
Instalación de una planta de generación fotovoltaica con seguimiento solar

FACULTAD: "Facultad Regional Venado Tuerto"

CÁTEDRA: Proyecto Final

ALUMNO: Cristian Marmiroli, Brian Pompei

PROFESORES: Ing. Daniel Ali

Ing. Daniel Ferreyra

AÑO: 2018

Índice

INTRODUCCIÓN	4
OBJETO Y ALCANCE	4
CONSIDERACIONES TÉCNICAS	4
CARGA DE VIENTO SEGÚN NORMA CIRSOC	5
Campo de aplicación	5
Definiciones de nuestra Incumbencia	5
Procedimiento de diseño	5
DIMENSIONAMIENTO, CÁLCULO Y ELECCIÓN DE COMPONENTES MECÁNICOS	14
Cálculo de parrillas:	14
Cálculo de los bulones de sujeción:	18
Cálculo de espesor de chapa sujeta parrilla:	20
Cálculo Portaparrilla:	21
Cálculo solapas:	24
Cálculo de soldadura:	25
Cálculo del eje:	26
Cálculo de soporte trasero B:	29
Cálculo de soporte delantero A:	33
Cálculo de rodamientos:	34
Elección de motorreductor:	36
Selección acople:	39
CÁLCULOS ENERGÉTICOS DE LA INSTALACIÓN	40
Sistema de información solar	40
Resultados	44
Comparación de rendimientos	45
Energía generada	45
DIMENSIONAMIENTO, CÁLCULO Y ELECCIÓN DE COMPONENTES ELÉCTRICOS	49
Descripción	49
Variador de velocidad:	50
Guardamotor	53
Conexionado de componentes	55
Sección del cable de 40m	56

PLANIMETRIA:_____65

ANEXO:

INTRODUCCIÓN

La energía solar, emblema de las energías renovables, ha protagonizado en los últimos años una progresión debido a las mejoras de la tecnología, asociada a la reducción de costes y principalmente gracias al interés mostrado por las diferentes administraciones en distintos países, en forma de ayudas y subvenciones. Este hecho unido a la voluntad de contribuir en la medida de lo posible a la sostenibilidad energética, ha hecho posible el incremento exponencial de estos proyectos de energía solar fotovoltaica integrada en cubiertas de edificios industriales y conectados a la red.

OBJETO Y ALCANCE

Este proyecto tiene como objetivo el cálculo y diseño una instalación de una Planta de Generación Fotovoltaica con seguimiento solar. Esta planta estará situada en la cubierta de nuestra universidad para cubrir parte de su consumo y aportar información para el nuevo laboratorio de Energías Renovables. La potencia de generación instalada será de 3 Kw. Este sistema será del tipo "ongrid", el cual se caracteriza por utilizar la energía necesaria en el momento de generación e inyectarla, en caso de no consumirla, a la red. El proyecto analiza las posibilidades que ofrece una instalación de energía solar fotovoltaica, formada por un conjunto de módulos fotovoltaicos montados sobre plataforma que por medio de un servomecanismo automatizado seguirá la trayectoria solar. Se realizará un estudio previo de las condiciones solares de la zona en donde estará situada la planta. Se estudiará la normativa vigente sobre el tema, analizando la rentabilidad del proyecto y demás aspectos económicos. Por otra parte, se tendrá en cuenta el impacto visual generado por esta instalación.

CONSIDERACIONES TÉCNICAS

En este proyecto se procederá a realizar el cálculo y diseño de:

- Sistema de soportes para paneles.
- Mecanismo de movimiento para el sistema "seguidor solar".
- Instalación eléctrica.
- Sistema de automatización.
- Rentabilidad del proyecto.

Los elementos a adoptar serán:

- Paneles solares.
- Reguladores de carga.

• Inversores.

Primeramente, debemos saber la carga del viento que puede afectar a la estructura. Es por ello, que hemos realizado el estudio del REGLAMENTO ARGENTINO DE ACCION DEL VIENTO SOBRE LAS CONSTRUCCIONES (CIRSOC 102).

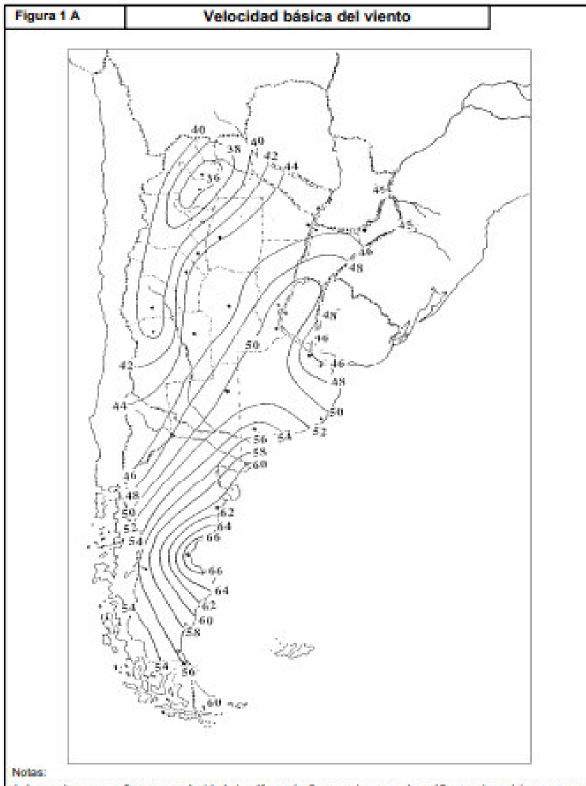
CARGA DE VIENTO SEGÚN NORMA CIRSOC

Campo de aplicación

Este Reglamento se aplica a todas las construcciones dentro del territorio de la República Argentina.

Los edificios y otras estructuras, incluyendo tanto su sistema principal resistente a la fuerza del viento como sus componentes y revestimientos, se deben diseñar y construir para resistir las cargas de viento que se especifican en este Reglamento.

Definiciones de nuestra Incumbencia


Edificios y otras estructuras flexibles: Aquellos edificios y otras estructuras esbeltas que tienen una frecuencia natural fundamental menor que 1 Hz.

Edificios y otras estructuras rígidas: Un edificio u otra estructura cuya frecuencia natural es mayor o igual que 1 Hz.

Procedimiento de diseño

1. Se determina la velocidad básica del viento V y el factor de direccionalidad Kd de

acuerdo con el artículo 5.4.

- Los valores se refieren a velocidad de r\u00e5faga de 3 segundos en m/s a 10 m. sobre el terreno para Categor\u00e1a de Exposici\u00f3n C y est\u00e1n asociadas con una probabilidad anual de 0,02.
- Es aplicable la interpolación lineal entre contomos de velocidades del viento.
- Islas y áreas costeras fuera del último contomo se deben usar este último contomo de velocidad del viento del área costera.
- Los terrenos montañosos, quebradas, promontorios marinos y regiones especiales de viento se deben examinar para condiciones inusuales de viento.

Reglamento CIRSOC 102

CIUDAD	V (m/s)
BAHIA BLANCA	55,0
BARILOCHE	46,0
BUENOS AIRES	45,0
CATAMARCA	43,0
COMODORO RIVADAVIA	67,5
CORDOBA	45,0
CORRIENTES	46,0
FORMOSA	45,0
LA PLATA	46,0
LA RIOJA	44,0
MAR DEL PLATA	51,0
MENDOZA	39,0
NEUQUEN	48,0
PARANA	52,0
POSADAS	45,0
RAWSON	60,0
RESISTENCIA	45,0
RIO GALLEGOS	60,0
ROSARIO	50,0
SALTA	35,0
SANTA FE	51,0
SAN JUAN	40,0
SAN LUIS	45,0
SAN MIGUEL DE TUCUMAN	40,0
SAN SALVADOR DE JUJUY	34,0
SANTA ROSA	50,0
SANTIAGO DEL ESTERO	43,0
USHUAIA	60,0
VIEDMA	60,0

Note:

Los valores se refieren a velocidad de ráfaga de 3 segundos en m/s a 10 m. sobre el terreno para Categoría de Exposición C y están asociadas con una probabilidad anual de 0,02.

$$V=50\frac{m}{s}$$

2. Se determina un factor de importancia I de acuerdo con el artículo 5.5.

TABLA A-1 - Clasificación de Edificios y Otras Estructuras para Cargas de Viento

Naturaleza de la Ocupación	Categoria
Edificios y otras estructuras que representan un bajo riesgo para la vida humana en caso de falla incluyendo, pero no limitado a: Instalaciones Agricolas. Ciertas instalaciones temporarias. Instalaciones menores para almacenamiento.	1
Todos los edificios y otras estructuras excepto aquellos listados en Categorías I, III y IV.	- 11
Edificios y otras estructuras que representan un peligro substancial para la vida humana en caso de falla incluyendo, pero no limitado a: Edificios y otras estructuras donde se reunen más de 300 personas en un área. Edificios y otras estructuras para guarderías, escuelas primarias y secundarias con capacidad mayor que 150 personas. Edificios y otras estructuras con instalaciones para el cuidado diumo con capacidad mayor que 150 personas. Edificios y otras estructuras con una capacidad mayor que 500 personas para universidades o instalaciones para educación de adultos. Instalaciones para el cuidado de la salud con una capacidad de 50 o más pacientes residentes pero sin instalaciones para cirugla o tratamientos de emergencia. Instalaciones para cárceles y detenciones. Estaciones de generación de energía y otras instalaciones de utilidad pública no incluidas en la Categoría IV. Edificios y otras estructuras que contienen suficientes cantidades de substancias tóxicas o explosivas como para ser peligrosas al público si se liberan, incluyendo, pero no limitado, a: Instalaciones petroquímicas. Instalaciones petroquímicas. Plantas de fabricación o almacenamiento de combustibles. Plantas de fabricación o almacenamiento de explosivos. Edificios y otras estructuras equipados con contención secundaria de substancias tóxicas, explosivas u otras peligrosas (incluyendo, pero no limitado a, tanques de doble pared, receptáculos de tamaño suficiente para contener un derrame u otros medios de contención de derrames o explosiones dentro de los limites de la instalación y prevenir la liberación de cantidades de contentinantes nocivas para el aire, el suelo, el agua freática o superficial) deben clasificarse como estructuras de Categoría II.	III
Edificios y otras estructuras diseñadas como instalaciones esenciales, incluyendo, pero no limitados a: Hospitales y otras instalaciones para el cuidado de la salud que tienen instalaciones para cirugía o tratamientos de emergencia. Cuarteles de bomberos, centros de rescate, estaciones de policia y garajes para vehículos de emergencia. Refugios diseñados contra sismos, huracanes y otras emergencias. Centros de comunicaciones y otras instalaciones necesarias para respuestas a emergencias. Estaciones generadoras de energía y otras instalaciones de utilidad pública necesarias en una emergencia. Estructuras auxiliares necesarias para la operación de aquellas de Categoría IV durante una emergencia (incluyendo pero no limitado a torres de comunicación, tanques de almacenamiento de combustible, torres de refrigeración, estructuras de sub-estaciones de electricidad, tanques de agua para incendio u otras estructuras de alojamiento o soporte de agua, otros materiales o equipamiento para combatir el fuego. Torres de control de aviación, centros de control de tráfico aéreo y hangares de emergencia. Instalaciones de almacenamiento de agua y estructuras de bombeo requeridas para mantener la presión de agua para combatir incendios. Edificios y otras estructuras con funciones criticas de defensa nacional.	IV

Categoría	I
1	0,87
п	1,00
III	1,15
IV	1,15

Utilizamos Categoría II

I = 1

- 3. Se determinan para cada dirección de viento una categoría o categorías de exposición
- y los coeficientes de exposición para presión dinámica Kz o Kh, según corresponda, de

acuerdo con el artículo 5.6.

La categoría de exposición que seleccionamos es la **Exposición B**, donde la misma detalla lo siguiente:

Exposición B: Áreas urbanas y suburbanas, áreas boscosas, o terrenos con numerosas obstrucciones próximas entre sí, del tamaño de viviendas unifamiliares o mayores. El uso de esta categoría de exposición está limitado a aquellas áreas para las cuales el terreno representativo de la Exposición B prevalece en la dirección de barlovento en una distancia de al menos 500 m ó 10 veces la altura del edificio u otra estructura, la que sea mayor.

4. Se determina un factor topográfico Kzt de acuerdo con el artículo 5.7.

El factor topográfico tiene en cuenta lomas, escarpas y colinas aisladas. Para nuestro caso puede omitirse.

5. Se determina un factor de efecto de ráfaga G o Gf, según corresponda, de acuerdo con el artículo 5.8.

Para determinar este factor necesitaremos saber si la estructura es rígida o flexible de acuerdo a la clasificación mencionada en la norma:

Estructura rígida: Frecuencia natural > 1Hz

Estructura flexible: Frecuencia natural ≤ 1Hz

Se procederá al cálculo de la frecuencia de las partes más críticas.

Calculo de la frecuencia natural del sistema:

Eie:

$$W = \sqrt{\frac{K}{m}}$$
 (1)

$$F = K X \tag{2}$$

Según manual Dubbel (pag 489, caso 12)

$$F = \frac{8EJ}{l^3}X$$

Donde:

$$K = \frac{8EJ}{I^3} \tag{3}$$

Por otro lado:

$$J_{xx} = \frac{\pi(D^4 - d^4)}{64}$$
 (4); $E = 2.100.000 \frac{kg}{cm^2}$ (5) $l = \frac{150}{2} cm$ (6)

Reemplazando las ecuaciones (4), (5) Y (6) dentro de (3) y suponiendo valores aproximados de diámetro internos y externo del caño obtenemos que:

$$K = 5432984.59 \frac{N}{m}$$

Con este valor de K y la masa de la estructura que vale:

$$m = \frac{P}{g} \cong \frac{1000}{9.8} \frac{N * s^2}{m} = 100 \, kg$$

La frecuencia natural vale entonces:

$$W = \sqrt{\frac{K}{m}} = \sqrt{\frac{(5432984,59 \, N/m)}{(100 \, kg)}}$$

$W = 1464, 5 \text{ hz} \ge 1 \text{Hz}$

Soporte trasero:

$$W = \sqrt{\frac{K}{m}}$$
 (1)

$$F = K X \tag{2}$$

Según manual Dubbel (pag 489, caso 12)

$$F = \frac{8EJ}{h^3}X$$

Donde:

$$K = \frac{8EJ}{h^3} \tag{3}$$

Por otro lado:

$$J_{xx} = \frac{\pi(D^4 - d^4)}{64}$$
 (4); $E = 2.100.000 \frac{kg}{cm^2}$ (5) $h = 250cm$ (6)

Reemplazando las ecuaciones (4), (5) Y (6) dentro de (3) y suponiendo valores aproximados de diámetro internos y externo del caño obtenemos que:

$$K = 23834042 \frac{N}{m}$$

Con este valor de K y la masa de la estructura que vale:

$$m = \frac{P}{g} \cong \frac{2000}{9.8} \frac{N*s^2}{m} = 200 \text{ kg}$$

La frecuencia natural vale entonces:

$$W = \sqrt{\frac{K}{m}} = \sqrt{\frac{23834042 \text{ N/m}}{(200 \text{ kg})}}$$

$$W = 2169 \text{ hz} \ge 1 \text{Hz}$$

La estructura es rígida, por lo que se adopta:

Factor Efecto de Ráfaga para estructuras rígidas:

G = 0.85

6. Se determina una clasificación de cerramiento de acuerdo con el artículo 5.9.

No consideramos este ítem, ya que nuestra estructura no es un edificio.

7. Se determina el coeficiente de presión interna GCpi, de acuerdo con el artículo 5.11.1.

No consideramos este ítem, ya que nuestra estructura no es un edificio.

8. Se determinan los coeficientes de presión externa Cp o GCpf, o los coeficientes de

fuerza Cf, según corresponda, de acuerdo con los artículos 5.11.2. ó 5.11.3. respectivamente.

De tabla 11, obtuvimos el Cf, teniendo en cuenta el tipo de estructura a realizar, y sus dimensiones.

A nivel del terreno		Sobre el nivel del terreno		
v	C,	M/N	C,	
≤ 3	1,2	≤6	1,2	
5	1,3	10	1,3	
8	1,4	16	1,4	
10	10 1,5		1,5	
20	1,75	40	1,75	
30	1,85	60	1,85	
≥ 40	2,0	≥ 80	2,0	

Consideramos la altura de la estructura más la del edificio (9+3 m) y el ancho de la misma (3 m)

Relación
$$v = \frac{12}{3}$$

$$Cf = 1.3$$

9. Se determina la presión dinámica qz o qh, según corresponda, con el artículo 5.10.

$$qz = 0.613 \, Kz \, Kzt \, Kd \, V^2 I \, \frac{N}{m^2}$$

Despreciando Kz, Kzt y Kd.

$$qz = 0.613 \, 50^2 \, 1$$

$$qz = 1532.5 \; \frac{N}{m^2}$$

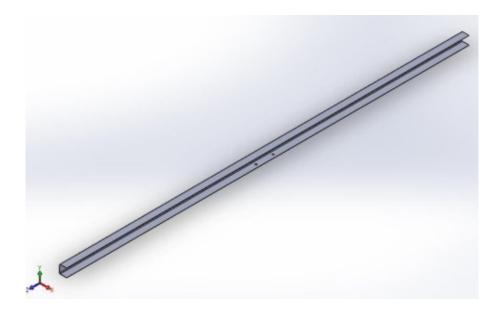
10. Se determina la carga de viento de diseño p o F de acuerdo con los artículos 5.12. y 5.13., según corresponde:

$$F = qz G Cf Af$$

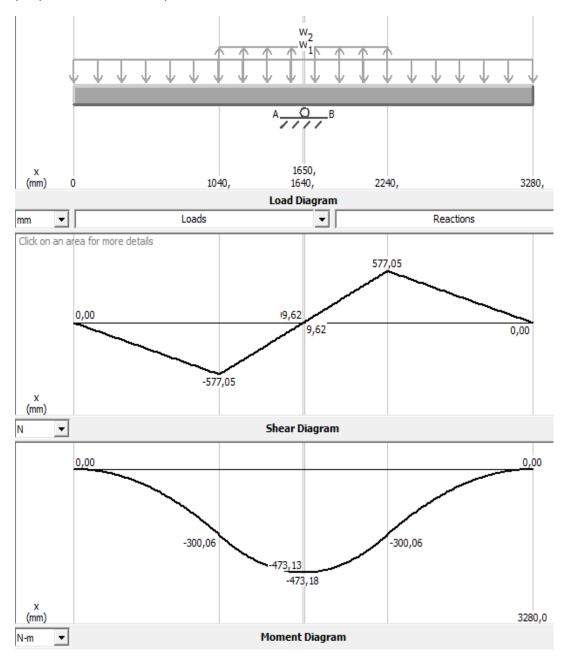
Donde:

G = 0.85

Cf = 1.3


Af= Área proyectada

$$\frac{F}{Af} = 172.8 \frac{Kg}{m^2}$$

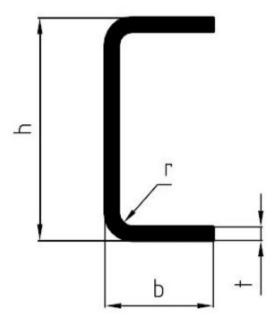

DIMENSIONAMIENTO, CÁLCULO Y ELECCIÓN DE COMPONENTES MECÁNICOS

Cálculo de parrillas:

La carga a considerar para el cálculo de la parrilla es la suma de la componente del viento más el peso de los paneles, ambas proyectadas de forma perpendicular a la superficie de estos.

$$Mf = 473,18 \text{ N.m} = 4826 \text{ kg.cm}$$

 $\sigma adm = 1300 \frac{kg}{cm^2}$, SAE 1010 Acero Galvanizado.


$$\frac{Mf}{Wxx} = \sigma adm \to Wxx = \frac{Mf}{\sigma adm}$$

$$Wxx = \frac{4826 \text{ kg. cm}}{1300 \frac{\text{kg}}{\text{cm}^2}}$$

$$Wxx = 3.71 cm^3$$

Calculamos el módulo resistente del perfil a utilizar para la parrilla. En nuestro caso utilizaremos un perfil C galvanizado, el cual se comprará en barras de 6 metros.

Procederemos al cálculo del módulo resistente de forma "manual" debido a que los normalizados no son apropiados para nuestro caso.

El momento de inercia total se calcula de la siguiente manera:

Llamando Ixx1, Ixx2 e Ixx3 a los momentos de inercias de los rectángulos que componen el perfil U.

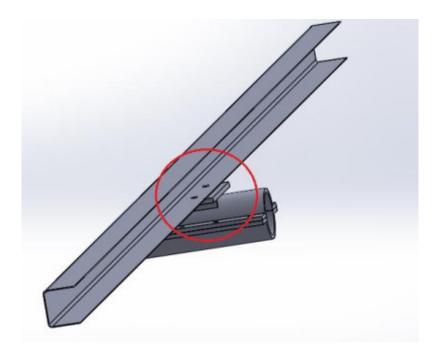
$$Ixx1 = Ixx2 = b * \frac{e^3}{12} + b * e * \left(\frac{h}{2} - \frac{e}{2}\right)^2$$
 (rectángulos superior e inferior)
$$Ixx3 = b^3 * \frac{e}{12} \text{ (rectángulo central)}$$

$$Ixxtotal = Ixx1 + Ixx2 + Ixx3$$

$$Wxx = \frac{Ixxtotal}{\frac{h}{2}}$$

Estos valores son ingresados a una tabla Excel, donde se colocan los valores de h, b y e para verificar si Wxx cumple con lo requerido.

h	b	е	e1	lxx1	lxx2	lxx3	lxxt	h/2	wxx	wxx
mm	mm	mm	mm	mm^4	mm^4	mm^4	mm^4	mm	mm^3	cm^3
80	50	2	2	152133,333	20833,3333	152133,333	325100	40	8127,5	8,1275
Atotal	mm^2	352								
	m^2	0,000352								
Densidad	kg/m^3	7930								
Peso	kg/m	2,79136								
largo parrilla	m	3,28								
peso c parrilla	kg	9,1556608								


Como se cumple que el módulo resistente del material es mayor al solicitado, es decir:

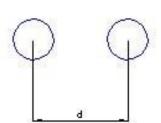
$$8.1275 \ cm^3 \ge 3.71 \ cm^3$$

Hemos adoptado un perfil C con las siguientes características:

- h (altura)= 80 mm
- b (ancho)= 50 mm
- e (espesor)= 2 mm
- I (largo)= 3280 mm
- N (número de parillas) = 6

Cálculo de los bulones de sujeción:

Los cálculos se basan en la utilización de dos tornillos de 3/8' de diámetro.


Verificación:

$$Mf = \sigma * W$$

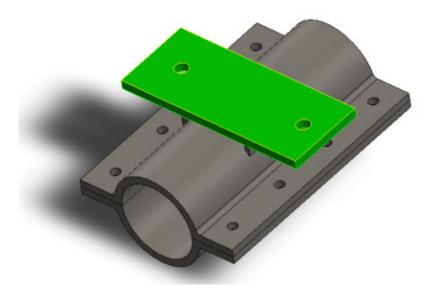
$$I = \sum S * d^2$$
$$I = 0.44 * 14^2$$

$$I = 86 \ cm^4$$

$$W = \frac{I}{d} = \frac{86}{14} = 6.14 \ cm^3$$

d = 14 cm

$$\sigma = \frac{Mf}{W} = \frac{8200}{6.14} \frac{Kgcm}{cm^3} = 1335.5 \frac{kg}{cm^2}$$


GRADO SAE	ACERO	DIÁMETRO TORNILLO	FLUENCIA (N/mm2)	ROTURA (N/mm2)
1	Bajo carbono	1/4 a 1-1/2	227,6	413,8
2	Bajo carbono	1/4 a 3/4	379,3	510,3
2	Bajo carbono	3/4 a 1-1/2	227,6	413,8
3	Acero al carbon trabajado en	1/4 a 1-1/2	586,2	758,6
,	frio	> 1-1/2	551,7	689,7
4	Acero al carbono	1/4 a 1-1/2	689,7	793,1
Acero al carbon templado y		1/4 a 1-1/2	634,5	827,6
3	revenido	> 1-1/2	558,6	724,1
5.1	Acero al carbon templado y revenido	< 3/8	724,1	917,2
5.2	Acero al carbon templado y revenido	1/4 a 1	634,5	827,6
7	Acero aleado templado y revenido -Laminado-	1/4 a 1-1/2	793,1	917,2
8	Acero al carbon templado y revenido	1/4 a 1-1/2	896,6	1034,5
8.2	Acero al carbon templado y revenido	1/4 a 1-1/3	896,6	1034,5
ALLEN	Acero aleado templado y revenido -Laminado-		965	1240

Tornillo Grado SAE 5 galvanizado:

$$\sigma = 634.5 \frac{N}{mm^2} = 6465 \frac{Kg}{cm^2}$$

Utilizando tornillo Grado SAE 5 Galvanizado de 3/8' de diámetro, se observa que verifica los anteriores cálculos.

Cálculo de espesor de chapa sujeta parrilla:

$$Mf = Ftornillo * 3cm$$

 $Mf = 587.4 kg * 3cm$
 $Mf = 1762 kg.cm$

Seleccionamos espesor de chapa de 3/8"=0.952 cm

$$W = \frac{b h^2}{6} = \frac{10cm * .0.952^2}{6} = 1.51 cm^3$$


$$\sigma = \frac{Mf}{W} = \frac{1762 Kgcm}{1.51 cm^3}$$

$$\sigma = 1166.5 \frac{kg}{cm^2}$$

Se verifica que:

$$\sigma = 1166.5 \frac{kg}{cm^2} < 1300 \frac{kg}{cm^2}$$

Cálculo Portaparrilla:

Mt = P * d

$$Mt = 50 \ kg * 164 \ cm = 8200 \ kgcm$$

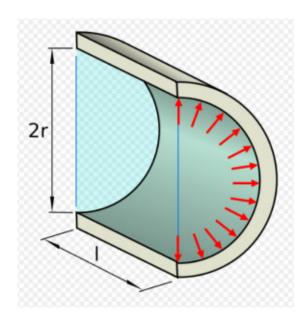
$$Mt = Fr * r$$

$$\Rightarrow Fr = \frac{Mt}{r} = \frac{8200 \, Kgcm}{4 \, cm} = 2050 \, kg$$

$$N = \frac{Fr}{u} = q * 2\pi r$$

Donde μ es igual al coeficiente de rozamiento, tomado de forma aproximada de diferentes fuentes, en un valor de 0.25.

	Coeficiente de Fricción		
Material de la placa Superior	Material del Carril	No lubricado	Lubricado
Acero inoxidable o acero	Acero inoxidable o acero	0,35	0,20
Acero inoxidable o acero	UHMW	0,25	0,15
Plástico Dirigido	Acero inoxidable o acero	0,25	0,15
Plástico Dirigido	UHMW	0,25	0,12
Plástico Dirigido (Baja Fricción)	Acero inoxidable o acero	0,17	0,12
Plástico Dirigido (Baja Fricción)	UHMW	0,18	0,12


$$\Rightarrow q = \frac{Fr}{\mu \ 2\pi r * l} = \frac{2050}{0.25 * 2 * \pi * 4} \frac{kg}{cm^2}$$
$$q = \frac{326.3}{l} \frac{kg}{cm^2}$$

Donde q es igual a la fuerza por unidad de área sometida a presión.

Utilizando la fórmula de cálculo de recipiente a presión, también denominada como fórmula de la caldera, cuya demostración fue realizada en elementos de máquinas, materia de 4to año:

$$T = q r l$$

$$T = 326.3 \frac{kg}{cm} * 4 cm = 1305 kg$$

Medida de tornillo adoptado:

$$\frac{3''}{8} = 0.956 \ cm \qquad \qquad \Omega = 0.44 \ cm^2$$

$$Ftornillo = \sigma * \Omega$$

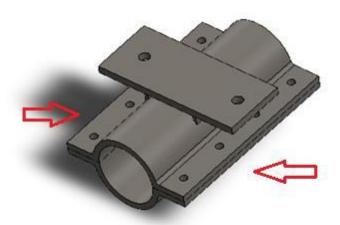
 $\sigma = Tensi\'on$ admisible del material del tornillo

$$Ftornillo = 1200 \frac{kg}{cm^2} * 0.44 \text{ cm}^2$$

$$Ftornillo = 528 \, kg$$

Cantidad de tornillos:

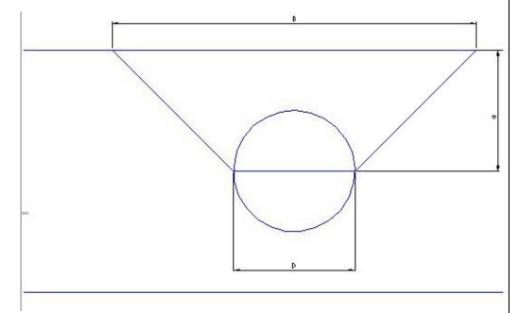
$$N = \frac{T}{Ftornillo}$$


$$N = \frac{1305}{528} \frac{kg}{kg}$$

$$N = 2.47 \approx 3 tornillos$$

Como debe ser simétrico de ambos lados del eje, se adopta el número par siguiente.

$$N = 4 tornillos$$


Cálculo solapas:

$$Mt = P * z$$

$$Mt = \frac{1305}{4} \frac{kg}{N} * 2 cm = 652.5 Kgcm$$

Con chapa de 5/16'

$$b = D + 2a = 0.8 cm + 2.2 cm = 4.8 cm$$

Adoptando chapa de espesor 5/16" = 0.793 cm

$$W = \frac{b \ h^2}{6} = \frac{4.8 * .0793^2}{6} = 0.52 \ cm^3$$

$$\sigma = \frac{Mf}{W} = \frac{652.5}{0.52} \frac{kgcm}{cm^3} = 1255 \frac{kg}{cm^2}$$

Si bien la tensión admisible del material es 1300 Kg/cm², el espesor de la chapa cumple debido a que se está utilizando un coeficiente de seguridad sobre la tensión de fluencia.

Otra solución más práctica, pero tampoco necesaria en este caso, es la colocación de la arandela, para aumentar b y por lo tanto el módulo resistente. Esto se produce porque la fuerza del tornillo es aplicada a una superficie mayor sobre la chapa.

