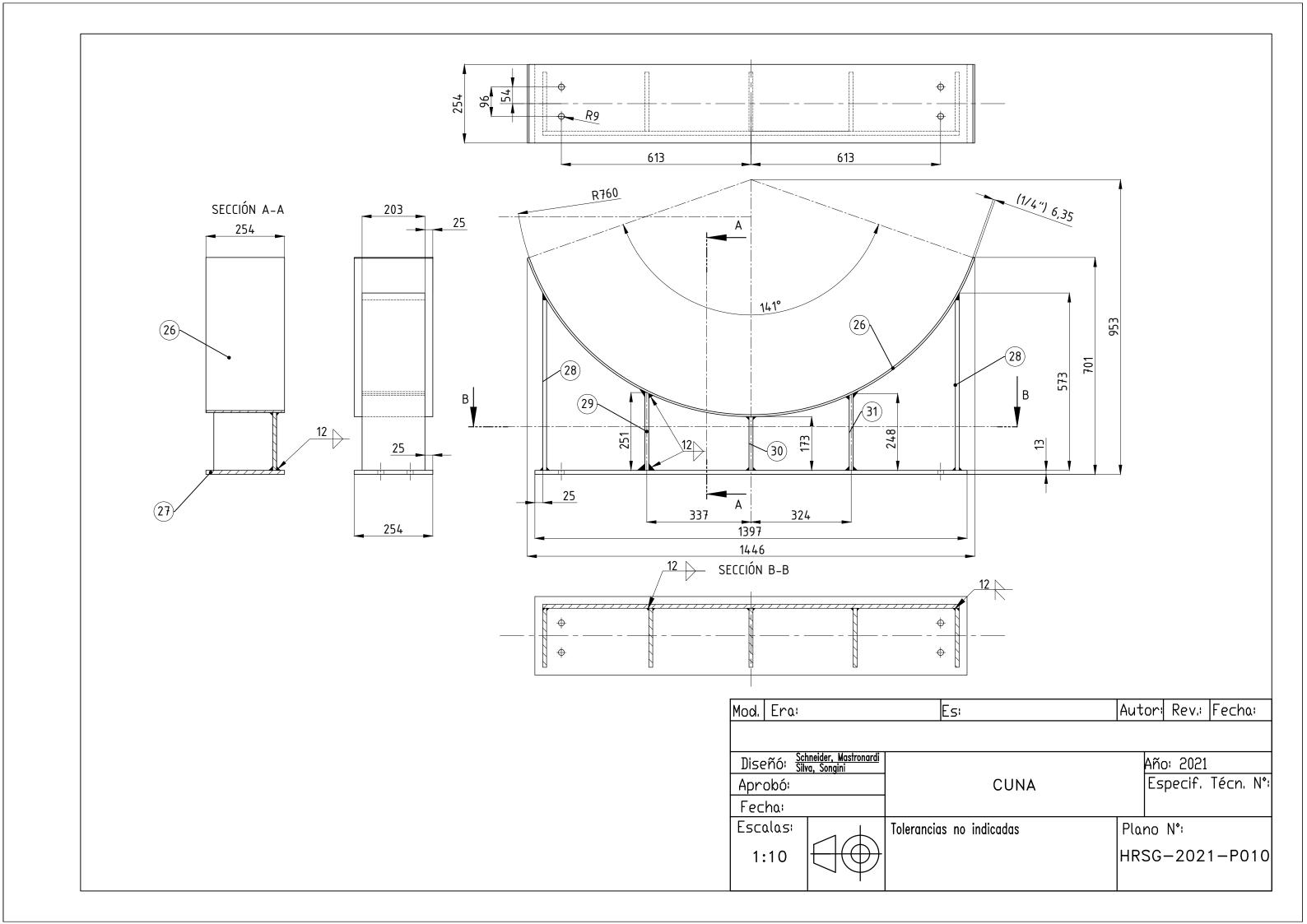
Schneider - Mastronardi - Silva - Songini

