

INGENIERÍA ELECTROMECÁNICA

PROYECTO FINAL DE CARRERA

ACONDICIONAMIENTO AMBIENTAL DE SALAS DE PROCESO EN FRIGORÍFICO AVÍCOLA LAS CAMELIAS S.A.

PROYECTO Nº: PFC1804C

AUTORES:

Knoll, Juan Andrés Lazbal, Rubén Agustín

TUTOR: Ing. Dubois, Pablo

DIRECCIÓN DE PROYECTOS:

Ing. Puente, Gustavo Ing De Carli, Aníbal

AÑO: 2019

Agradecimientos

Deseamos agradecer a nuestras familias, quienes fueron nuestros pilares desde el inicio de la carrera, por permitirnos acceder a una realidad nueva, desafiante y apasionante como es la formación universitaria.

A las amistades cosechadas a lo largo de estos años, por hacer de este camino un sinfín de momentos que recordaremos toda nuestra vida.

A la Facultad, por brindarnos el espacio y los recursos didácticos necesarios para una formación integral.

A la Empresa, quienes nos abrieron las puertas desde el instante en que surgió la idea del presente proyecto, y cuyo personal tuvo una excelente predisposición en todo momento.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

"Para mi Madre, quien sabe de esfuerzo para esta meta por alcanzar.

Para mi compañera Lourdes, por el apoyo incansable.

Y para mis abuelos Nélida y Vicente, mentores de mi vocación por el estudio."

Andrés

"Para Pil, mi querida compañera y amiga incondicional,
quien es sobrada razón para seguir adelante.

Para mis padres y hermanos, quienes son mis referentes."

Rubén

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

Resumen ejecutivo

Este proyecto consiste en el diseño de un sistema de acondicionamiento ambiental para las salas de procesos del frigorífico avícola Las Camelias S.A. Con el mismo se pretende establecer condiciones de temperatura y humedad controladas a lo largo de la jornada productiva, con el fin de generar un entorno seguro desde la perspectiva alimentaria.

En primera instancia se realiza un análisis detallado de la situación actual de la planta, relevando la capacidad y funcionamiento de los equipos de acondicionamiento de aire existentes, la ganancia térmica del edificio, y el impacto del proceso productivo y tareas de limpieza sobre el ambiente de trabajo. De esta manera se identifican las causas que dificultan el control ambiental de los espacios.

A continuación se evalúan las tecnologías disponibles para llevar adelante la solución propuesta, haciendo un estudio técnico-económico de las mismas. Como resultado se decide implementar unidades de tratamiento de aire con deshumidificación por rotor desecante y etapa de post enfriamiento por amoníaco. El nuevo sistema de acondicionamiento de aire se dimensiona con robustez suficiente para dar respuesta a cambios imprevistos en la ganancia térmica de las salas, logrando estabilizar rápidamente la temperatura y humedad dentro de los valores esperados.

Por último se dimensionan los ductos para distribución de aire con su correspondiente aislación, los sistemas para los servicios de energía eléctrica y gas natural, y se concluye con la cotización completa de materiales y mano de obra para el montaje.

Abstract

This project presents a design proposal for an air conditioning system to be implemented in the processing areas of Las Camelias S.A. poultry processing plant.

The aim of the project is to establish controlled temperature and moisture conditions throughout the workday, in order to ensure food safety.

In the first place a thorough analysis of the current operating conditions of the plant was conducted. Data was surveyed on the capacity of extant air conditioners, the buildings heat gain, and the impact of the pruduction process and cleaning tasks of the workspace. Thusly, obstacles impeding effective monitoring of indoor environments can be identified.

Next, available technologies are compared to check they fulfill the technical-economical requirements of the proposed solutions. As a result, it is adviced to deploy air-handling units with inbuilt dissecant rotor dehumidifiers, and add an ammonia-based post-cooling stage. The new air-conditioning system is conceived with sufficient sturdiness to withstand sudden changes to the heat gain of the rooms and promptly stabilize the temperature and moisture within expected values.

Measurements are made of the air ducts, considering correct air distribution and according insulation, as well as electric power and natural gas services.

Lastly, an estimated quote for the hardware and assemblage labour is presented.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

Contenido general

Tome	o I: P	royecto ejecutivo	
A.	Intro	oducción y situación problemática	
	1.	Introducción	2
	2.	Situación Problemática	6
В.	Obje	tivos, alcances y plan de trabajos	
	1.	Objetivos	2
	2.	Alcances	3
	3.	Plan de Trabajos	4
C.	Inge	niería básica	
	1.	Introducción	2
	2.	Zonificación de las salas de proceso	2
	3.	Renovación de aire y presurización de salas	3
	4.	Utilización de equipos existentes	3
	5.	Sistema propuesto	4
	6.	Capacidad del sistema	4
	7.	Tecnología de acondicionamiento de aire	6
	8.	Sistema de control	7
	9.	Ubicación de las UTA	9
	10.	Distribución de aire	.10
	11.	Alimentación de servicios	.13
D.	Inge	niería de detalles	
	1.	UTA para TyE	2
	2.	UTA para EyC	4
	3.	Distribución de aire	4
	4.	Sistema de control.	.12
	5.	Alimentación de servicios	.18
	6.	Costo final de la instalación	.23
Tome	o II: l	Memorias de cálculos	
	1.	Análisis de la problemática y diagnóstico	5
	2.	Solución propuesta	.27
	3.	Distribución de aire	.52
	4.	Selección de componentes de control	.77
	5.	Alimentación de servicios	.79

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

Tomo III: Planos

PFC1804C

Acondicionamiento ambiental de salas de proceso en frigorífico avícola Las Camelias S.A.

Tomo IV: Anexos

1.	Normativas de aplicación	
2.	Sistema de codificación	2
3.	Ábacos y tablas utilizados para cálculos de ductos	7
4.	Glosario	18
5.	Bibliografía	19
6	Características técnicas de fabricantes	20

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

TOMO I PROYECTO EJECUTIVO

PFC 1804C

A – INTRODUCCIÓN Y SITUACIÓN PROBLEMÁTICA

PFC1804C IySP-Rev.02

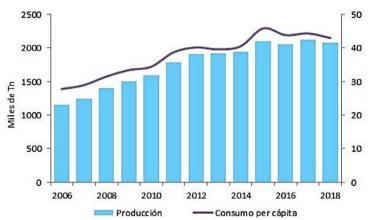
Acondicionamiento ambiental de salas de proceso en frigorífico avícola Las Camelias S.A.

Índice

1. Int	l. Introducción			
1.1.	Industria Avícola: Contexto Mundial y Regional			
	Empresa			
	Proceso de faena de aves			
2. Sit	uación Problemática	6		

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-03/06/2019


1. Introducción

1.1. Industria Avícola: Contexto Mundial y Regional

Desde hace muchos años, la industria avícola mantiene un rol fundamental en la generación de valor y en la obtención productos alimenticios para el consumo humano, tanto a nivel global como local. De acuerdo a la Organización para la Alimentación y la Agricultura de las Naciones Unidas (FAO), la carne de ave mantiene la segunda posición en el consumo mundial, superada por la carne bovina y seguida desde un poco más atrás por la porcina.

Dentro de este contexto, la participación de la Argentina en el mercado avícola mundial no es menor teniendo en cuenta que ésta se consolida como el décimo país productor exportador, según se desprende de los informes anuales emitidos por el Departamento de Agricultura de Estados Unidos.

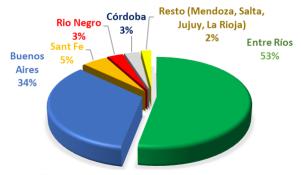

En Argentina, la cadena de carne aviar en los últimos 15 años ha crecido y ganado participación en la canasta de consumo cárnica, en línea con la tendencia internacional. El fuerte crecimiento de las capacidades productivas del sector (77,6%), seguido de una mayor oferta dentro del mercado interno, impulsaron una pronunciada suba en el consumo poblacional (52,7%), desde el año 2006 a la fecha.

Figura 1: Producción y consumo per cápita de carne aviar en Argentina.

Fuente: Ministerio de Hacienda de la Nación

La actividad de esta industria se encuentra concentrada principalmente en las provincias de Entre Ríos (53%) y Buenos Aires (34%) que, al mismo tiempo, son los principales centros de exportación del producto.

Figura 2: Distribución de faena en Argentina. Fuente: Ministerio de Agroindustria de la Nación

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-03/06/2019

En lo que respecta a la provincia de Entre Ríos, cuenta con 16 establecimientos dedicados a la faena y procesamiento de las aves, desde los cuales se origina entre el 50% y 70% del volumen exportado por Argentina. En este plano, los productos avícolas forman parte de los 3 principales bienes comercializados al exterior desde la provincia, con una participación estimada del 13% a la par del maíz y el trigo.

Teniendo en cuenta todo lo expuesto anteriormente, es claro el valor adquirido por los derivados avícolas dentro de la alimentación humana y el control demandado en toda su cadena productiva a fin de garantizar la seguridad alimentaria constantemente.

1.2. Empresa

De los establecimientos emplazados en la provincia, el frigorífico avícola Las Camelias S.A. resulta ser uno de los más importantes por su volumen de producción. Esto se desprende de los datos aportados por la Cámara Argentina de Productores Avícolas (CAPIA), según los cuales en 2018 la firma se posicionó como la tercera de mayor producción de Argentina.

El frigorífico está ubicado a 10 min de la ciudad de San José, Entre Ríos, a orillas del Río Uruguay. El mismo se encuentra en un predio de 20 hectáreas con una superficie cubierta de 18000 m².

Figura 3: Planta de faena de Las Camelias S.A.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-03/06/2019

PFC1804C IySP-Rev.02

La capacidad de faena es aproximadamente 210000 aves/día, dividida en dos turnos diarios que cumplen un total de 18 hs de faena y 6 hs de limpieza, de lunes a viernes. Los días sábados se destinan para el mantenimiento general de la planta. Se emplean alrededor de 560 personas, de las cuales 450 están avocadas a la producción propiamente dicha y el resto se encarga de mantenimiento y administración.

1.3. Proceso de faena de aves

La obtención de carne en la industria avícola involucra una serie de procesos que, en general, cuenta con un alto desarrollo tecnológico.