Teniendo en cuenta que debemos colocar cuatro tornillos de cada lado de la abrazadera, estimamos que un largo de:

$$l_{abrazadera} = 4 * 3 * Dtornillo = 4 * 3 * 0.8 cm$$

$$l_{abrazadera} = 9.6 cm$$

Cálculo de soldadura:

$$F = \frac{Mt}{b} = \frac{8200}{8} \frac{kgcm}{cm} = 1025 \ Kg$$

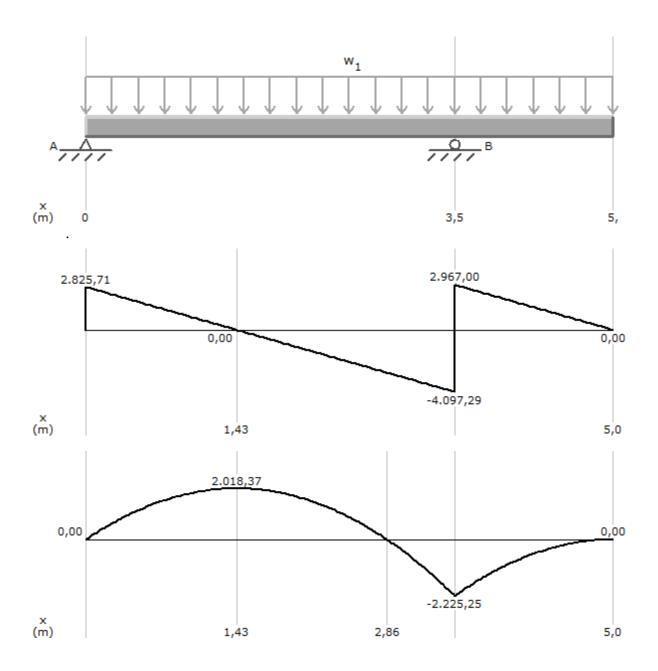
Utilizando chapa de espesor 3/16' = 0.478 cm

$$e = 0.5 * 0.478 cm = 0.25 cm$$


$$\sigma_{adm.sold} = e * \frac{\sigma_{sold}}{coef.seg.} \frac{Kg}{cm^2}$$

$$\sigma_{adm.sold} = 0.25 \ cm * \frac{1300}{2} \frac{Kg}{cm^2} = 162.5 \frac{kg}{cm^2}$$

Largo del cordón de soldadura:


$$l = \frac{1025}{162.5} \frac{kg}{kgcm} = 6.3 \ cm \approx 7 \ cm$$

Cálculo del eje:

$$\sigma_a = \frac{\sigma_f}{CS}$$

$$\sigma_a = 1300 \, kgf/cm^2$$

Diagramas Característicos:

$$M_f = 2225 \ Nm = 22680.93 \ Kgfcm$$

Cálculo del módulo resistente:

$$W = \frac{M_f}{\sigma_a}$$

$$W = \frac{22680.93 \, Kgf. \, cm}{1300 \, kgf/cm^2}$$
$$W = 17.5 \, cm^3$$

A continuación, se utiliza el módulo resistente del perfil elegido:

$$W = \frac{I}{R}$$

$$W = \frac{\frac{\pi(D^4 - d^4)}{64}}{\frac{64}{D/2}}$$

$$W = \frac{\pi}{32}D^3(1 - \frac{d^4}{D^4})$$

$$W \le 0.1.(D^3 - D^3 \cdot \frac{d^4}{D^4})$$

Probando con secciones de la tabla de perfiles de tubos de acero galvanizado, vemos que la sección de 76.2 mm de diámetro exterior y 2,00 mm de espesor corrobora la desigualdad.

$$17.5cm^3 \le 0.1. \left((76.2mm)^3 - (76.2mm)^3 \cdot \frac{72.2^4}{76.2^4} \right) = 43.43cm^3$$

P. paneles	kgf	180	largo eje	m	5
parrilla	kgf	27	D	cm	7.62
Portaparrilla	kgf	54	di	cm	7.22
eje	kgf	12	espesor	cm	
F peso total	kgf	273			
F peso perp.	kgf	236.424935	Weje	43.4374986	
F peso axial		136.5			
Fuerza de viento	kgf	1543.5			
Fuerza de viento perp.		771.75			
Fuerza de viento axial		1336.71021			
F total perp		1008.17494			
F total perp por metro	Kgf/m	201.634987			
F total perp por metro	N/m	1978.03922			
F total axial	Kgf	1473.21021			

Perfil a elegir:

Sección anular de 76.2 mm y espesor de 2 mm.

Cálculo de soporte trasero B:

Esto soporte estar conformado por un trípode de caños, que absorberán tanto esfuerzos normales y axiales al eje.

Las reacciones en los vínculos anteriormente calculadas (perpendiculares al eje) son las siguientes:

$$FA = 287.74 \, kg$$

$$FB = 719.37 \ kg$$

Descomponemos fuerza perpendicular al eje en coordenadas x, y en los vínculos.

La fuerza en dirección x se asocia toda al vínculo B (trípode) ya que este es el que la absorberá.

$$\sum Fx = 287.74 \ kg * sen 30 + 719.37 * sen 30$$
$$\sum Fx = 503.55 \ kg$$

$$FyA = 287.74 \ kg * \cos 30$$

 $FyA = 249.19 \ kg$
 $FyB = 719.37 \ kg * \cos 30$
 $FyB = 623 \ kg$

El momento de vuelco Mv que será:

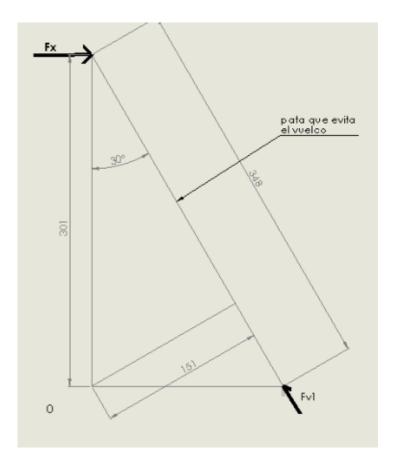
$$\sum M0 = Mv = Fx * Hb$$

Donde Hb= altura del vínculo desde el suelo

$$Mv = 503.55 \ kg * 300 \ cm$$

 $Mv = 151065 \ kgcm$

Este Momento de vuelco será absorbido por una de las patas (la que evitaría el vuelco de la estructura)


$$Mv = Fv1 * Ds$$

Para el pandeo consideraremos las siguientes fuerzas:

$$Fv1 = \frac{Mv}{Ds}$$

Donde **Ds** es distancia perpendicular entre la reacción en el suelo de la pata mencionada y el punto donde se consideró la suma de momentos.

Según la siguiente figura el valor de la distancia Ds es 151 cm

$$Fv1 = \frac{151065 \ kg. \ cm}{151 \ cm}$$

$$Fv1 = 1000 kg$$

También consideraremos la fuerza estática

$$Fv2 = \frac{FyB}{n}$$

Donde n es el número de patas.

$$Fv2 = \frac{623 \, kg}{3}$$

$$Fv2 = 207.7 kg$$

La fuerza total a considerar para el pandeo será entonces:

$$Ft = Fv1 + Fv2$$

$$Ft = 1000 \ kg + 207.7 \ kg$$

$$Ft = 1207.7 \ kg$$

La fuerza crítica de pandeo es determinada por la ecuación de Euler

$$F_{crit} = \frac{\pi^2 * E * I}{S^2}$$

S es la luz de pandeo que para nuestro caso es 0,7 de la longitud del caño.

Las cargas críticas para diferentes tipos de caños cuadrados se observan en la siguiente tabla.

espesor cm	Lext cm	sup	J	E	L	S	Pcrit
cm	cm	cm^2	(cm^4)	kg/cm^2	cm		
0.2	8	6.24	63.3152	2100000	348	243.6	22114.2622
0.2	6	4.64	26.0458667	2100000	348	243.6	9097.10663
0.2	5	3.84	14.7712	2100000	348	243.6	5159.1749
0.2	4	3.04	7.33653333	2100000	348	243.6	2562.44981

Optamos por utilizar un caño estructural 50X50 de espesor 2 mm.

Como cada barra de caño estructural tiene una medida de 6m, necesitamos adquirir 3 de estas. Los restos de caño no utilizados, se aprovecharán para la fabricación del soporte delantero. Esto se menciona posteriormente.

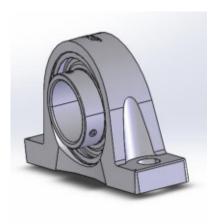
Verificando que:

$$Ft = 1207.7 \ kg < F_{crit} = 5159.17 \ kg$$

Cálculo de soporte delantero A:

Este soporte estará compuesto por una estructura que solo absorberá esfuerzos en dirección normal al eje.

Por razones anteriormente mencionadas, decidimos realizar la base delantera con caños estructurales galvanizados 50x50x2mm, iguales a los utilizados en el soporte trasero. Esto nos permite la posibilidad de optimizar recursos, y reducir costos.


Haciendo una comparación de esfuerzos entre el soporte trasero B y el delantero A encontramos que en el soporte delantero A:

- La reacción es menor
- La longitud de los caños es menor.
- No tenemos momento de vuelco.
- Existen mayor cantidad de puntos de apoyo,

Como las condiciones son mucho más favorables que para el cálculo anterior, se omitirá la verificación.

Cálculo de rodamientos:

Los rodamientos con sus respectivos soportes fueron seleccionados teniendo en cuenta la necesidad de que absorban desalineaciones por las irregularidades del terreno y para facilitar el montaje. Además, se optó por dimensiones que se adapten a nuestro sistema.

Para verificar los rodamientos seleccionados se tendrán en cuentas las fuerzas radiales y axiales que estos soportaran, dichas fuerzas fueron ya determinadas en "el cálculo del eje" de este informe. Los valores de estas fuerzas son:

$$Fr \approx 10KN$$

$$Fa \approx 14.73 \, KN$$

El rodamiento seleccionado es autocentrante de bolas cuyas dimensiones y datos técnicos se adjuntan al final de este informe

Debido a que el rodamiento tiene una velocidad de giro menor a rpm, se podrá verifica el mismo utilizando la **capacidad de carga estática.**

$$C0 = s0 P0$$

$$P0 = X0 Fr + Y0 Fa$$

Los valores de X0 e Y0 para los rodamientos rígidos de una hilera de bolas.

$$P0 = 0.6 Fr + 0.5 Fa$$
; es decir que $X0 = 0.6 e Y0 = 0.5$

Debemos tener en cuento que la carga máxima axial que soportara el rodamiento no debe ser mayor a la mitad de la carga radial que soporta este. Esto es:

$$Fa \leq 0.5 Fr$$

La capacidad de carga estática de nuestro rodamiento es:

$$C0 = 53 \, KN$$

El valor del coeficiente de seguridad adoptado:

$$S0 = 1.5$$

Además, teniendo en cuenta que

$$Fa = 0.5 C0$$

Tenemos que:

$$P0 = 0.6 Fr + 0.5 Fa$$

$$\frac{C0}{S0} = 0.6 \, Fr + 0.5 * 0.5 \, C0$$

$$\frac{53}{1,5} = 0.6 * Fr + 0.5 * 0.5 * 53$$

$$Fr = 36.8 \, KN$$

$$Fa = 0.553 = 26.5 KN$$

Vemos que el rodamiento claramente verifica las cargas.

Elección de motorreductor:

Cálculo del par tomando una fuerza externa que requiera mayor solicitación:

$$T = F * d$$

Consideramos colocar una fuerza de 20 kg a 1 metro de distancia del eje, este cálculo es por si se pudiese llegar a presentar alguna carga por algún motivo extraordinario.

$$T = 20kg * 1m = 20kgm$$

Con este valor seleccionamos un motorreductor de las siguientes características

Cálculo del Par para vencer la inercia del sistema:

El seguidor tiene un rango de giro de 90º (±45º) y el periodo durante el que va a girar será de 10 horas. Esto nos da que deberá girar 9º por hora.

Adoptamos mover 3º cada 20, pero obviamente el movimiento se hará en un tiempo mucho menor. Lo que aclaramos aquí es que van a existir 3 movimientos por hora.

Teniendo en cuenta que el motor es de 1375 rpm con un reductor de 1:1245

Velocidad nominal del motor [1/min]: 1375

Velocidad de salida [1/min]: 1.1

Índice de reducción total: 1245

Par de salida [Nm]: 1050

Potencia del motor [kW]: 0.18

La velocidad angular del eje:

$$w = \frac{1380}{1245} * \frac{\pi}{30} = 0.116 \frac{1}{s}$$

$$w = \frac{\Delta \emptyset}{t}$$

$$\rightarrow t = \frac{\Delta \emptyset}{w} = \frac{\frac{6^{\circ}\pi}{180}}{0.116\frac{1}{s}} = 0.9 \text{ s}$$

Por otro lado:

$$T = I \propto$$

$$\rightarrow I = m * r^2 (1)$$

Donde m = masa del sistema de paneles, parrillas, portaparrillas.

m=273kg

Cálculo de radio de giro:

$$r = \sqrt{\frac{I_r}{m}}$$

$$I_r = \frac{b * h^3}{12} * e * \delta$$

$$m = b * h * e * \delta$$

 δ =Densidad del material, e = espesor, b= alto h= ancho del sistema

Reemplazando estas dos fórmulas en el radio de giro, nos queda:

$$r = \sqrt{\frac{b * h^3}{12} * e * \delta} = \sqrt{\frac{h^2}{12}}$$

Sabemos que h es el ancho del sistema, es decir el ancho de dos paneles.

h = 3.28 m

$$r = \sqrt{\frac{3.28^2}{12}} = 0.94m$$

Una vez calculado el radio de giro, volvemos a la ecuación (1)

$$I = m * r^2 = 273 \ kg * 0.94^2 m$$

$$I = 241.22kgm$$

Ahora podremos realizar el cálculo del torque necesario para vencer la inercia del sistema:

$$T = I \propto$$

Donde se toma un ∝:

$$\propto = \frac{\Delta w}{t} = \frac{0.116 \frac{1}{s}}{3 s} = 0.038 \frac{1}{s^2}$$

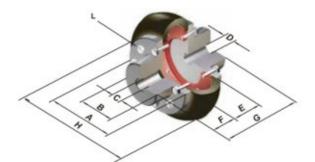
Donde tomamos un tiempo de aceleración de 3 s

$$T = 241.22 \ kgm * 0.038 \frac{1}{s^2}$$

$$T = 9.16Nm = 0.916kgm$$

Podemos corroborar que el motor seleccionado verifica para las dos condiciones anteriormente desarrolladas.

Selección acople:


Para acoplar el motorreductor con el eje principal, se seleccionará un Acople tipo "gummi". La sección se realizará según el catálogo de estos componentes, teniendo en cuenta la potencia a transmitir, la velocidad (rpm) y los diámetros de los elementos a acoplar.

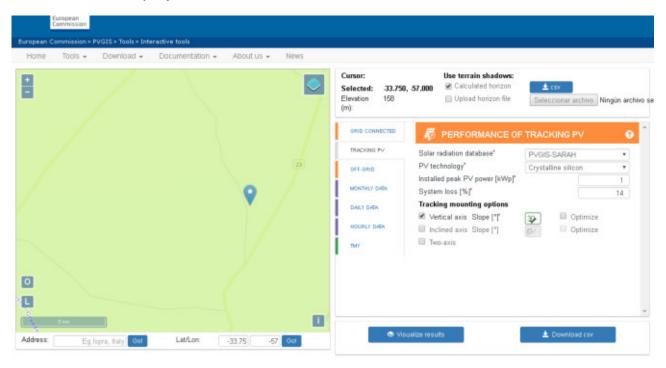
Modelo convencional

B - Ø Cuello Cubo
C - Ø Máx. aleasaje
D - Ø Agujero piloto
E - Ancho centro
F - Ancho cubo
G - Long. total
H - Ø Centro
L - Tipo tornillo

CON 2 CUBOS NORMALES (fig. 1)

TA	0	tΛ	
1.0	۱D	Ľ	

ACOPLE CON CUBO	NORMAL												BULONES				
MODELO	Torq. Nom. Nm	Angulo Torsión (°)	(1) Peso (Kg.)	Gd2 (Kg m2)	A	В	C Máx	D Min	E	F	G	н	Nr.	L- (Cab	he	
A-20	38	2°	1.05	0.0017	74	36	20	10	30	25	80	95	12	1/4	×	3/4	
A-25	56	5°	1,09	0,0018	74	36	23	10	30	25	80	95	12	1/4	х	1/4	
A-30	82	20	2,40	0,0094	96	49	30	10	40	35	110	127	16	3/10	×	1/4	
A-35	113	4°	2.65	0.0098	96	49	32	10	40	35	110	127	16	1/10	×	1/4	
A-45	250	3°	5.00	0,0382	127	70	40	15	50	45	140	167	20	1/10	×1		
A-50	420	6°	5.32	0,0402	127	70	46	15	50	45	140	167	20	1/10	x 1		
A-60	620	5°	12,50	0,1065	169	100	55	25	65	60	185	224	24	76	×1	74	
A-70	1170	90	13,30	0.1593	169	100	65	25	65	60	185	224	24	7,	× 1	1/4	
A-80	1550	5°	24,90	0,594	218	116	75	30	90	80	250	302	20	1/2	× 1	31	

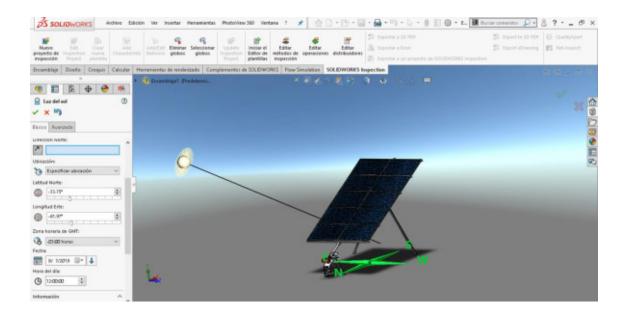

CÁLCULOS ENERGÉTICOS DE LA INSTALACIÓN

El objetivo de esta sección es obtener el porcentaje de rendimiento en la generación que se obtiene con un sistema de seguimiento solar sobre uno fijo. También se calculará la energía generada. Estos datos, junto al costo de los componentes y energía, nos permitirán un posterior cálculo económico y de la amortización del sistema.

Sistema de información solar

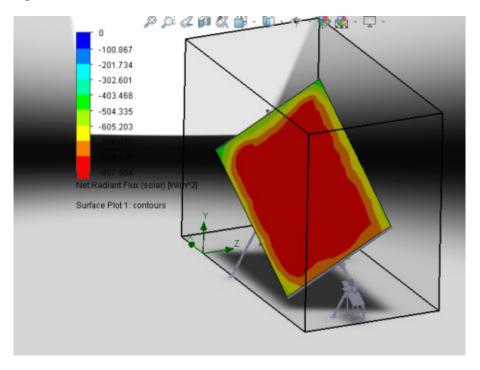
Para obtener datos de radiación podemos recurrir al **Sistema de Información Geográfica Fotovoltaica (PVGIS)** de la Comisión Europea o bien a datos de otra herramienta informática que nos provee la pagina oficial de la NASA.

En este caso optamos por la primera fuente de información ya que nos permite extraer datos de seguidores solares y paneles fijos para su posterior comparación. Esta fuente de información es la más utilizada en el cálculo de viabilidad de proyectos solares.

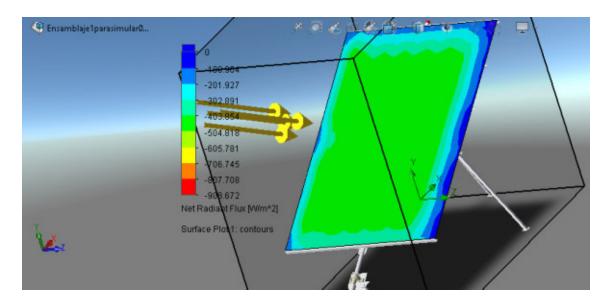


Como primer paso será necesario especificar la latitud y longitud del lugar.

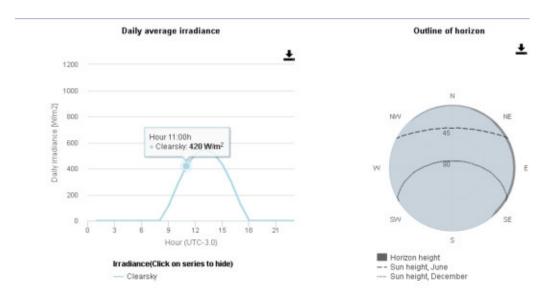
Luego tenemos la opción de datos de seguimiento solar en donde especificaremos el o los ejes de rotación y su inclinación.


En la opción de "datos sistemas de inclinación fijo" establecemos un Angulo de 30° para luego poder comparar el beneficio que nos va a representar nuestra instalación con respecto a una fija.

Adicionalmente agregaremos los datos de radiación obtenidos por un seguidor solar de dos ejes. Otra manera más precisa, pero más laboriosa de obtener datos de radiación es a través de una simulación en SolidWorks. Para ello el software permite ingresar los datos de ubicación del lugar (Latitud, longitud, zona horaria, fecha y hora) para una posterior simulación y salida de datos. En la siguiente imagen se observa el ingreso de los datos anteriormente mencionados.


Para solapar resultados simularemos la radiación de una estructura fija y nuestro diseño de seguimiento en SolidWorks para el momento del día en el cual el seguidor empieza a moverse.

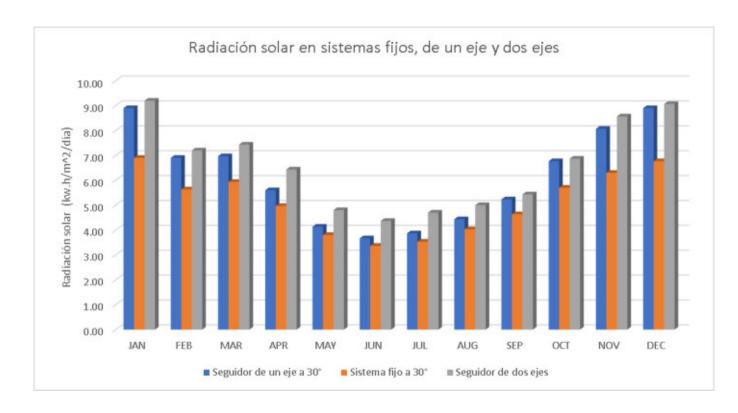
Para el día 4/7/19 a la 10:06 el seguidor se encuentra a un ángulo de seguimiento de 45° a punto de iniciar su movimiento. Los valores arrojados de la simulación son los siguientes



Dando un valor promedio de 899 w/m2 sobre la placa

Para el caso de un sistema fijo inclinado a 30° el promedio de radiación sobre la placa es 395 w/m2 y su distribución se muestra a continuación

El **Sistema de Información Geográfica Fotovoltaica (PVGIS)** de la Comisión Europea nos arroja para el mismo sistema fijo a 30° los siguientes valores



Como conclusión a estas simulaciones podemos decir que el sistema de simulación SolidWorks permite visualizar la distribución de radiación de forma precisa en todos los puntos del sistema simulado. Como contrapartida a esto, el software requiere mucho tiempo para la simulación, haciéndose muy complicado el análisis para diferentes momentos en el año. Los valores promedios arrojados son muy similares a los proporcionados por datos satelitales.

Para el cálculo energético utilizaremos, entonces, el Sistema de Información Geográfica Fotovoltaica (PVGIS)

Resultados

LAT	LON	PARAMETER		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	PROMEDIO ANUAL
-33.74999	-61.95999	Seguidor solar de un eje a 30°	kwh/m^2/mes (horas picos mensuale	267.00	207.00	209.00	168.00	124.00	110.00	116.00	133.00	157.00	203.00	242.00	267.00	183.58
			kwh/m^2/día (Horas picos diarias)	8.90	6.90	6.97	5.60	4.13	3.67	3.87	4.43	5.23	6.77	8.07	8.90	6.12
		Sistema fijo a 30°	kwh/m^2/mes (horas picos mensuale	207.00	169.00	178.00	149.00	114.00	101.00	106.00	121.00	139.00	171.00	189.00	203.00	153.92
			kwh/m^2/día (Horas picos diarias)	6.90	5.63	5.93	4.97	3.80	3.37	3.53	4.03	4.63	5.70	6.30	6.77	5.13
		Seguidor solar de dos ejes	kwh/m^2/mes (horas picos mensuale	276	216	223	193	144	131	141	150	163	206	257	272	197.67
			kwh/m^2/día (Horas picos diarias)	9.2	7.2	7.43333333	6.43333333	4.8	4.36666667	4.7	5	5.43333333	6.8666667	8.56666667	9.06666667	6.59

Comparación de rendimientos

Como podemos observar se obtiene:

 $\frac{6.12}{5.13}=1,1927$, es decir un rendimiento extra del **19,27** % con un seguidor de un eje a 30° con respecto a un sistema fijo a 30°.

 $\frac{6.59}{5.13}$ = 1,2842 , es decir un rendimiento extra del **28,42** % con un seguidor de dos ejes con respecto a un sistema fijo a 30°.

Optando por un sistema de seguimiento de dos ejes la instalación se encarecería mucho por un beneficio de rendimiento extra de solo un 9%.

Energía generada

Todas las cifras de medición para obtener las características de los paneles, como es previsible se realizan en un ambiente controlado en temperatura y radiación. En un laboratorio con 1000W/m2 de radiación y con una temperatura de célula de 25º. Esto ocurre porque a temperatura ambiente, el rendimiento del panel empeora si hace más calor. Un incremento de 20ºC reduce el rendimiento entre un 8 y un 10%.

La irradiación solar viene dada por la cantidad de horas en las que obtendremos una hipotética irradiancia de 1.000 W/m².

Por lo tanto, la energía generada por el sistema vendrá dada por la siguiente ecuación:

$$\mathbf{E}\mathbf{p} = \mathbf{N}.\,\mathbf{P}\mathbf{p}\,\cdot\,\mathbf{H}\mathbf{S}\mathbf{P}\,\cdot\,\mathbf{\eta}$$

Dónde:

N: Cantidad de paneles

Ep = energía generada.

Pp = Potencia nominal del panel.

HPS= horas picos solares diarias.

η es el parámetro de rendimiento global de la instalación fotovoltaica, definido como:

$$\eta = (1 - k_b - k_c - k_v) * \left(1 - k_a * \frac{N}{p_d}\right)$$

Los factores de la ecuación anterior son los siguientes:

- k_b Coeficiente de pérdidas por rendimiento del acumulador:
- 0,05 en sistemas que no demanden descargas intensas.
- 0,1 en sistemas con descargas profundas.
- k_c Coeficiente de pérdidas en el convertidor:
- 0,05 para convertidores senoidales puros, trabajando en régimen óptimo.
- 0,1 en otras condiciones de trabajo, lejos del óptimo.
- k_v Coeficiente de pérdidas varias:

Agrupa otras pérdidas como (rendimiento de red, efecto Joule, etc.).

- 0,05 0,15 como valores de referencia.
- k_a Coeficiente de autodescarga diario:
- 0,002 para baterías de baja autodescarga Ni-Cd.
- 0,005 para baterías estacionarias de Pb-ácido (las más habituales).
- 0,012 para baterías de alta autodescarga (arranque de automóviles).
- p_d Profundidad de descarga diaria de la batería
- N Número de días de autonomía de la instalación

Serán los días que la instalación deba operar bajo una irradiación mínima (días nublados continuos), en los cuales se va a consumir más energía de la que el sistema fotovoltaico va a ser capaz de generar.

Debido a que nuestro sistema es del tipo ON-GRID (no contiene baterías) los coeficientes:

$$k_b = k_a = p_d = 0$$

Siendo entonces:

$$\eta = (1 - k_c - k_v)$$

$$\eta = (1 - k_c - k_v)$$

$$\eta = (1 - 0.05 - 0.1)$$

 $\eta = 0.85$

Universidad Tecnológica Nacional

Proyecto final

Retomando con la ecuación que nos determina la energía, aplicándola a cada mes del año y luego realizando la suma obtenemos la energía total anual.

LON	PARAMETER	UNIDAD	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	
-61.95999	Seguidor sol	kwh/m^2/mes	267.00	207.00	209.00	168.00	124.00	110.00	116.00	133.00	157.00	203.00	242.00	267.00	
		kwh/m^2/día (I	8.90	6.90	6.97	5.60	4.13	3.67	3.87	4.43	5.23	6.77	8.07	8.90	
Rendimiento	0.85														
Potencia nominal de panel	0.28	kw													
Cantidad de paneles	10														
															Energía total anual
Energía		kw.h	635.46	492.66	497.42	399.84	295.12	261.8	276.08	316.54	373.66	483.14	575.96	635.46	5243.14

Como se observa en la tabla el valor de la energía anual que generará el sistema es 5243.14 kwh

DIMENSIONAMIENTO, CÁLCULO Y ELECCIÓN DE COMPONENTES ELÉCTRICOS

Descripción

El equipamiento Eléctrico está conformado por los siguientes componentes seleccionados, la descripción específica de cada elemento esta anexada en el final del proyecto.

Inversor

Omniksol-5K-TL2-3P (Pnom=5KW ca).

Tensión de entrada nom.inversor 640Vcc.

Tensión de entrada máx.inversor 1000 Vcc.

<u>Paneles Fotovoltaicos</u>

10 paneles con Voc=38,6 V Pm=280W c/u , Dimensiones: 1640x992x35 mm, modelo: AS-6P30-280w)

Protectores gaseosos de cc

2 unidades

Protectores gaseosos de ca trifásico

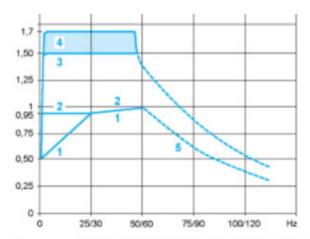
Fusibles de línea 15 A

La corriente máxima del panel esta especificada por el fabricante y es de 8.8 A, el fusible recomendado para esta es de 15 A (Ver características del panel en el anexo)

Cable unipolar de 40 m de longitud

La sección de este cable se determinará luego de la especificación del conexionado de componente.

Variador de velocidad:


Como se explicó en la introducción de este proyecto, el control de la velocidad se puede realizar por dos formas denominadas control escalar (V/f cte.) y el control vectorial.

Los variadores más comunes y económicos del mercado realizan el control por medio escalar. Es por ello por lo que la elección de este componente se realizó en base a este tipo de variadores y en base, también, al cumplimiento de las características de par requeridas por la carga en el rango de velocidades necesario.

El variador seleccionado es el ATV12H018M3: Variador 3 fases 200V 0,18 kW.

La curva de par se muestra a continuación:

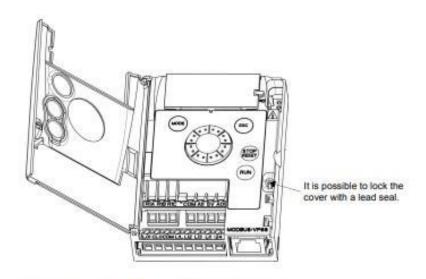
- Motor autoventilado: par útil continuo (1)
- Motor con ventilación forzada: par útil continuo
- Exceso de par transitorio durante 60 s
- Exceso de par transitorio durante 2 s
- Par en sobrevelocidad a potencia constante (2)

En ella se puede observar que a bajas frecuencias el par del motor disminuye, en el peor caso, a la mitad. Esto no es un inconveniente para nosotros ya que el motorreductor seleccionado tiene un par de salida del doble de lo necesario. Además el tiempo de actuación de este no sobrepasaría los 60s, por lo que el par disponible es el de la curva (3) (1.5 veces el par nominal).

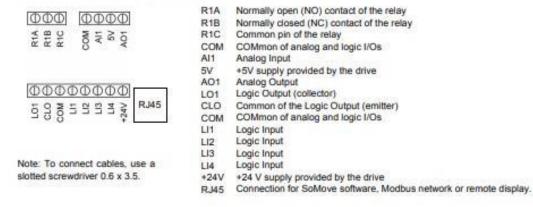
Configuración:

El control de velocidad en este variador puede ser llevado a cabo de 3 formas distintas:

- 1. Mediante entradas digitales y velocidad de referencia por entrada análogica. Por ejemplo:
- Orden de avance LI1 (Entrada digital)
- Orden de Retroceso LI2 (Entrada digital)
- Referencia de Velocidad Al1 (Entrada Analógica)
- 2. Mediante entradas digitales utilizando la función de velocidades preseleccionadas. Por ejemplo:
- L13=10Hz
- L14=15 Hz
- L13+L14= 20 Hz
- 3. Dando orden de marcha por entrada digital y velocidad y sentido de giro por entrada analógica: Por ejemplo:
 - Orden de marcha LI1 (Entrada digital)

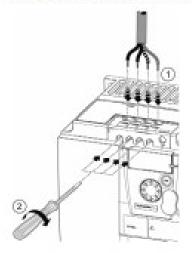

Referencia de Velocidad + sentido de giro A12 (Entrada analógica)

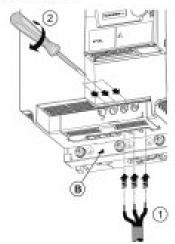
Cabe resaltar que la configuración 2 nos permitirá omitir la necesidad de comprar un módulo de entradas y salidas analógicas cuyo costo ronda en el valor del relé programable.