HRSG-2021-P008

Hoja: 1

Pos.:	Denominación:	Cant.:	Material:	Plano N°:	Frm.:	Α	Т	С	Obs.:
1	Tubo aletado ø51,8 espesor 2,11 largo: 23100	100	ASTM A192	-	_	_	-	-	Α
2	Tubo liso ø51,8 espesor 2,11	_	SA106-Gr. C	-	_	_	-	-	В
3	Caño ø8" SCH10 largo: 2200	2	SA178-Gr. A	-	_	_	-	_	_
4	Tapas de cierre ø3"	4	SA515-Gr. 65	_	_	_	-	_	_
5	Caño ø2" SCH40 largo: 296	3	SA178-Gr. A	-	_	_	-	_	_
6	Caño ø2" SCH40 largo: 850	3	SA178-Gr. A	-	_	_	_	_	_
								<u> </u>	


Observaciones:


NOTA A: Extremos 50mm sin aletado.

NOTA B: Largo total 22900mm. Se deben realizar los

cortes según cada detalle de sección.

Plano N°:HRSG-2021-P008

HRSG - 3 Presiones

Schneider - Mastronardi - Silva - Songini

HRSG-P009/P010

Hoja: 1 de 2

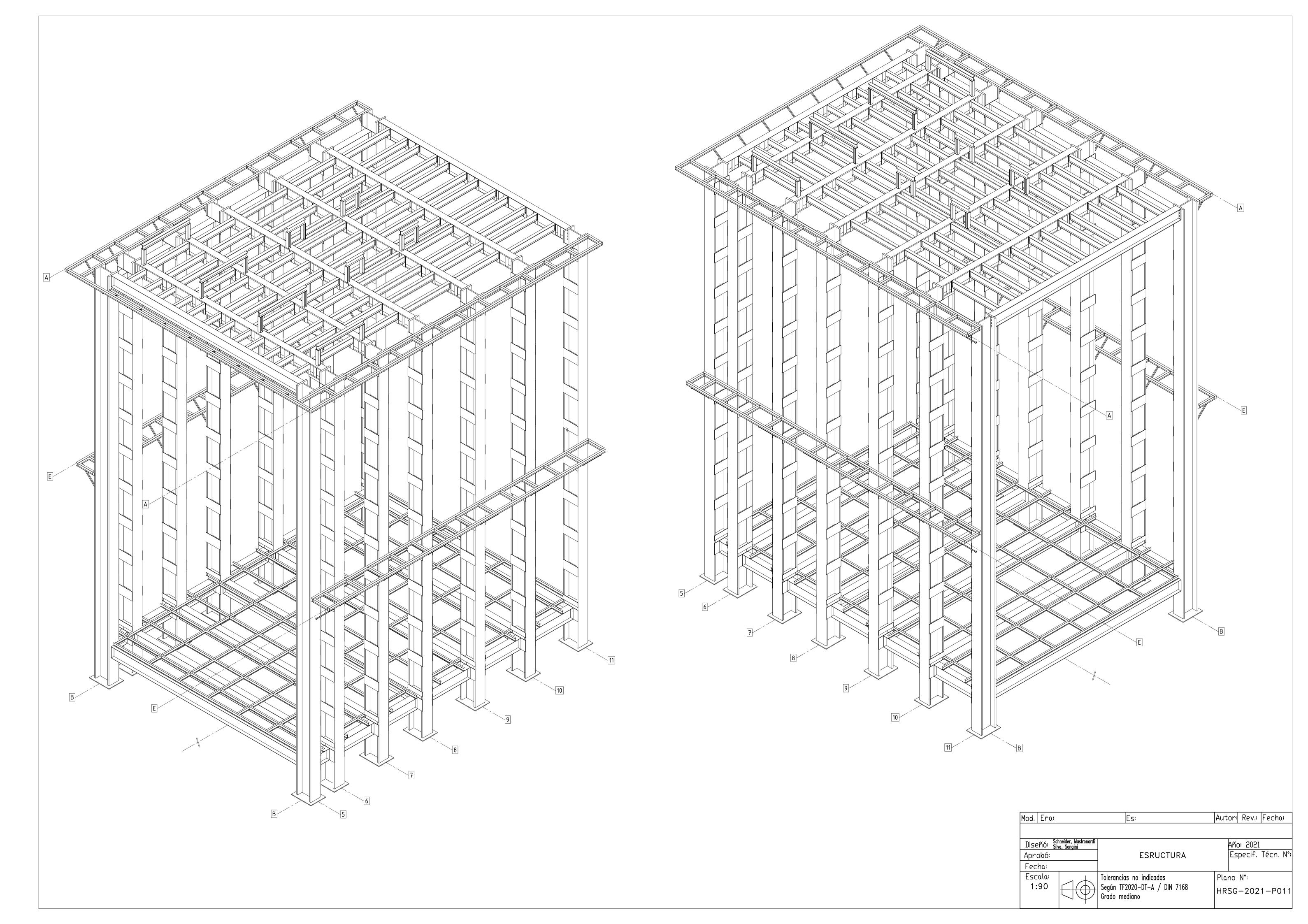
Pos.	Denominación:	Cant.	: Material:	Plano N°	Frm.	Α	Т	С	0bs
1	Casquete semiesferico diámetro1520 Esp.1/2"	2	SA-515-Gr65	009	_	_	_	_	_
2	Ch 5/8 " 1500 x 4773	5	SA-515-Gr65	009	_	_	_	_	_
3	Demister	4	AISI 304 L	009	_	-	-	_	_
4	Brida ciega diam. 24" ANSI 150	1	ASTM A105	009	_	-	-	_	_
5	Brida ciega Ø24" ANSI 150	1	ASTM A105	009	_	-	_	_	_
6	Junta p/ brida Ø24"	1	COMERCIAL	009	-	_	_	_	_
7	Espárragos M30 x 170mm.	20	ASTM A325	009	_	_	-	_	_
8	Tuerca M30	40	ASTM A194 Gr.2H	009	_	-	-	_	_
9	Caño Sch. 40 Ø24"x200	1	A106 gr B	009	_	_	_	_	_
10	Poncho 5/8"x Ø1524	1	ASTM A516 Gr.70	009	-	_	_	_	_