Los camiones que transportan los pollos provenientes de las granjas arriban a la playa de descarga de la planta de faena, donde se descargan manualmente las pilas de cajones que luego son ingresadas a la planta con la ayuda de un desapilador automático. A continuación se procede al colgado de aves vivas, que se realiza manualmente y con determinados cuidados para no lesionar o estresar al animal. Una vez con las aves en la línea se realiza la insensibilización por medio de un shock eléctrico, lo que genera las condiciones apropiadas para el sacrificio posterior. Luego se procede con el escaldado por inmersión en agua caliente, con lo que se facilita la liberación de las plumas en el pelado que se realiza seguidamente. La tarea siguiente es el eviscerado, mediante el cual se retira el paquete de vísceras y, finalmente, se realiza un duchado de la carcasa para reducir al mínimo la carga bacteriana. A continuación las carcasas reciben su primer enfriamiento en los denominados chillers, donde son sumergidas en agua a 0°C y se espera que a la salida de los mismos la temperatura medida en la pechuga sea de 4°C o menor. A partir de este punto las carcasas pueden seguir dos caminos: si son destinadas al producto Pollo Entero, se dirigen a la zona de empaque para luego ser refrigeradas; si lo que se requiere es un producto Trozado, se dirigen a la zona de trozado y enseguida reciben un enfriamiento IQF (Individual Quick Freezing) en los girofreezers, luego se realiza el empaque y finalmente se envía a refrigerar. Todo este proceso se resume en la figura 4.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-03/06/2019

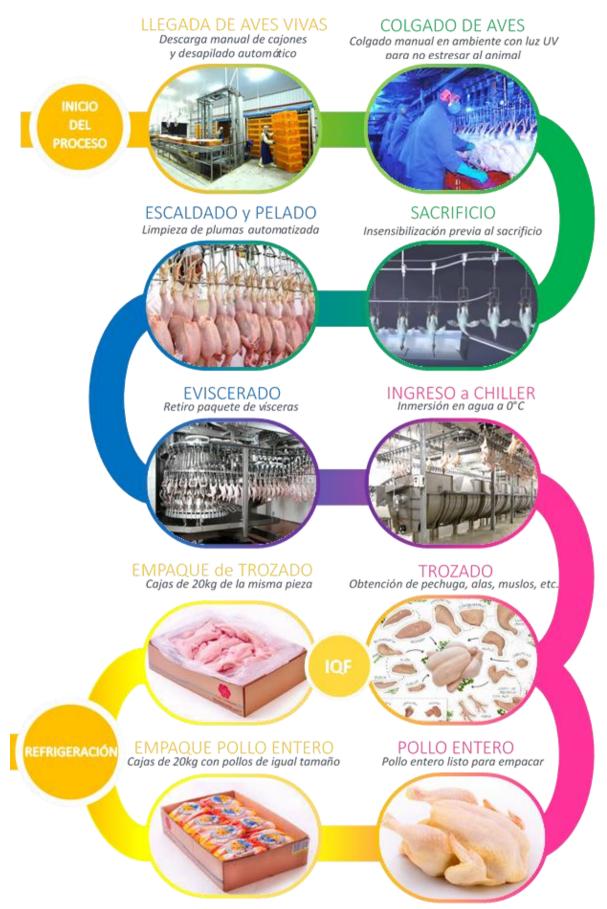
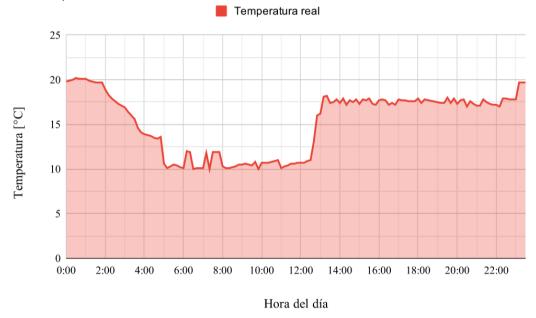


Figura 4: Diagrama de procesos en la planta de faena avícola

Elaboró: KNOLL, Andrés – LAZBAL, Rubén


Revisó: GP-03/06/2019

2. Situación Problemática

En la industria alimenticia es necesario cumplir con altos estándares de proceso que, en general, están definidos en base a requerimientos de seguridad alimentaria. Uso de materiales inocuos, salas con atmósfera controlada, desinfección periódica y una gran cantidad de otros parámetros son objeto de control por parte de entidades que auditan las plantas de producción. Entre dichas entidades se encuentran organismos dependientes del Estado, como el SENASA, o también se destacan las auditorías llevadas a cabo por representantes de mercados externos interesados en la compra del producto. Muchas veces son estos últimos quienes establecen requisitos más exigentes que marcan el éxito en los acuerdos comerciales.

En la actualidad la planta de faena de la empresa presenta ciertos desvíos respecto a los estándares de producción ya mencionados, que afectan a las salas de proceso y que son objeto de un descontento durante las inspecciones. A continuación se presenta una breve descripción de ellos enumerando las causas identificadas durante el análisis:

A. La temperatura de la sala de Trozado y Empaque presenta una variación no acorde a las exigencias de los mercados exteriores, la cual debe estar fijada en 10ºC o menos. En el diagrama de la figura 5 se puede observar la evolución de la temperatura del recinto a lo largo de los dos turnos diarios de producción, donde se aprecia una oscilación entre 10 y 18°C.

Figura 5: Evolución de temperaturas en sala de trozado y empaque a lo largo de un día. Medición del día 16/02/18.

Una de las causas identificadas es la falta de potencia frigorífica instalada en la sala, que se debe a las ampliaciones que han surgido a lo largo del tiempo. Por otro lado, existe una gran cantidad de agua en el recinto que se traduce en un aire interior continuamente saturado de humedad, generando una carga adicional —muy importante— de calor latente para el sistema de refrigeración. Además de lo anterior, una distribución de aire deficiente produce focos calientes dentro de la nave que resultan inaceptables.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-03/06/2019

B. Los techos y superficies de trabajo están permanentemente mojados debido a la condensación de humedad. El agua en los techos produce un goteo que, sumado al agua presente en las superficies de trabajo, originan contaminación cruzada poniendo en peligro la inocuidad del producto.

La presencia de condensados se debe en gran parte a dos razones: primero, durante las operaciones de limpieza post faena se utilizan grandes cantidades de agua caliente, por lo cual hay una constante generación de vapor; este último al hacer contacto con las superficies frías de la sala se condensa produciendo una capa de agua que se convierte en un amplio foco de contaminación. Segundo, a su paso por los chillers el pollo adquiere una cierta hidratación que, si la temperatura de la carcasa a la salida de los mismos no es lo suficientemente baja, es liberada en los sucesivos pasos de la línea de producción provocando que en las salas de Trozado y Empaque se aprecien grandes cantidades de agua dispersa por todas partes.

Figura 6: Operación de lavado post faena. Imagen ilustrativa.

Hasta ahora la solución adoptada por la empresa es una cuadrilla de operarios "secadores" que intentan drenar el agua en los techos utilizando secadores de goma. Se dedica mucho tiempo y personal en estas operaciones que, pese al esfuerzo, nunca consiguen controlar de manera eficaz los condensados, resultando en una reducción de productividad de la planta.

C. Se evidencia una notable falta de renovación del aire interior de las salas, ya que el mismo es recirculado sin ingreso de aire exterior. Esto se traduce en condiciones ambientales de una calidad muy pobre que perjudica el bienestar de los empleados de la planta. Además, la falta de ingreso de aire exterior facilita la ganancia térmica por infiltraciones, debido a que no existe una presión positiva dentro del recinto.

A lo largo de este proyecto se realiza un análisis de la situación presentada anteriormente, se estudian cargas térmicas, capacidad de refrigeración instalada y tecnologías disponibles para llegar a una solución eficiente y económicamente razonable. De esta manera se busca que la empresa pueda cumplir con los estándares de calidad necesarios que permitan introducir el producto en mercados de primer nivel mundial.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-03/06/2019

B – OBJETIVOS, ALCANCES Y PLAN DE TRABAJOS

PFC1804C OAyPT-Rev.02

Acondicionamiento ambiental de salas de proceso en frigorífico avícola Las Camelias S.A.

Índice

1.	Objetivos	2
2.	Alcances	.3
3.	Plan de Trabaios	4

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-03/06/2019

PFC1804C OAyPT-Rev.02

1. Objetivos

El objetivo principal de este proyecto consiste en el diseño de un sistema de acondicionamiento ambiental para las salas de proceso de la planta de faena. Con el mismo se esperan lograr condiciones seguras para la manipulación del producto, cumpliendo con las exigencias de temperatura impuestas por las normativas y controlando los niveles de humedad ambiental, a fin de eliminar los posibles focos de contaminación derivados de la condensación.

Al mismo tiempo se analizará el estado del sistema de acondicionamiento actual y su potencial adaptación.

Por lo tanto, los objetivos se resumen en:

- *Diseñar un sistema de acondicionamiento de aire* para el control de temperatura y humedad del lugar en cuestión.
- Evaluar la reutilización de la mayor cantidad de componentes existentes en la instalación actual.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-03/06/2019

2. Alcances

Dentro de las diferentes zonas del frigorífico, este proyecto se enfoca exclusivamente en las salas de trozado y empaque, eviscerado y chillers. Las mismas totalizan una superficie aproximada de 3500 m² y se ubican en la planta según se observa en la figura 2.1.

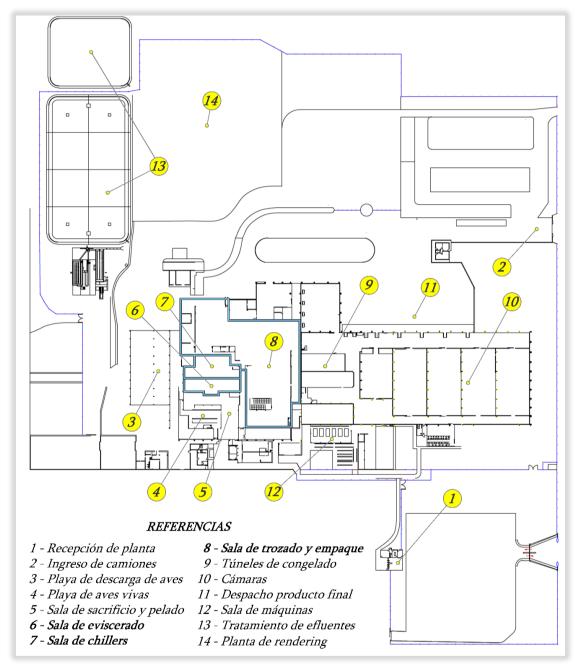


Figura 2.1: Esquema de distribución de zonas de la planta.

Los aspectos comprendidos en las tareas son los siguientes:

- Diseño electromecánico de detalle del sistema para la totalidad de las salas en cuestión, contemplando:
 - Cálculo de cargas térmicas
 - Selección de equipos
 - Cálculo de ductos y alimentación de servicios.
- Quedan excluidas las tareas relacionadas con compra, fabricación y montaje.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-03/06/2019

PFC1804C OAyPT-Rev.02

3. Plan de Trabajos

Actividades a llevar a cabo:

- Entrevistas con Jefe de Mantenimiento de Planta para conocer su experiencia con el sistema de refrigeración existente, y sus expectativas de mejoras.
- Relevamiento de cargas térmicas presentes en la sala (mediante visitas a planta).
- Verificación de capacidad de refrigeración instalada y estado de los equipos utilizados actualmente.
- Ingeniería básica e ingeniería de detalle del nuevo sistema de acondicionamiento de aire.
- Evaluación de costos del conjunto de mejoras propuesto.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-03/06/2019

C – INGENIERÍA BÁSICA

PFC1804C IB-Rev.03

Acondicionamiento ambiental de salas de proceso en frigorífico avícola Las Camelias S.A.

Índice

1. Introducción	2
2. Zonificación de las salas de proce	eso2
3. Renovación de aire y presurizaci	ón de salas3
4. Utilización de equipos existentes	s3
	4
6. Capacidad del sistema	4
6.1 Calor Latente	4
6.2 Calor sensible	5
6.3 Resumen	5
7. Tecnología de acondicionamient	o de aire6
7.1 Elección	6
7.2 Breve descripción de funcionamiento	7
8. Sistema de control	7
8.1 Humedad relativa	7
8.2 Temperatura	8
9. Ubicación de las UTA	9
10. Distribución de aire	10
10.1 Ductos	10
10.2 Difusores y rejillas de aspiración	12
11. Alimentación de servicios	13
11.1 Gas natural	13
11.2 Energía eléctrica	14
11.3 Amoníaco	15

1. Introducción

En este capítulo se describen las características del sistema de acondicionamiento ambiental propuesto y las mejoras derivadas de su implementación. Cabe resaltar que gran parte de lo expuesto hace referencia a la sección 1 de la memoria de cálculos (MC), donde se realiza un análisis de la problemática y un diagnóstico detallado de la situación actual de las salas de proceso.

2. Zonificación de las salas de proceso

El esquema de circulación de aire utilizado actualmente en la planta genera ciertos inconvenientes. Los extractores que comunican las salas de Trozado y Empaque (TyE) con Eviscerado y Chillers (EyC) impulsan un aire proveniente de TyE que se encuentra saturado de humedad. Este aire puede tener capacidad para enfriar un tanto las salas de EyC, pero nada puede hacer para extraer humedad y, en el peor de los casos, hasta podría generar condensación empeorando las condiciones. Desde el punto de vista de TyE, la extracción de aire hacia otras salas produce un ingreso de aire no controlado (infiltraciones), que por lo general proviene del exterior y cuyas condiciones son desfavorables.