En el siguiente cuadro se ilustra como se controla la orden de avance, la orden de retroceso y las velocidades de preselección por medio de entradas digitales.

Entradas lógicas LI		4 entradas lógicas asignables, de impedancia 5 kΩ Alimentación + 15 V interna o 24 V externa (mín. 11 V, máx. 30 V). Ajuste de fábrica con tipo de mando 2 hilos en modo de "transición" por motivos seguridad de las máquinas para las gamas E y U: - LI1: marcha adelante, - LI2: marcha atrás, - LI3/LI4: 4 velocidades preseleccionadas, - mandos locales para la gama A. La multiasignación permite combinar varias funciones en una misma entrada (ejemplo: LI1 asignada a marcha adelante y velocidad preseleccionada 2, LI3 asignada a marcha atrás y velocidad preseleccionada 3)
	Lógica positiva	Estado 0 si < 5 V, estado 1 si > 11 V. Tiempo máximo de muestreo: 20 ms.
	Lógica negativa	Disponible por programación únicamente en la gama A Estado 0 si > 11 V o entrada lógica no cableada, estado 1 si < 5 V Tiempo máximo de muestreo: 20 ms

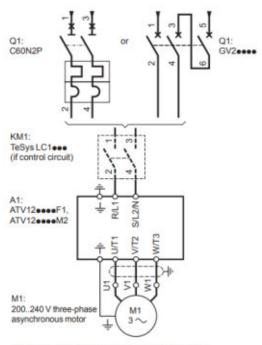
Terminales de control:




Arrangement of the control terminals

Terminales de potencia:

Access to the terminals if you use stripped wire cables



Guardamotor

Sus funciones serán las de:

- Seccionamiento
- Protección contra cortocircuitos
- Protección contra sobrecargas

Seleccionando el **tipo de coordinación 1** (en condición de cortocircuito el material no deberá ocasionar daños a las personas e instalaciones, no será necesario el reemplazo de componentes) las opciones recomendadas por Schneider son las siguientes:

Motor starter with single-phase power supply

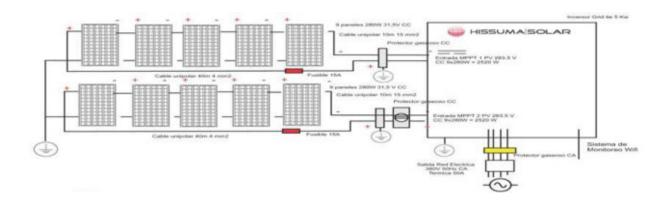
Sinc	ale-pha	se supply volta	ge: 200240 V	50/60 Hz (5)		
0.18	0.25	ATV12H018M2	GV2ME08	2.54	> 100	LC1K09
ı			GV2L08	4	> 100	
			2-pole C60N	6	10	
0.37	0.55	ATV12•037M2	GV2ME14	610	> 100	LC1K09
			GV2L10	6.3	> 100	
			2-pole C60N	10	10	
0.55	0.75	ATV12e055M2	GV2ME14	610	> 100	LC1K09
			GV2L14	10	> 100	
			2-pole C60N	10	10	
0.75	1	ATV12e075M2	GV2ME16	914	> 100	LC1K12
			GVL16	14	> 100	_

Seleccionamos entonces el guardamotor GV2ME08

Conexionado de componentes

Para el conexionado de lo los paneles fotovoltaicos tenemos que tener en cuenta la máxima tensión de entrada que admite el inversor. Como vemos en la siguiente imagen, el inversor cuenta con dos entradas de :

Tensión de entrada nom.inversor 640Vcc.

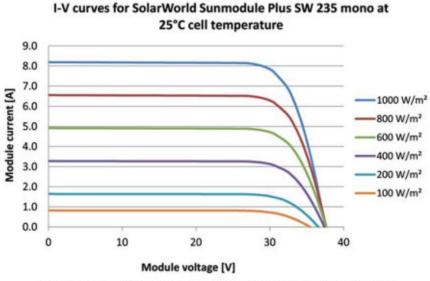


Esto quiere decir que podríamos conectar en serie para cada entrada hasta :

$$\frac{640Vcc}{38,6Vcc} = 16 \ paneles$$

Sin embargo, optamos por equilibrar las tensiones entre las entradas y conectar en serie **5 paneles por cada entrada de CC.**

El esquema de conexión nos quedaría de la siguiente manera:


Sección del cable de 40m

La selección de la sección de este cable estará determinada principalmente por la pérdida de energía por efecto joule. Por lo que se procede a hacer un cálculo de la sección más económica.

Las pérdidas se determinarán teniendo en cuenta la energía que generaremos por cada mes. Teniendo el valor de las horas solares mensuales podremos sacar la potencia media que generará el panel:

$$Pmed = \frac{E}{T}$$

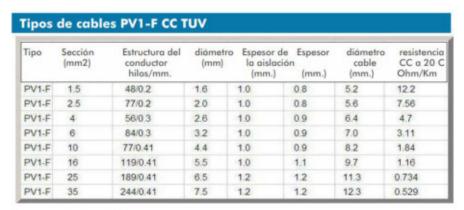
Podemos demostrar que la tensión de los paneles se mantiene aproximadamente constante para cualquier condición de carga. Como se puede apreciar en las curvas características de estos:

Curva i-V de un panel fotovoltaicomonocristalino SOLARWORLD SW235 - 24 V. - 235 Wp

Por lo tanto, la corriente media podrá calcularse como:

$$Imed = \frac{Pmed}{V_{mn} * n}$$

Donde:


 V_{mp} es la tensión de los paneles

n Cantidad de paneles en serie

Una vez obtenida la corriente media podremos calcular la energía perdida según la siguiente ecuación:

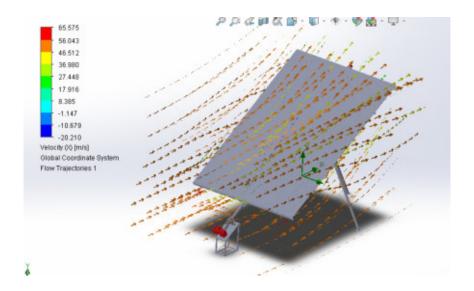
$$E = I^2 * R * T$$

La resistencia de las diferentes secciones de cables está especificada en la siguiente tabla:

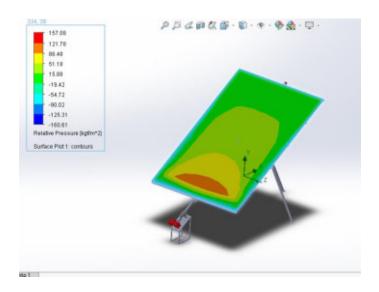
El cálculo descripto se realizo para diferentes secciones en tablas de Excel teniendo en cuenta que tenemos dos ramas de 40 m de longitud, con 5 paneles en serie en cada una de ellas.

Cable de 2.5 mm^2:

Rendimiento	0.85														
Potencia nominal del panel	0.28	kw													
Cantidad de paneles	10	unidad													
Tensión	31.08	٧													
Sección	2.5	mm2													
Resistencia del cable por unidad de longitud	7.56	ohm/km													
Longitud del cable	40	m													
Resistencia del cable	0.3024	ohm													
Cantidad de paneles	5	unidad													
			Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Energía total anual
Energía		kw.h	635.46	492.66	497.42	399.84	295.12	261.8	276.08	316.54	373.66	483.14	575.96	635.46	5243.14
Energía por cada rama de 5 paneles		kw.h	317.73	246.33	248.71	199.92	147.56	130.9	138.04	158.27	186.83	241.57	287.98	317.73	2621.57
Horas de sol por dia del mes		h	14	13.5	13	11.25	10.25	10	10	10.75	11.75	13	14	14.5	
Dias del mes			31	28	31			. 30	_			30	30	30	
Horas de sol por mes		h	434	378	403	337.5	317.75	300	310	333.25	352.5	390	420	435	
Potencia media		kw	0.7	0.7	0.6	0.6	0.5	0.4	0.4	0.5	0.5	0.6	0.7	0.7	
I media		Α	4.7	4.2	4.0	3.8	3.0	2.8	2.9	3.1	3.4	4.0	4.4	4.7	
Pérdidas		W	6.7	5.3	4.8	<u> </u>	2.7	2.4	2.5	2.8			5.9	6.7	
Energia perdida		kwh	5.8	4.0	3.8	3.0	1.7	1.4	1.5	1.9	2.5	3.7	4.9	5.8	40.21
													Pérdidas /	Anuales %	1.53

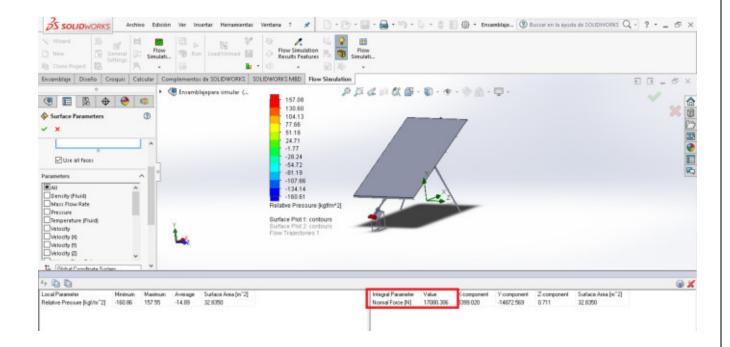

Cable de 4 mm²:

Rendimiento	0.85														
Potencia nominal del panel	0.28	kw													
Cantidad de paneles	10	unidad													
Tensión	31.08	V													
Sección	4	mm2													
Resistencia del cable por unidad de longitud	4.7	ohm/km													
Longitud del cable	40	m													
Resistencia del cable	0.188	ohm													
Cantidad de paneles	5	unidad													
			Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Energía total anual
Energía		kw.h	635.46	492.66	497.42	399.84	295.12	261.8	276.08	316.54	373.66	483.14	575.96	635.46	5243.14
Energía por cada rama de 5 paneles		kw.h	317.73	246.33	248.71	199.92	147.56	130.9	138.04	158.27	186.83	241.57	287.98	317.73	2621.57
Horas de sol por dia del mes		h	14	13.5	13	11.25	10.25	10	10	10.75	11.75	13	14	14.5	
Dias del mes			31	28	31		31	30		31	30	30			
Horas de sol por mes		h	434	378	403	337.5	317.75	300	310	333.25	352.5	390	420	435	
Potencia media		kw	0.7	0.7	0.6		0.5	0.4		0.5	0.5	0.6	0.7	0.7	
I media		Α	4.7	4.2	4.0		3.0		1 1	3.1		4.0			
Pérdidas		W	4.2	3.3	3.0		1.7	1.5		1.8	2.2	3.0			
Energia perdida		kwh	3.6	2.5	2.4	1.8	1.1	0.9	1.0	1.2	1.5	2.3	3.1	3.6	25.00
													Pérdidas	Anualos 9/	0.95


VERIFICACIÓN DE LA CARGA DE VIENTO CON FLOW SIMULATION SOLIDWORKS

La simulación con software nos permite obtener una distribución más precisa de las presiones, fuerza neta sobre superficies y trayectorias de flujos. Contrastaremos estos valores con los obtenido por la norma Cirsoc.

Flujo de viento


Distribución de presiones

El valor de presión máxima es

157.08
$$\frac{kg}{m^2}$$

La fuerza neta que realiza el viento sobre la superficie puede visualizarse en los resultados de la simulación:

El valor arrojado es de 1748 kg.

Como era de esperar este valor es menor al obtenido por norma debido a coeficientes de seguridad utilizados por esta.

Recordar que la presión obtenida por norma fue de

$$\frac{F}{Af} = 172.8 \frac{Kg}{m^2}$$

Done Af es el área proyectada sobre un plano perpendicular a la dirección del viento. Por lo tanto, la fuerza neta sobre la placa utilizada para los cálculos fue de:

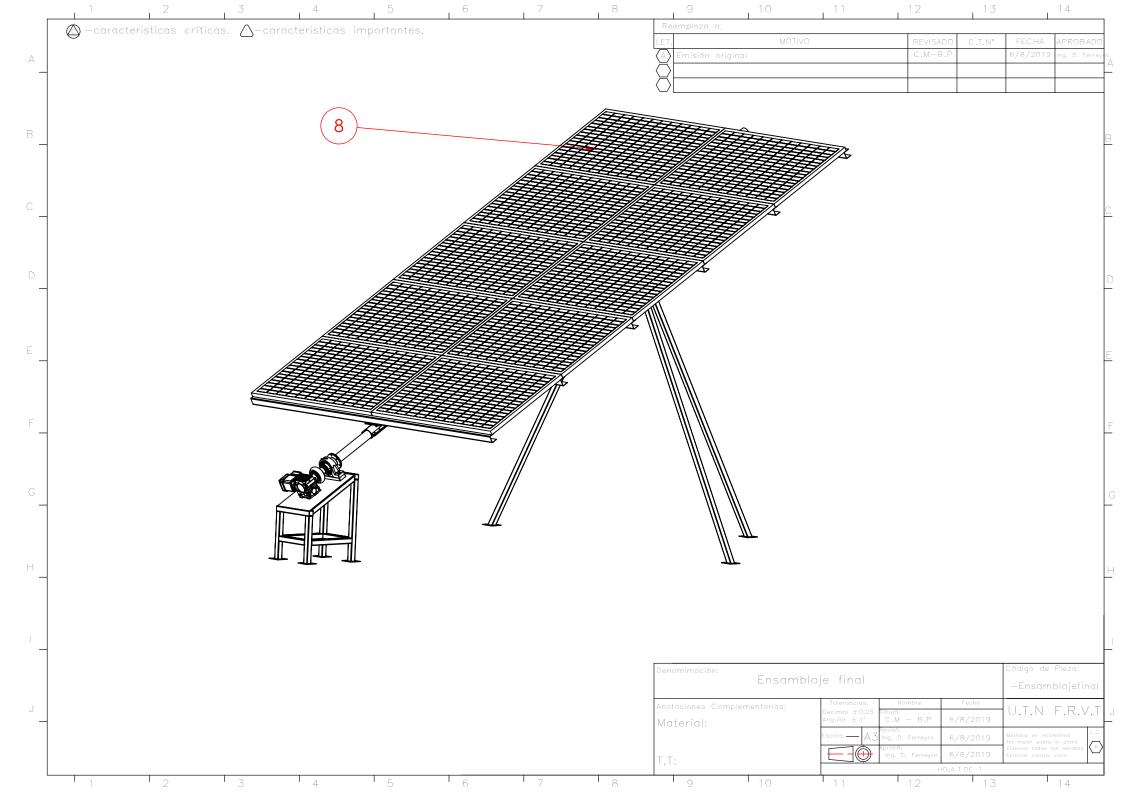
$$F = 172.8 \frac{Kg}{m^2} * 16.4 * \cos(30)$$
$$F = 3780 \text{ kg}$$

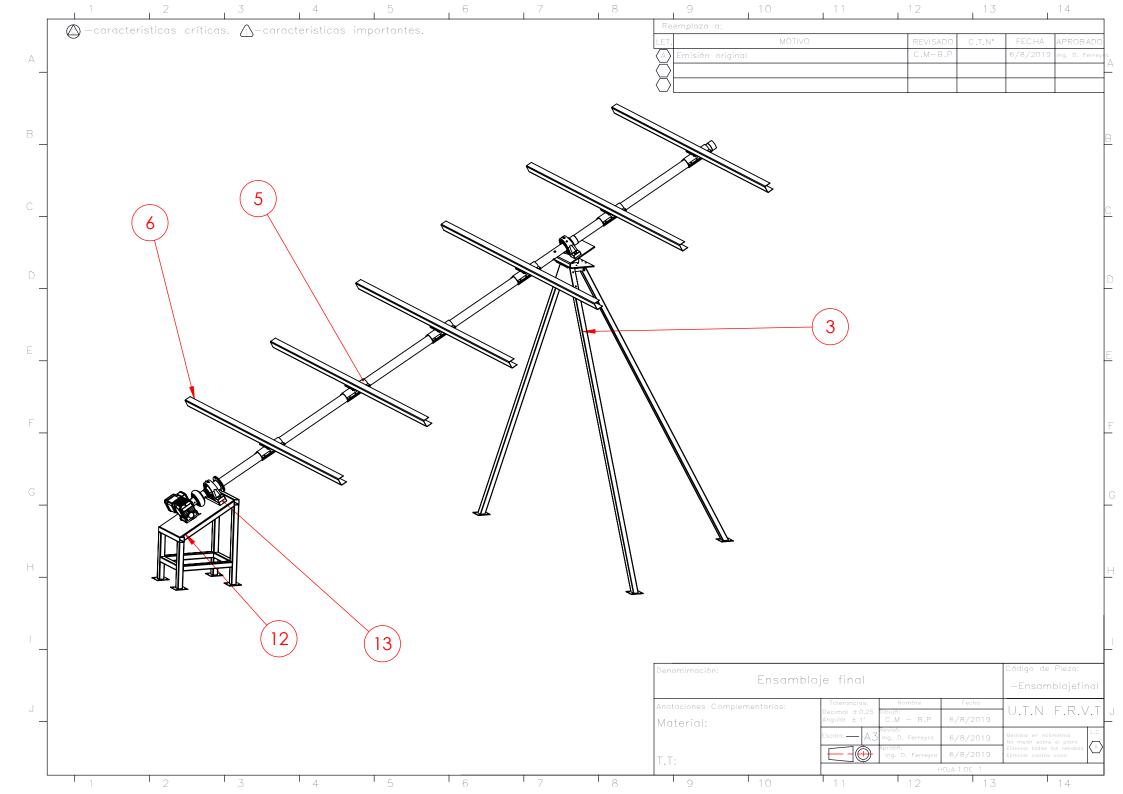
LISTA DE MATERIALES:

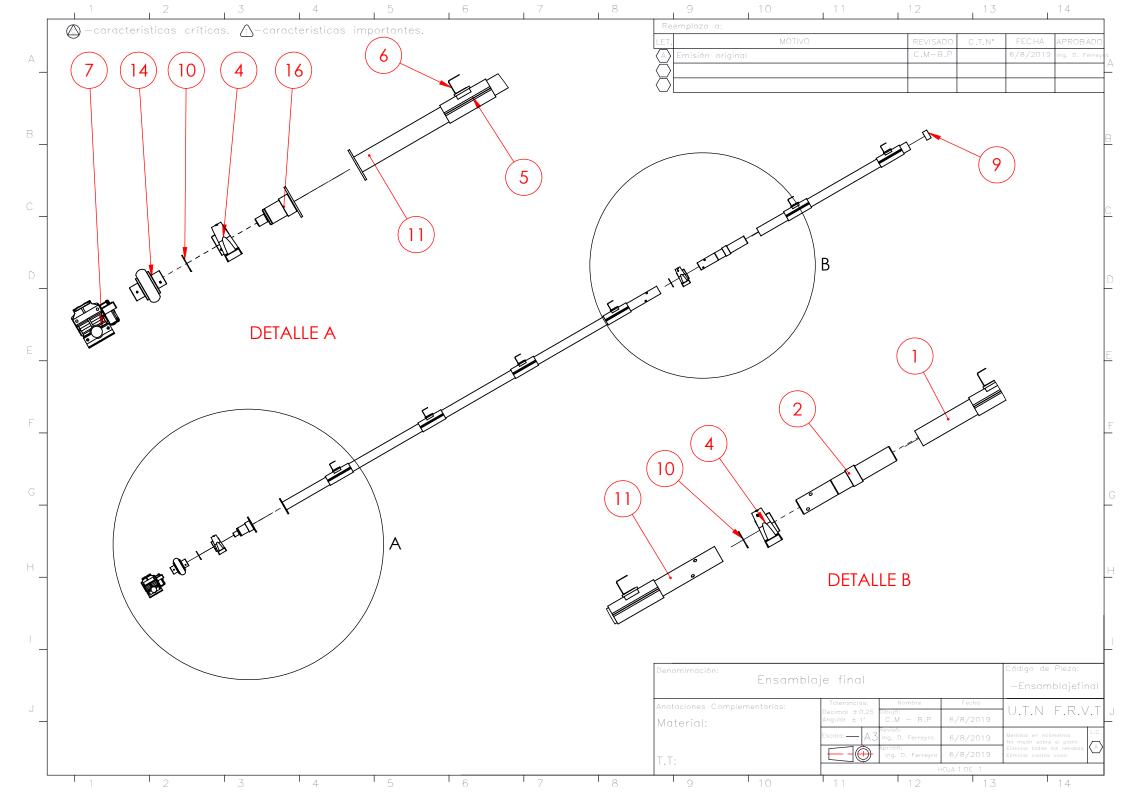
		LISTA DE MATERIALES Y PRESUPUESTO						
SECTOR	UNIDAD	MATERIALES	MARCA	AR\$ P/U	AR\$	US\$	INCIDENCIA	PRECIO DÓLAR
Electrico	10	Panales Solares 285W	Hissuma Solar	\$ 10.000,00	\$ 100.000,00	\$ 2.325,58	30,2%	43
	1	Inversor On Grid	Hissuma Solar	\$ 70.000,00	\$ 70.000,00	\$ 1.627,91	21,1%	
	2	protector gaseosos de cc.	Hissuma Solar	\$ 3.500,00	\$ 7.000,00	\$ 162,79	2,1%	
	1	Protector gaseosos de ca trifásico	Hissuma Solar	\$ 2.700,00	\$ 2.700,00	\$ 62,79	0,8%	
	2	fusible de línea 15 A	Hissuma Solar	\$ 600,00	\$ 1.200,00	\$ 27,91	0,4%	
	1	cableado y accesorios	-	\$ 2.000,00	\$ 2.000,00	\$ 46,51	0,6%	
	SUBTOTAL				\$ 182.900,00	\$ 4.253,49	55,2%	
Estructural		Eje principal			\$ 12.772,00	\$ 297,02	4%	
	1	caño diam. Ext. 76.2 mm e= 2,00 mm L= 6,40 galvanizado	cases	\$8.072,00	\$ 8.072,00	\$ 187,72	2,4%	
	2	Manchón Mecanizado (Material y Fabricación)	clerici	\$ 2.000,00	\$ 4.000,00	\$ 93,02	1,2%	
	1	Brida (Material y Fabricación)	clerici	\$ 700,00	\$ 700,00	\$ 16,28	0,2%	
		parrilla perfil U 3280mm			\$ 7.400,00	\$ 172,09	2,2%	
	2	perfil U largo 70x30x2x12m		\$ 3.200,00	\$ 6.400,00	\$ 148,84	1,9%	
	1	corte y perforado	pia	\$ 1.000,00	\$ 1.000,00	\$ 23,26	0,3%	
	6	portaparilla (Material y Fabricación)	zanni fabril	\$ 2.500,00	\$ 15.000,00	\$ 348,84	4,5%	
		Soporte delantero y trasero			\$ 18.600,00	\$ 432,56	5,6%	
	3	Caño estructural galvanizado 50x50x2mm 6m	GRAMABI S.R.L	\$ 3.500,00	\$ 10.500,00	\$ 244,19	3,2%	
	1	Base trasera, Chapa rigidizadora trasera (material y fabricación)	zanni fabril	\$ 4.000,00	\$ 4.000,00	\$ 93,02	1,2%	
	1	Chapa 1/8" para base de motor y bases de apoyo (Material y corte)	zanni fabril	\$ 3.500,00	\$ 3.500,00	\$ 81,40	1,1%	
	4	nervios base delantera	zanni fabril	\$ 150,00	\$ 600,00	\$ 13,95	0,2%	
	2	caja de rodamiento	SKF	\$ 2.000,00	\$ 4.000,00	\$ 93,02	1,2%	
	SUBTOTAL				\$ 57.772,00	\$ 1.343,53	17,4%	

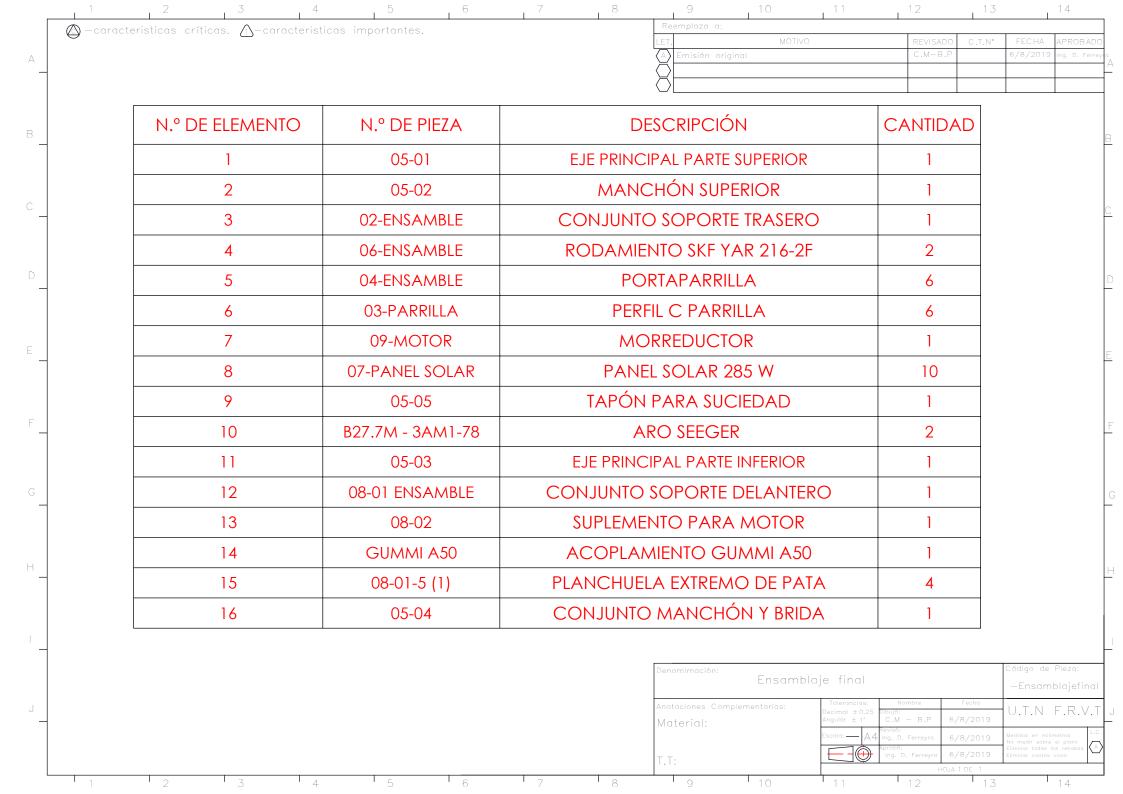
Automatización	1	RELÉ PROGRAMABLE (pack) Zelio Logic	SCHNEIDER ELECTRIC	\$ 22.300,00	\$ 22.300,00	\$ 518,60	6,7%	
	1	FUENTE DE ALIMENTACIÓN Zelio Logic	SCHNEIDER ELECTRIC	\$ 4.062,50	\$ 4.062,50	\$ 94,48	1,2%	
	1	VARIADOR DE VELOCIDAD Altivar 12	SCHENIDER ELECTRIC	\$ 10.000,00	\$ 10.000,00	\$ 232,56	3,0%	
	2	SENSORES INDUCTIVOS M30 OsiSense Xc	TELEMECANIQUE	\$ 1.750,00	\$ 3.500,00	\$ 81,40	1,1%	
	2	MICROSWITCH FINAL DE CARRERA RA7121	KONNEN	\$ 425,00	\$ 850,00	\$ 19,77	0,3%	
	1	PULSADOR RASANTE	SCHENIDER ELECTRIC	\$ 150,00	\$ 150,00	\$ 3,49	0,0%	
	1	TESTIGO LUMINOSOS ROJO 24V	SCHENIDER ELECTRIC	\$ 200,00	\$ 200,00	\$ 4,65	0,1%	
	1	TESTIGO LUMINOSOS VERDE 24V	SCHNEIDER ELECTRIC	\$ 200,00	\$ 200,00	\$ 4,65	0,1%	
	1	ENCODER Serie 21	CPI	\$ 6.500,00	\$ 6.500,00	\$ 151,16	2,0%	
	1	GUARDAMOTOR TeSys	SCHNEIDER ELECTRIC	\$ 2.100,00	\$ 2.100,00	\$ 48,84	0,6%	
	1	INTERRUPTOR TERMOMAGNETICO C60N 2A	SCHNEIDER ELECTRIC	\$ 1.400,00	\$ 1.400,00	\$ 32,56	0,4%	
	1	INTERRUPTOR DIFENCIAL IDSI/IEC1008	SCHNEIDER ELECTRIC	\$ 4.500,00	\$ 4.500,00	\$ 104,65	1,4%	
	1	GABINETE METALICO	-	\$ 2.500,00	\$ 2.500,00	\$ 58,14	0,8%	
	1	CHASIS CON CARRILES DIN	SCHNEIDER ELECTRIC	\$ 2.250,00	\$ 2.250,00	\$ 52,33	0,7%	
	2	FUSIBLES 24V	-	\$ 100,00	\$ 200,00	\$ 4,65	0,1%	
	10	BORNE TERMINAL RIEL DIN, 2POS, 2,5mm2	ZOLODA	\$ 25,00	\$ 250,00	\$ 5,81	0,1%	
	1	MOTORREDUCTOR	Sew Eurodrive	\$ 30.000,00	\$ 30.000,00	\$ 697,67	9,0%	
	SUBTOTAL			, ,	\$ 90.962,50	2.115,41	27,4%	
TOTAL					\$ 331.634,50	\$ 7.712,43	100%	

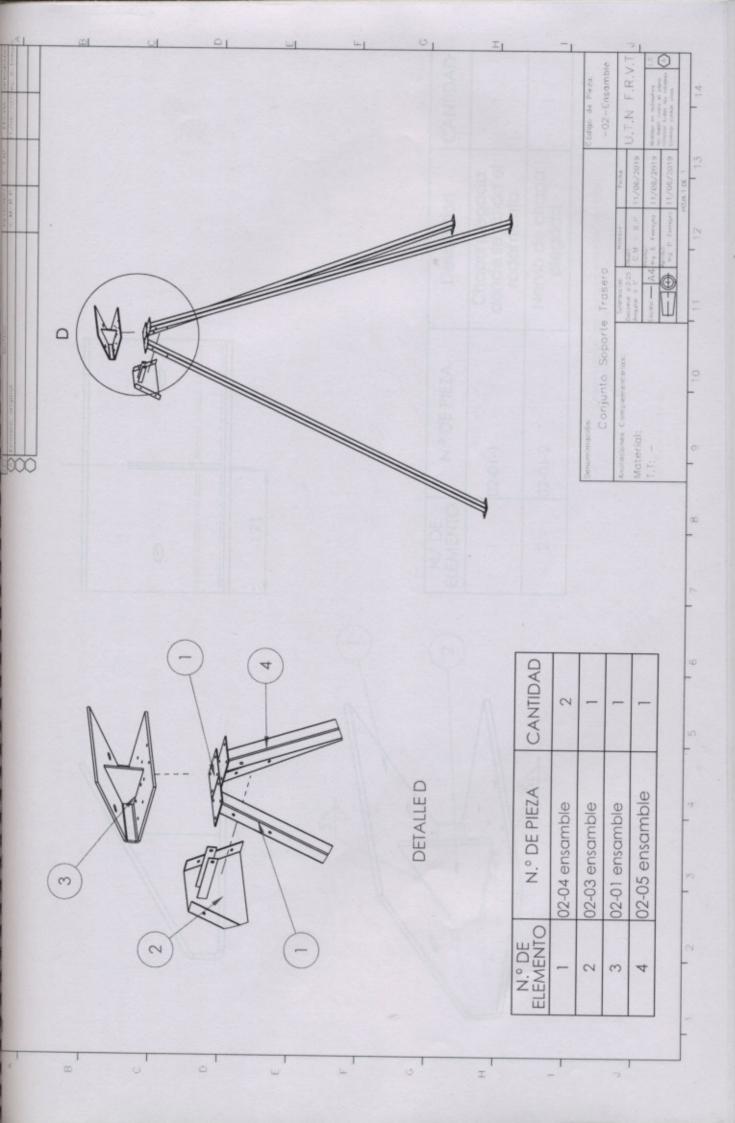
RETORNO ECONÓMICO

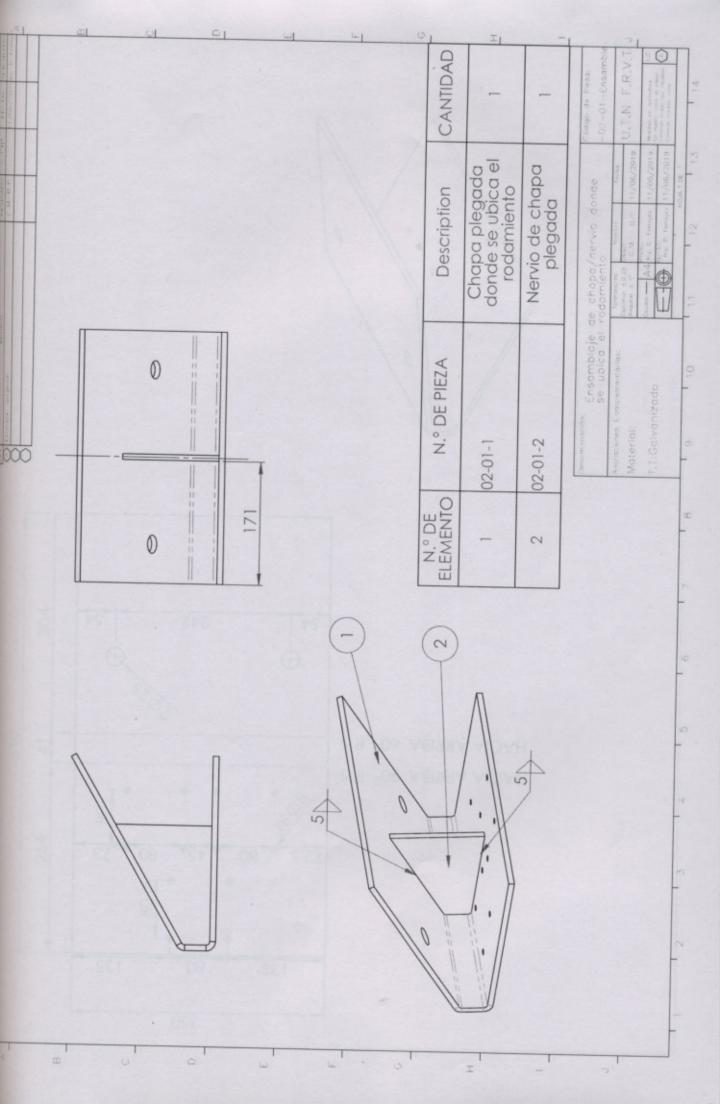

La energía anual extra generada por el seguimiento se calcula teniendo en cuenta los datos energéticos realizados en la sección anterior.