11	Perno con ojal 3/4"	1	COMERCIAL	009	_	_	_	_	_
12	Tuerca 3/4" para perno con ojal	1	ASTM A194 Gr.2H	009	_	-	-	_	_
13	Contra Tuerca 3/4" para perno con ojal	1	ASTM A194 Gr.2H	009	_	_	-	_	-
14	Chaveta partida DIN94	1	COMERCIAL	009	-	-	-	_	-
15	Perno con chaveta	1	COMERCIAL	009	_	_	_	_	_
16	Espárragos M18 x 120mm.	4	ASTM A193 Gr.B7	009	_	_	-	_	-
17	Tuerca M18	4	ASTM A194 Gr.2H	009	_	-	-	-	-
18	Chapa 5/8" x 2445 x 1200	2	ASTM A516 Gr.70	009	_	_	-	_	-
19	Caño Sch. 40 Ø1 1/2" x 1300	1	ASTM A53 Gr.B	009	_	-	_	_	_
20	Varilla circular Ø16mm x 500	2	SAE 1020	009	_	-	-	_	_
21	Cancamo	2	SA-515-Gr65	009	_	-	-	_	_
22	Apoyos: Tipo Silletas	2	SA-515-Gr65	009	_	_	-	_	-
23	Conexiones superiores	6	ASTM A - 105	009	_	-	-	-	-
24	Conexiones centro	12	ASTM A - 105	009	_	_	-	_	_
25	Conexiones inferiores	12	ASTM A - 105	009	_	-	-	_	_
26	Ch 1/4 " 1900 x 254	2	SA-515-Gr65	010	_	-	_	_	_
27	Ch 1/2 " 1456 x 254	2	SA-515-Gr65	010	_	-	-	_	_
28	Ch 1/2 " 573 x 203	4	SA-515-Gr65	010	_	-	-	_	_
29	Ch 1/2 " 250 x 203	2	SA-515-Gr65	010	_	-	_	_	_

Observaciones:

Plano N°: HRSG-P009/P010

HRSG - 3 Presiones

Schneider - Mastronardi - Silva - Songini


HRSG-P009/P010

Hoja: 2 de 2

Poss:	Denominación:	Cant.	: Material:	Plano N°:	Frm.:	Α	Т	С	Obs.
30	Ch 1/2 " 173 x 203	2	SA-515-Gr65	010	1	-	-	_	-
31	Ch 1/2 " 248 x 203	2	SA-515-Gr65	010	-	_	_	_	

Observaciones:

Plano N°: HRSG-P009/P010