Por lo tanto, se proyectó la separación física de los ambientes de trabajo agrupándolos en dos grandes áreas (Figura 1):

- Sala de Trozado y Empaque
- Sala de Eviscerado y Chillers

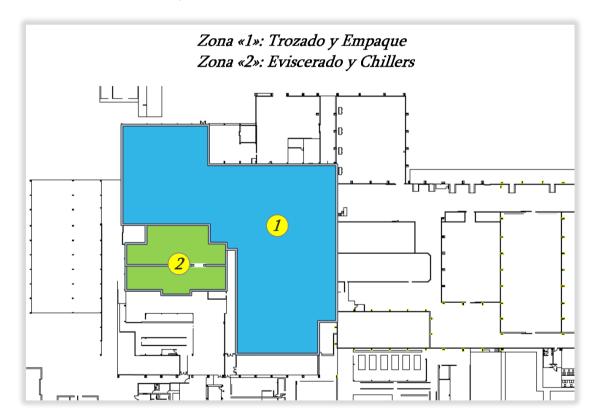


Figura 1: Esquema de zonificación proyectado.

La separación física antes mencionada incluye la eliminación de cualquier conexión a través de ductos entre sectores. Como consecuencia se tendrán dos sectores ambientalmente aislados

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-25/09/2019

donde el sistema de acondicionamiento deberá responder de manera diferente, lo que amerita la consideración de equipos independientes para cada uno de ellos.

3. Renovación de aire y presurización de salas

En simultáneo con lo anterior, se proyecta el suministro controlado de aire exterior para presurizar las salas y generar una renovación del ambiente, evitando infiltraciones y el «viciado» del mismo, a la vez que se impide el ingreso desmedido de un aire exterior de condiciones psicrométricas desfavorables para el sistema.

4. Utilización de equipos existentes

En cuanto a los equipos frigoríficos existentes en la sala de TyE, se decidió conservarlos. Esto se determinó por razones económicas, ya que el reemplazo de los mismos implicaría un encarecimiento innecesario del proyecto. Por otro lado, todos estos equipos se encuentran en buen estado de conservación y funcionamiento óptimo, por lo que no serán necesarias tareas de mantenimiento adicionales.

Para el caso de los extractores, sólo se conservarán aquellos que desplazan aire desde un punto a otro dentro de la misma sala, con el fin de favorecer la uniformidad de las condiciones en todos los ambientes. Se eliminarán los demás equipos que movilicen aire hacia el exterior u otros ambientes, de acuerdo a la zonificación propuesta.

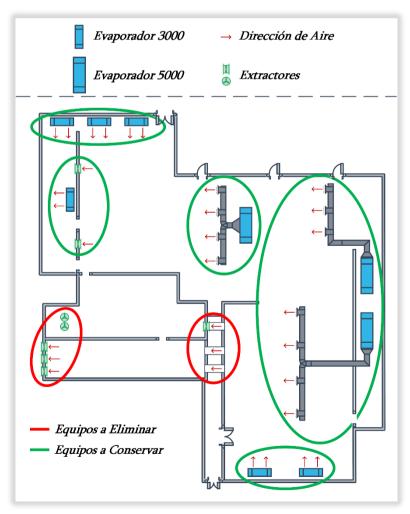


Figura 2: Utilización de equipos existentes en la planta.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-25/09/2019

5. Sistema propuesto

Para dar solución a la problemática identificada se propone instalar en cada zona un sistema de acondicionamiento de aire que sea capaz de eliminar la ganancia térmica tanto latente como sensible que afecta a las salas de proceso.

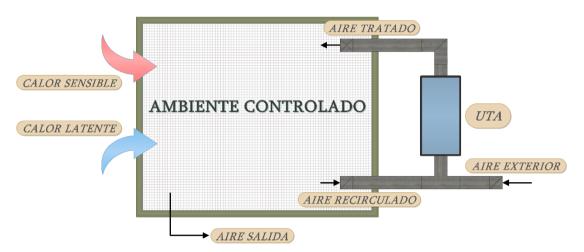


Figura 3: Esquema general del sistema propuesto.

A fin de favorecer el ahorro energético se introducirá la cantidad mínima de aire exterior necesaria para renovar el ambiente, al mismo tiempo que se toma una porción de aire de recirculación (figura 3). Estas dos corrientes de aire serán acondicionadas en una Unidad de Tratamiento de Aire (UTA), dando como resultado un aire tratado listo para introducir a las salas. Este aire, cuyas condiciones serán de baja temperatura y humedad relativa, se hará circular por todo el recinto a fin de extraer de manera uniforme el calor sensible y latente de la ganancia térmica. Finalmente, cargado de humedad y con una temperatura alta, se utilizará parte del mismo para cerrar el circuito de recirculación mientras que otra parte (cuyo caudal será igual al de aire exterior introducido) egresará de la sala.

6. Capacidad del sistema

6.1 Calor Latente

Con el nuevo sistema de acondicionamiento se espera poder eliminar la humedad proveniente de las dos fuentes identificadas:

- Humedad remanente del proceso de lavado.
- Humedad producida durante los períodos de producción.

Debido a que la tasa de extracción de humedad deberá ser mayor durante los períodos de producción (ver sección 1.4.2 y 1.6.1 de MC), se decidió dimensionar el sistema para las condiciones de producción y ponerlo en marcha un determinado tiempo antes de que arranque el primer turno de faena, para extraer la humedad residual del lavado. El tiempo disponible entre la finalización de la limpieza y el inicio de la faena se analizó en la sección 1.1.5 de MC. De este modo se prevé un arranque de faena con las salas libres de humedad, condición que será mantenida a lo largo de los dos turnos de producción.

Finalmente, el valor de humedad relativa de diseño adoptado para las dos zonas fue de 70%.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-25/09/2019

6.2 Calor sensible

Al mismo tiempo el sistema tendrá la capacidad de refrigeración necesaria para evitar variaciones de temperatura en las salas que sobrepasen los límites permitidos, en respuesta a los inconvenientes señalados en las observaciones de la sección 1.1.3 de MC (figura 4).

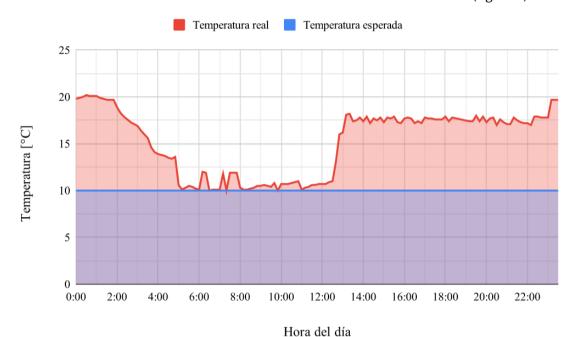


Figura 4: Temperatura real medida en sala TyE (sección 1.1.1 MC) y temperatura esperada.

De esta manera se pretende dotar a la planta de un sistema de acondicionamiento robusto que cuente con una buena capacidad de reacción ante determinados imprevistos propios de la jornada productiva.

La temperatura de diseño para TyE se fijó en 10°C, acorde a las exigencias del mercado. Asimismo, en EyC se proyectó una temperatura de 15°C. Para más información sobre las condiciones ambientales de referencia, consultar la sección 1.2 de MC.

6.3 Resumen

Los análisis de ganancia térmica realizados en las secciones 1.3 a 1.6 de MC determinan las cantidades de energía y humedad a extraer de las salas por el sistema. Dichos valores se reproducen a continuación:

Tabla 1 – Parámetros de Diseño para Sala de Trozado y Empaque						
Condiciones deseadas de sala		Energía a extraer				
Temperatura	Humedad	Calor total	Calor sensible	Calor latente	Agua a retirar	
10°C	70%	332892 kcal/h	25521 kcal/h	307371 kcal/h	520 kg/h	
Tabla 2 – Parámetros de Diseño para Salas de Eviscerado y Chillers						
Condiciones de	seadas de sala	Energía a extraer				
Temperatura	Humedad	Calor total	Calor sensible	Calor latente	Agua a retirar	
15°C	70%	144336 kcal/h	28867 kcal/h	115469 kcal/h	195 kg/h	

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-25/09/2019

7. Tecnología de acondicionamiento de aire

7.1 Elección

La selección de la tecnología a utilizar surge de la tabla de decisión realizada en la sección 2.6 de MC, donde se consideraron los costos iniciales del equipamiento, costos operativos y demás ventajas y desventajas de las dos opciones disponibles:

- Deshumidificación por rotor desecante con post enfriamiento
- Deshumidificación por refrigeración mecánica con post calentamiento.

El análisis resultó favorable hacia la opción de rotor desecante con post enfriamiento, por lo que el nuevo sistema de acondicionamiento constará de UTA que utilizan esta tecnología. A continuación se observa un esquema de funcionamiento del sistema:

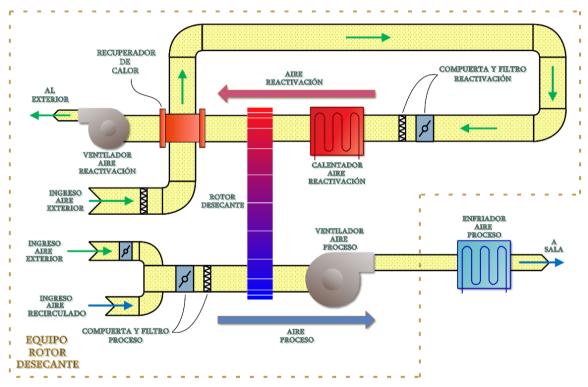


Figura 5: Etapas de acondicionamiento de una UTA por rotor desecante.

Teniendo en cuenta que el equipamiento es importado se decidió utilizar el mismo modelo de rotor desecante para los ambientes en cuestión. Con ello se logra agilizar la gestión de repuestos y estandarizar las tareas de mantenimiento.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-25/09/2019

Figura 6: Equipo de rotor desecante (ilustrativa).

7.2 Breve descripción de funcionamiento

Las UTA propuestas tienen la función de recircular aire interior y mezclarlo con una porción de aire exterior, formando lo que se denomina aire de proceso. Este flujo en principio es filtrado para eliminar residuos de polvo, insectos, etc.; luego pasa a través de la rejilla de regulación de caudal y llega al rotor desecante (gel de sílice), a quien cede humedad al tiempo que lo atraviesa. Una vez seco, el aire se dirige hacia el ventilador de proceso, el cual se encarga de impulsarlo con la energía necesaria para vencer las pérdidas de carga en el sistema. Posteriormente, en la etapa de refrigeración, el aire es acondicionado a una temperatura adecuada para el ingreso a la sala. Por último, el mismo ingresa a los ductos que lo distribuyen uniformemente en el espacio de trabajo.

En simultáneo, el equipo aspira aire exterior para realizar el proceso de reactivación. Dicha corriente, previamente filtrada, pasa por un recuperador de calor y luego es enviada a través del calentador de reactivación, donde aumenta su temperatura y, por consiguiente, su capacidad de absorción de humedad. Seguidamente pasa por el rotor, en contraflujo al aire de proceso, donde absorbe la humedad que dicho rotor extrajo de la corriente de proceso. Por último, el aire de reactivación cede energía en el recuperador de calor para luego ser expulsado al exterior por el ventilador de reactivación.

8. Sistema de control

8.1 Humedad relativa

El control de humedad relativa de los ambientes se realizará mediante la regulación de la capacidad de deshumidificación de los equipos de rotor desecante. Para ello será necesario sensar la humedad relativa en el interior de las salas y, utilizando un controlador PID, se enviará una señal de control a la válvula que regula el caudal de combustible en el calentador de aire de reactivación. De esta manera se logrará variar la temperatura de este último, lo que permitirá tener un control sobre la reactivación del rotor desecante.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-25/09/2019

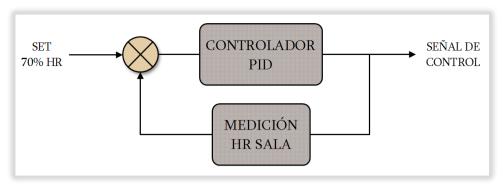


Figura 7: Esquema de control de HR propuesto.