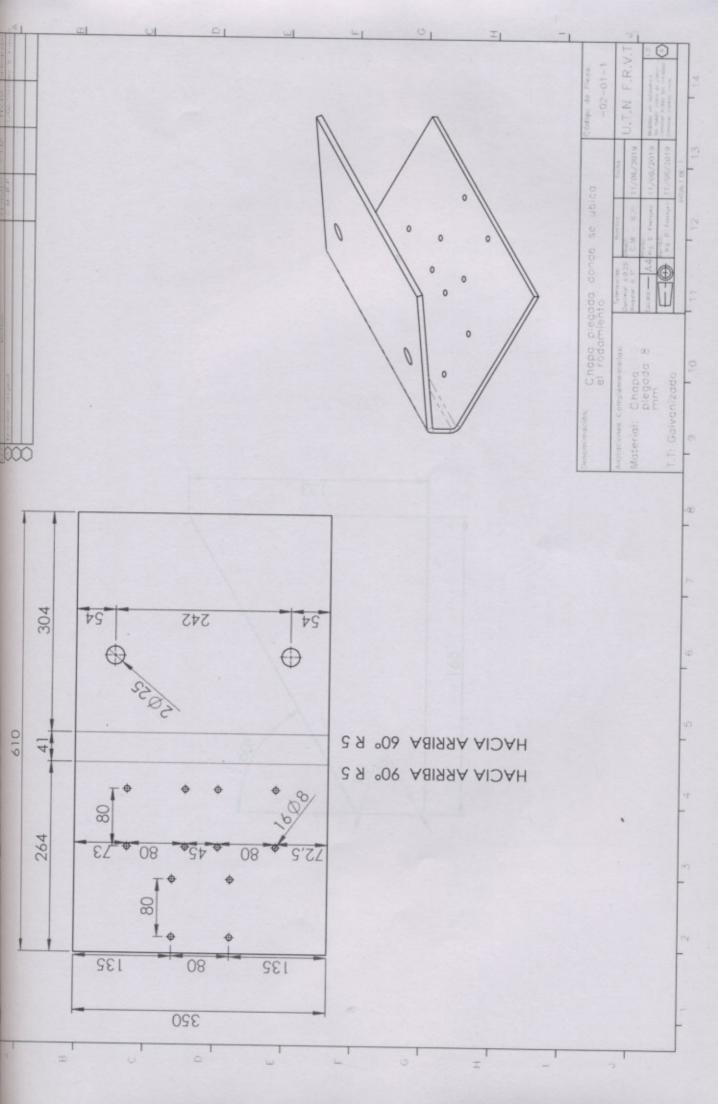

Energía anual generada por todo el sistema: 5243.14 kwh

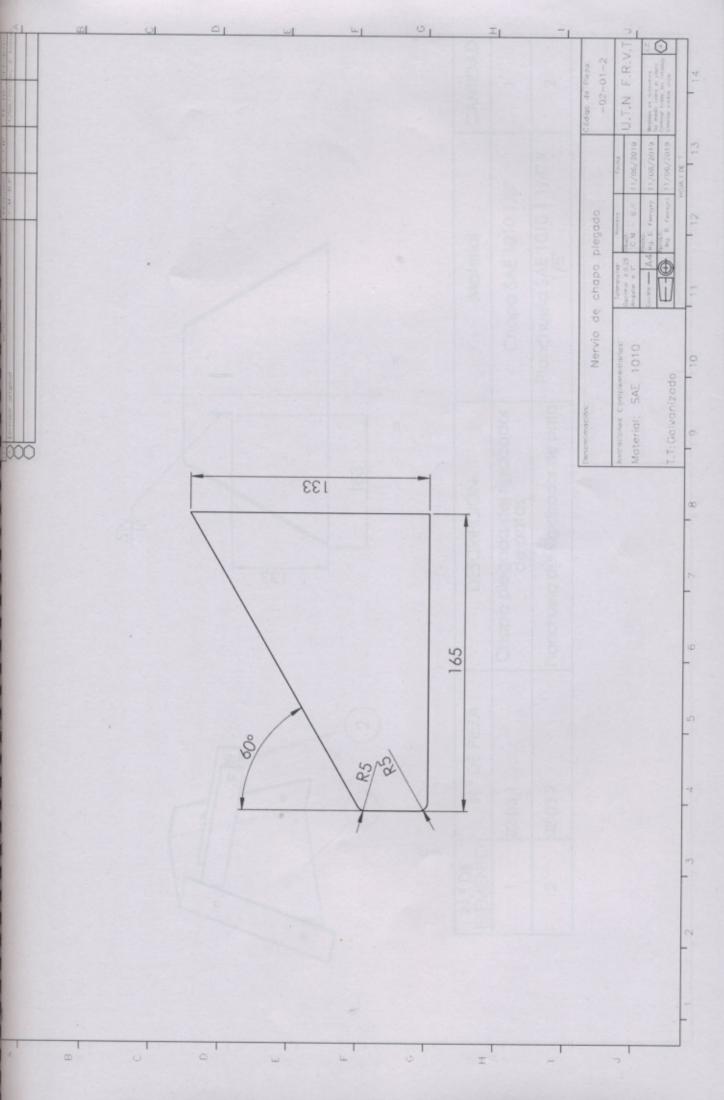

Dolarizando los valores de energía e inversión vemos que el retorno económico se da a los 5.5 años.

