

CARACTERIZACIÓN ESPECTROSCÓPICA POR RESONANCIA MAGNÉTICA NUCLEAR DE RESINA DE UREA-FORMALDEHÍDO

M. A. Caula ^{1*}, D. A. Estenoz ², V. V. Nicolau ¹

(1) GPol-Departamento de Ingeniería Química, Facultad Regional San Francisco, U.T.N, San Francisco 2400, Córdoba, Argentina

(2) INTEC (CONICET and U.N.L), Güemes 3450, Santa Fe 3000, Argentina * autor de contacto: andrea caula@hotmail.com

INTRODUCCIÓN

Las resinas base de urea formaldehído (U-F) se obtienen por reacción entre la urea (U) y el formaldehído (F) y se utilizan principalmente como adhesivos en la fabricación de paneles de madera. El mecanismo de reacción consiste en una hidroximetilación-condensación (De Jong y De Jonge, 1952, De Jong y De Jonge, 1953):

$$-NH_2 + F \xrightarrow{k_{ml}} -NHCH_2OH$$
 (1)

- NHCH₂OH + F
$$\stackrel{k_{m_2}}{\longleftarrow}$$
 - N(CH₂OH)₂ (2)

$$- NH_2 + - NHCH_2OH \xrightarrow{k_{MB}} - NHCH_2NH - + H_2O$$
 (3)

$$2 - NHCH2OH \xrightarrow{k_{EB}} - NHCH2OCH2NH- + H2O$$
 (4)

De modo similar a las reacciones de formación de uniones metileno y uniones éter sin sustituir [($-NHCH_2NH-y-NHCH_2OCH_2NH-$, Ecs. (3) y (4)], se pueden generar uniones metileno y éter del tipo monosustituido (—NRCH2NH— y —NRCH2OCH2NH—) y disustituído (—NRCH₂NR— y —NRCH₂OCH₂NR—).

Además, se generan uniones éter cíclicas con formación de urones (Steinhof et al., 2014).

Por otra parte, los grupos monohidroximetilamino (—NHCH₂OH) y dihidroximetilamino [—N(CH₂OH)₂] [Ecs. (1) y (2)] reaccionan con el F para generar hemiformales de grupo mono y dihidroximetilamino (Steinhof et al., 2014):

$$-NHCH2OH + nF \longrightarrow -NHCH2(OCH2) OH$$
 (5)

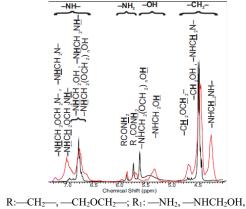
$$-N(CH_2OH)_2 + n F \longrightarrow -N(CH_2OH)CH_2(OCH_2)_n OH$$
 (6)

es complejo y el hidratación/deshidratación y polimerización con generación metilénglicol (HOCH₂OH) oligómeros [$HO(CH_2)_nOH$] (Walker, 1964):

$$F + H_2O \xrightarrow{k_b \atop \overline{k_g}} HOCH_2OH$$
 (7)

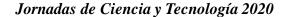
$$HO(CH_2O)_{n-1}H + HOCH_2OH \xrightarrow{k_{MC}} HO(CH_2O)_n H + H_2O$$
 (8)

En este trabajo se caracterizaron los productos de reacción generados durante la síntesis de resinas de U-F en condiciones ácidas y alcalinas en un rango de temperatura


entre 38 y 90 °C. Para la caracterización se empleó resonancia magnética nuclear de protones y carbono [(1H y 13C) RMN] y estudios de correlación nuclear (¹H-¹³C gHSQC).

MÉTODOS

Se llevaron a cabo 7 experimentos con relaciones molares iniciales F/U \cong 2 a partir de una solución de F (17% p/p) libre de metanol. Cinco de los experimentos se llevaron a cabo a pH = 9 y temperaturas de 38 °C, 48 °C, 60 °C, 70 °C y 90 °C, y dos experimentos a pH = 4 y temperaturas de 48 °C y 60 °C. Para el ajuste de pH se emplearon soluciones de NaOH y HCl 0.1N. Se tomaron muestras a lo largo de las reacciones y se secaron a T = 40 °C en estufa de vacío. Para el análisis espectroscópico, las muestras se disolvieron en dimetilsulfóxido deuterado (DMSO-d₆). Los espectros de (¹H y ¹³C) RMN y de correlaciones nucleares ¹H-¹³C gHSQC se adquirieron en un espectrómetro Bruker Avance II 300 MHz provisto de sonda multinuclear de gradiente.


RESULTADOS

En la Fig. 1 se muestran los espectros de ¹H RMN a pH = 4 y pH = 9 para 60 °C y 510 min. de reacción.

-NHCH2(OCH2)nOH.

Fig. 1. Exp. a 60 °C y 510 min.: ${}^{1}H$ RMN a pH = 4 (-) y pH = 9 (-).

Las asignaciones de los picos se muestran en las Tablas 1 y 2.

Tabla 1. ¹H RMN: Asignación de estructuras en DMSO-d₆.