8.2 Temperatura

Para controlar la temperatura de las salas se montará un bypass sobre el enfriador de aire de proceso, que contará con una persiana de regulación de caudal (dámper) comandada por un actuador eléctrico.

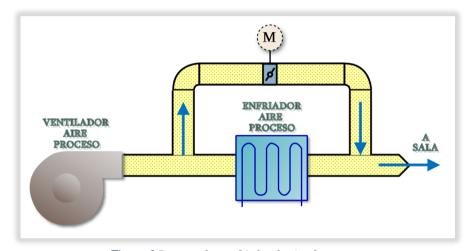


Figura 8: Bypass sobre enfriador de aire de proceso.

Figura 9: Dámper comandado por actuador eléctrico.

La idea es realizar un sensado de la tempertura del aire en las salas y cuando la misma alcance valores menores que los 10°C (para TyE, o 15°C para EyC) se enviará una señal de control al actuador del dámper para que comience a circular aire caliente por el bypass. En este caso se utilizará nuevamente un controlador PID.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-25/09/2019

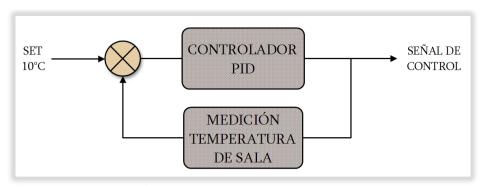


Figura 10: Esquema de control de Temperatura propuesto.

9. Ubicación de las UTA

Las unidades de tratamiento se ubicarán en la planta en lugares propuestos por los Ingenieros de la empresa, teniendo en cuenta cercanía con las salas, disponibilidad de energía eléctrica, gas natural y amoníaco, así como lugares destinados a futuras ampliaciones. En la imagen a continuación se observa la ubicación acordada:

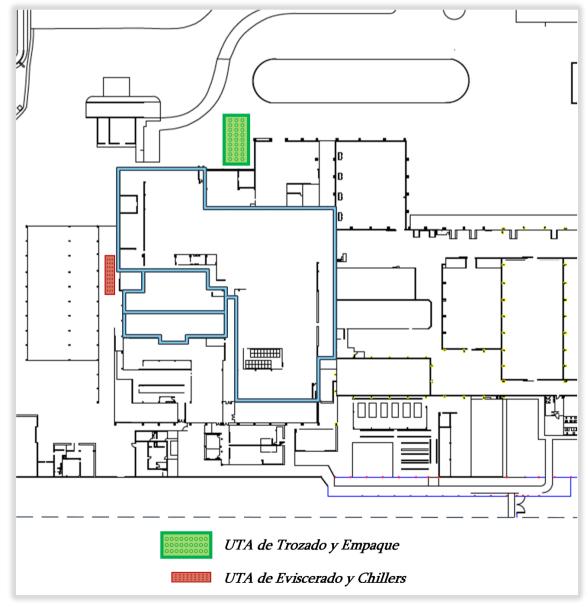


Figura 11: Ubicación de las UTA

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-25/09/2019

10. Distribución de aire

Para lograr una distribución homogénea del aire tratado se diseñará un sistema centralizado, el cual constará de un ducto principal del que se irán desprendiendo las ramificaciones secundarias. La ventaja de este tipo de sistemas, además de su coste, es que en el caso de que alguno de los equipos salga de servicio el sistema continúa inyectando aire tratado por toda la sala, con una capacidad un tanto reducida, pero sin dejar de alimentar de aire a ninguna zona en particular. Por otro lado, al tener los equipos de tratamiento de aire de cada sala ubicados en un mismo punto de la planta, se simplifica la alimentación de energía eléctrica y demás servicios.

10.1 Ductos

Los ductos para la distribución de aire serán fabricados en chapa galvanizada plegada, con una sección rectangular y de un tamaño acorde al manejo del caudal necesario a fin de acondicionar las salas. Se utilizarán uniones tipo TDC (Transversal Duct Conector), la cual se caracteriza por una brida que es parte del mismo cuerpo del ducto, haciendo al sistema estructuralmente robusto y permitiendo un ahorro en espesores de chapa. Los mismos serán recubiertos con una manta de espuma de polietileno expandido como aislación térmica, la cual incluye una lámina exterior de aluminio que hace las veces de barrera de vapor para evitar la condensación en la superficie.

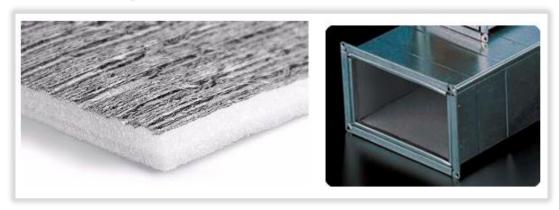


Figura 12: Manta de polietileno expandido y barrera de vapor (izq.). Ductos de chapa galvanizada (der.).

La red de ductos estará ubicada en el entretecho de la planta, realizando las bajadas hacia los difusores que serán los encargados de inyectar el aire dentro de las salas. El recorrido será acorde a los caudales manejados (cantidad de bocas de impulsión y de retorno), abarcando la totalidad de las zonas a acondicionar y complementando el alcance de los equipos instalados actualmente, como se muestra esquemáticamente en las figuras 13 y 14.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-25/09/2019

Figura 13: Trazado esquemático de los ductos de impulsión para TyE y EyC.

Revisó: GP-25/09/2019

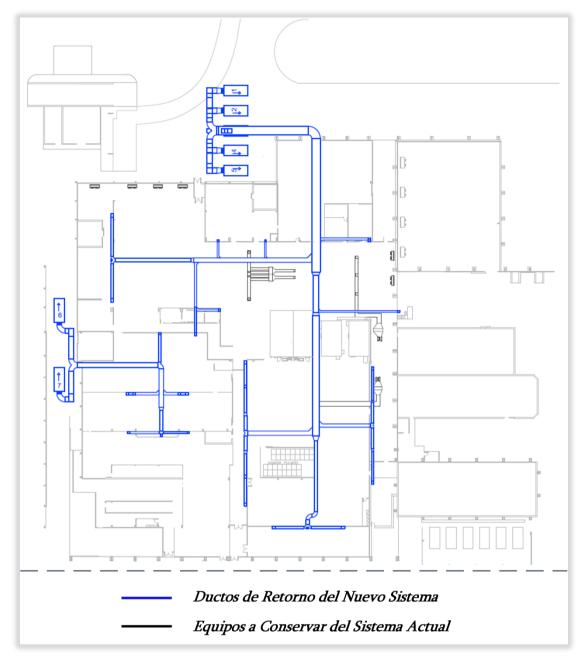


Figura 14: Trazado esquemático de los ductos de retorno para TyE y EyC.

10.2 Difusores y rejillas de aspiración

Se optó por una impulsión de aire desde el techo y una aspiración de retorno cercana al suelo por medio de rejillas. Los difusores serán del tipo rectangulares amurados al techo, con impulsión hacia dos laterales y aletas curvas, lo que produce una salida de aire prácticamente horizontal. Con esta tecnología el aire saliente del difusor se somete a un efecto de adherencia al techo en los primeros metros de recorrido, lo que favorece la captación de los condensados de los cielorrasos. Las rejillas de aspiración de retorno, ubicadas casi a nivel suelo, serán de forma rectangular.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-25/09/2019

Figura 15: Difusor (izquierda) y rejilla de retorno (derecha).

La difusión por el techo es una buena práctica para el caso ya que se realiza fuera de la zona ocupada por los operarios producción, evitando el efecto «air chilling». Además, con las rejillas bajas la disposición propuesta generará un barrido homogéneo del ambiente, captando la humedad condensada en todas las superficies y eliminando la probabilidad de existencia de focos calientes.

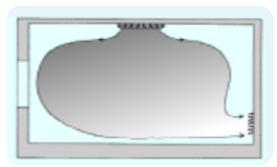


Figura 16: Impulsión por el techo y aspiración por rejilla baja.

Las rejillas de aspiración de aire exterior serán del mismo tipo que las de aire de retorno, y se ubicarán al final de las líneas de retorno, en puntos con una cota considerable para evitar la aspiración de aire contaminado.

11. Alimentación de servicios

El funcionamiento del sistema de tratamiento de aire requiere de energía eléctrica para los ventiladores, movimiento del rotor desecante y controles; gas natural para generar el calor de reactivación y amoníaco para alimentar los intercambiadores de post enfriamiento.

11.1 Gas natural

En un punto cercano a las salas en cuestión se encuentra una línea de gas que natural que anteriormente era utilizada para alimentar una caldera de agua de servicios. Hoy en día esta línea se encuentra en desuso, por lo que será aprovechada para alimentar las UTA. En la figura 17 se observa la ubicación del punto de toma y el tendido de líneas necesario, el cual se realizará en forma aérea mediante cañería de acero.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-25/09/2019

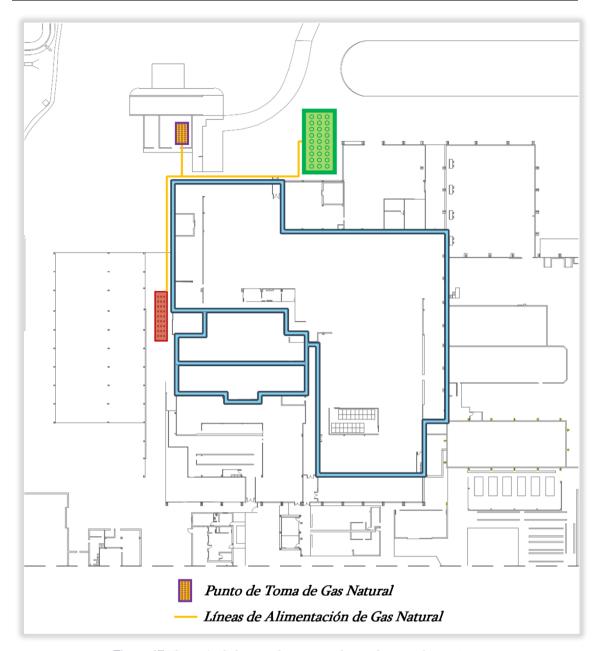


Figura 17: Ubicación de la toma de gas natural para alimentar los equipos.

11.2 Energía eléctrica

La toma de energía eléctrica se realizará desde un tablero principal de distribución ya existente, ubicado como se muestra en la figura 18. El tendido de líneas de alimentación se realizará en forma aérea utilizando bandejas perforadas de acero galvanizado.

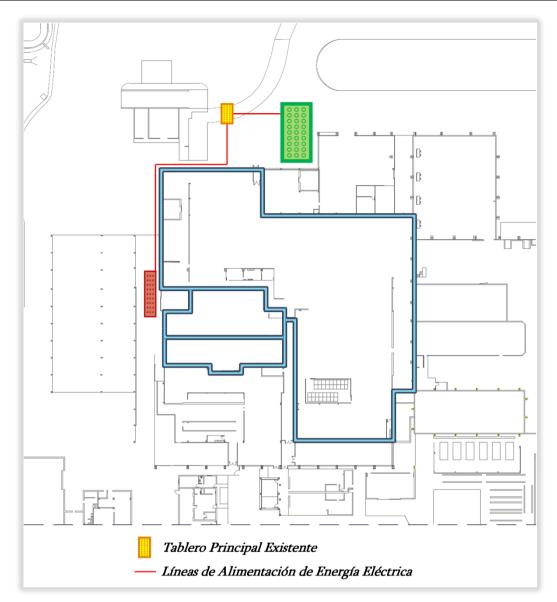


Figura 18: Ubicación del tablero principal para alimentar los equipos.

En el punto de instalación de las UTA se montará un tablero secundario en el cual se ubicarán los comandos y protecciones necesarios.