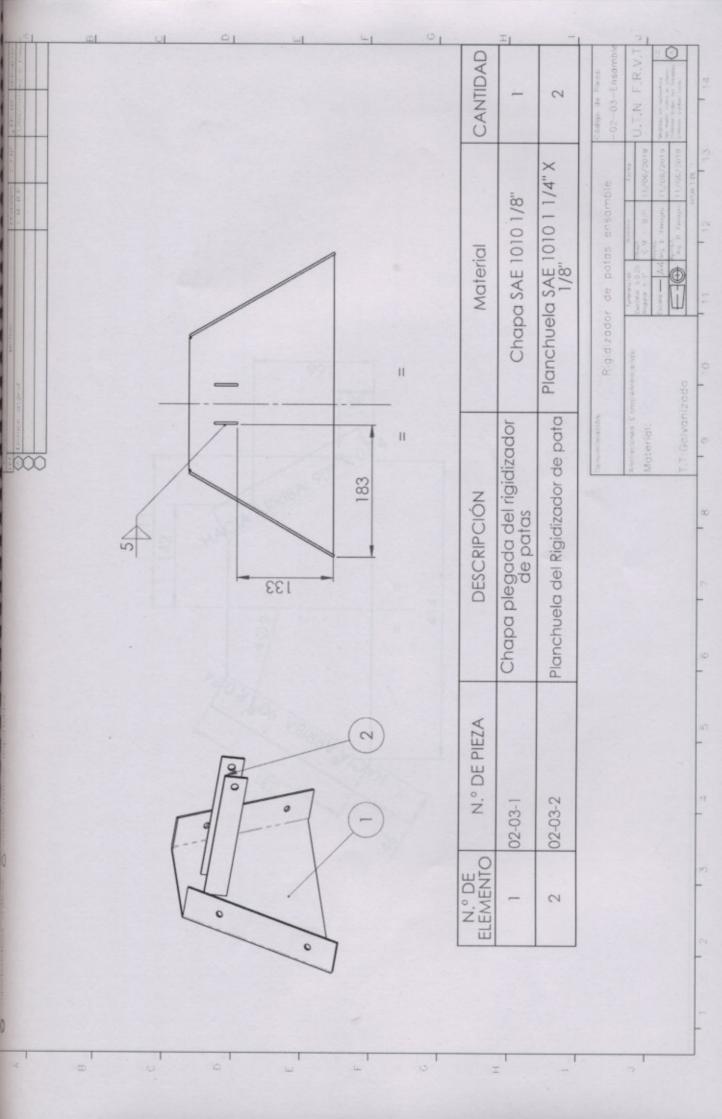


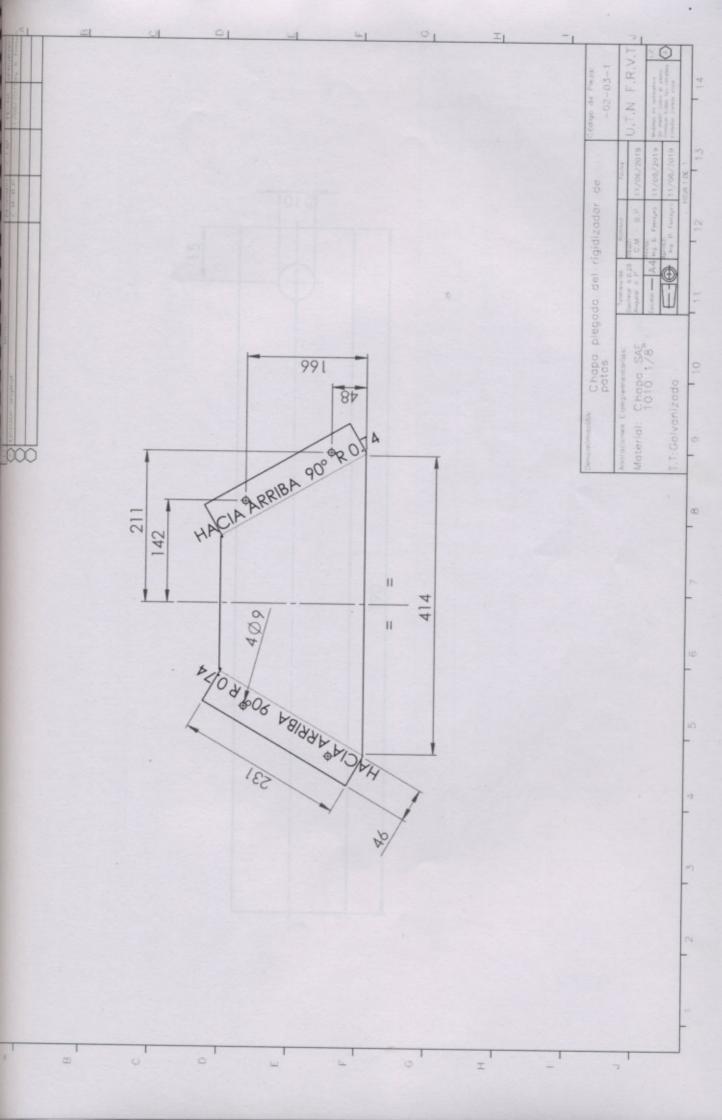

PLANIMETRÍA

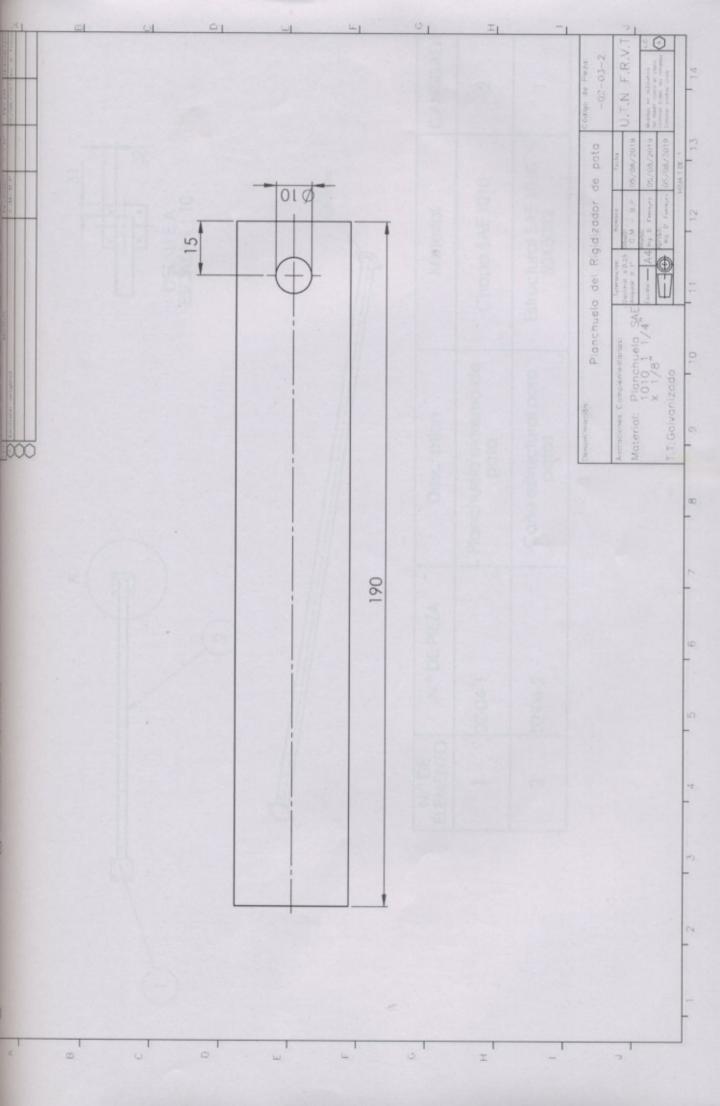


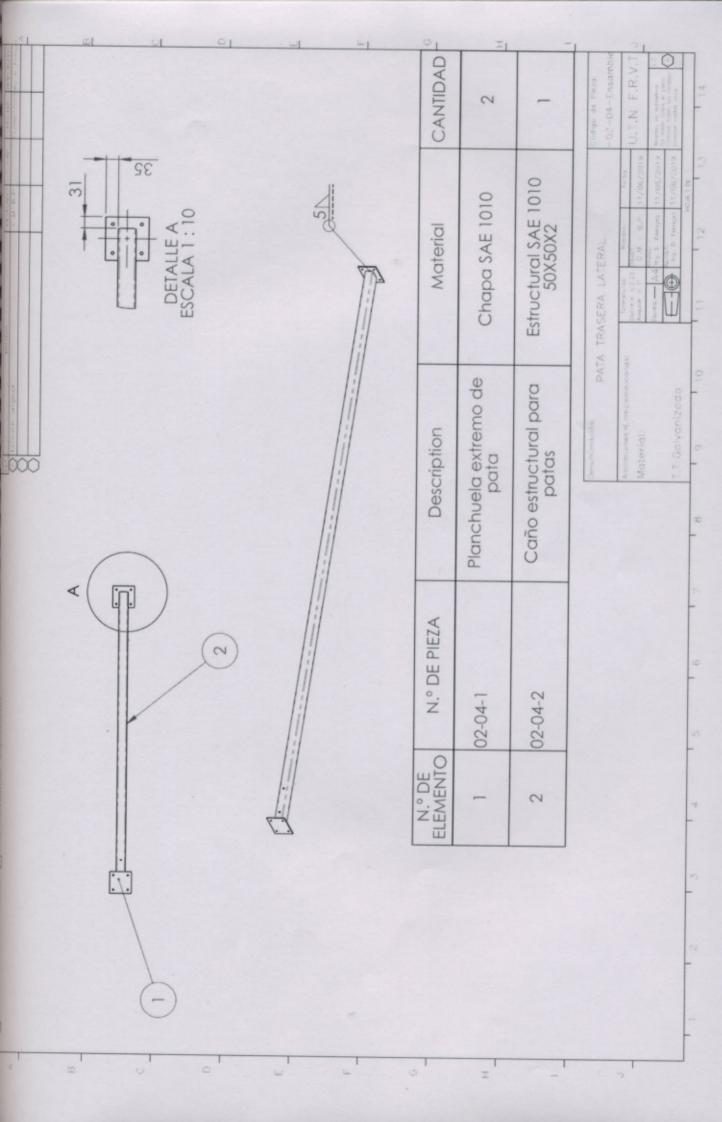


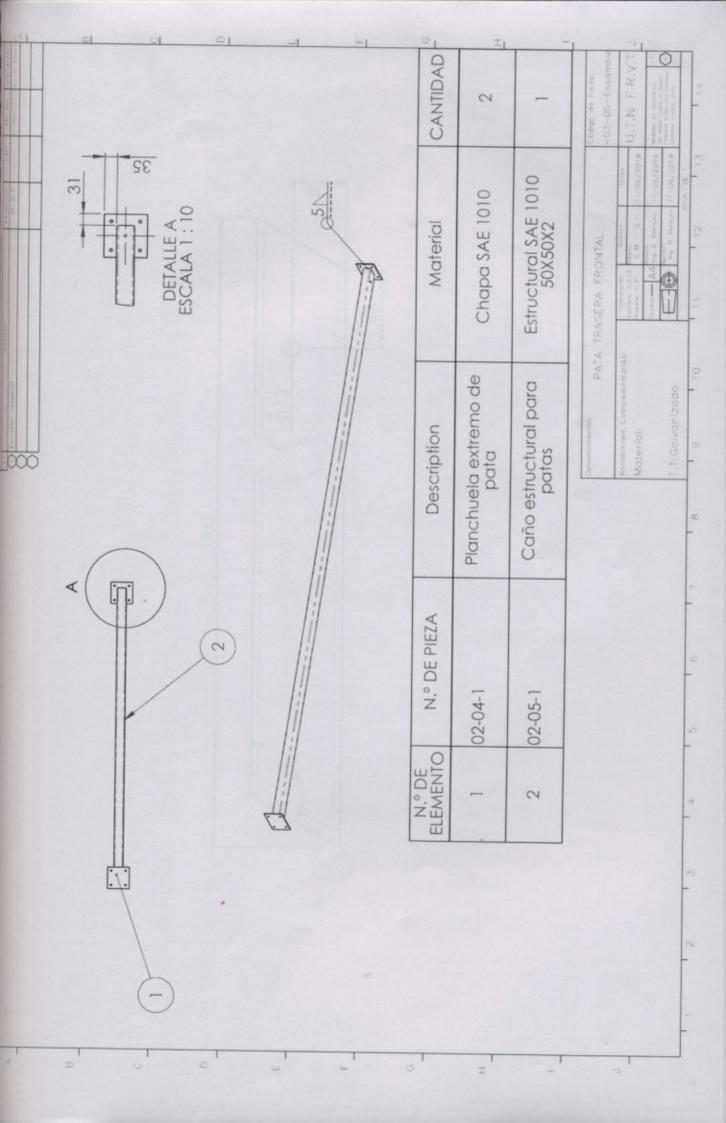


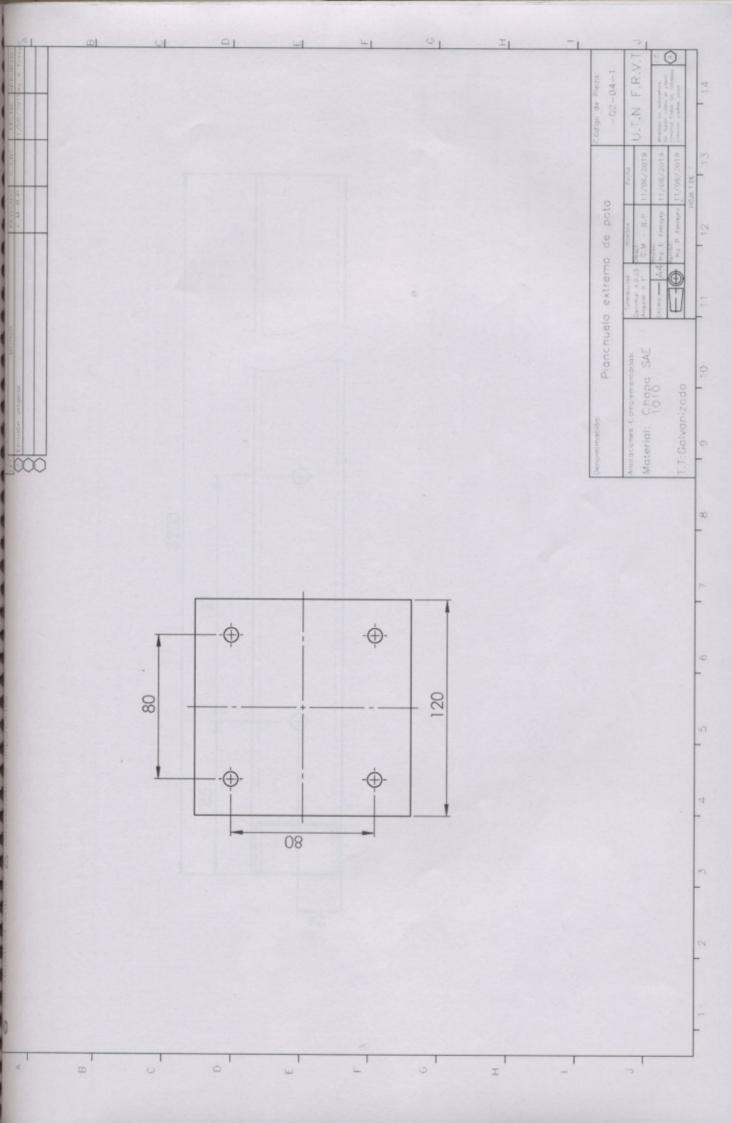


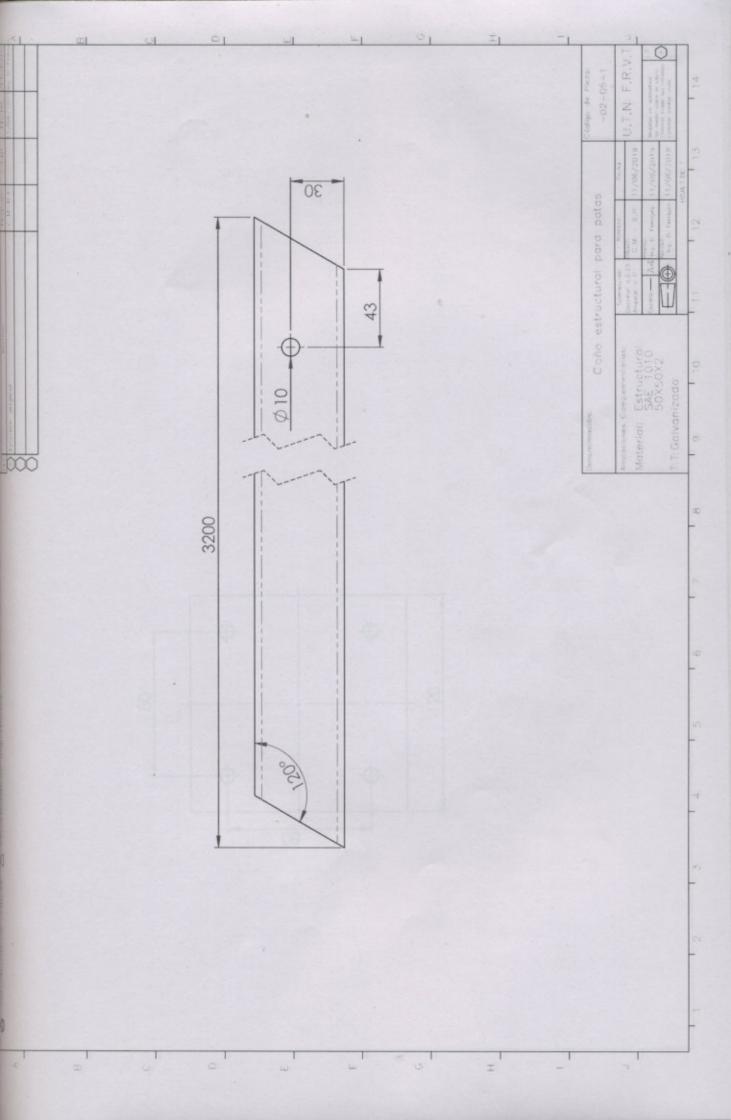


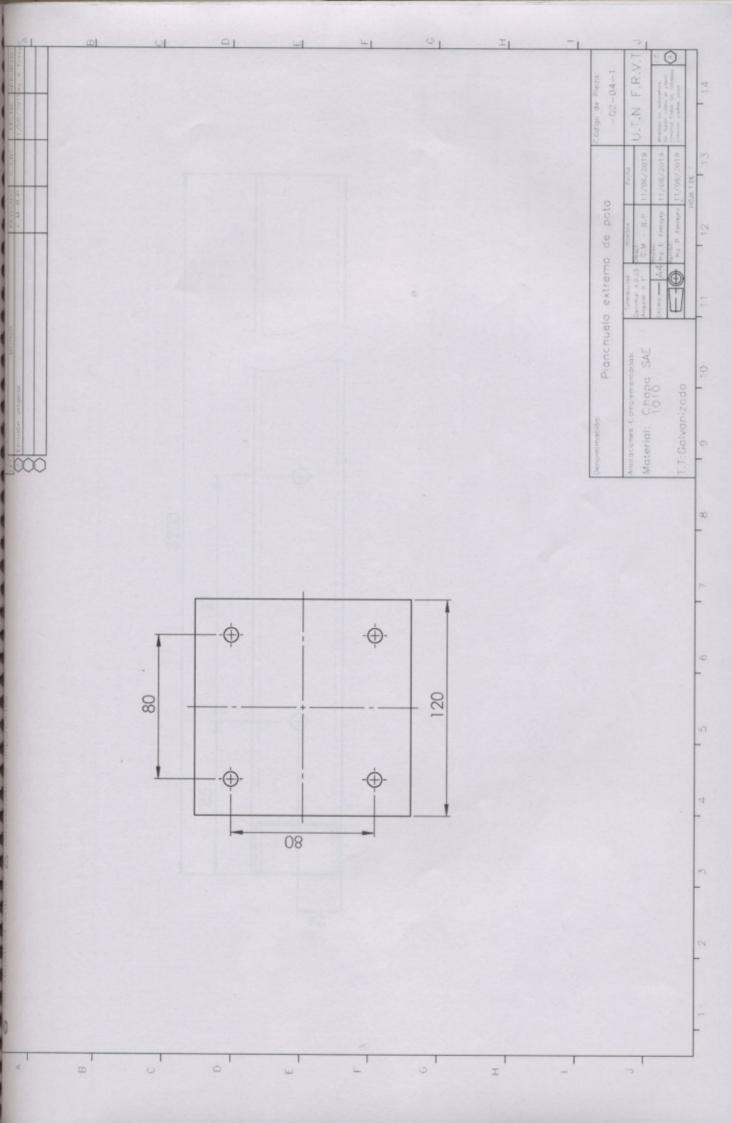


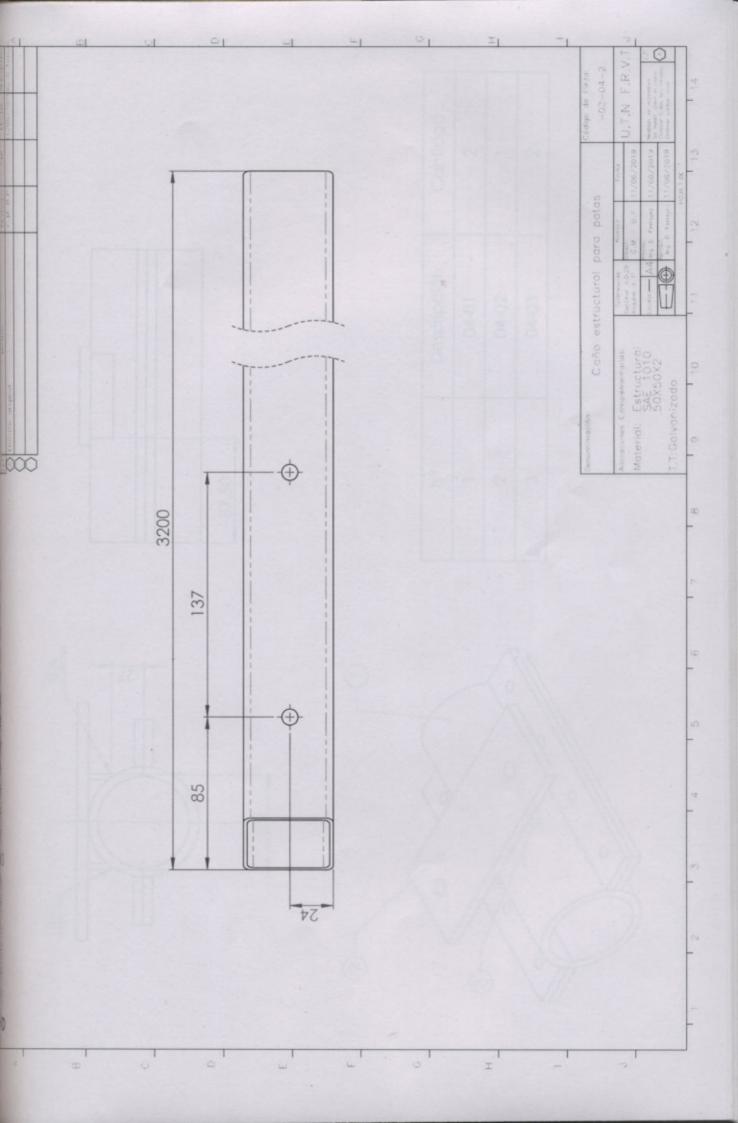


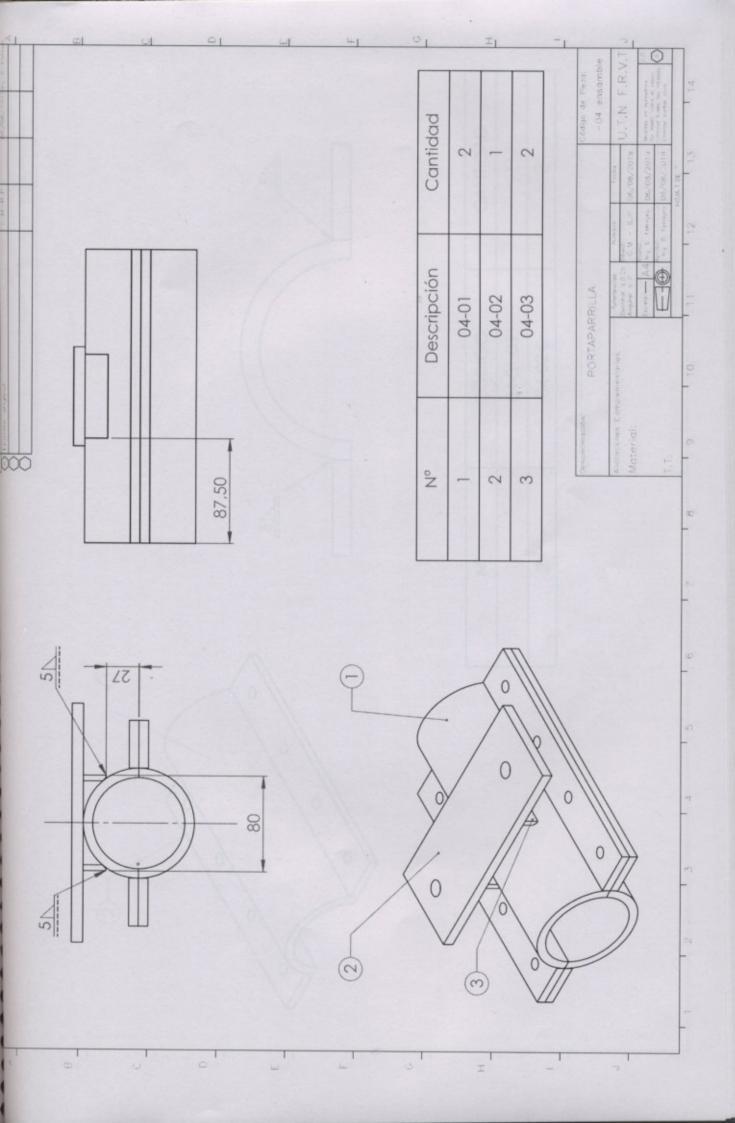


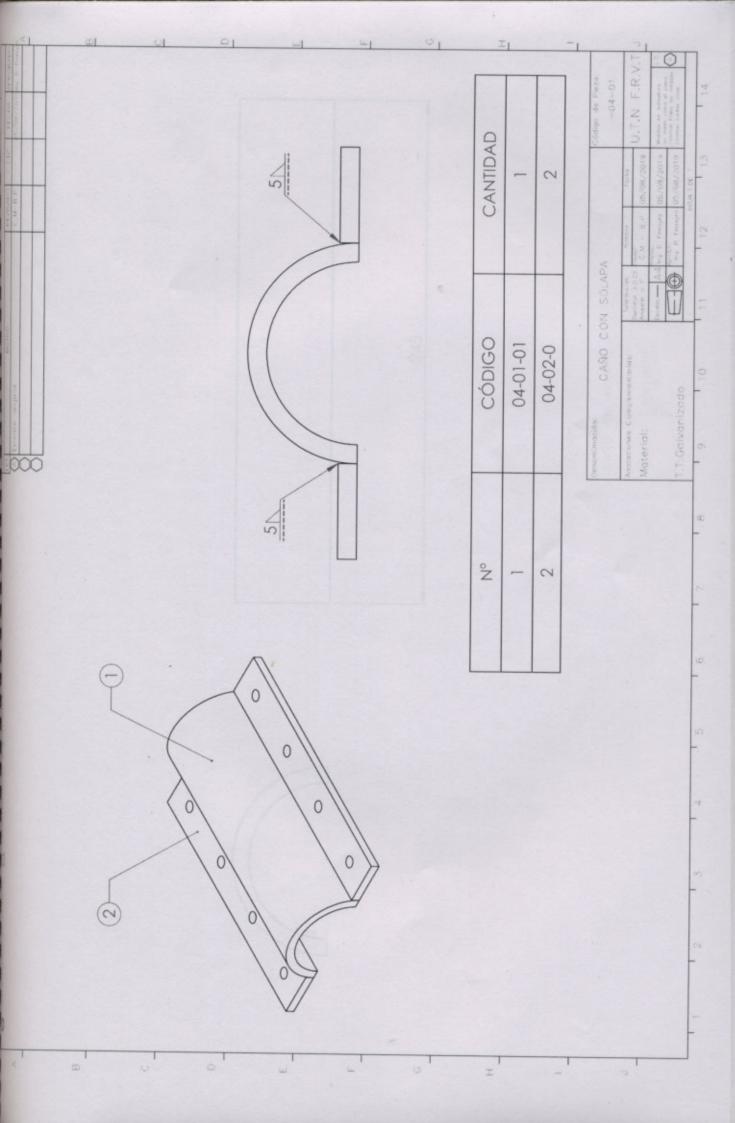


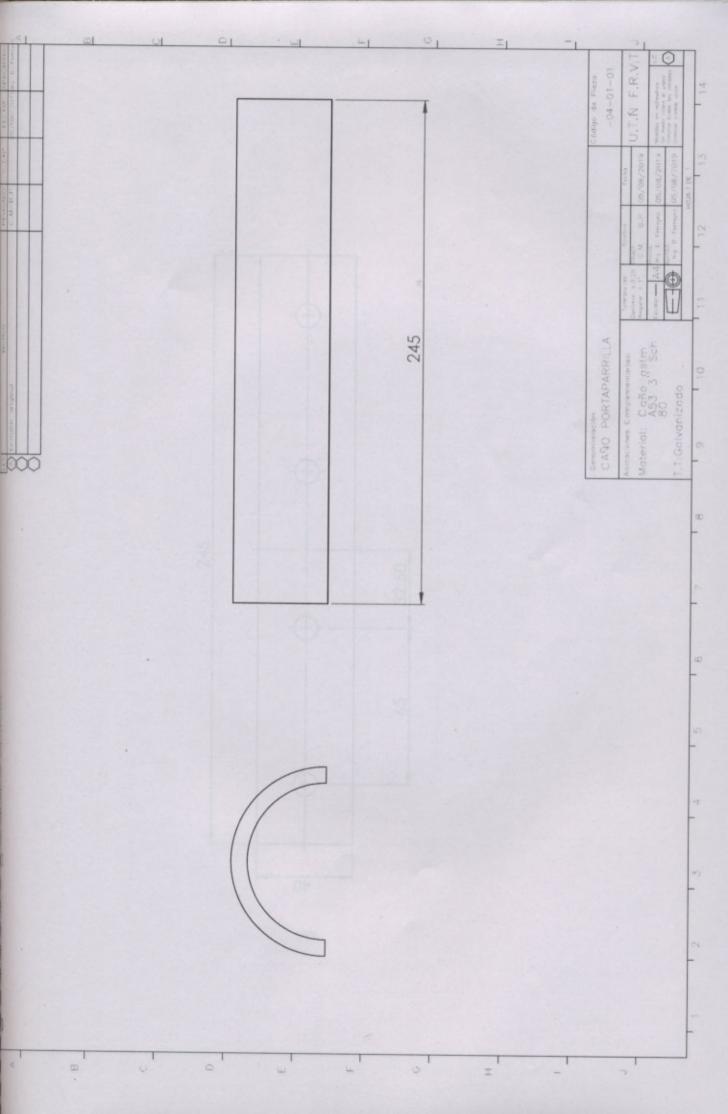


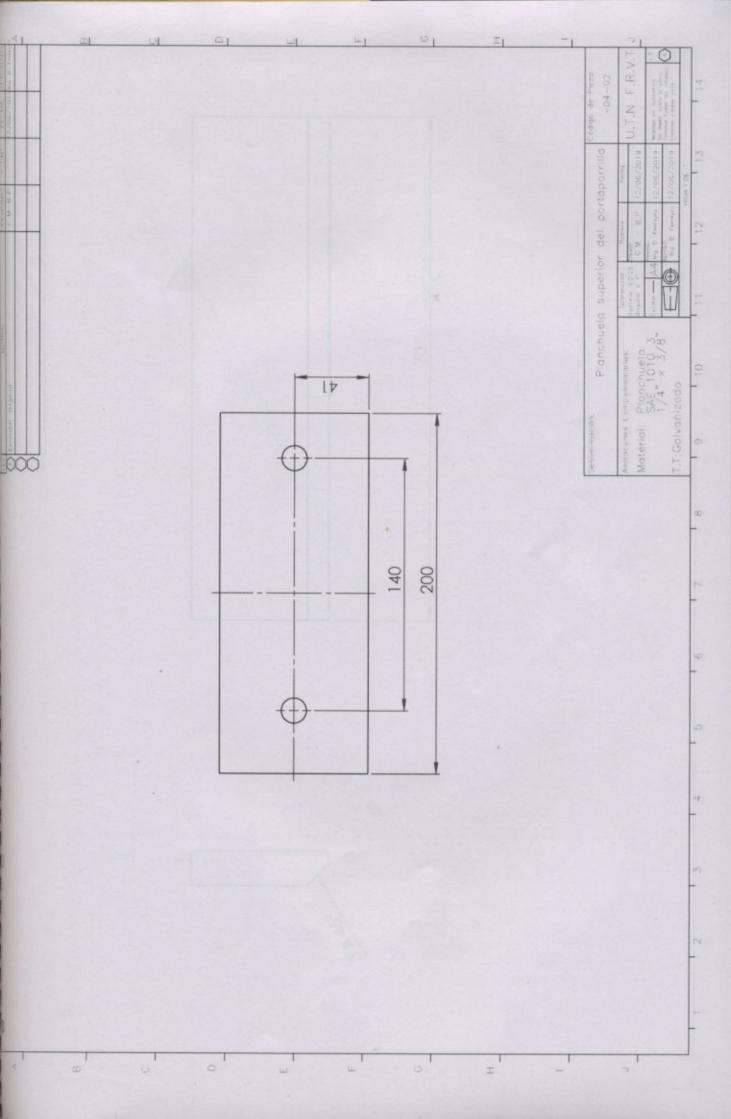


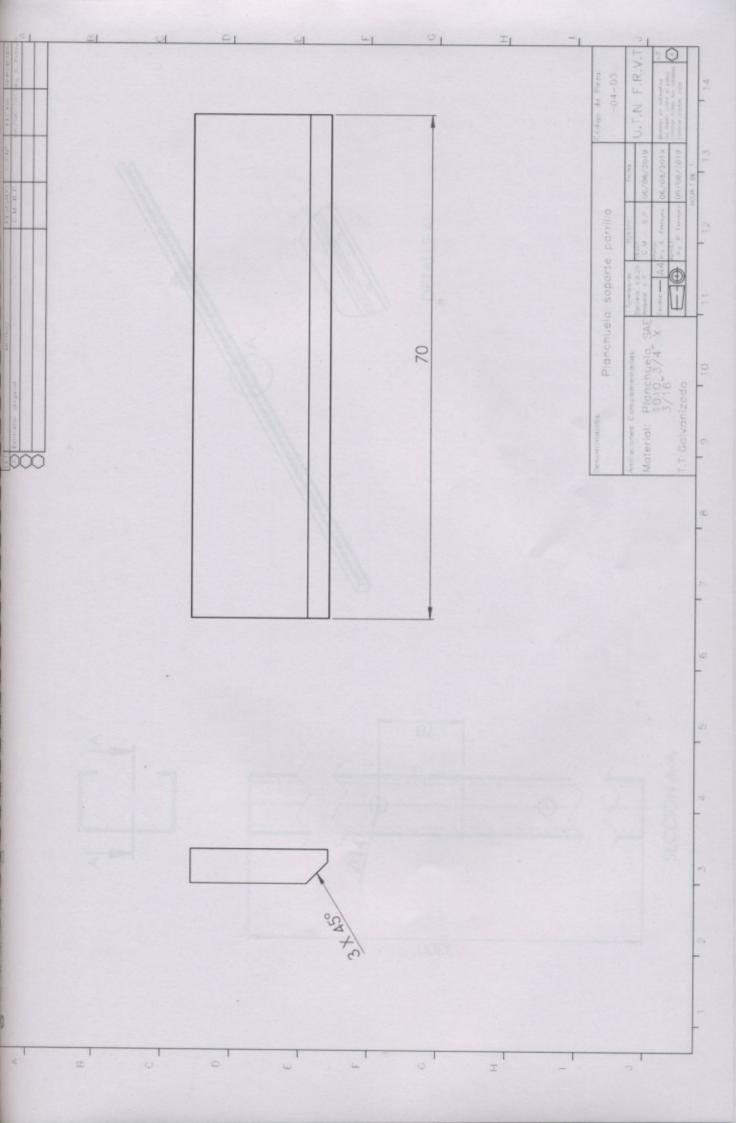


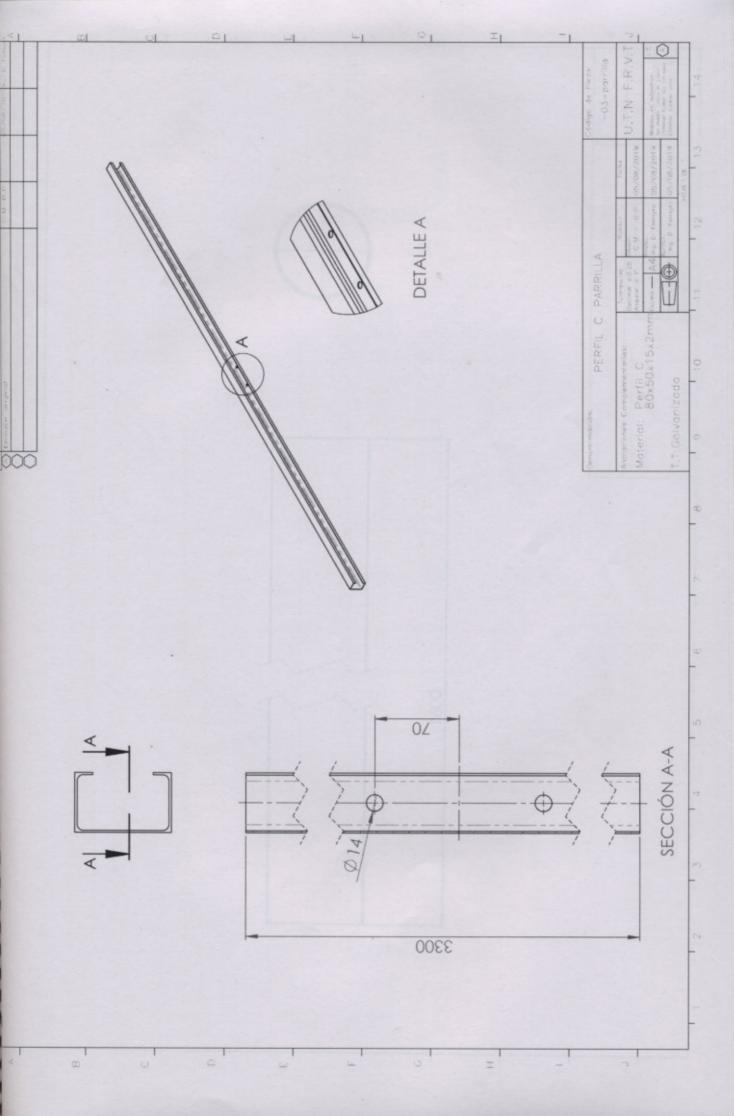


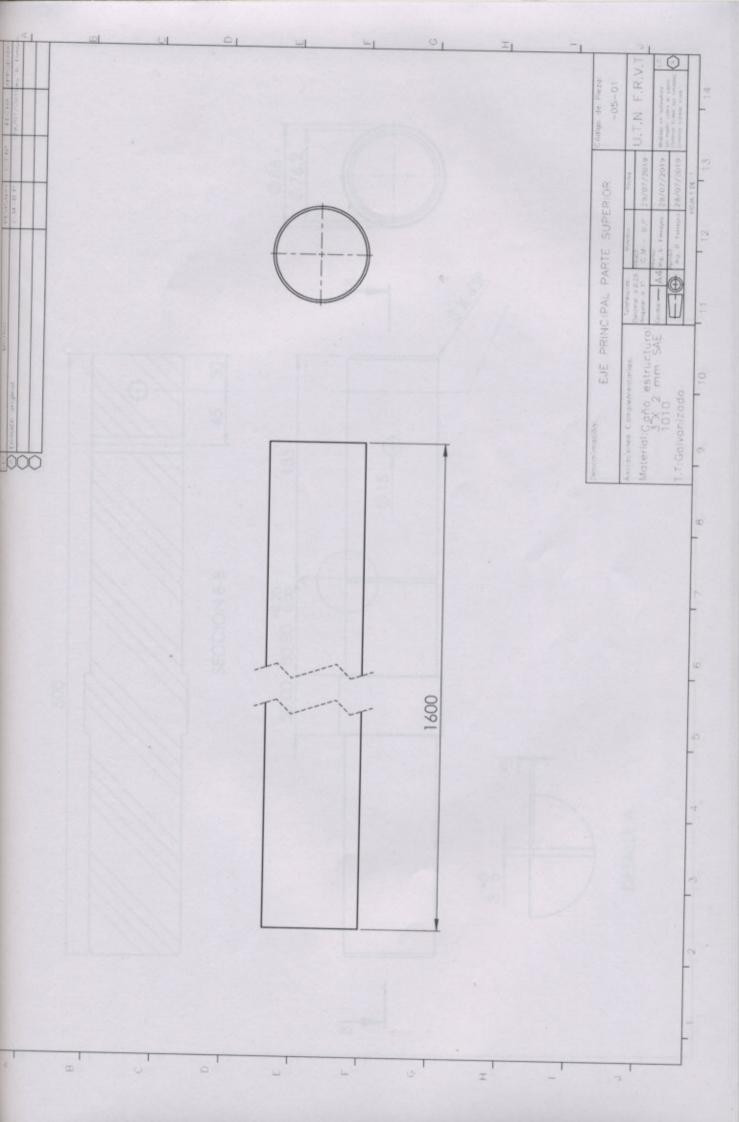


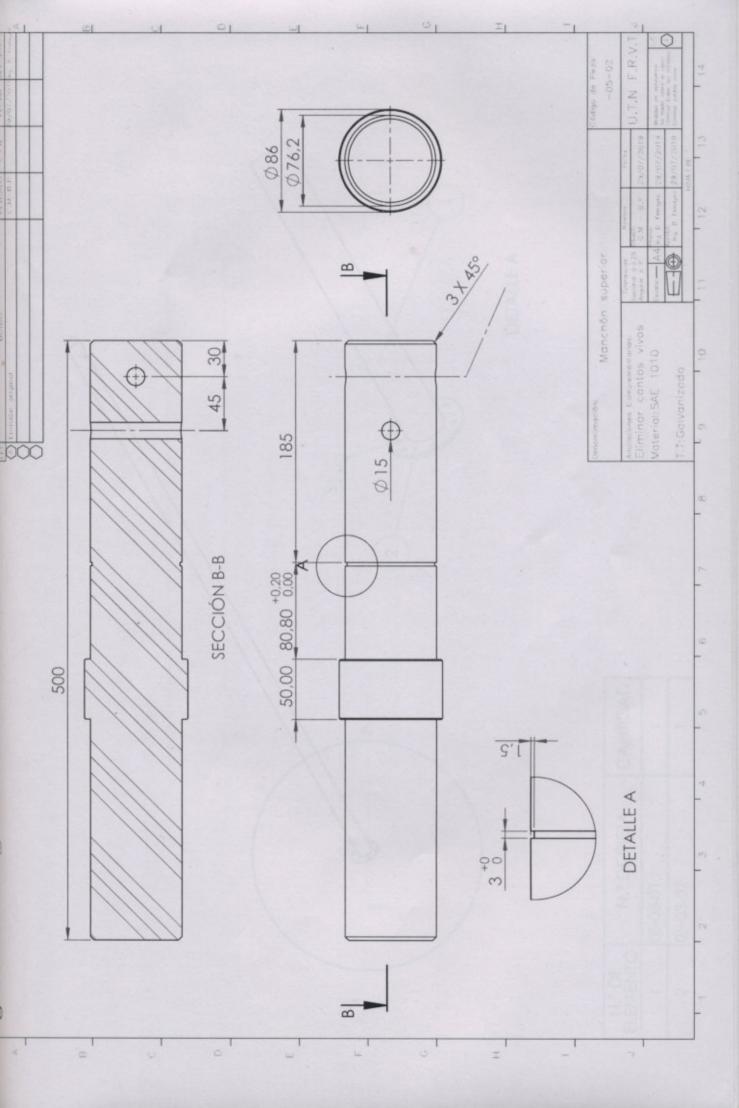


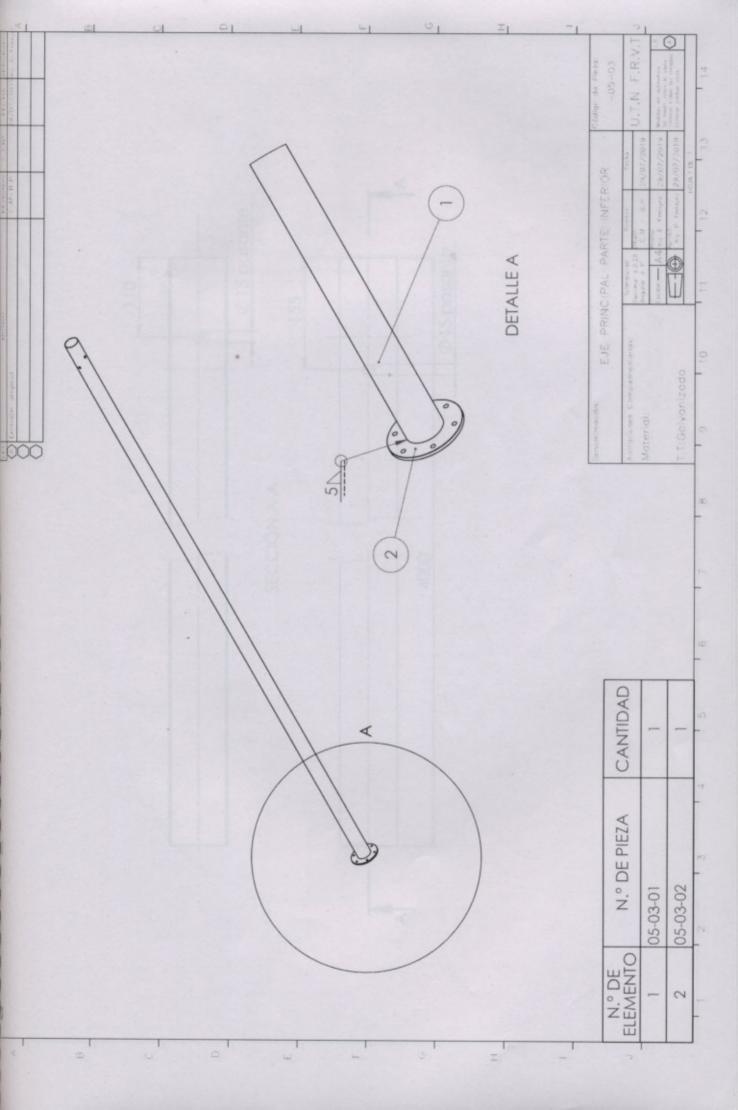


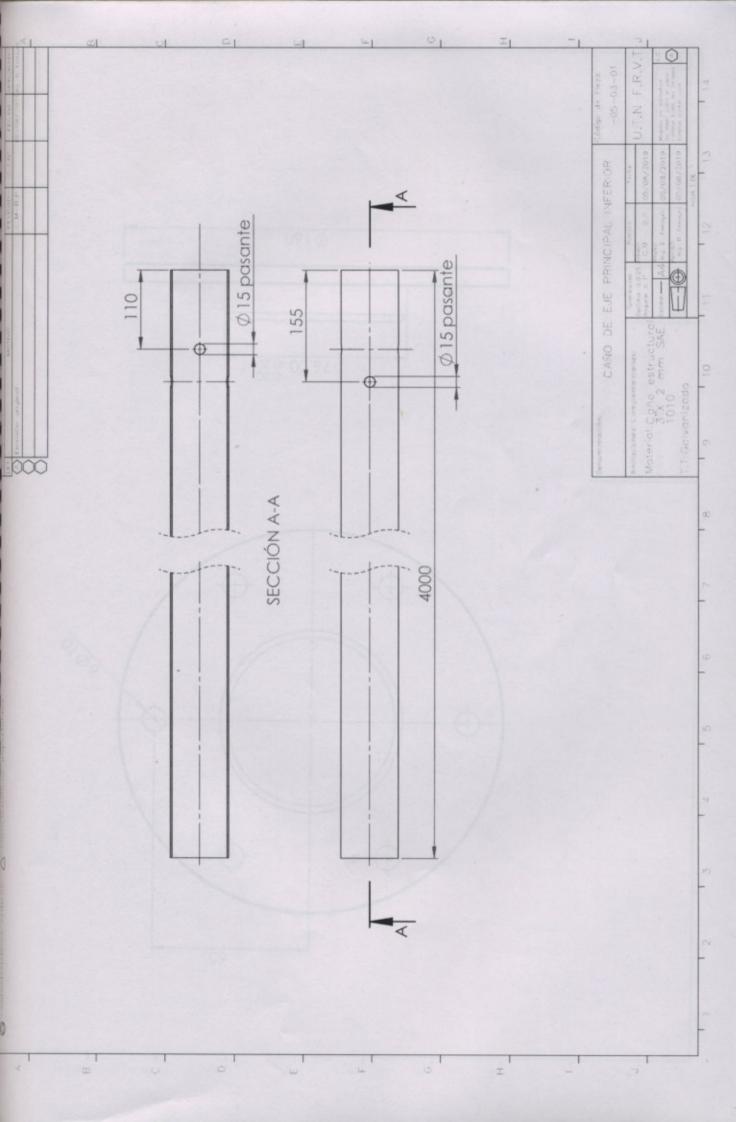


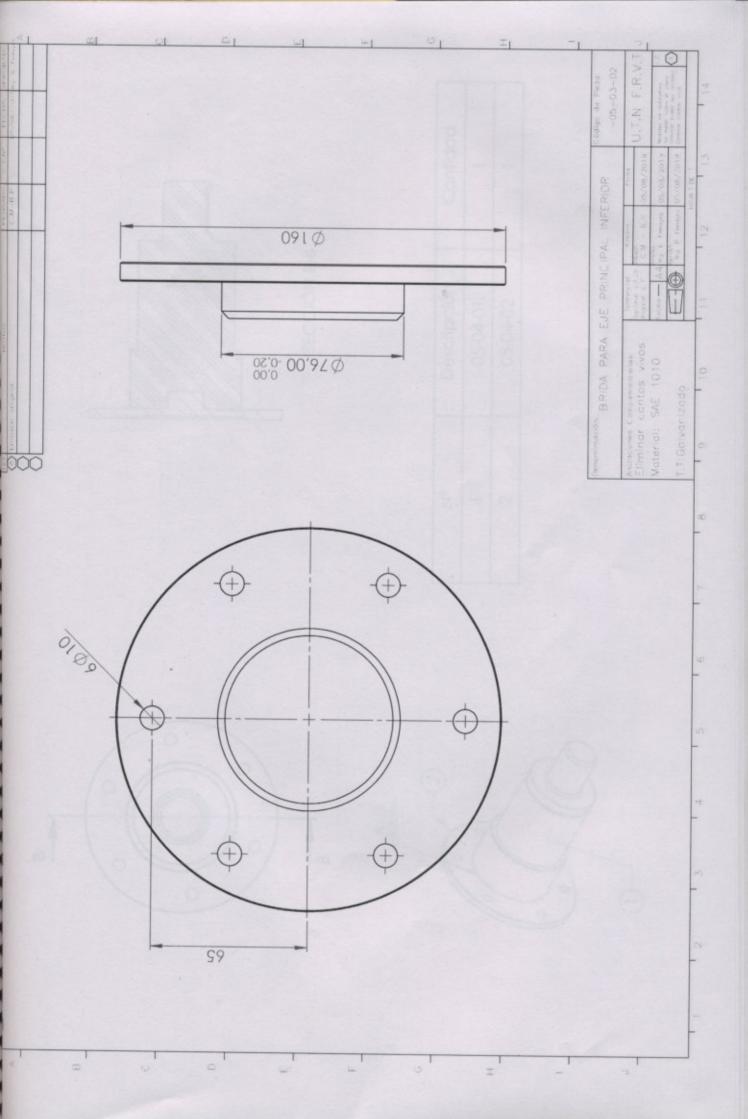


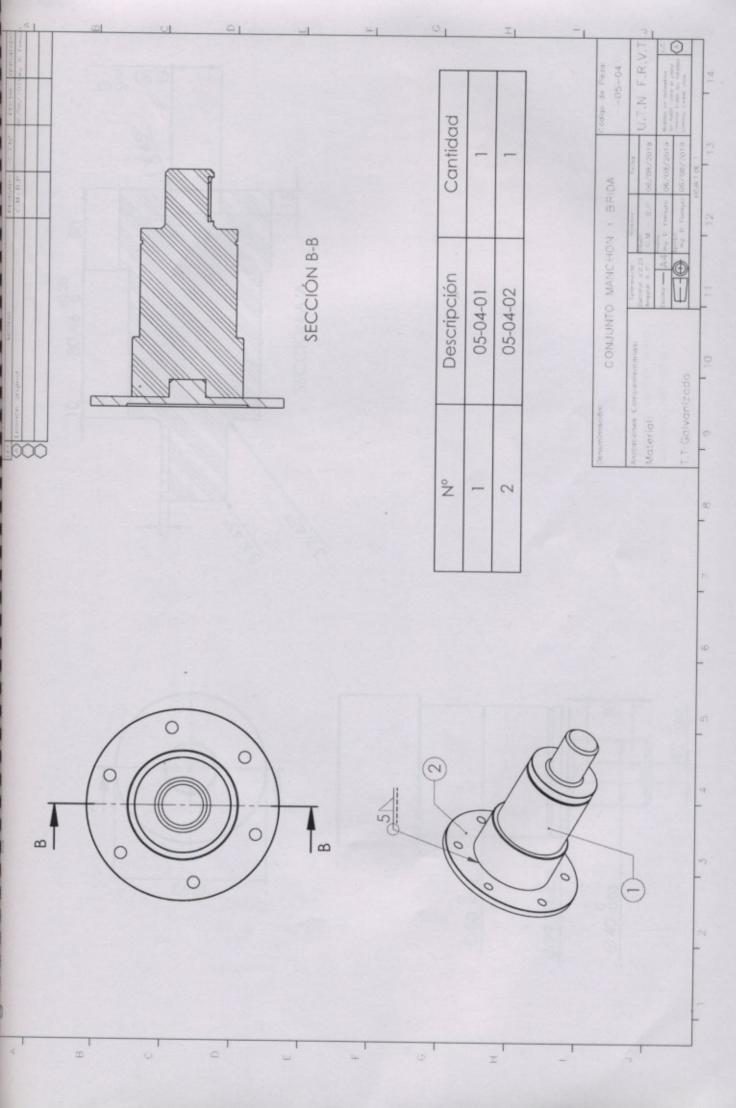


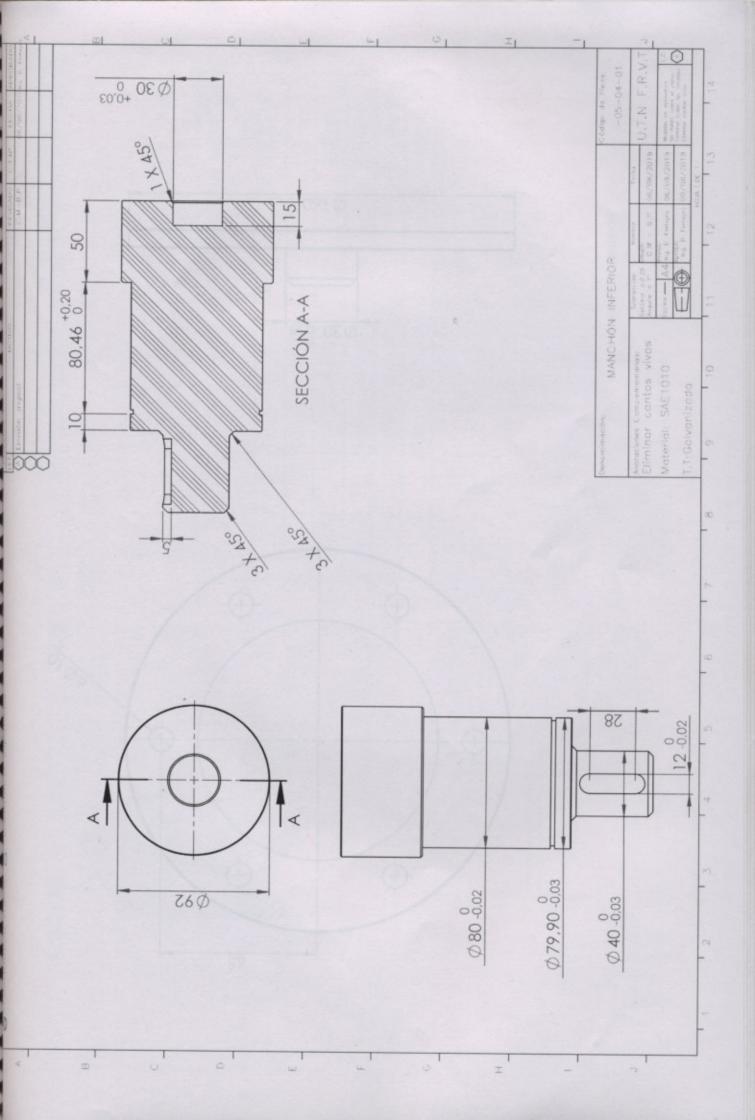


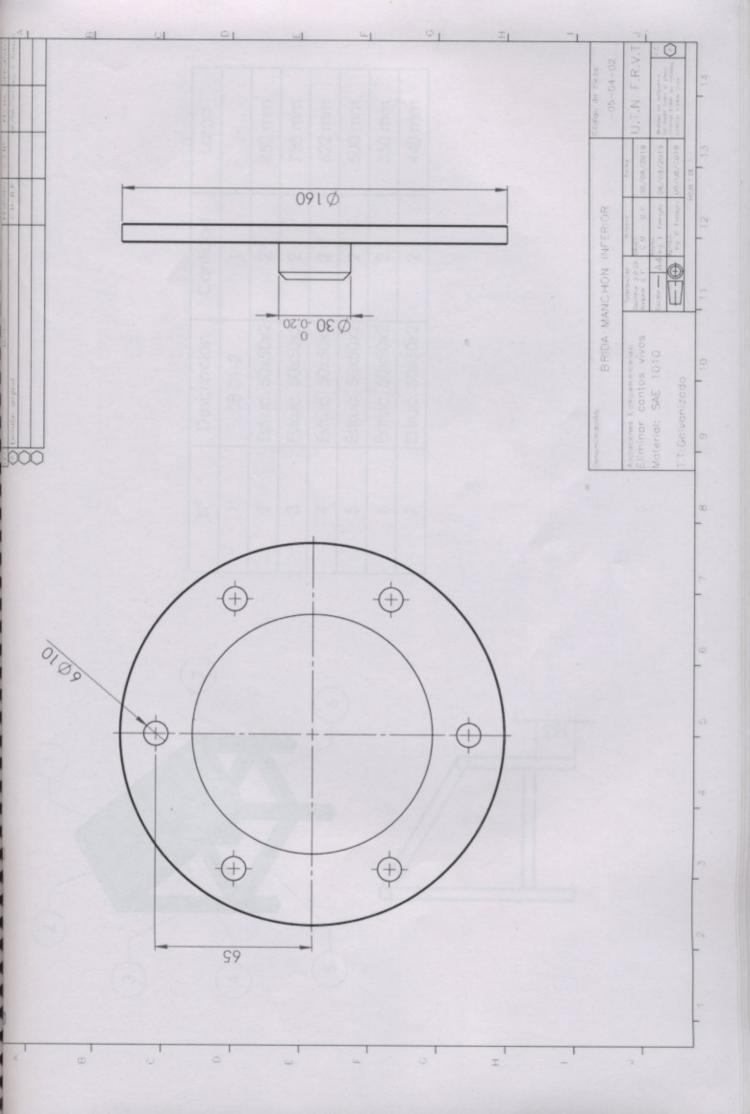


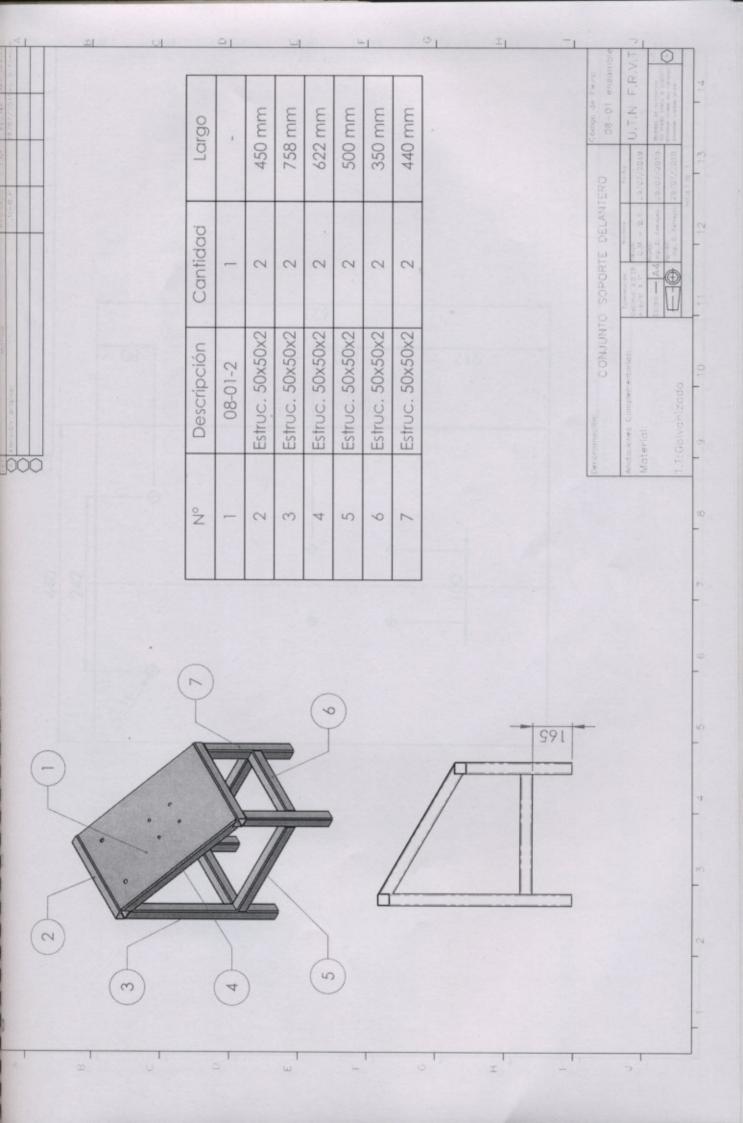


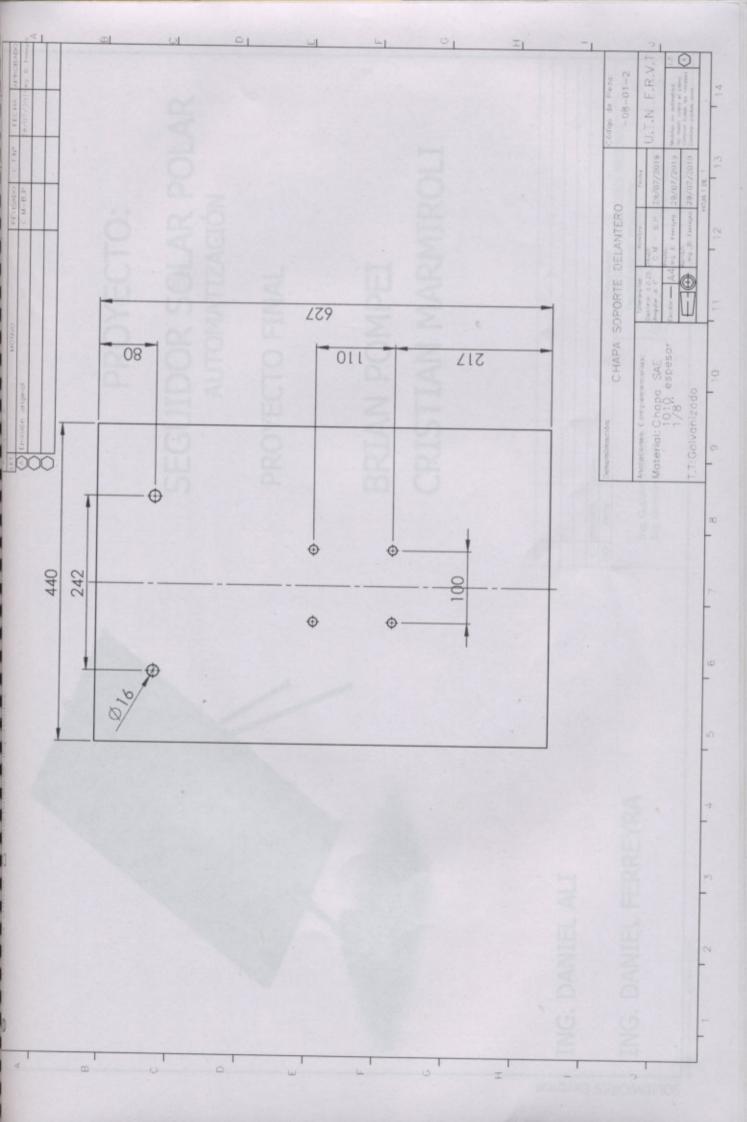












PROYECTO:

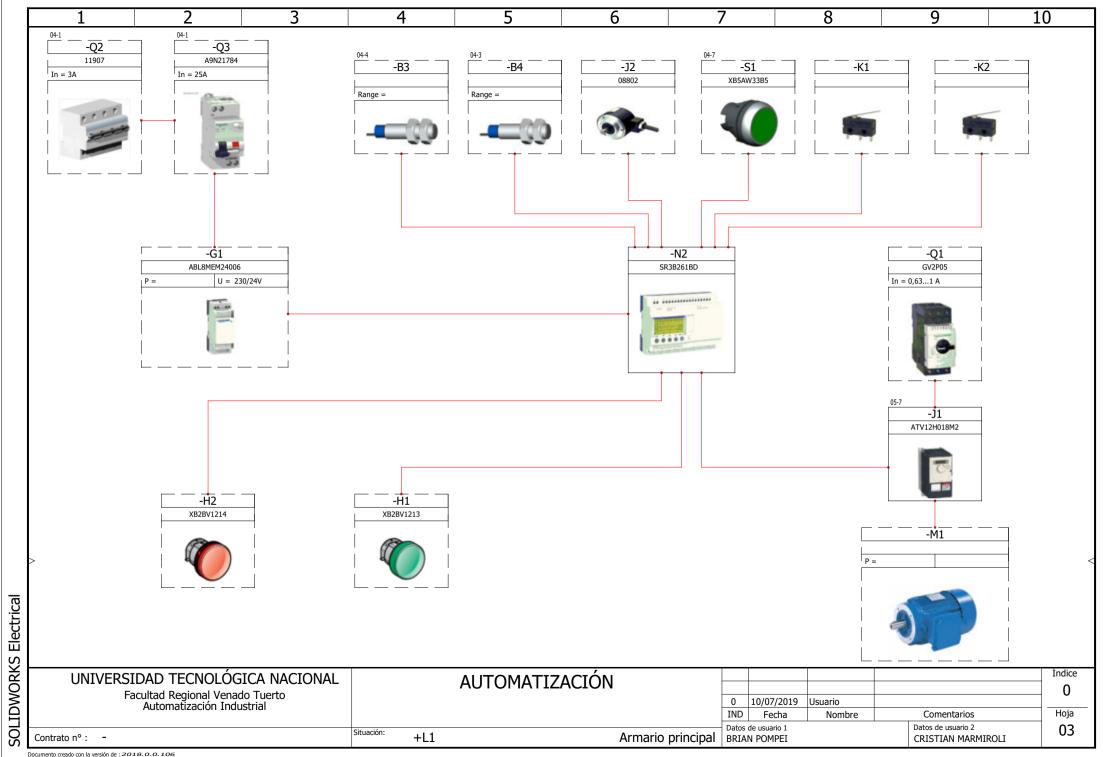
SEGUIDOR SOLAR POLAR AUTOMATIZACIÓN

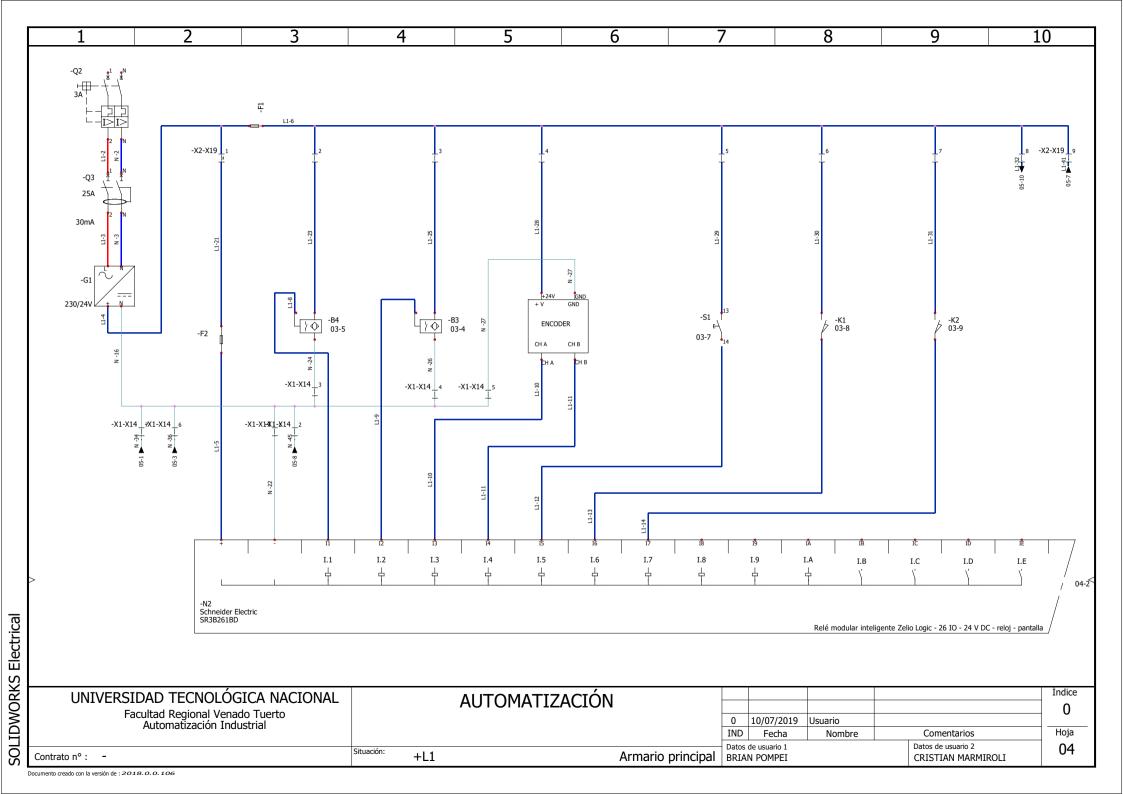
PROYECTO FINAL

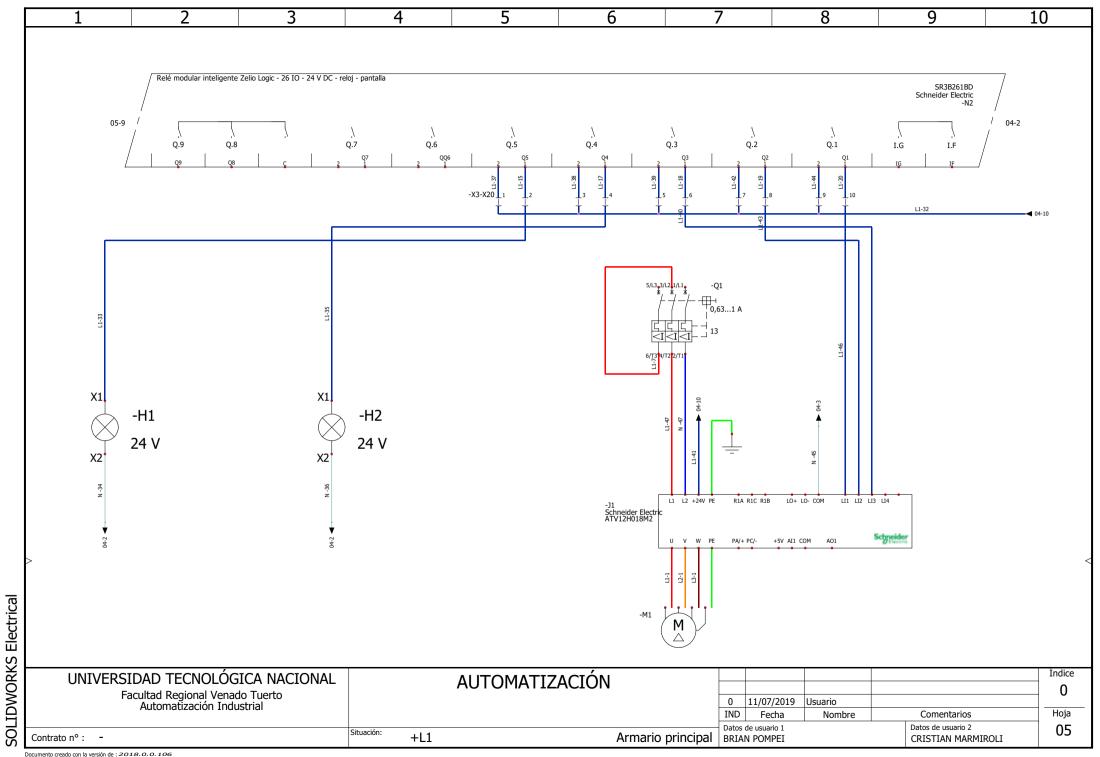
BRIAN POMPEI CRISTIAN MARMIROLI

ING. DANIEL ALI

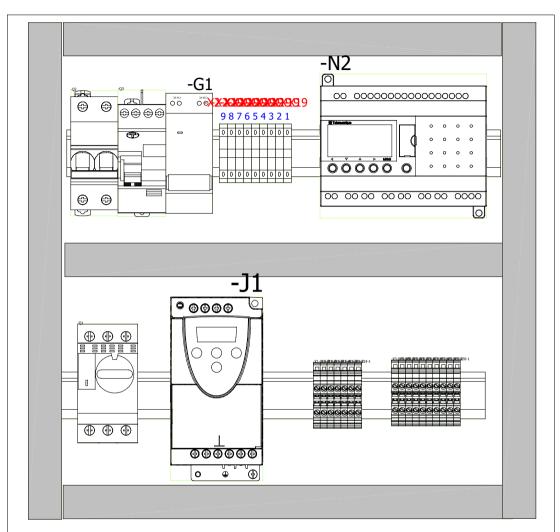
ING. DANIEL FERREYRA

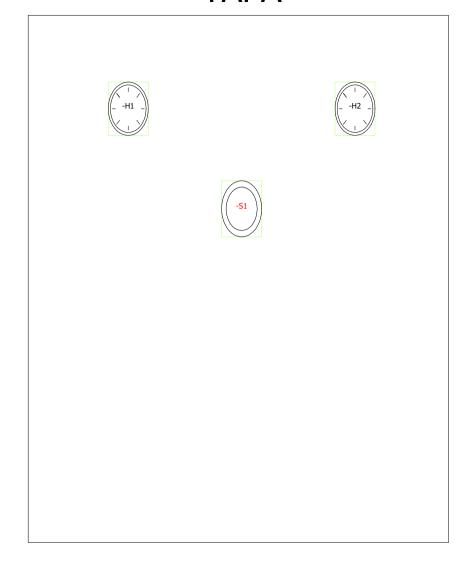

0	10/07/2019	Usuario				
IND	Fecha	Nombre	Comentarios			
Ing. Gustavo Delmastro Ing. Germán Giraudo			UNIVERSIDAD TECNOLÓGICA NACIONAL Facultad Regional Venado Tuerto Automatización Industrial	Índice :		
			Contrato n°: Datos de usuario 1 BRIAN POMPEI Datos de usuario 2 CRISTIAN MARMIROLI	Hoja : 01		


1-AUTOMATIZACIÓN


Hoja	Función	Situación	Revisión	Fecha	Creado por	Descripción	Descripción de la carpeta
01	=F1	+L1	0	10/07/2019	Usuario	Portada	
02	=F1	+L1	0	10/07/2019	Usuario	Lista de hojas	
03	=F1	+L1	0	10/07/2019	Usuario	Sinóptico de cableado	
04	=F1	+L1	0	10/07/2019	Usuario	Esquema de entradas	
05	=F1	+L1	0	11/07/2019	Usuario	Esquemas de salidas	
06	=F1	+L1	0	11/07/2019	Usuario	Armario principal	
7	=F1	+L1	0	14/07/2019	Usuario	Armario principal	

SOLIDWORKS Electrical


UNIVERSIDAD TECNOLÓGICA NACIONAL Facultad Regional Venado Tuerto Automatización Industrial	AUTOMATIZACIÓN					0
Automatización industrial		0		Usuario		
-	+L1 Armario princip		s de usuario 1 AN POMPEI		Datos de usuario 2 CRISTIAN MARMIROLI	02



FRENTE

TAPA

UNIVERSIDAD TECNOLÓGICA NACIONAL

Facultad Regional Venado Tuerto Automatización Industrial

Situación: +L1

AUTOMATIZACIÓN

0 11/07/2019 Usuario
IND. FECHA NOMBRE COMENTARIOS
Datos de usuario 1 Datos de usuario 2

Armario principal BRIAN POMPEI

ESCALA
1 / 2

INDICE
0

HOJA
06

CRISTIAN MARMIROLI

Documento creado con la versión : 2018.0.0.106

Contrato no: -

ANEXO

EG-285P60-C POLYCRYSTALLINE 60-CELL MODULE 265 ~ 285WP

0~+3% POSITIVE TOLERANCE

* Black Frames Applied

5 Bus Bar Solar CELL

KEY FEATURES

High Efficiency

Leading PERC technology achieves higher module efficiency up to 17.4%

Excellent Low-light Performance

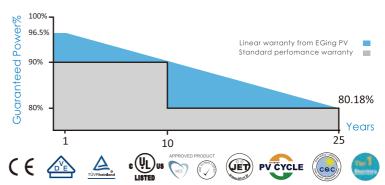
Advanced solar cell surface texturing technology allows for excellent performance in low-light environments

High Reliability

Strict in-house testing in PV Lab which is CNAS approved & VDE certified

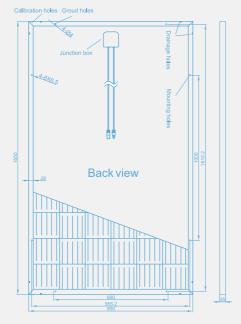
Highly Strengthened Design

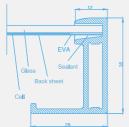
Certified to withstand: 5400Pa snow load and 2400Pa wind load

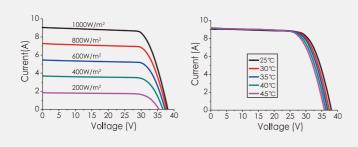


PID Resistant

Excellent PID optimized, 1% less power degradation


LINEAR PERFORMANCE WARRANTY


10 Year Product Warranty \cdot 25 Year Linear Power Warranty



I-V Curves

Packing Configuration

Pieces per pa ll et	30
Size of packing (mm)	1690*1120*1140
Weight of packing (kg)	603
Pieces per container	840
Size of container	40' HC

Electrical Characteristics

STC		EG-265 P60-C	EG-270 P60-C	EG-275 P60-C	EG-280 P60-C	EG-285 P60-C		
Pmax (W)		265	270	275	280	285		
Vmp (V)		30.43	30.62	30.83	31.08	31.25		
Imp (A)		8.71	8.82	8.92	9.01	9.12		
Voc (V)		38.40	38.59	38.80	39.01	39.21		
Isc (A)		9.17	9.25	9.33	9.43	9.51		
Module efficiency (%)		16.22	16.52	16.83	17.14	17.44		
Maximum syste		1000						
Fuse Rating Cur	15							
Power tolerance (%)		0~+3						
Tomporatura	Pmax (%/°C)) - (0.43±0.05)						
Temperature coefficient	Isc (%/℃)	0.04±0.015						
	Voc (%/℃)			- (0.325±0.1)			

STC: Irradiance 1000W/m², module temperature 25°C, AM=1.5

NOCT	EG-265 P60-C	EG-270 P60-C	EG-275 P60-C	EG-280 P60-C	EG-285 P60-C
Pmax (W)	194.69	198.36	202.04	205.71	209.39
Vmp (V)	27.76	27.94	28.12	28.35	28.51
Imp (A)	7.01	7.10	7.19	7.26	7.35
Voc (V)	35.53	35.70	35.90	36.10	36.29
Isc (A)	7.43	7.49	7.56	7.64	7.70
Power tolerance (%)			±3%		

NOCT: Irradiance 800W/ m², ambient temperature 20 °C, wind speed 1 m/s

Mechanical Characteristics

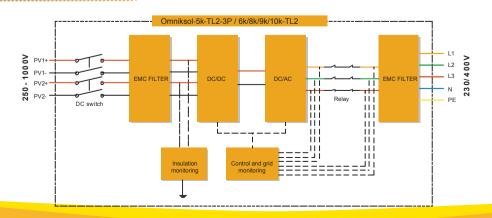
Number of cells (pcs)	60			
Size of cell (mm)	156*156			
Type of cell	Poly			
Thickness of glass (mm)	3.2			
Type of frame	Anodized aluminum alloy			
Junction box	IP67			
Size of module (mm)	1650*990*35			
Weight (kg)	18.6			
Cables/connectors	PV1-F, 4mm², MC4 compatible			