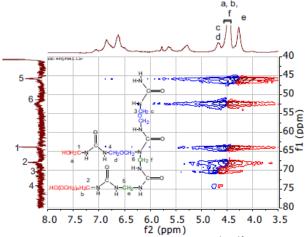

·	Estructura	δ (ppm)	Observaciones
Grupo amino monosustituído	−N <u>H</u> CH ₂ N− −N <u>H</u> CH ₂ OCH ₂ N−	7.0-7.4	
Grupo amino sin sustituír	−N <u>H</u> CH ₂ OCH ₂ N <u>H</u> −	6.8-7.0	
	—N <u>H</u> CH ₂ OH —N <u>H</u> CH ₂ (OCH ₂),1OH —NHCH ₂ NH—	6.5 - 6.8	Sin correlación en gHSQC
	−CH ₂ CON <u>H</u> 2 −CH ₂ OCH ₂ CON <u>H</u> 2	5.7 - 6.5	
	NH ₂ CON <u>H</u> 2 OHCH2NHCON <u>H</u> 2 HO(OCH2) ₀ CH ₂ NHCON H 2	5.6 – 5.7	
Grupo	-NHCH ₂ (OCH ₂) _n OH	5.4 - 5.6	
hidroxilo	−NHCH ₂ OH	5.25 - 5.4	
Grupo metileno	−С <u>Н₂</u> ОС <u>Н</u> ₂− ОНС <u>Н</u> ₂ОН ОНС <u>Н</u> ₂ОС <u>Н</u> ₂ОН	4.55 – 4.9	Correlación con carbonos a 63.84 – 64.55,
	—NHCH₂(OC <u>H</u> ₂)"OH —NHC <u>H</u> ₂OH —NHC <u>H</u> ₂N—	4.4 –4.55	67.94 – 68.55, 54, 59, 69, 74, 77, 82.3 y 86
	-HNC <u>H</u> 2NH−	4.1 –4.4	ppm en

Tabla 2. ¹³C RMN: Asignación de estructuras en DMSO-d₆.

	Estructura:	δ (ppm)
Grupo	NH_2 CON H_2	160.63 - 161.06
carbonilo	NH_2 CONH—	159.11 - 159.55
	−NH <u>C</u> ONH− −NH <u>C</u> ON=	157.82 – 158.50
Grupo monohidroximetilamino	−NH <u>C</u> H ₂ OH	63.84 – 64.55
Hemiformales de grupo monohidroximetilo	−NH <u>C</u> H ₂ (OCH ₂) _n OH	67.94 – 68.55
Uniones metileno	−NH <u>C</u> H ₂ NH−	46
	$-N(CH_2)\underline{\mathbf{C}}H_2NH-$	54
	$-N(CH_2)\underline{\mathbf{C}}H_2N(CH_2)-$	59
Uniones éter	$-NH\underline{\mathbf{C}}H_2O\underline{\mathbf{C}}H_2NH-$	69
	$-NH\underline{\mathbf{C}}H_2O\underline{\mathbf{C}}H_2N(CH_2)-$	74
	$-N(CH_2)\underline{\mathbf{C}}H_2O\underline{\mathbf{C}}H_2N(CH_2)-$	77
Metilénglicol y derivados	HO <u>C</u> H₂OH	82.3
	HO <u>C</u> H ₂ O <u>C</u> H ₂ OH —NHCH ₂ (O <u>C</u> H ₂) _n OH	86

En la Fig. 2 y en la Fig. 3 se muestran los espectros 2D ¹H-¹³C gHSQC correspondientes a las muestras obtenidas a 60 °C en condiciones ácidas y alcalinas. En condiciones ácidas (Fig. 2) se favorece la formación de uniones metileno. En condiciones alcalinas (Fig. 3) se generan uniones éter monosustituido y disustituido por rápida dihidroximetilamino. reacción grupos No compuestos evidenciaron tales como grupos dihidroximetilamino, hemiformales de grupo dihidroximetilamino ni urones en las condiciones estudiadas.

El detallado análisis de los espectros de (¹H y ¹³C) RMN y de los espectros 2D de correlaciones nucleares ¹H-¹³C gHSQC permitió una mayor diferenciación de señales dentro de los grupos de señales característicos reportados en la literatura (Steinhof et al., 2014).

Fig. 2. Exp. a 60 °C y 510 min.: Espectro ${}^{1}\text{H}-{}^{13}\text{C}$ gHSQC. a pH = 4.

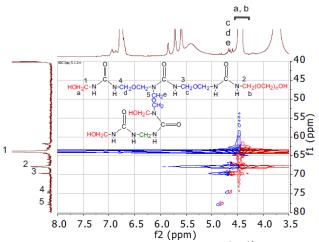


Fig. 3. Exp. a 60 °C y 360 min.: Espectro ${}^{1}H$ - ${}^{13}C$ gHSQC a pH = 9.

CONCLUSIONES

Los estudios de correlación nuclear (¹H-¹³C gHSQC) resultaron ser una herramienta poderosa en la caracterización de resinas de U-F.

En futuros trabajos se empleará esta herramienta para establecer la relación entre la estructura de las resinas de U-F y las propiedades finales de los materiales obtenidos.

REFERENCIAS

De Jong J. I.; De Jonge, J., Rec. Trav. Chim, 71, 643-660 (1952).

De Jong, J. I.; De Jonge, J., Rec. Trav. Chim, 72, 139-156 (1953).

Steinhof, O.; Kibrik, É.; Scherr, G. and Hasse, H., *Magn. Reson. Chem.*, **52**, 138-163 (2014).

Walker, J. F.; *Formaldehyde* 3rd edition, ACS Monograph Series, Reinhold, New York (1964).