11.3 Amoníaco

La empresa tiene planificada la construcción de un nuevo túnel de congelado para el año próximo, para lo cual se debe instalar una nueva sala de máquinas, ya que la capacidad del sistema de refrigeración actual es utilizada al 100%. Sabiendo lo anterior, existe la posibilidad de alimentar las unidades de tratamiento de aire desde la nueva sala de máquinas (figura 19).

Revisó: GP-25/09/2019

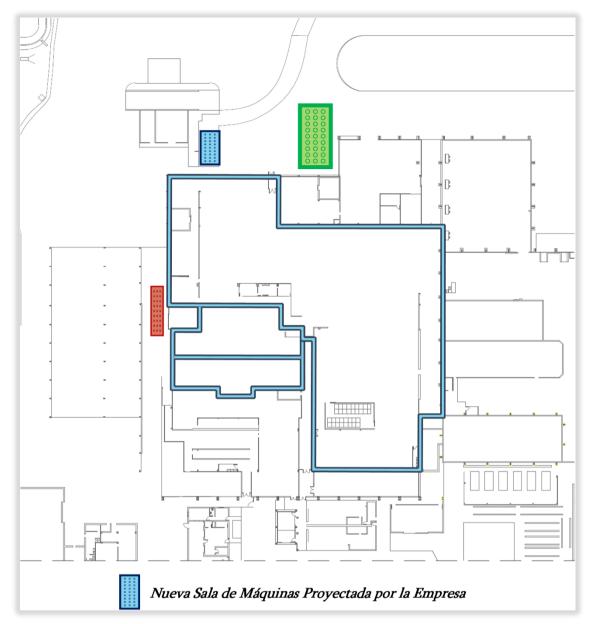


Figura 19: Ubicación de la nueva planta de refrigeración

Hasta el momento no se conoce qué dimensiones o potencia disponible tendrá la nueva sala de máquinas, por lo que los detalles de la alimentación de amoníaco escapan de los alcances del presente proyecto.

D – INGENIERÍA DE DETALLES

PFC1804C ID-Rev.03

Acondicionamiento ambiental de salas de proceso en frigorífico avícola Las Camelias S.A.

Índice

1.	UTA para TyE	2
1	.1. Equipos de rotor desecante	2
1	.2. Baterías aletadas de post enfriamiento	3
2.	UTA para EyC	4
2	.1. Equipos de rotor desecante	4
	.2. Baterías aletadas de post enfriamiento	
3.	Distribución de aire	4
3	.1. Líneas de distribución	
3	.2. Difusores, rejillas de retorno y toma de AE	8
	3. Ductos	
3	.4. Soportería	11
3	.5. Aislación	11
4.	Sistema de control	12
4	.1. Sensores	12
4	.2. Control de humedad relativa	13
4	.3. Control de temperatura	15
4	.4. Cableado	17
4	.5. Lista de componentes	17
5.	Alimentación de servicios	18
5	.1. Gas natural	18
	5.1.1. Generalidades	18
	5.1.2. Lista de componentes	19
5	.2. Energía eléctrica	19
	5.2.1. Generalidades	19
	5.2.2. Tablero principal	20
	5.2.3. Tablero seccional TyE	21
	5.2.4. Tablero seccional EyC	21
	5.2.5. Conductores y canalizaciones	21
6.	Costo final de la instalación	23

1. UTA para TyE

1.1. Equipos de rotor desecante

Según se estableció en las secciones 2.4.3 a 2.4.5 de MC, se utilizarán **5 equipos de rotor desecante**, totalizando una **capacidad de deshumidificación de 602,75kg/h de agua**, y un **caudal total de 100000m³/h de aire tratado**, incluyendo recirculación y renovación. El fabricante sugerido es Fisair, proveedor español que cuenta con representación directa en Argentina. La hoja de características de los equipos se encuentra en el Anexo 6.

Figura 1: Equipo de rotor desecante (ilustrativa).

A continuación se listan los equipos de rotor desecante para TyE con su respectivo código.

Tabla 1 – Codificación de Equipos de Rotor Desecante

Equipo	Código	Cant.
	1804C-D1U-001	1
	1804C-D1U-002	1
Rotor desecante	1804C-D1U-003	1
	1804C-D1U-004	1
	1804C-D1U-005	1

Finalmente se realiza una breve descripción de los componentes que conforman las unidades seleccionadas:

Tabla 2 – Componentes de Equipos de Rotor Desecante				
	Características	Observaciones		
Ventilador aire proceso	Caudal: 20000 m³/h Presión: 1036 Pa	Tipo centrífugo. Rodete de álabes hacia atrás. Incluye variador de frecuencia y sonda de presión para regulación de caudal.		
Ventilador aire reactivación	Caudal: 6000 m³/h Presión: 244 Pa	Tipo centrífugo. Rodete de álabes hacia adelante. Temperatura máxima de aire de trabajo: 110°C.		

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

Tabla 2 – Componentes de Equipos de Rotor Desecante					
	Características	Observaciones			
Filtros	Filtrado clase G4	Tipo V. Material fibra sintética.			
Rotor desecante	Material: gel de sílice de alto rendimiento	Material inerte, comportamiento estable térmica y químicamente.			
Compuertas de regulación	Caudal proceso: 20000 m3/h. Caudal reactivación: 6000 m3/h	Regulación manual. Incluye tomas de presión diferencial.			
Calentador aire reactivación	Caudal de aire: 6000m³/h Potencia disponible: 220kW Combustible: gas natural	Rampa de inyección de gas en fundición especial. Incluye servoválvula de regulación de caudal de gas.			
Recuperador de Calor	Caudal: 6000 m3/h Potencia transferida: 26,7 kW	Material: aluminio con recubrimiento epoxi.			
Sistema de control	Regulación de humedad de proceso por medio del control de reactivación	Controlador integrado con interfaz HMI.			

1.2. Baterías aletadas de post enfriamiento

Cada unidad de rotor desecante contará con una batería aletada aguas abajo para el enfriamiento de aire de proceso post rotor, cuyas características son las siguientes:

- Potencia: 150000kcal/h
- Superficie de intercambio: 200m²
- Separación entre aletas: 6mm
- Tubos: aluminio, Ø19mm
- 16 tubos en altura

- 6 tubos en profundidad
- Circuito simple
- Ancho útil: 2000mm
- Alto útil: 1200mm
- *Profundidad*: 360mm

El refrigerante utilizado será amoníaco con una temperatura de evaporación de -5°C.

Figura 2: Baterías aletadas para el enfriamiento de aire post rotor (ilustrativa).

Luego, se listan las baterías aletadas para TyE con su respectivo código:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

Tabla 3 – Codificación de Baterías Aletadas
--

Equipo	Código	Cant.
	1804C-D1O-007	1
	1804C-D1O-009	1
Batería Aletada	1804C-D1O-011	1
	1804C-D1O-013	1
	1804C-D1O-014	1

2. UTA para EyC

2.1. Equipos de rotor desecante

Según se estableció en la sección 2.7, se utilizarán **2 equipos de rotor desecante**, totalizando una **capacidad de deshumidificación de 241,1kg/h de agua**, y un **caudal total de 40000m³/h de aire tratado**, incluyendo recirculación y renovación. Estos equipos son del mismo modelo que los seleccionados para la sala de TyE. A continuación se observa el código asignado a cada uno de ellos:

Tabla 4 – Codificación de Equipos de Rotor Desecante

Equipo	Código	Cant.
Datar dagaanta	1804C-D2U-176	1
Rotor desecante	1804C-D2U-177	1

2.2. Baterías aletadas de post enfriamiento

De la misma manera que para TyE, cada unidad de rotor desecante contará con una batería aletada aguas abajo para el post enfriamiento, cuyas características son las mismas que las de la sala mencionada. Seguidamente se lista cada batería con su código correspondiente:

Tabla 5 – Codificación de Baterías Aletadas

Equipo	Código	Cant.
Dataria Alatada	1804C-D2O-180	1
Batería Aletada	1804C-D2O-185	1

3. Distribución de aire

3.1. Líneas de distribución

Por simplicidad se representan las líneas de ductos en forma de trazado unifilar. A continuación se muestran sucesivamente los tendidos de impulsión/retorno de TyE, e impulsión/retorno de EyC, con sus respectivos códigos. Para conocer los detalles de ubicación en planta y medidas dirigirse a los planos **1804C-BD-001** y **1804C-BD-002**.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

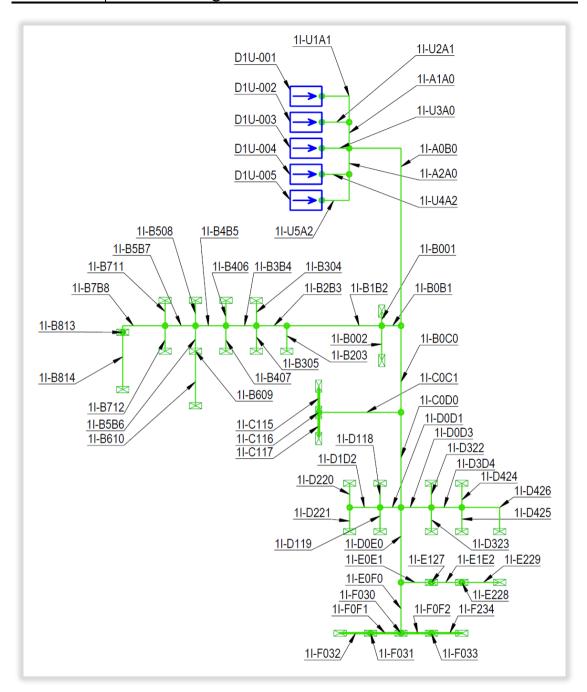
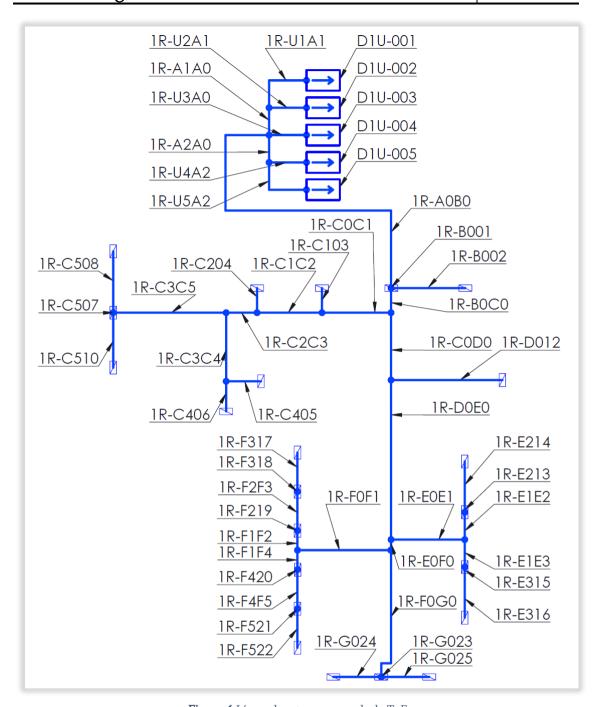



Figura 3: Líneas de impulsión para sala de TyE

Revisó: GP-23/10/2019

Figura 4: Líneas de retorno para sala de TyE

Revisó: GP-23/10/2019

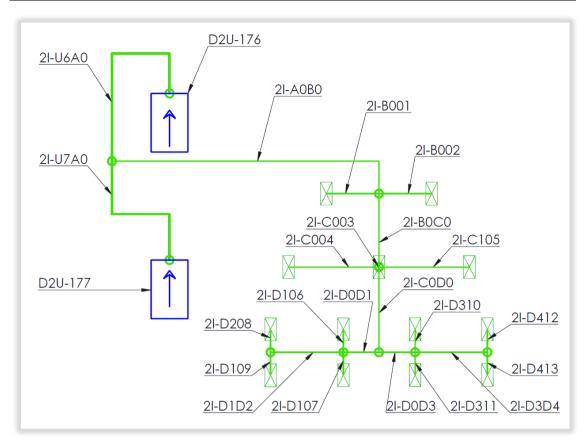


Figura 5: Líneas de impulsión para sala de EyC.