Maximum Ratings

Operating Temperature(°C)	-40~85
Operating Humidity(%)	5~85
Allowable Hail Load	25mm ice - ball with velocity of 23m/s

Three Phase Inverter

Omniksol-5k-TL2-3P/6k/8k/9k/10k-TL2



Product features

Features	Advantages	Benefits
Standard 10 years warranty, 5-15 years optional	Longer life cycle	More stable and reliable
Built-in GPRS as option	Plug and play	 No commissioning work to get real-time remote monitoring
Built-in Wifi as option	Free monitoring through our webportal	 More convenient monitoring solution without any charge
External Inductor	Very lower internal temperature	 Longer life cycle
Smaller and lighter, only 22kg	 Easy transportation and installation 	 Saving storage and installation space
 High performance DSP for algorithm control 	Faster CPU speed	Higher inverter control accuracy
VDE-AR-N 4105 certification	Adjustable active and reactive power	Meet the latest certification and regulations
New topology design	 Maximum conversion efficiency up to 97.6%, Euro up to 96.8% 	Increase generating capacity
Dual MPPT design	More flexible system design	 Increase system payback ability
P65 waterproof and dustproof level	 Maximized system profit 	 Fit in various installation environments
Multi-button touch interface	 User friendly operation 	Easy to operate
LCD screen visible at night	24 hour operation data readable on screen	Real-time operating condition accessible
Have anti-shading function	Suitable to complex installation environment	 Increase the electricity generation of the syster in shading environment

Block Diagram

Technical Date

Omniksol-5k-TL2-3P/6k/8k/9k/10k-TL2

Type	Omniksol-5k-TL2-3P	Omniksol-6k-TL2	Omniksol-8k-TL2	Omniksol-9k-TL2	Omniksol-10k-TL2
Input (DC)					
Max. PV Power	5150W	6150W	8200W	9000W	10000W
Max DC Voltage	1000V	1000V	1000V	1000V	1000V
Nominal DC Voltage	640V	640V	640V	640V	640V
Operating MPPT Voltage Range	150-800V	150-800V	150-800V	150-800V	150-800V
MPPT Voltage Range at Nominal Power	260-800V	280-800V	360-800V	380-800V	380-800V
Start up DC Voltage	250V	250V	250V	250V	250V
Turn off DC Voltage	150V	150V	150V	150V	150V
Max. DC Current (A/B)	11A/11A	11A/11A	14A/14A	14A/14A	14A/14A
Max. Short Circuit Current for each MPPT	16A/16A	16A/16A	20A/20A	20A/20A	20A/20A
Number of MPP trackers	2	2	20A/20A	2	2
		4000W	5000W	5000W	5000W
Max. Input Power for each MPPT*	5150W*	A:2/B:2	A:2/B:2	A:2/B:2	A:2/B:2
Number of DC Connection	A:2/B:2				
DC Connection Type	MC4 connector	MC4 connector	MC4 connector	MC4 connector	MC4 connector
Output (AC)	500014	600014	000014	010014	020014
Max. AC Apparent Power	5000VA	6000VA	8000VA	8100VA	8200VA
Nominal AC Power (cos phi = 1)	5000W	6000W	8000W	8100W	8200W
Nominal AC Current	7.2A	8.7A	11.6A	11.7A	11.9A
	3/N/PE; 220/380V	3/N/PE; 220/380V	3/N/PE; 220/380V	3/N/PE; 220/380V	3/N/PE; 220/380V
Nominal AC Voltage	3/N/PE; 230/400V	3/N/PE; 230/400V	3/N/PE; 230/400V	3/N/PE; 230/400V	3/N/PE; 230/400V
	3/N/PE; 240/415V	3/N/PE; 240/415V	3/N/PE; 240/415V	3/N/PE; 240/415V	3/N/PE; 240/415V
Nominal Grid Frequency	50Hz/60Hz	50Hz/60Hz	50Hz/60Hz	50Hz/60Hz	50Hz/60Hz
Max. AC Current	8.8A	10.7A	13.6A	13.8A	13.9A
Grid Voltage Range**	185-276V	185-276V	185-276V	185-276V	185-276V
Grid Frequency Range**	45-55Hz/55-65Hz	45-55Hz/55-65Hz	45-55Hz/55-65Hz	45-55Hz/55-65Hz	45-55Hz/55-65Hz
Power Factor			apacitive0.9 inductive		
Total Harmonic Distortion (THD)	<2%	<2%	<2%	<2%	<2%
Feed in Starting Power	30W	30W	30W	30W	30W
Night time Power Consumption	<1W	<1W	<1W	<1W	<1W
Standby Consumption	<10W	<10W	<10W	<10W	<10W
AC Connection Type	Plug-in connector	Plug-in connector	Plug-in connector	Plug-in connector	Plug-in connector
Efficiency					
Max. Efficiency	97.6%	97.6%	97.6%	97.6%	97.6%
Euro Efficiency	96.8%	96.8%	96.8%	96.8%	96.8%
MPPT Efficiency	99.9%	99.9%	99.9%	99.9%	99.9%
Safety and Protection					
DC Insulation Monitoring			Yes		
DC Switch			Optional		
Residual Current Monitoring Unit (RCI	MU)		Integrated		
Grid Monitoring with Anti-islanding			Yes		
Electricity Fuse Protection			Yes		
Protection Class		I (Accou	ding to IEC 62103)		
Overvoltage Category			ding to IEC 62109-1)		
Reference Standard		Ш(Ассол	unig to ice 02103-1)		
Safety Standard		EN 62	109, AS/NZS 3100		
EMC Standard	FN 61000 6 1			61000-3-2, EN 61000-3-3	
Grid Standard			1, EN 50438, RD1699, CEI		
Physical Structure	VDE-AR-N4	103, 105-0120-1-1, 083/	1, LIN 30430, KD1033, CEI	0-21, M34///, C10/C11	
		252	v421v172 Fmama		
Dimensions (WxHxD)		352	x421x172.5mm		
Weight		ID CE (A	22kg		
Environmental Protection Rating		,	cording to IEC 60529)		
Cooling Concept			ural convection		
Mounting Information			Wall bracket		
General Data		0500	2001		
Operating Temperature Range			°C(derating above 45°C)		
Relative Humidity		0% to 98	%, no condensation		
Max. Altitude (above sea level)			2000m		
Noise Level			<40dB		100 Marine
Isolation Type			ansformerless		7. S.
			TET Consider Disaless and	ional \	(A) (B) (17 h)
Display		20 x 4 LCD (800x480		ionai)	Section 11 Line Co.
Display Data Communication Interfaces			ViFi, GPRS optional)	ioriai)	
Display		RS485(V		ionai)	

 $^{{}^\}star \text{The AC}$ voltage and frequency range may vary depending on specific country grid

Omnik New Energy Co., Ltd.