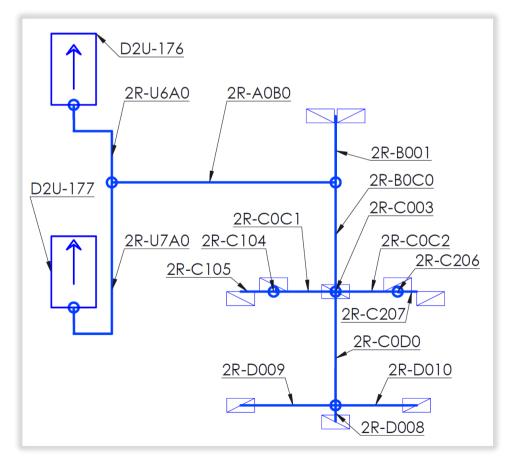


Figura 6: Líneas de retorno para sala de EyC.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

3.2. Difusores, rejillas de retorno y toma de AE

Se utilizarán **difusores de impulsión** en aluminio, montados sobre el techo de las salas, rectangulares con aletas curvas de 2 vías, cuyo fabricante sugerido es Induterm Ingeniería S.R.L.

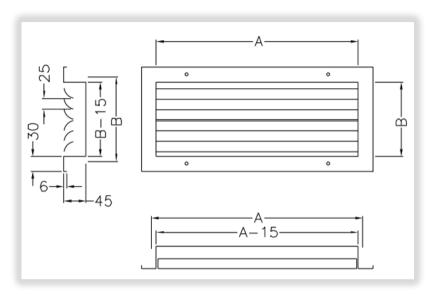


Figura 7: Difusores de impulsión

En la tabla a continuación se resumen las características de los mismos:

Tabla 6 – Difusores de Impulsión						
Sala	Código	Modelo	Dimensiones	Caudal	Pérdida de	Cant.
Jaia	Courgo	Modelo	[mm]	$[m^3/h]$	carga [mmca]	Calit.
TyE	1804C-D1H-241	ADS 22	000 200	2000	1	34
EyC	1804C-D2H-257		900 x 300	3000	1	25

Las **rejillas para el caudal de retorno** serán de aluminio, montadas prácticamente a nivel suelo, con forma rectangular y aletas fijas a 45°.

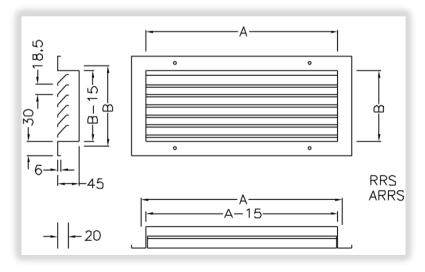


Figura 8: Rejillas de retorno

En la tabla a continuación se resumen las características de las mismas:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

Tabla 7	Tabla 7 – Rejillas de Retorno					
Sala	Código	Modelo	Dimensiones	Caudal	Pérdida de	Cant.
Saia	Codigo	Modelo	[mm]	$[m^3/h]^*$	carga [mmca]	Cant.
TyE	1804C-D1I-242	ARRS – ½ R	1000 (00	3900	1	25
EyC	1804C-D2I-258		1000 x 600	3750	1	10

Las **tomas de aire exterior** serán de forma rectangular y se ubicarán al final de las líneas de retorno.



Figura 9: Rejillas de toma de AE

Las características son las siguientes:

Tabla 8	Tabla 8 – Rejillas de Toma de Aire Exterior					
Cala	Cádica	Modelo	Dimensiones	Caudal	Pérdida de	Cont
Sala	Sala Código Mode	Modelo	[mm]	$[m^3/h]$	carga [mmca]	Cant.
TyE	1804C-D1T-249		(00 1000	25.00	1	1
EyC	1804C-D2T-259	TAE-F-R	600 x 1000	2500	1	1

Se destaca que estas rejillas cuentan con protección antipájaro de malla fina de alambre galvanizado.

3.3. Ductos

Tanto los ductos como sus accesorios se proyectaron conformados en chapa galvanizada calibres 22, 26 y 28, de forma rectangular. Los detalles del cálculo se encuentran en la sección 3 de MC.

Los esquemas de dimensiones, conexiones, bajadas, etc., se encuentran en los planos que se listan a continuación. Cabe destacar que por simplicidad, en la tabla se omitió la parte del código que identifica al proyecto.

Tabla 9 - Resumen de Planos de Ductos					
Código	Título	Observaciones			
BD-001	Trazado unifilar de ductos	ar de ductos Impulsión TyE y EyC			
BD-002	Trazado unifilar de ductos	Retorno TyE y EyC			

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

Tabla 9 - Resumen de Planos de Ductos				
Código	Título	Observaciones		
AD-008	División de sistema de ductos en planos	Impulsión TyE		
AD-009	División de sistema de ductos en planos	Retorno TyE		
AD-010	División de sistema de ductos en planos	Impulsión y Retorno EyC		
BD-011	Conexión UTA	Detalle de conexión entre UTA y ductos de impulsión TyE		
BD-012	Ductos de Impulsión TyE	Primer segmento del trazado de ductos		
BD-013	Ductos de Impulsión TyE	Segundo segmento del trazado de ductos		
BD-014	Detalle de bajadas	Planos BD-012 y BD-013		
BD-015	Conexión UTA	Detalle de conexión entre UTA y ductos de retorno TyE		
BD-016	Ductos de Retorno TyE	Primer segmento del trazado de ductos		
BD-017	Ductos de Retorno TyE	Segundo segmento del trazado de ductos		
BD-018	Detalle de bajadas	Planos BD-016 y BD-017		
BD-019	Conexión UTA	Detalle de conexión entre UTA y ductos de impulsión EyC		
BD-020	Ductos de Impulsión EyC	Trazado de ductos		
BD-021	Detalle de bajadas	Plano BD-020		
BD-022	Conexión UTA	Detalle de conexión entre UTA y ductos de retorno EyC		
BD-023	Ductos de Retorno EyC	Trazado de ductos		
BD-024	Detalle de bajadas	Planos BD-023		
BD-025	Detalle de Tramos Rectos	-		
BD-026	Detalle de Curvas 90°	-		
BD-027	Detalle de Derivaciones Simples	-		
BD-028	Detalle de Derivaciones en T	-		
BD-029	Detalle de Derivaciones Triples	-		

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

Tabla 9 - Resumen de Planos de Ductos				
Código	Título	Observaciones		
BD-030	Detalle de Reducciones	-		
AD-034	Unión antivibratoria	-		
AD-035	Bypass control temperatura	ТуЕ		
AD-036	Bypass control temperatura	ЕуС		

3.4. Soportería

Los cálculos correspondientes a la soportería se encuentran en la sección 3.11 de MC.

Los ductos se soportarán desde la estructura del techo de la planta, mediante soportes separados en una distancia horizontal de 3m.

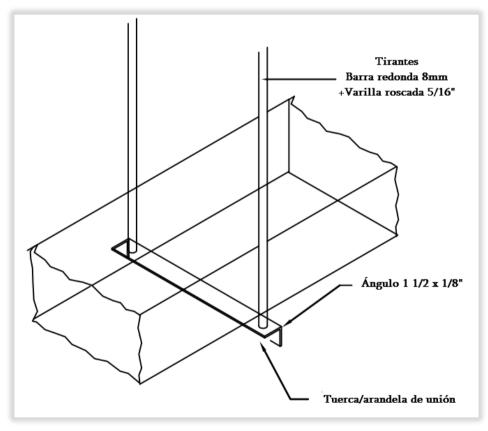


Figura 10: Detalle de un soporte de ductos.

3.5. Aislación

La aislación se realizará revistiendo los ductos con una manta de espuma de polietileno con foil de aluminio como barrera de vapor. La selección del material y el cálculo de espesores se encuentra en la sección 3.13 de MC.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

Figura 11: Espuma de polietileno con foil de aluminio.

Para TyE se utilizará una manta de espesor 25mm. Para EyC el espesor será de 20mm.

Las uniones y la sujeción del recubrimiento se realizarán utilizando cinta adhesiva de foil de aluminio.

4. Sistema de control

4.1. Sensores

El fabricante de rotores desecantes incluye en conjunto con los equipos dos sensores combinados de temperatura y humedad para ubicar en las líneas de aire de retorno, uno para TyE (**D1Q-250**) y el otro para EyC (**D2Q-256**), y se instalarán como se muestra en la figura a continuación.

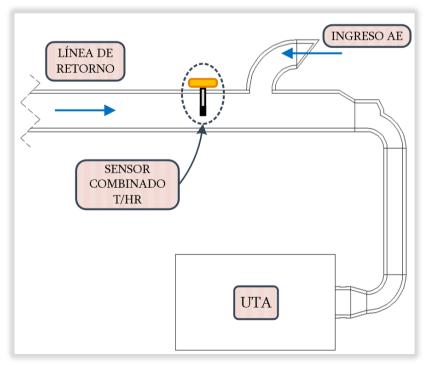


Figura 12: Ubicación de los sensores combinados T/HR.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

El modelo de sensor incluido es el siguiente:

Figura 13: Sensor combinado T/HR.

Los mismos cuentan con salidas 0..10V tanto de temperatura como de humedad relativa, y serán utilizados para el control como se especifica en las secciones siguientes.

4.2. Control de humedad relativa

El control de humedad es una de las características incluidas en los equipos de rotor desecante, cuyo esquema de funcionamiento es el siguiente:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

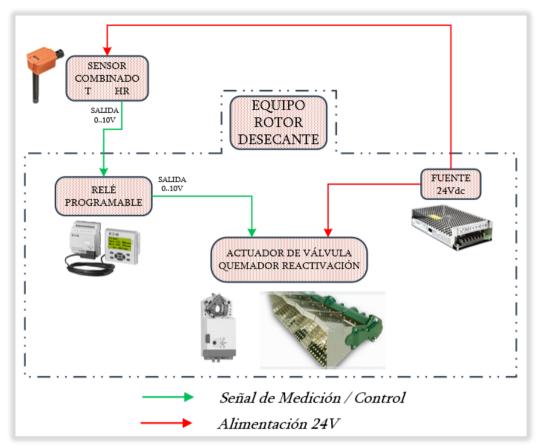


Figura 14: Esquema de control de humedad relativa.

La salida en tensión del **sensor combinado** es tomada por el **relé programable** de los equipos; en función del valor de humedad leído, este último envía una señal de control hacia el **actuador** con servomotor modulante que regula el caudal de gas natural del **quemador de reactivación**. De esta manera se logra regular la capacidad de deshumidificación de los equipos mediante el control de la reactivación de los mismos. El comando se realiza en baja tensión de seguridad de 24V.

Todos los elementos mencionados anteriormente están incluidos en los equipos de rotor desecante, a excepción del sensor combinado.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

4.3. Control de temperatura

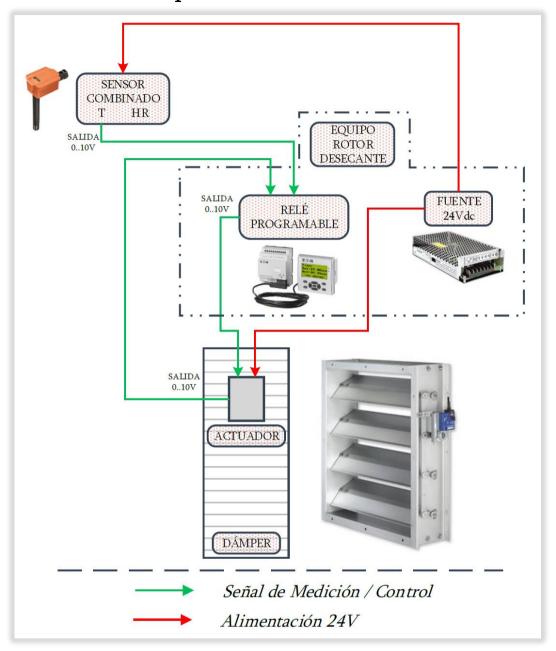


Figura 15: Esquema de control de temperatura.