Ficha técnica del producto ATV12H018M2TQ Características

Variador 1Fase 240V 0,18Kw 0,25Hp X14Uni

Principal

· · · · · · · · · · · · · · · · · · ·	
Rango de producto	Altivar 12
Tipo de producto o componente	Variador velocidad variable
Destino del producto	Motores asíncronos
Aplicación específica producto	Máquina simple
Estilo de conjunto	En placa base
Nombre de componente	ATV12
Cantidad por juego	Conjunto de 14
Filtro CEM	Integrado
Ventilador integrado	Sin
Número de red de fases	1 fase
[Us] tensión de alimentación nominal	200240 V - 1510 %
Potencia del motor en kW	0.18 kW
Potencia del motor en CV	0.25 hp
Protocolo de puerto de comunic	Modbus
Corriente de línea	3.4 A 200 V 2.8 A 240 V
Rango de velocidades	120
Sobrepar transitorio	150170 % del par nominal del motor en función del grado de accionamiento y tipo de motor
Perfil de control de motor asíncrono	Relación tensión / frecuencia (V / f) Control vector flujo sin detector Relación de frecuencia/tensión cuadrática
Grado de protección IP	IP20 sin placa de obturación en pieza superior
Intensidad de ruido	0 dB

Complementario

Frecuencia de alimentación	50/60 Hz +/- 5 %	es constant and a con
Tipo de conector	1 RJ45 Modbus on front face	COG
Interfaz física	RS 485 de dos hilos Modbus	
Marco de transmisión	RTU Modbus	
		O

Velocidad de transmisión	4800 bit/s 9600 bit/s 19200 bit/s 38400 bit/s
Número de direcciones	1247 Modbus
Servicio de comunicación	Read holding registers (03) 29 words Write single register (06) 29 words Write multiple registers (16) 27 words Read/write multiple registers (23) 4/4 words Identificación de dispositivo de lectura (43)
Prospective line Isc	<= 1 kA
Corriente de salida continua	1.4 A 4 kHz
Máxima corriente transitoria	2.1 A 60 s
Rango de frecuencias de salida	0.5400 Hz
Frecuencia de conmutación nominal	4 kHz
Frecuencia de conmutación	216 kHz regulable 'or' no regulable 416 kHz con factor de reducción de la capacidad normal
Par de frenado	Up to 70 % of nominal motor torque sin resistencia de frenado
Compensación desliz. motor	Regulable 'or' no regulable Predet. de fábrica
Tensión de salida	200240 V 3 phases
Conexión eléctrica	Terminal 3.5 mm² AWG 12 L1, L2, L3, U, V, W, PA, PC
Par de apriete	0.8 N.m
Aislamiento	Eléctrico entre alimentación y control
Alimentación	Internal supply for reference potentiometer 5 V DC 4.755.25 V 10 mA overload and short-circuit protection Internal supply for logic inputs 24 V DC 20.428.8 V 100 mA overload and short-circuit protection
Número de entrada analógica	1
Tipo de entrada análogica	Configurable voltage Al1 010 V 30 kOhm Configurable voltage Al1 05 V 30 kOhm Corriente configurable Al1 020 mA 250 Ohm
Número de entrada digital	4
Tipo de entrada digital	Programmable LI1LI4 24 V 1830 V
Lógica de entrada digital	Negative logic (sink) > 16 V < 10 V 3.5 kOhm Positive logic (source) 0< 5 V > 11 V
Duración de muestreo	20 ms +/- 1 ms logic input 10 ms analogue input
Error de linealidad	+/- 0.3 % of maximum value analogue input
Número de salida analógica	1
Tipo de salida análogica	Software-configurable voltage AO1 010 V 470 Ohm 8 bits Software-configurable current AO1 020 mA 800 Ohm 8 bits
Número de salida digital	2
Tipo de salida digital	Logic output LO+, LO- Protected relay output R1A, R1B, R1C 1 C/O
Corriente mínima de conmutación	5 mA 24 V DC logic relay
Corriente de conmutación máxima	2 A 250 V CA inductivo cos phi = 0,4 L/R = 7 ms relé lógico 2 A 30 V CC inductivo cos phi = 0,4 L/R = 7 ms relé lógico 3 A 250 V CA resistivo cos phi = 1 L/R = 0 ms relé lógico 4 A 30 V CC resistivo cos phi = 1 L/R = 0 ms relé lógico
Rampas de aceleración y deceleración	S Lineal de 0 a 999,9 s U
De desconexión a parada	Con inyección c.c. <= 30 s
Tipo de protección	Against input phase loss in three-phase Protección térmica del motor a través del accionamiento cálculo continuo de l²t Sobretensión sum línea Tensión baj sumin línea Sobreintensidad entre fases de salida y tierra Protección sobrecalentam Cortocircuito entre fases del motor
Resolución de frecuencia	0.1 Hz unidad de pantalla

Convertido A/D	10 hits	entrada	analóg

Constante de tiempo	20 ms +/- 1 ms for reference change
Marcado	CE
Posición de funcionamiento	Vertical +/- 10 grados
Alto	143 mm
Ancho	72 mm
Profundidad	102.2 mm
Peso del producto	0.7 kg
Selección de la aplicación de la velocidad variable	Commercial equipment : mixer Commercial equipment : other application Textile : ironing
Tipo de arrancador de motor	Variador de velocidad

Entorno

Compatibilidad electromagnética	Immunity to conducted disturbances level 3 EN/IEC 61000-4-6 Surge immunity test level 3 EN/IEC 61000-4-5 Voltage dips and interruptions immunity test EN/IEC 61000-4-11 Prueba de inmunidad oscilatoria/ráfagas eléctrica nivel_4 EN/IEC 61000-4-4 Prueba de inmunidad de descarga electroestática nivel_3 EN/IEC 61000-4-2 Prueba de inmunidad de campo electromagnético de radio frecuencia radiada nivel_3 EN/IEC 61000-4-3
Emisión electromagnética	Emisiones radiadas ambiente 1 categoría C2 EN/IEC 61800-3 2 16 kHz cable blindado del motor Emisiones conducidas con filtro EMC integrado ambiente 1 categoría C1 EN/IEC 61800-3 2, 4, 8, 12 y 16 kHz cable blindado del motor 5 m Emisiones conducidas con filtro EMC integrado ambiente 1 categoría C2 EN/IEC 61800-3 2 12 kHz cable blindado del motor 5 m Emisiones conducidas con filtro EMC integrado ambiente 1 categoría C2 EN/IEC 61800-3 2, 4 y 16 kHz cable blindado del motor 10 m Emisiones conducidas con filtro EMC adicional ambiente 1 categoría C1 EN/IEC 61800-3 4 12 kHz cable blindado del motor 20 m Emisiones conducidas con filtro EMC adicional ambiente 1 categoría C2 EN/IEC 61800-3 4 12 kHz cable blindado del motor 50 m Emisiones conducidas con filtro EMC adicional ambiente 2 categoría C3 EN/IEC 61800-3 4 12 kHz cable blindado del motor 50 m
Certificados de producto	C-Tick CSA UL GOST NOM
Resistencia a las vibraciones	1 gn EN/IEC 60068-2-6 13200 Hz 1.5 mm peak to peak EN/IEC 60068-2-6 313 Hz drive unmounted on symmetrical DIN rail
Resistencia a los choques	15 gn EN/IEC 60068-2-27 11 ms
Humedad relativa	595 % sin condensación IEC 60068-2-3 595 % sin goteo de agua IEC 60068-2-3
Temperatura ambiente de almacenamiento	-2570 °C
Temperatura ambiente	-1040 °C protective cover from the top of the drive removed 4060 °C con disminución de corriente de 2,2 % por grada
Altitud máxima de funcionamiento	> 10002000 m con disminución de corriente del 1% por 100 m <= 1000 m sin reducir la capacidad normal

Ofrecer Sostenibilidad

Estado de la oferta sostenible	Producto Green Premium
RoHS (código de fecha: YYWW)	Conforme - desde 0919 - Declaración de conformidad de Schneider Electric
	Declaración de conformidad de Schneider Electric
Alcanzar	Referencia no contiene SVHC arriba del umbral
	Referencia no contiene SVHC arriba del umbral
Perfil medioambiental del producto	Disponible
Instrucciones de fin de vida del producto	Disponible

Guía de inicio rápido - ATV12

S1A5615003

A A PELIGRO

PELIGRO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O ARCO ELÉCTRICO

- Solo estará autorizado a trabajar con este sistema de variador el personal debidamente formado que esté familiarizado con el contenido de este manual y el resto de documentación pertinente de este producto, lo entienda y haya recibido formación en seguridad para reconocer y evitar los riesgos que implica. La instalación, el ajuste, la reparación y el mantenimiento deben ser realizados por personal cualificado
- El integrador del sistema es responsable del cumplimiento de todos los requisitos de los códigos eléctricos locales y nacionales, así como del resto de reglamentos aplicables relacionados con la correcta conexión a masa de todo el equipo.
- Muchos componentes del producto, incluidas las placas de circuito impreso, funcionan con tensión de red. No los toque. Utilice solo herramientas con aislante eléctrico
- No toque los componentes no apantallados ni las bornas cuando haya tensión.
- Los motores pueden generar tensión cuando se gira el eje. Antes de realizar cualquier tipo de trabajo en el sistema de variador, bloquee el eje del motor para impedir que gire
- La tensión CA puede asociar la tensión a los conductores no utilizados en el cable del motor. Aísle los dos extremos de los conductores no utilizados del cable del motor.
- · No cortocircuite entre las bornas de bus CC, los condensadores de bus CC o las bornas de resistencia de frenado
- · Antes de trabajar en el sistema de variador:
 - Desconecte toda la potencia, incluida la alimentación de control externa que pueda haber.
 - Coloque la etiqueta de "No conectar" en todos los interruptores de alimentación
 - Bloquee todos los interruptores de alimentación en la posición abierta
 - Espere 15 minutos para que los condensadores de bus CC se descarguen. El LED de bus CC no es un indicador de la ausencia de tensión de bus CC que puede exceder 800 V CC.
 - Mida la tensión del bus CC entre las bornas del bus CC (PA/+, PC/-) usando un voltímetro con la capacidad adecuada para comprobar que la tensión es <42 V CC.
 - Si los condensadores de bus CC no se descargan correctamente, póngase en contacto con su representante local de Schneider Electric. No repare ni haga funcionar el producto
- Instale y cierre todas las cubiertas antes de aplicar tensión.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

Sólo personal cualificado deberá llevar a cabo la instalación, manejo, reparación y mantenimiento de los equipos eléctricos. Schneider Electric no asume las responsabilidades que pudieran surgir como consecuencia de la utilización de este producto.

La siguiente información está diseñada para utilizar un único variador conectado a un solo motor con una longitud de cable de motor inferior a 50 metros (164 ft). Compruebe los cables antes de conectar el variador con un motor (longitud, alimentación, apantallado o no apantallado). Para más información, consulte el manual del usuario (BBV28583) ATV12 en www.schneider-electric.com.

1 Comprobación de la entrega del variador

•Retire el ATV12 del embalaje y compruebe que no presenta daños.

ADVERTENCIA

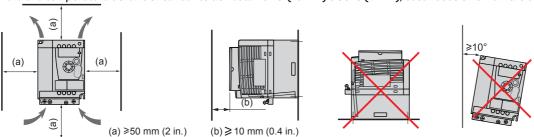
EQUIPO DAÑADO

No maneje ni instale ningún variador o accesorio del variador que parezca estar dañado.

Si no se respetan estas instrucciones pueden producirse graves lesiones, daños materiales o incluso la muerte.

1.5KW - 2HP - 200 / 240V ~

ATV12HU15M2

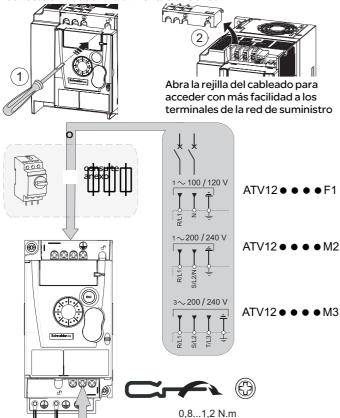

2 Comprobación de la compatibilidad de la tensión de red

Verifique que la tensión de red sea compatible con el rango de alimentación del variador.
 Tensión de red ______ voltios / Rango de tensiones del variador ______ voltios.

Rango del variador: ATV12••••F1 = 100/120 V monofásico / ATV12••••M2 = 200/240 V monofásico / ATV12••••M3 = 200/240 V trifásico

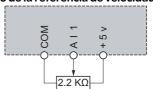
Instalación del variador verticalmente

Para una temperatura del aire circundante de hasta 40 °C (104 °F) o 50°C (122°F), basándose en el número de referencia del producto.



Para otras condiciones térmicas, consulte el manual del usuario (BBV28583) en www.schneider-electric.com. Para el producto placa de base ATV12P, consulte el Manual de instalación (BBV28587) ATV12P.

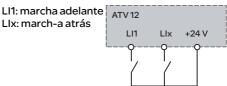
4 Conexión de Alimentación


- Conecte el variador a la masa.
- Compruebe el calibre del disyuntor o del fusible.
- Compruebe que la tensión del motor es compatible con la tensión del variador. Tensión del motor: ______ voltios.
- · Conecte el variador al motor.
- Conecte el variador a la alimentación de red.

5 Cableado de control y selección del control configuración

[Configuración Remoto] (Control por referencia externa)

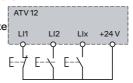
• Cableado de la referencia de velocidad:



hacer: **6**+**7**+**8**+**9**1

· Cableado del control:

El control utiliza 2 hilos:


Parámetro Ł [[= 2 [

hacer: **6**+**7**+**8**+**9**1

El control utiliza 3 hilos: Parámetro $E \Gamma = 3 \Gamma$

LI1: parada LI2: marcha adelante LIx: marcha atrás

hacer: **6+7+8**+91

[Configuración Local] (Control por referencia interna).

hacer: **6**+**7**+**8**+92

6 Alimentación del variador

• Compruebe que las entradas lógicas utilizadas no están activas (Consultar Li1, Li2, Lix).

7.1...10.6 lb.in

200 / 240V

- Alimente el variador.
- La primera vez que se enciende, el variador mostrará **b** F r.
- En los siguientes arranques, el variador mostrará r d y.

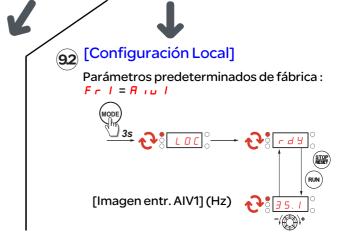
Ajuste de los parámetros del motor

• Consulte la placa de características del motor para ajustar los parámetros.

Menú	Código	Descripción	Ajuste de fábrica	Ajuste de cliente
Conf > Full >	ЬFг	[Frec. estándar motor]: Frecuencia estándar del motor (Hz)	5 0.0	
dr [- [Menú Control motor]	n P r	[Pot. nominal motor] Potencia nominal del motor indicada en la placa de características.	Calibre del variador	
[Mend Control Motor]	nΓr	[Frec. nom. motor]: Corriente nominal del motor en la placa de características del motor (A)	Calibre del variador	
FLE->EHE- [Menú Protección térmica del motor]	ı E H	[Corriente térmica del motor]: Corriente nominal indicada en la placa de características del motor (A)	Calibre del variador	

8 Ajuste de los parámetros básicos

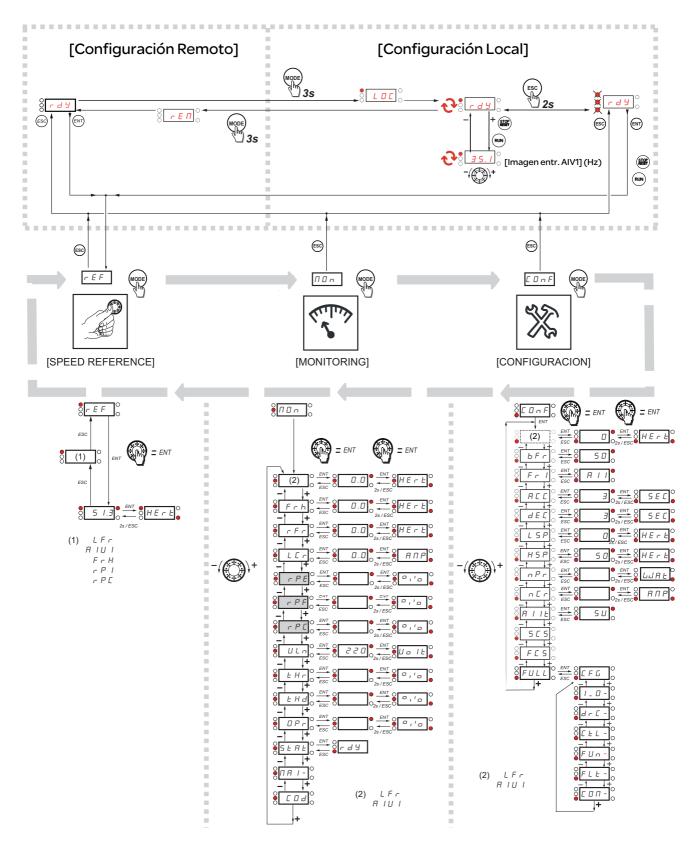
Menú	Código	Descripción	Ajuste de fábrica	Ajuste de cliente
	ACC	[Aceleración]: Tiempo de aceleración (s)	3.0	
Conf	4 E C	[Deceleración]: Tiempo de deceleración (s)	3.0	
[CONFIGURACION	L 5 P	[Velocidad mínima]: Frecuencia del motor con referencia mínima (Hz)	0.0	
	H S P	[Vel. máxima]: Frecuencia del motor con referencia máxima (Hz)	50.0	


Ajuste de los parámetros de control

Menú	Código	Descripción	5.1 [Configuración Remoto]	5.2 [Configuración Local]	Ajuste de cliente
[Menú Control]	FrI	[Canal Ref. 1]: Control de referencia	AL I	AL u I	
[Menú Entrada/Salida]	FCC	[Control 2/3 hilos]: Control de comandos	₽ [: 2 hilos ∃ [: 3 hilos	_	

[Configuración Remoto] (Configuración de los ajustes de fábrica)

Parámetros predeterminados de fábrica: FrI=AII



Arranque del motor

Resolución de problemas

	Causas posibles	Solución
5 C F 3	Cortocircuito o puesta a tierra en la salida del variador • Fallo a tierra durante funcionamiento. • Conmutación de motores durante funcionamiento. • Corriente de fuga a tierra importante en el caso de varios motores en paralelo.	 Verifique los cables que conectan el variador al motor así como el aislamiento del motor. Conecte bobinas de motor.
aЬF	• Frenado demasiado brusco o carga arrastrante.	 Aumente el tiempo de deceleración. Instale una unidad de módulo con una resistencia de frenado en caso necesario. Verifique la tensión de alimentación de red para asegurarse de que se encuentra por debajo del máximo aceptable (20% por encima de la tensión de red máxima durante el estado de funcionamiento).
o 5 F	 Tensión de red demasiado elevada. Sólo al encender el variador, la tensión está un 10% por encima del nivel de tensión máxima aceptable. Potencia sin orden de marcha, 20% por encima de la alimentación de red máxima. Alimentación de red perturbada. 	• Apague el variador. Compruebe y ajuste la tensión de red. Después de que la red vuelva a la tensión nominal (dentro de la tolerancia), encienda la alimentación. Si aparece código • 5 F intermitente, ajuste el relé R1 a F L Ł y se podrá conectar a la protección aguas arriba para evitar sobretensión en el variador. En este caso L • I puede utilizarse para otros estados de variador
oPF I	Corte de fase a la salida del variador.	 Verifique las conexiones del variador al motor. En caso de utilizar un contactor aguas abajo, compruebe que la conexión, el cable y el contactor son correctos.
aPf2	 Motor no conectado. Potencia de motor demasiado baja, inferior al 6% de la corriente nominal del variador. Contactor de salida abierto. Inestabilidades instantáneas de la intensidad de motor. 	• Verifique las conexiones del variador al motor. • Pruebe en un motor con alimentación baja o sin motor. Con el ajuste de fábrica, la detección de pérdida de fase del motor está activa: Pérdida fase motor Detección □ P L = ሧ E 5. Para comprobar el variador en un entorno de prueba o de mantenimiento, y sin recurrir a un motor equivalente al calibre del variador, desactive la detección de fase del motor Pérdida fase motor Detección □ P L = □ □ □. • Verifique y optimice los parámetros: Compensación RI (ley U/F) □ F r, Tensión nominal del motor □ □ 5, y Intensidad nominal del motor □ □ r, y realice un Autoajuste L □ n.
и 5 F	Alimentación de red insuficiente. Bajada de tensión transitoria.	Verifique la tensión y los parámetros del Menú pérdida fase subtensión u 5 b

Estructura de menús

Consulte el manual de usuario del ATV12 (BBV28583) para obtener información sobre la localización de fallas y una descripción completa del menú.

Después de los códigos de menú aparece una raya para diferenciarlos de los códigos de parámetro. Por ejemplo: [AJUSTES] (d r [r]), parámetro b r [r].

Ficha técnica del producto GV2ME08 Características

Guardamotor Magterm 3P 2,5/4A 100Ka

Principal

		<u> </u>
Distancia	TeSys	
Nombre del producto	TeSys GV2	
Modelo de dispositivo	GV2ME	
Aplicación del dispositivo	Motor	
Tipo de unidad de control	Térmico-magnético	<u> </u>

Complementario

Complementane		
Número de polos	3P	
Tipo de red	CA	
Categoria de utilización	AC-3 conforme a IEC 60947-4-1 A conforme a IEC 60947-2	
Frecuencia asignada de empleo	50/60 Hz conforme a IEC 60947-4-1	
Modo de fijación	Perfil DIN simétrico de 35 mm: cortado Panel: con tornillos (Con placa adaptadora)	
Posición de funcionamiento	Cualquier posición	
Potencia del motor en kW	1,1 kW a 400/415 V CA 50/60 Hz 1,5 kW a 400/415 V CA 50/60 Hz 1,5 kW a 500 V CA 50/60 Hz 3 kW a 690 V CA 50/60 Hz 2,2 kW a 500 V CA 50/60 Hz 2,2 kW a 690 V CA 50/60 Hz	
Poder de corte	100 kA Icu a 230/240 V CA 50/60 Hz conforme a IEC 60947-2 100 kA Icu a 400/415 V CA 50/60 Hz conforme a IEC 60947-2 100 kA Icu a 440 V CA 50/60 Hz conforme a IEC 60947-2 100 kA Icu a 500 V CA 50/60 Hz conforme a IEC 60947-2 3 kA Icu a 690 V CA 50/60 Hz conforme a IEC 60947-2	
[lcs] rated service short-circuit breaking capacity	100 % a 500 V CA 50/60 Hz conforme a IEC 60947-2 100 % a 230/240 V CA 50/60 Hz conforme a IEC 60947-2 100 % a 440 V CA 50/60 Hz conforme a IEC 60947-2 100 % a 400/415 V CA 50/60 Hz conforme a IEC 60947-2 75 % a 690 V CA 50/60 Hz conforme a IEC 60947-2	
Tipo de control	Pulsador	
Corriente nominal	4 A	

Thermal protection adjustment range	2,54 A
Corriente de disparo magnética	51 A
Tensión asignada de empleo	690 V CA 50/60 Hz conforme a IEC 60947-2
Tensión asignada de aislamiento	690 V CA 50/60 Hz conforme a IEC 60947-2
[Ith] Intensidad térmica convencional	4 A conforme a IEC 60947-4-1
[Uimp] Tensión asignada de resistencia a los choques	6 kV conforme a IEC 60947-2
Potencia total disipada por polo	2,5 W
Endurancia mecánica	100000 ciclos
Endurancia eléctrica	100000 ciclos para AC-3 a 440 V
Maximum operating rate	25 cyc/h
Servicio nominal	Continuo conforme a IEC 60947-4-1
Conexiones - terminales	Conexión tornillo de estribo 2 cable(s) 16 mm² sólido Conexión tornillo de estribo 2 cable(s) 1,56 mm² flexible sin extremidad de cable Conexión tornillo de estribo 2 cable(s) 14 mm² flexible con
Par de apriete	1,7 N.m sobre conexión tornillo de estribo
Idoneidad para el seccionamiento	Sí conforme a IEC 60947-1
Sensibilidad a fallo de fase	Sí conforme a IEC 60947-4-1
Alto	89 mm
Ancho	45 mm
Profundidad	78,2 mm
Peso del producto	0,26 kg

Entorno

LITTOTTO	
Normas	CSA C22.2 NF C 63-650 IEC 60947-1 NF C 63-120 VDE 0113 EN 60204 NF C 79-130 IEC 60947-4-1 IEC 60947-2 VDE 0660 UL 508
Certificados de producto	TSE RINA CSA UL EAC CCC CEBEC BV DNV EZU LROS (Lloyds register of shipping) SETI GL ATEX
Tratamiento de protección	TH
Grado de protección IP	IP20 conforme a IEC 60529
Grado de protección IK	IK04
Temperatura ambiente	-2060 °C
Temperatura ambiente de almacenamiento	-4080 °C
Resistencia al fuego	960 °C conforme a IEC 60695-2-1
Altitud máxima de funcionamiento	2000 m

Sostenibilidad de la oferta

Catada da afanta asatan:lala	Description of the second conservations
Estado de oferta sostenible	Producto verde premium

Reglamento REACh	Declaración de REACh
Directiva RoHS UE	Pro-active compliance (Product out of EU RoHS legal scope)
	Declaración RoHS UE
Sin mercurio	Sí
Información sobre exenciones de RoHS	₽ Sí
Normativa de RoHS China	Declaración RoHS China
Comunicación ambiental	d Perfil ambiental del producto
Perfil de circularidad	No se necesitan operaciones de reciclaje específicas
RAEE	En el mercado de la Unión Europea, el producto debe desecharse de acuerdo con un sistema de recolección de residuos específico y nunca terminar en un contenedor de basura.
Garantía contractual	
Periodo de garantía	18 Meses

Descripción de catálogo

S77R37DRN63M4

Reductores de tornillo sin fin S + Reductores de engranajes cilíndricos R + Motores de CA DRN.. (IE3)

Datos de producto

Velocidad nominal del motor [1/min]: 1375 Velocidad de salida [1/min]: 1,1 Índice de reducción total : 1245,00 Par de salida [Nm]: 1050 Factor de servicio SEW-FB : 1,20 Posición de montaje : M1AB

Pintura imprimación/CapaFinal : 7031 Gris azulado (51370310)

Posición de conexión/caja de [°]:0

Entrada de cable/ Posición del : X

conector

[mm]: 45x90 Eje de salida Salida permitida con carga radial [N]: 13500

n=1400

Cantidad de lubricante 1er reductor [Litro]: 1,9 [Litro]: 0,35 Cantidad de lubricante 2º reductor Potencia del motor [kW]: 0,18 Factor de duración : S1-100% Clase eficiente : IE3

Eficiencia (50/75/100% Pn) [%]: 65,09 / 69,41 / 69,9

Marcado CE : Si [V]: 220/380 Tensión del motor : R13 Esquema de conexionado Frecuencia [Hz]: 50 Corriente nominal [A]: 1,03 / 0,6 Cos Phi : 0,65 Clase de aislamiento : 155(F) Tipo protección del motor : IP55 Requisito del diseño : IEC Momento de inercia de masa del [10bf kgm2]: 3,76

motor

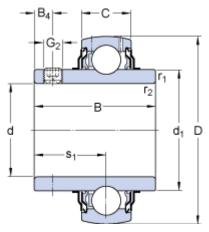
Peso neto [Kg]: 63

Caracteristicas adicionales

Eie de salida: 45x90 mm Aislamiento térmico 155(F)

Ejecución por patas con 2 ejes de salida

Grado de protección IP 55 Tensión, frecuencia, bobinado



YAR 216-2F

Popular item

Dimensions

d		80	mm
D		140	mm
В		77.8	mm
С		30	mm
d ₁	≈	97.4	mm
В ₄		12	mm
r _{1,2}	min.	2	mm
s ₁		47.6	mm

Calculation data

Basic dynamic load rating	С	72.8	kN
Basic static load rating	C ₀	53	kN
Fatigue load limit	P _u	2.16	kN
Limiting speed 1)		2400	r/min
Calculation factor	f ₀	15	

Mass

Mass complete bearing	2.5	kg

Mounting information

Thread grub screw	G ₂	M10x1	
Hexagonal key size for grub screw	N	5	mm
Recommended tightening torque for grub screw		16.5	N·m

GUMMi

Acoplamiento Elástico Línea A

Gummi cuenta con una experiencia de más de 50 años en el rubro de transmisiones mecánicas industriales y con una activa participación en distintos e importantes mercados industriales locales e internacionales, ofreciendo una amplia gama de acoplamientos elásticos, neumáticos e hidráulicos, como también embragues y frenos neumáticos industriales, estandarizados o especiales.

Gummi es sinónimo de Calidad y Servicio, haciendo de estas dos características nuestro paradigma más preciado. Todos los productos son fabricados según las Normas Internacionales ISO 9001, certificados desde el año 1999.

Un continuo e innovador desarrollo en nuestra línea de productos, a los cuales debemos sumarle un asesoramiento técnico brindado por nuestro departamento de ingeniería y orientado siempre a la aplicación práctica, nos ha permitido formar las bases que sustentan nuestros logros en materia de una asistencia técnica incomparable.

Largos años de experiencia y modernos sistemas de diseño con avanzados equipos de producción, convierten a nuestros productos **Gummi** en un componente de alta tecnología necesarios para todo sistema de transmisión de calidad.

La versatilidad en el uso de nuestros productos **Gummi,** permitió que los mismos hayan sido satisfactoriamente montados en diversos tipos de aplicaciones dentro de la industria Metalúrgica, Siderometalúrgica, Minera, Petrolera y Naval entre otras, como así también en un sinfín de aplicaciones especiales y específicas en transmisiones de potencia.

Gummi no es sólo un BUEN PRODUCTO, es
CALIDAD, CONFIANZA, SEGURIDAD Y
TRANQUILIDAD.

Absorbe desalineaciones

Las desalineaciones son el 50% de las causas de roturas en rodamientos, además de otros elementos de las máquinas (sellos, retenes, engranajes), que normalmente no están preparados para la flexión introducida al eje. El acoplamiento **Gummi**, por ser elástico, absorbe desalineaciones, reduciendo los esfuerzos y aumentando la vida útil de los componentes.

Amortiguacion de vibraciones y choques

La gran absorción de vibraciones y choques, proporciona una mayor vida útil a su equipamiento. La media de vibraciones que se transmiten en un sistema, de un lado al otro, es del orden del 70%, siento este último minimizado por la capacidad de absorción del centro elástico.

Simple instalación

El reemplazo es más rápido por tratarse de un solo elemento. Utilizando tolerancias de alineación menores, aumenta la vida útil del centro elástico. No es necesario mover las partes para su reemplazo.

Simetría - Seguridad - Balanceo

Al no presentar cortes en el centro elástico, se garantiza el balanceo y la seguridad al usuario.

Diversos modelos

- Espaciador (Back -Pull- Out) - Motores Diesel - Desplazamiento axial - Grandes diámetros de ejes - Ejes flotantes

- Limitadores d torque - Bloqueo de Seguridad - Ejes Cónicos (Motor mill) - Ambientes agresivos.

Sin lubricacion

Por sus caracteristicas constructivas, ninguno de sus componentes requiere lubricacion.

Economía

Aumenta el intervalo entre recambios, reduciendo el tiempo de parada de maquinas. Economia en reposicion de componentes, lubricantes e inventario. El centro elastico trabaja en tiempo prolongado sin sustituirlo.

Calidad asegurada

Producido bajo un Sistema de Gestion de la Calidad certificado desde 1999 y empleando materias prima de calidad superior.

Asesoramiento tecnico permanente: A través de nuestros distribuidores oficiales o nuestro sitio web:

www.gummiargentina.com

Al solicitar un Acoplamiento Elastico Gummi, deben informar los siguientes campos.

Ej.: Acoplamiento modelo A 105 con dos cubos integrales y un espaciador para una distancia entre puntas de ejes de L=250 mm.

Antes de iniciar el montaje de un acoplamiento elástico Gummi, recomendamos leer atentamente las instrucciones de montaje. (ver pág. 8)

1- MODELO

De acuerdo a la selección (Tablas I y III)

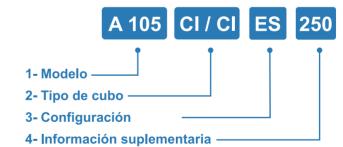
2- TIPO DE CUBO

Informar el tipo de cubo seleccionado Sin indicación - Dos cubos normales

CN Cubo normal

CI Cubo integral

CX Cubo axial


EC Cubo normal para punta de ejes cónicos

ECI Cubo integral para punta de ejes cónicos

3- CONFIGURACION

EF Eje flotante

ES Espaciador

LT Limitador de torque

BS Trabas de seguridad

RE Recubrimiento especial

DF Disco de freno

CIN Cubo Invertido

APF Con polea de freno

CE Cubos encastrados

CF Con plato brida

CC Con cubo carretel

4- INFORMACIÓN SUPLEMENTARIA

Indicar las dimensiones solicitadas segun la configuracion requerida

Método de selección

DATOS NECESARIOS:

- Potencia en Kw, Hp o Cv.
- Velocidad de giro en R.P.M.
- Diámetros de los ejes en mm.
- Factor de servicio (conforme a tabla II).

Hp x 0.746 \rightarrow Kw. Cv x 0.736 \rightarrow Kw.

SELECCIÓN RÁPIDA:

Multiplicar la potencia por el factor de servicio

Kw x Fs

El valor obtenido, igual o superior, se compara en la Tabla I, en la columna de velocidades (R.P.M.) correspondiente; la parte superior de la columna indica el tamaño de acople a utilizar. Verificar en la Tabla III el diámetro de cada uno de los ejes en función del máximo y del mínimo.

TABLA I - Temp. máx. en el acople 80°C

MODELO	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
RPM	20	25	30	35	45	50	60	70	80	90	95	105	120	140	155	165	170	200	240	300	350	400
100	0.37	0.60	0.82	1.19	2.16	4.48	6.64	12.16	16.79	22.39	25.02	32.69	52.24	89.55	101,5	126,9	154.8	265.9	455.2	910.5	1255	1784
200	0.75	1.19	1.72	2.31	4.18	8.96	13.06	25.22	32.69	44.78	50.37	66.27	104.5	180.1	203,0	253,7	308.8	532.7	910.5	1820	2510	3566
300	1.19	1.79	2.61	3.58	6.34	13.06	19.63	37.31	49.48	67.16	75.60	98.88	156.7	269.6	304,5	381,3	463.7	798.5	1366	2730	3765	5350
400	1.57	2.31	3.43	4.78	8.43	17.76	26.12	49.48	65.30	89.55	100.8	132.5	209.0	359.2	406,1	509,0	618.5	1064	1820	3641	5020	7133
500	1.94	2.99	4.33	5.97	10.30	22.39	32.69	62.54	82.09	110.9	126.0	165.2	261.2	448.7	507,5	635,8	772.4	1331	2275	4550	6274	8917
600	2.31	3.59	5.15	7.09	13.06	27.09	39.18	74.63	98.0	134.3	150.2	197.8	313.4	539.2	609,7	762,7	927.2	1597	2730	5461	7530	10700
700	2.84	4.18	5.97	8.28	14.93	31.72	46.64	86.79	114.8	157.7	175.4	231.3	365.7	628.7	711,2	889,6	1082	1863	3186	6371	8785	12483
720	2.91	4.33	6.19	8.58	15.37	32.69	47.61	89.55	117.5	161.4	181.0	237.9	376.0	646.5	731,3	914,9	1113	2130	3276	6553	9035	12840
800	3.21	4.78	6.94	9.33	16.79	36.42	53.21	98.88	130.6	180.1	200.6	264.0	417.0	718.3	813,4	1017	1236	2262	3641	7281	10039	14267
850	3.36	5.07	7.31	10.30	17.76	38.28	55.97	105.5	139.0	191.3	213.7	280.8	443.1	763.1	864,2	1081	1313	2396	3869	7736	10667	15159
900	3.58	5.30	7.76	10.90	18.66	40.15	59.70	111.9	147.4	202.5	225.8	297.6	469.2	8.808	914,2	1144	1391	2661	4096	8191	11295	16050
1000	3.96	5.97	8.58	12.16	21.49	44.78	66.27	124.1	164.2	224.9	251.0	330.2	521.5	898.4	1016	1271	1546	2928	4550			
1100	4.40	6.57	9.33	13.06	23.36	49.48	72.76	136.2	180.1	247.2	276.1	362.9	573.7	987.9	1117	1399	1701	3061	5005			
1150	4.55	6.79	10.30	14.03	24.25	51.34	75.60	142.8	188.4	259.4	288.3	379.7	599.9	1033	1168	1462	1777	3194				
1200	4.78	7.09	10.75	14.63	25.22	54.10	79.33	149.3	196.9	269.6	301.2	396.5	626.0	1078	1219	1525	1854	3385				
1300	5.15	7.76	11.19	15.90	27.09	58.81	85.82	161.4	213.0	292.0	326.5	429.1	678.2	1168	1321	1652	2009	3385				
1400	5.52	8.28	12.16	16.79	29.85	62.54	92.39	173.5	229.5	314.4	351.7	462.7	730.5	1257	1422	1780	2164	3727				
1500	5.97	8.96	13.06	17.76	31.72	67.16	98.88	186.6	245.4	336.8	376.9	495.4	782.7	1348	1524	1907						
1600	6.34	9.33	14.03	18.66	33.58	71.87	105.5	198.7	262.2	359.2	401.1	528.0	834.9	1527								
1700	6.72	10.30	14.93	20.52	36.42	76.49	111.9	210.8	279.0	381.6	426.3	561.6	887.2									
1750	6.94	10.60	15.37	21.04	37.31	78.36	115.7	217.4	286.4	392.8	439.4	578.4										
1800	7.09	10.90	15.90	21.49	38.28	81.19	118.5	223.9	294.8	404.0	451.5	594.2										
2000	7.91	12.16	16.79	23.36	42.41	89.55	132.5	248.1	327.5	448.7	501.9	660.5										
2250	8.96	13.06	16.93	27.09	47.61	100.8	148.4	279.9	368.5	498.1	564.4	743.5										
2500	10.30	14.93	21.49	29.85	53.21	111.9	165.2	310.7	409.6	561.6	627.8	825.6										
2750	11.19	16.79	23.26	32.69	57.84	123.1	181.9	341.4	450.6	617.5	690.3	907.7										
3000	12.16	17.76	26.12	35.45	63.43	134.3	197.8	372.2	491.6	673.5	904.8							L/ \A	. Nomi	nalas		
3250	13.06	19.63	27.99	38.28	69.03	145.5	214.6	404.0														
3500	14.03	20.52	29.85	42.01	73.73	157.7	231.3	434.7											los los			
3600	14.40	21.49	30.12	42.91	76.49	161.4											en	color	por de	ebajo (de	
3750	14.93	22.39	32.69	44.78	79.33	168.9											la li	nea, l	os cub	os del	oen	
4000	15.90	23.36	34.55	47.61													pe	pedirse encastrados (CE)				
4500	17.76	27.09	38.28	53.21																		
5000	19.55	29.85	42.91	59.70																		
	Para r	.p.m. r	nenore	es a 10	0, ver	catalo	go BR															

En la selección de acoplamientos por debajo de la línea, consultar con fábrica por modelos de centros para ALTA VELOCIDAD.

MOTORES A EXPLOSIÓN:

Para motores con cuatro o más cilindros, adicionar 1.0 al factor de servicio seleccionado, para motores con menos cilindros, consultar.

FACTORES DE SERVICIO (Aplicaciones generales)

TABLA II

AGITADORES Líquidos Líquidos c/sólidos en suspensión. Líquidos con densidad variable.	1.00 1.25 1.25	ELEVADORES Montacargas. Carga de pasajeros. (Consultar fábrica) EXTRUSORAS	1.75	IMPRESORA Rotativa. Prensa. MAQUINAS HERRAMIENTAS Cepillo. Calandras.	1.00 1.50
BOMBAS Centrifugas:		Material de: Densidad constante. Densidad variable.	1.50 2.50	Prensa de estampado. Roscadora.	2.00 2.00 2.50
Normales. Alta densidad y sobrecarga. Rotativas, a engranajes,	1.00 1.25	SOPLADORES Centrifugos. Metálicos.	1.00 1.25	MEZCLADORAS De tambor. De concreto.	1.50 1.75
paletas o lóbulos. A pistón: De 3 o más cilindros. De 2 o un cilindro.	1.50 2.00 2.50	Lóbulos. VENTILADORES Centrífugos.	1.50 1.00	MOLINOS A martillos. A bolas.	2.00 2.25
De doble efecto. TRITURADOR	2.50	Tiraje reforzado. Tiraje inducido. Torre de enfriamiento.	1.50 2.00 2.50	HORNOS De cemento, rotativos o secadores.	2.00
De piedra. COMPRESORES Centrifugo. Rotativo.	2.75 1.25 1.50	GENERADORES Carga uniforme. Motosoldadores.	1.00 2.00	ZARANDA De lavadero. Rotativa. Vibratoria.	1.00 1.50 2.50
Alternativos: > 4 cil. < 4 cil. (Consultar en fábrica)	2.50	GUINCHES O PUENTES GRÚAS De traslación. Malacate principal.	1.75 2.00	TRANSPORTADORES Aéreos, cintas, correas discos, a tornillo. Vibratorios.	1.50 2.50

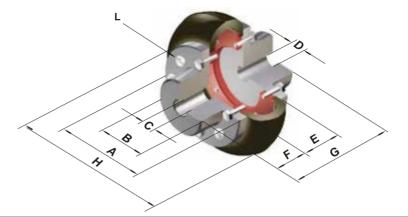
FACTORES DE SERVICIO (Aplicaciones especiales)

DRAGAS Bombas, enrollador de cable, guinche de maniobra, zaranda. Cortador.	1.75 2.00	ASERRADEROS Transportadores. Sierras. Descargadores de tambor. Rolos de transporte. Mesa de transferencia:	1.50 1.75 2.00 2.00	PETROLEO Filtros de parafina. Equipos de bombeo. SIDERURGICA	1.25 2.00
INDUSTRIAS ALIMENTICIAS Y DE BEBIDAS Envasadores y embotelladoras. Mezclador de masa, moledor de carne, cortadores. INDUSTRIA DEL CAUCHO	1.00 1.75	Sin reserva. Con reserva. CERÁMICA Extrusora. Molinos. Prensa.	2.00 2.50 1.50 2.00 2.25	Bobinadora y desbobinadora. Formadora de espiras. Trefiladora. Mesa de cilindros S/ reversión. C/ reversión. Alimentadora.	1.50 1.75 2.00 2.00 2.50 3.00
Calandras. Molinos. Mezcladores (Banbury). Conformadora de neumáticos.	2.00 2.25 2.50 2.50	CELULOSA Y PAPEL Bombas servicios. Bobinadora y desbobinadora. Cilindros. Tela. Desfibradores.	1.00 1.50 1.75 1.75 1.75	INDUSTRIA DEL AZUCAR Mesa inclinada. Molienda.	1.75 2.00
INDUSTRIA TEXTIL Bobinadora. Cardas. Lavadora de ropa. Calandra.	1.50 1.50 2.00 2.00	Calandras. Cortadores. Refinadores. Prensas. Lavadores. Desecadores. Picadores.	2.00 2.00 2.00 2.00 2.00 2.00 2.25 3.00	MINERACION Y PUERTO Desplazamiento máquina. Elevación de lanza. Giro de lanza. Rueda de descarga.	2.00 2.50 2.50 2.00

SELECCIÓN DEL CÁLCULO POR TORQUE NOMINAL (Tn)

Se utiliza la siguiente formula:

Potencia expresada en Kw, Velocidad de giro en R.P.M. Tn: $\frac{9550 \text{ x Kw x Fs}}{\text{R.P.M.}}$

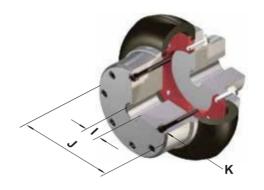

Hp x 0.746 \rightarrow Kw. Cv x 0.736 \rightarrow Kw.

Se busca en la Tabla III el modelo cuyo torque Nominal sea igual o superior al calculado, verificar el diámetro de los ejes en función del máximo y el mínimo. (ver pág. 4)

Modelo convencional

CON 2 CUBOS NORMALES (fig. 1)

- A Ø Brida Cubo
- B Ø Cuello Cubo
- C Ø Máx. aleasaje
- D Ø Agujero piloto
- E Ancho centro
- F Ancho cubo
- G Long. total
- H Ø Centro
- L Tipo tornillo


TABLA III

ACOPLE CON CUBO	NORMAL												ВІ	JLONES
MODELO	Torq. Nom. Nm	Angulo Torsión (°)	(1) Peso (Kg.)	Gd2 (Kg m2)	А	В	C Máx	D Min	Е	F	G	Н	Nr.	L- Cab. hex.
A-20	38	2°	1.05	0.0017	74	36	20	10	30	25	80	95	12	1/ ₄ X ³ / ₄
A-25	56	5°	1.09	0.0018	74	36	23	10	30	25	80	95	12	$^{1}/_{4}$ X $^{3}/_{4}$
A-30	82	2°	2.40	0.0094	96	49	30	10	40	35	110	127	16	$^{5}/_{16}$ X $^{7}/_{8}$
A-35	113	4°	2.65	0.0098	96	49	32	10	40	35	110	127	16	$^{5}/_{16}$ X $^{7}/_{8}$
A-45	250	3°	5.00	0.0382	127	70	40	15	50	45	140	167	20	⁵ / ₁₆ x 1
A-50	420	6°	5.32	0.0402	127	70	46	15	50	45	140	167	20	⁵ / ₁₆ x 1
A-60	620	5°	12.50	0.1065	169	100	55	25	65	60	185	224	24	$^{3}/_{8}$ x 1 $^{1}/_{4}$
A-70	1170	9°	13.30	0.1593	169	100	65	25	65	60	185	224	24	$^{3}/_{8}$ x 1 $^{1}/_{4}$
A-80	1550	5°	24.90	0.594	218	116	75	30	90	80	250	302	20	1/2 x 1 3/4
A-90	2170	6°	26.00	0.639	218	116	85	30	90	80	250	302	20	$^{1}/_{2}$ x 1 $^{3}/_{4}$
A-95	2380	4°	34.90	0.912	235	138	90	40	90	80	250	330	24	$^{1}/_{2}$ x 1 $^{3}/_{4}$
A-105	3130	8°	44.00	0.982	235	138	100	40	90	80	250	330	24	$^{1}/_{2}$ x 1 $^{3}/_{4}$
A-120/120	4940	5°	86.00	3.80	297	195	120	45	120	130	380	403	20	⁵ / ₈ x 2 ¹ / ₄
A-140/140	8500	9°	94.00	3.82	297	195	140	45	120	130	380	403	20	⁵ / ₈ x 2 ¹ / ₄
A-155/155	9750	6°	126.00	5.76	350	220	155	50	140	150	440	470	28	⁵ / ₈ x 2 ¹ / ₄
A-165/165	12200	10°	135.00	5.85	350	220	165	50	140	150	440	470	28	⁵ / ₈ x 2 ¹ / ₄
A-170/70			170.20	12.22		150	70	30		80	345			
A-170/130	14630	7°	211.80	13.75	436	236	130	70	185	130	445	550	24	$^{3}/_{4}$ x 2 $^{3}/_{4}$
A-170/170			242.80	17.65		276	170	120		180	545			
A-200/90			192.60	13.30		186	90	40		100	385			
A-200/140	25190	11°	202.40	13.75	436	200	140	70	185	130	445	550	24	$^{3}/_{4}$ x 2 $^{3}/_{4}$
A-200/200			276.80	19.20		276	200	120		180	545			
A-240/150			364.70	51.50		225	150	100		160	556			
A-240/200	43060	4°	447.40	55.35	535	290	200	100	236	180	596	740	60	$^{3}/_{4}$ x 3 $^{1}/_{2}$
A-240/240			633.60	84.50		390	240	100		275	786			
A-300/150			370.00	50.70		225	150	110		160	556			
A-300/200			450.00	54.50		290	200	100		200	636			
A-300/250	86120	10°	640.00	69.40	535	350	250	100	236	275	786	740	60	$^{3}/_{4}$ x 3 $^{1}/_{2}$
A-300/300			695.00	83.70		390	300	100		275	786			
A-350/200			1049.00	453.20		290	200	120		200	735			
A-350/250	118750	6°	1211.00	466.40	820	350	250	120	335	275	885	1130	48	1 x 4
A-350/350			2237.00	691.00		600	350	120		375	1085			
A-400/250	168750	10°	1219.00	459.20	820	350	250	120	335	275	885	1130	48	1 x 4
A-400/400			2245.00	697.00		600	400	120		375	1085		40	1 // 17

Las dimensiones son exclusivamente como referencia y quedan sujetas a cambios sin previo aviso.

CON 1 CUBO NORMAL Y 1 CUBO INTEGRAL (fig. 2)

- I Ø Máx. alesaje
- J Ø Cuello cubo
- K Tipo tornillo

TABLA IV

ACOPLE CON CUBO INTEGRAL		BULONES		ACOPLE CON CUBO INTEGRAL			BULONES		
MODELO	I Máx	J	Nr. (1)	K - Allen	MODELO	l Máx	J	Nr. (1)	K - Allen
A-20	30	66	6	¹ / ₄ x 1 ¹ / ₄	A-120	170	270	10	⁵ / ₈ x 6
A-25	30	66	6	¹ / ₄ x 1 ¹ / ₄	A-140	170	270	10	⁵ / ₈ x 6
A-30	44	86	8	⁵ / ₁₆ x 1 ¹ / ₂	A-155	200	316	14	⁵ / ₈ x 6 ¹ / ₂
A-35	44	86	8	⁵ / ₁₆ x 1 ¹ / ₂	A-165	200	316	14	⁵ / ₈ x 6 ¹ / ₂
A-45	60	110	10	⁵ / ₁₆ x 2	A-170	250	380	12	³/ ₄ x 8
A-50	60	110	10	⁵ / ₁₆ x 2	A-200	250	380	12	³/ ₄ x 8
A-60	90	150	12	$^{3}/_{8}$ x 2 $^{1}/_{2}$	A-240	*	*	30	³/ ₄ x 8
A-70	90	150	12	$^{3}/_{8}$ x 2 $^{1}/_{2}$	A-300	*	*	30	³/ ₄ x 8
A-80	100	180	10	$^{1}/_{2}$ x 3 $^{3}/_{4}$	A-350	*	*	24	³/ ₄ x 8
A-90	100	180	10	$^{1}/_{2}$ x 3 $^{3}/_{4}$	A-400	*	*	24	³/ ₄ x 8
A-95	125	198	12	$^{1}/_{2}$ x 3 $^{3}/_{4}$	(1) Cantidad co	rrespo	ndiente	a cada	cubo integral.
A-105	125	198	12	$^{1}/_{2}$ x 3 $^{3}/_{4}$	* consultar a f	abrica			

Indicados para usos donde el diámetro del eje a alojar es superior al indicado en la tabla III.

Se pueden montar con uno o dos cubos integrales, según la necesidad.

CONFIGURACIONES


CON ESPACIADOR (ES)

Todas las versiones pueden ser provistas con espaciador, que facilita el desmontaje, como en el caso de las bombas (Back-pull-out).

Para el pedido, indicar distancias entre puntas de ejes. "L"

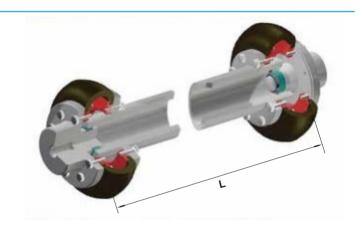
* = modelos Std.

MODELOS	ES 75	ES 100	ES 140	ES 180
A-20/25	*	*	*	
A-30/35		*	*	*
A-45/50		*	*	*
MODELOS	ES 140	ES 180	ES 215	ES 250
MODELOS A-60/70	ES 140 *	ES 180 *	ES 215 *	ES 250
				ES 250

Las dimensiones son exclusivamente como referencia y quedan sujetas a cambios sin previo aviso.

ALTAS VELOCIDADES (AV)

Los Acoplamientos seleccionados en la Tabla I por debajo de la linea, dében ser balanceados dinámicamente, utilizar centros para Alta Velocidad (AV) y cubos encastrados (CE).


Al realizar el pedido indicar la velocidad de giro en RPM.

EJE FLOTANTE (EF)

Los acoplamientos de ejes flotantes con punta de eje guiada permiten un mayor desplazamiento angular, como así también axial, resultante de las variaciones dinámicas y térmicas de los elementos rotantes. Especialmente diseñados para ser usados en torres de enfriamiento.

Para su requerimiento, indicar la distancia entre puntas de ejes a vincular: "L"

CUBO AXIAL (CX)

Se ha desarrollado este modelo para aquellas máquinas que por las características de su construcción no toleran desplazamiento axial. Uso indicado para máquinas con ejes deslizantes. Al hacer el pedido indicar el desplazamiento máximo.

MODELOS	Ø Máx.	Ø Min.	MODELOS	Ø Máx.	Ø Min.
A-20/25	21	15	A-95/105	73	40
A-30/35	29	15	A-120/140	102	50
A-45/50	42	15	A-155/165	140	60
A-60/70	60	25	A-170/200	180	70
A-80/90	64	30			

Las dimensiones son exclusivamente como referencia y quedan sujetas a cambios sin previo aviso.

CON POLEA DE FRENO (APF)

Combinados con campanas de freno, se aplican tanto para frenos mecánicos, electromagnéticos o neumáticos. Se recomienda utilizar campanas standard con diámetros de 6", 8", 10", 12", 14" y 16".

De requerir otros diámetros, indicarlo con la solicitud de provisión.

MONTAJE SOBRE VOLANTES - MODELO BRIDA (CF)

Para aplicaciones donde es conveniente montar el acoplamiento en un volante de motor de combustión o máquina propulsora. Si el espacio entre las partes a unir es reducido, se recomienda utilizar el modelo Brida, para el montaje o desmontaje del centro de goma se debe mover una de las partes a vincular.

Conjuntamente con el pedido indicar el diámetro de brida.

MONTAJE SOBRE VOLANTES - MODELO CARRETEL (CC)


Para aplicaciones donde es conveniente montar el acoplamiento en un volante de motor de combustión o máquina propulsora.
Si el espacio entre las partes a unir no está limitado, se sugiere utilizar el modelo Carretel.

Consultar por modelos stándar.

LIMITADOR DE TORQUE (LT)

Diseñado para proteger esfuerzos adicionales, actúa cuando en una transmisión se produce una sobrecarga, resbalando cuando el torque requerido supera un valor prefijado, evitando que los mismos afecten al resto de la transmisión.

CON TRABAS DE SEGURIDAD (BS)

En donde la transmisión debe continuar existiendo, independientemente de sobrecargas o una eventual ruptura del centro elástico.

Versiones especiales

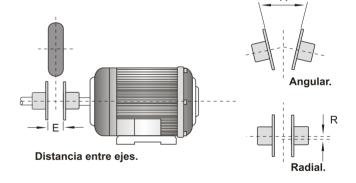
CON DISCO DE FRENO (DF)

Diseñado para ser usado con disco de freno llenos o ventilados indistintamente y con sistemas neumáticos o hidráulicos.

Para diámetros y espesores de discos consultar a fábrica.

CUBO INVERTIDO (CIN)

En instalaciones en donde se ve comprometida la instalación de un acoplamiento en su configuración normal, debido al reducido espacio disponible entre los ejes a unir, el diseño del acoplamiento **Gummi** permite montar uno de los cubos en forma invertida disminuyendo el largo del mismo sensiblemente.



INSTRUCCIONES DE MONTAJE

Los valores"Aº" y " R" son tolerancias máximas.

	Е	tol	ANGULAR	RADIAL	TORQU	E (Nm)
MODELOS	(mm)		(°)	(mm)	Ajuste cruzado	Ajuste circular
A20 / 25	30	0.5	0.5	0.25	5	5
A30 / 35	40	0.5	1	0.4	7.5	10
A45 / 50	50	1	1.5	0.5	10	20
A60 / 70	65	1	1	8.0	20	30
A80 / 90	90	2	1.5	1	50	60
A95 / 105	90	2	1.5	1	50	60
A120 / 140	120	4	2	2	60	70
A155 / 165	140	4	2	2	60	70
A170 / 200	185	4	3	3	100	150
A240 / 300	236	5	4	3	150	220
A350 / 400	335	5	4	3	180	250

Las dimensiones son exclusivamente como referencia y quedan sujetas a cambios sin previo aviso.

En el montaje inicial, se debe alinear y dejar entre ambos cubos la distancia"E" indicada en la tabla.

EJEMPLO DE AJUSTE DEL CENTRO ELÁSTICO

- Primer ajuste en cruz.

- Segundo ajuste circular.

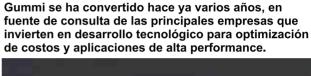
"Para un ajuste preciso utilizar torquímetro, según valores de torque indicados en la tabla. Para el ajuste de cubos integrales o platos bridas sólo utilizar torquímetro."

Ajuste Correcto.

Se recomienda chequear el ajuste de los tornillos luego de 24 hs. de funcionamiento

Un ajuste excesivo de los tornillos puede ocasionar la rotura del centro elástico, por estrangulamiento o corte lateral.

AMBIENTES AGRESIVOS (RE)


El elastómero utilizado en los acoplamientos Gummi presenta por lo general una buena resistencia à los productos químicos o agentes agresivos. En los casos en los que se presume un constante contacto altamente agresivo se recomienda el uso de recubrimiento especial de alta resistencia química. Para el pedido, indicar tipo de agente agresivo.

Baja● Regular● ● Alta

Por tal motivo, y ante la necesidad de satisfacer los requerimientos de nuestros usuarios, es que Gummi desenvolvió nuevas y exclusivas tecnologías para aplicaciones de baja rotación y alto torque.

posee las características ideales: - Alta capacidad de transmisión de potencia.

Como resultado, obtuvimos un acoplamiento que

- Diseño compacto*.
- Protección y aumento de la vida útil de los componentes de la transmisión.
- * En un mismo tamaño de centro elástico, obtenemos hasta 5 veces el torque nominal.

Del mismo modo, para nuestra línea standard, continuamos desarrollando nuevos compuestos de última generación, que aumentan la capacidad de transmisión de potencia en un 25 %.

SAUVE S.A.

Gdor. Ugarte 2682 (C.P. 1636) Olivos -Buenos Aires - Argentina

Departamento de Ventas Locales

Tel.: (011) 4519-5355/6 Fax: (011) 4760-7938

ventas@gummiargentina.com

Departamento de Ventas Internacionales

Tel. / Fax: (54-11) 4519-5356 intl.sales@gummiargentina.com

www.gummiargentina.com