Para lograr un control PID se utilizará el **relé programable** que se encuentra incorporado en los equipos de rotor desecante, ya provisto por el fabricante, el cual cuenta con una considerable cantidad de entradas y salidas disponibles a utilizar. También se utilizará la **fuente de 24V** que incluyen estos equipos. La lógica consiste en tomar la salida en tensión del **sensor combinado** como señal de entrada al **relé programable**; en función del valor de temperatura leído, este último enviará una señal de control hacia el **actuador** modulante que comanda al **dámper** colocado en el bypass de regulación de temperatura. Por su parte, el actuador enviará una señal de posición al relé, que servirá para conocer en tiempo real el porcentaje de apertura del dámper.

La selección de los elementos necesarios se puede apreciar en la sección 5 de MC. Los planos correspondientes son **1804C-AD-035** para TyE, y **1804C-AD-036** para EyC.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

El dámper seleccionado tiene las siguientes características:

- Serie PAO de la marca Fredair.
- Sección transversal: 700x700mm.
- Base para comando motorizado.
- Aletas opuestas.
- Conformado en chapa de acero galvanizado.
- Bujes de bronce y transmisión con varilla de acero inoxidable.

Análogamente, el actuador seleccionado:

- Modelo MN7505A20 de la marca Honeywell.
- Apto para secciones de hasta 2m².
- Par: 5Nm.
- Tensión de alimentación: 24V.
- Señal de entrada: Tensión 0..10V.
- Tipo de control: Modulante.
- Señal de retroalimentación de posición: Tensión 0..10V.

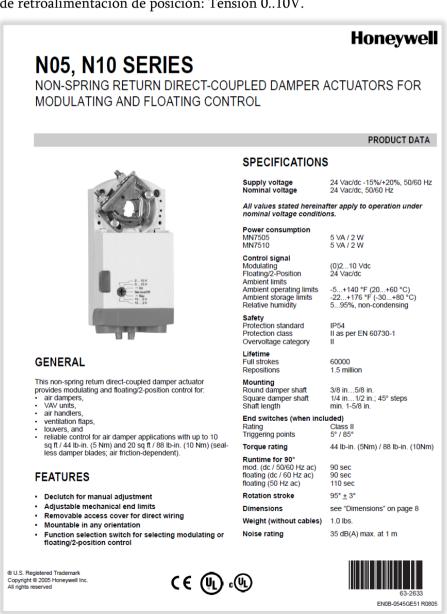


Figura 16: Actuador seleccionado.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

4.4. Cableado

Se utilizarán cables de instrumentación blindados para reducir interferencias. Se realizará el tendido evitando cercanía con cables de potencia. Cuando sea necesario, los cruces con estos últimos se realizarán en forma perpendicular, por el mismo motivo. El calibre seleccionado es AWG 14 (2mm²), y el modelo es el siguiente:

Figura 17: Cable de instrumentación seleccionado.

4.5. Lista de componentes

Tabla 10- Lista de Componentes de Control				
Componente	Código	Cantidad		
Sensor combinado	D1Q-250	1		
Sensor combinado	D2Q-256	1		
A 1 / 11	D1S-260	5		
Actuador c/servomotor modulante	D2S-261	2		
Démpor	D1R-251	5		
Dámper	D2R-253	2		
Cable de instrumentación	D1V-262	39m		
Cable de mstrumentación	D2V-263	19m		

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

5. Alimentación de servicios

5.1. Gas natural

5.1.1. Generalidades

Los detalles del cálculo se encuentran en la sección 4.1 de MC. A continuación, en la figura 18 se muestra en forma esquemática el tendido de líneas con sus códigos correspondientes; luego en la figura 19 se brindan detalles de medidas, caudales y presiones.

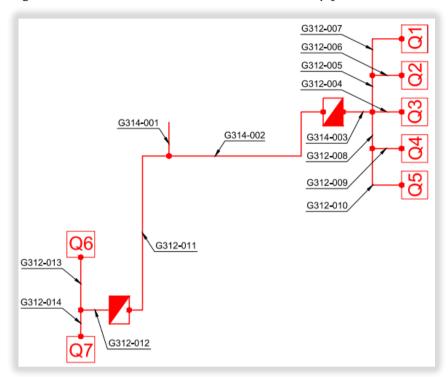


Figura 18: Líneas de gas natural.

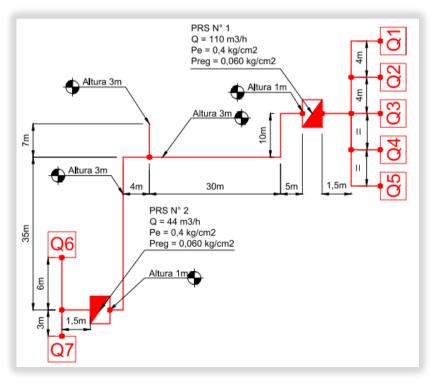


Figura 19: Detalles de instalación de gas natural.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

Los planos correspondientes a la instalación de gas natural son **1804C-BG-031**, **1804C-BG-032** y **1804C-BG-033**, los cuales se confeccionaron acorde a los requerimientos de la NAG 201, ya que es de esta forma en la que se presenta la documentación ante las autoridades de control.

5.1.2. Lista de componentes

El listado de materiales se confeccionó también conforme a la normativa para ser incluida en los planos, y se muestra a continuación:

Tabla 11 – Listado de Materiales para Instalación de Gas Natural					
MATERIALES TRAMOS DE CONDUCCIÓN					
CÓDIGO	CANT.	DESCRIPCION	DIAM.	FABRICANTE	
G3F-264	1	REDUCCIÓN PARA SOLDAR	4" x 2"	TUPY	
G3A-265	80 m	CAÑO NEGRO SIN COSTURA	1 1/4"	TENARIS	
G3A-266	62 m	CAÑO NEGRO SIN COSTURA	2"	TENARIS	
		MATERIALES PLANTA REGULACIÓN SECUNDARIA	N°1		
CÓDIGO	CANT.	DESCRIPCION	DIAM.	FABRICANTE	
G3A-266	2 m	CAÑO NEGRO SIN COSTURA	2"	TENARIS	
G3K-267	1	VALVULA ESFERICA 3 PARTES SW P/TOTAL C/PROL. 100m	2"	ESFEROMATIC	
G3K-268	3	VALVULA ESFERICA 3 PARTES SW P/TOTAL C/PROL. 100m	1/2"	ESFEROMATIC	
G3G-269	2	MEDIA CUPLA ROSCADA PARA SOLDAR	1/2"	TUPY	
G3F-270	2	NIPLE DE REDUCCIÓN	1/2"x1/4"	TUPY	
G3G-271	2	CUPLA ROSCADA	1/4"	TUPY	
G3J-272	1	MANOMETRO 0-1 bar Diam 2 1/2" TIPO BOURDON	1/4"	BEYCA	
G3P-273	8	ESPÁRRAGO	5/8" x 31/2"	DELGADO S.A.	
G3M-274	2	BRIDA SLIP - ON S-300	2"	FUTURA	
G3P-275	16	TUERCA HEXAGONAL	5/8"	DELGADO S.A.	
G3L-276	1	VALVULA REGULADORA MOD:S-292 BRIDADO	2"	EQA SAIC	
G3J-277	1	MANOMETRO 0-250 mbar Diam 2 1/2" TIPO BOURDON	1/4"	BEYCA	
G3A-278	2m	CAÑO NEGRO SIN COSTURA	1/2"	TENARIS	
		MATERIALES PLANTA REGULACIÓN SECUNDARIA	N°2		
CÓDIGO	CANT.	DESCRIPCION	DIAM.	FABRICANTE	
G3A-265	2 m	CAÑO NEGRO SIN COSTURA	1 1/4"	TENARIS	
G3L-279	1	VALVULA ESFERICA 3 PARTES SW P/TOTAL C/PROL. 100m	1 1//4"	ESFEROMATIC	
G3L-280	3	VALVULA ESFERICA 3 PARTES SW P/TOTAL C/PROL. 100m	1/2"	ESFEROMATIC	
G3G-269	2	MEDIA CUPLA ROSCADA PARA SOLDAR	1/2"	TUPY	
G3F-270	2	NIPLE DE REDUCCIÓN	1/2"x1/4"	TUPY	
G3G-271	2	CUPLA ROSCADA	1/4"	TUPY	
G3J-272	1	MANOMETRO 0-1 bar Diam 2 1/2" TIPO BOURDON	1/4"	BEYCA	
G3F-270	2	REDUCCIÓN PARA SOLDAR	2" x 1 1/4"	TUPY	
G3P-273	8	ESPÁRRAGO	5/8" x 31/2"	DELGADO S.A.	
G3M-274	2	BRIDA SLIP - ON S-300	1 1/4"	FUTURA	
G3P-275	16	TUERCA HEXAGONAL	5/8"	DELGADO S.A.	
G3L-276	1	VALVULA REGULADORA MOD:S-292 BRIDADO	2"	EQA SAIC	
G3J-277	1	MANOMETRO 0-250 mbar Diam 2 1/2" TIPO BOURDON	1/4"	BEYCA	
G3A-278	2m	CAÑO NEGRO SIN COSTURA	1/2"	TENARIS	

En el anexo 6 se encuentran las hojas de características de tubos, bridas, manómetros, válvulas y reguladores de presión utilizados.

5.2. Energía eléctrica

5.2.1. Generalidades

Se realizará una toma de energía desde un tablero principal (TP) existente. Luego, se instalarán dos tableros seccionales (TS), uno para TyE y otro para EyC, como se muestra a continuación:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

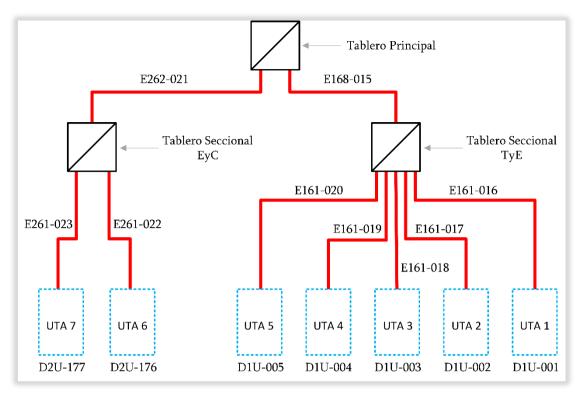


Figura 20: Detalles de instalación eléctrica (líneas).

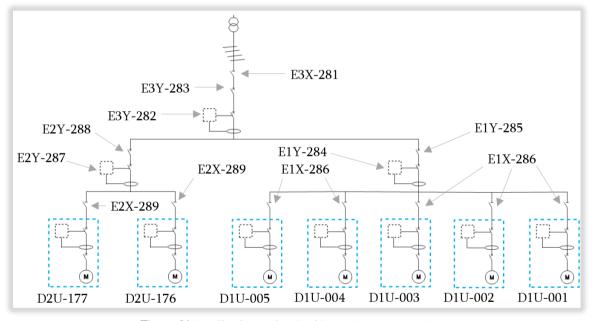


Figura 21: Detalles de instalación eléctrica (componentes).

Para detalles sobre la ubicación en planta y diagrama unifilar dirigirse a los planos **1804C-BE-037** y **1804C-BE-038** respectivamente.

Los detalles de cálculo y selección de componentes se encuentran en la sección 5.2 de MC.

Las hojas de características de componentes se encuentran en el anexo 6.

5.2.2. Tablero principal

Dentro del tablero principal ya existente se instalarán los siguientes elementos:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

PFC1804C ID-Rev.03

Acondicionamiento ambiental de salas de proceso en frigorífico avícola Las Camelias S.A.

Tabla 12 – Componentes Tablero Principal			
Código	Descripción	Nombre comercial	Cant.
E3Y-282	Interruptor diferencial 250A - 0,0310A	Bloque Vigi L431536	1
E3Y-283	Interruptor termomagnético 250A - 25kA	Easypact CVS LV525323	1
E3X-281	Interruptor Seccionador 250A	Compact Ins250-Fa	1

5.2.3. Tablero seccional TyE

El tablero seccional para TyE estará formado por los siguientes elementos:

Tabla 13 – Componentes Tablero Seccional TyE				
Código	Descripción	Nombre comercial	Cant.	
E1Y-284	Interruptor diferencial 250A - 0,0310A	Bloque Vigi L431536	1	
E1Y-285	Interruptor termomagnético 250A - 25kA	Easypact CVS LV525322	1	
E1X-286	Interruptor Seccionador 40A	Compact Ins 40 4x40A –Fa	5	
E1V-308	Barras de Cu 3+N	Modelo NRT 200	1	
E1W-310	Gabinete de chapa con pintura epoxi	Modular L50M - 9012030C	1	
E1Z-312	Ventilador para gabinete	Kit de ventilación FAN 80	2	
E3A-313	Cable canal plástico ranurado 200x60mm	200x60 RG	2m	
E3A-314	Cable canal plástico ranurado 100x60mm	100x60 RG	1,2m	
E3V-315	Bornera de cobre para PE	Barra BD 255 - Nollmed	1	

El esquema topográfico se encuentra en el plano 1804C-BE-039.

5.2.4. Tablero seccional EyC

El tablero seccional para EyC estará formado por los siguientes elementos:

Tabla 14 – Componentes Tablero Seccional EyC				
Código	Descripción	Nombre comercial	Cant.	
E2Y-287	Interruptor diferencial 80A - 0,03A	Acti9 A9R11480	1	
E2Y-288	Interruptor termomagnético 80A - 7,5kA	Acti9 A9N18372	1	
E2X-289	Interruptor Seccionador 40A	Compact Ins 40–Fa	2	
E2V-309	Barras de Cu 3+N	Modelo NRT 125	1	
E2W-311	Gabinete de chapa con pintura epoxi	Gabinete estanco 0494	1	
E3A-314	Cable canal plástico ranurado 100x60mm	100x60 RG	2,5m	
E3V-315	Bornera de cobre para PE	Barra BD 255 - Nollmed	1	

El esquema topográfico se encuentra en el plano 1804C-AE-039.

5.2.5. Conductores y canalizaciones

El tendido de conductores se realizará sobre bandejas perforadas, a una altura de 3m.

A continuación se muestra un detalle de conductores:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

Tabla 15 -	- Detalle de	e Conductores		
Línea	Código	Descripción	Nombre comercial	Cant. [m]
E168-015	E1V-290	Cond. tetrap. cobre c/aisl PVC 4x120mm2	Sintenax Valio	2
E108-015	E1V-295	Cond. unip. cobre c/aisl PVC 1x70mm2	Superastic Flex	2
E161 016	E1V-291	Cond. tetrap. cobre c/aisl PVC 4x10mm2	Sintenax Valio	29
E161-016	E1V-296	Cond. unip. cobre c/aisl PVC 1 x10mm2	Superastic Flex	29
E161 017	E1V-291	Cond. tetrap. cobre c/aisl PVC 4x10mm2	Sintenax Valio	25
E161-017	E1V-296	Cond. unip. cobre c/aisl PVC 1 x10mm2	Superastic Flex	25
E161 010	E1V-291	Cond. tetrap. cobre c/aisl PVC 4x10mm2	Sintenax Valio	21
E161-018	E1V-296	Cond. unip. cobre c/aisl PVC 1 x10mm2	Superastic Flex	21
E161 010	E1V-291	Cond. tetrap. cobre c/aisl PVC 4x10mm2	Sintenax Valio	10
E161-019	E1V-296	Cond. unip. cobre c/aisl PVC 1 x10mm2	Superastic Flex	18
E161 020	E1V-291	Cond. tetrap. cobre c/aisl PVC 4x10mm2	Sintenax Valio	0.1
E161-020	E1V-296	Cond. unip. cobre c/aisl PVC 1 x10mm2	Superastic Flex	21
E0.60, 001	E2V-292	Cond. tetrap. cobre c/aisl PVC 4x25mm2	Sintenax Valio	7.4
E262-021	E2V-297	Cond. unip. cobre c/aisl PVC 1x16mm2	Superastic Flex	74
E261-022	E2V-293	Cond. tetrap. cobre c/aisl PVC 4x10mm2	Sintenax Valio	1.4
	E2V-298	Cond. unip. cobre c/aisl PVC 1x10mm2	Superastic Flex	14
E261-023	E2V-293	Cond. tetrap. cobre c/aisl PVC 4x10mm2	Sintenax Valio	1.4
	E2V-298	Cond. unip. cobre c/aisl PVC 1x10mm2	Superastic Flex	14

Luego se muestra un detalle de bandejas perforadas y accesorios:

Tabla 16 – Detalle de Bandejas Perforadas y Accesorios			
Código	Descripción	Nombre comercial	Cant.
E1A-299	Bandeja 200x50mm	TRP-200	15
E2A-300	Bandeja 100x50mm	TRP-100	30
E1B-301	Curva vertical para bandeja 200x50mm	CUPS-200-90-Z	6
E1D-302	Derivación en T para bandeja 200x50mm	TPS-200-Z	1
E2B-303	Curva plana 90° para bandeja 100x50mm	CPS-100-90-Z	5
E2D-304	Derivación en T para bandeja 100x50mm	TPS-100-Z	1
E2E-305	Derivación en triple para bandeja 100x50mm	XPS-100-Z	1
E1A-306	Tapa ciega para bandeja 200x50mm	TTRS-200-22-Z	15
E2A-307	Tapa ciega para bandeja 100x50mm	TTRS-100-22-Z	30

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

6. Costo final de la instalación

Los resultados parciales de los costos se han calculado a lo largo de la MC. A continuación se presenta un resumen final:

Tabla 17 – Costo Final de la Instalación		
Descripción	Costo USD	
UTA	943168	
Baterías aletadas	28700	
Fabricación y montaje de ductos + Rejillas	47413	
Aislación de ductos	26000	
Componentes de control	1631	
Instalación de Gas natural	5610	
Instalación eléctrica	13022	
Total	1065544USD	

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-23/10/2019

TOMO II MEMORIAS DE CÁLCULO

PFC 1804C

PFC1804C MC-Rev.02

Acondicionamiento ambiental de salas de proceso en frigorífico avícola Las Camelias S.A.

Índice

1.	. Análisis de la problemática y diagnóstico	5
	1.1 Visitas a planta	5
	1.1.1 Distribución en planta	5
	1.1.2 Relevamiento de equipos frigoríficos instalados	6
	1.1.3 Mediciones realizadas durante faena en sala de TyE	6
	1.1.4 Mediciones realizadas durante faena en salas de EyC	11
	1.1.5 Mediciones realizadas post lavado	11
	1.2 Condiciones ambientales de referencia	12
	1.2.1 Temperatura	13
	1.2.2 Humedad relativa	13
	1.3 Análisis de ganancia térmica de la sala de TyE	13
	1.3.1 Ganancia a través de la envolvente	13
	1.3.2 Ganancia por personal de producción	15
	1.3.3 Ganancia por equipos	15
	1.3.4 Ganancia debida al producto	16
	1.3.5 Resumen	17
	1.3.6 Conclusiones	18
	1.4 Especificaciones de diseño para sala de TyE	18
	1.4.1 Consideración de equipos instalados	18
	1.4.2 Comentario sobre condensados debidos al lavado	19
	1.4.3 Resumen	19
	1.5 Análisis de ganancia térmica de las salas de EyC	20
	1.6 Especificaciones de diseño para salas de EyC	21
	1.6.1 Condensados debidos al lavado	21
	1.6.2 Resumen	21
	1.7 Análisis de tecnologías disponibles	22
	1.7.1 Deshumidificación por Refrigeración Mecánica	22
	1.7.2 Deshumidificación por Rotor Desecante	24
	1.7.3 Análisis comparativo	26
2.	Solución propuesta	27
	2.1 Esquema de cálculo	
	2.2 Cálculo de aire de renovación	27

PFC1804C MC-Rev.02

2.2.1 Salas de TyE	27
2.2.2 Salas de EyC	28
2.3 UTA por refrigeración mecánica para salas de TyE	28
2.3.1 Hipótesis de cálculo	28
2.3.2 Cálculo	29
2.3.3 Cotización	32
2.4 UTA por rotor desecante para salas de TyE	33
2.4.1 Hipótesis de cálculo	34
2.4.2 Cálculo	35
2.4.3 Selección de equipos de rotor desecante	37
2.4.4 Propuesta del fabricante	38
2.4.5 Recálculo según propuesta del fabricante	40
2.4.6 Selección de la tecnología de calefacción de reactivación	41
2.4.7 Selección de la batería aletada post rotor	41
2.4.8 Cotización	42
2.5 Costos operativos	43
2.6 Elección de tecnología a utilizar	44
2.7 UTA por rotor desecante para salas de EyC	45
2.7.1 Hipótesis de cálculo	46
2.7.2 Cálculo	46
2.7.3 Selección del evaporador post rotor	49
2.7.4 Cotización	50
2.8 Codificación de UTA y baterías aletadas	51
2.9 Tratamiento de condensados debidos al lavado	51
3. Distribución de aire	52
3.1 Difusores de impulsión	52
3.2 Rejillas de retorno	53
3.3 Rejillas de aspiración de AE	53
3.4 Ductos de impulsión para sala de TyE	53
3.4.1 Generalidades	53
3.4.2 Hipótesis de cálculo	56
3.4.3 Cálculo	57
3.5 Ductos de retorno para sala trozado y empaque	60
3.5.1 Hipótesis de cálculo	60

PFC1804C MC-Rev.02

Acondicionamiento ambiental de salas de proceso en frigorífico avícola Las Camelias S.A.

3.5.2 Cálculo	61
3.6 Verificación de presión estática del ventilador para TyE	64
3.7 Ductos de impulsión para sala EyC	64
3.7.1 Hipótesis de cálculo	64
3.7.2 Cálculo	65
3.8 Ductos de retorno para sala EyC	66
3.8.1 Hipótesis de cálculo	66
3.8.2 Cálculo	67
3.9 Verificación de presión estática del ventilador para EyC	68
3.10 Determinación del espesor de chapa	69
3.10.1 Generalidades	69
3.10.2 Hipótesis de cálculo	69
3.10.3 Resultados del cálculo	69
3.10.4 Costo de chapa	70
3.11 Soportería	70
3.12 Costos de fabricación y montaje	71
3.13 Aislación de ductos	72
3.13.1 Generalidades	72
3.13.2 Hipótesis de cálculo - TyE	72
3.13.3 Cálculo - TyE	73
3.13.4 Hipótesis de cálculo – EyC	75
3.13.5 Cálculo – EyC	75
3.13.6 Costo de materiales y montaje para la aislación	76
4. Selección de componentes de control	77
4.1 Dámpers	77
4.2 Actuadores para comando de dámpers	77
4.3 Costo de componentes	
5. Alimentación de servicios	79
5.1 Gas natural	79
5.1.1 Generalidades	79
5.1.2 Hipótesis de cálculo	79
5.1.3 Resultados de cálculo y elementos seleccionados	
5.1.4 Costo de materiales y montaje	81
5.2 Energía eléctrica	

PFC1804C MC-Rev.02

5.2.1 Generalidades	82
5.2.2 Potencia de cálculo	82
5.2.3 Diagrama de la instalación	83
5.2.4 Dimensionamiento térmico de los conductores	84
5.2.5 Verificación por caída de tensión	86
5.2.6 Verificación por cortocircuito	87
5.2.7 Selección de dispositivos de protección y maniobra	90
5.2.8 Protección de puesta a tierra	91
5.2.9 Selección de bandeas perforadas	92
5.2.10 Selección barras de cobre para tableros seccionales	93
5.2.11 Selección de gabinetes para tableros seccionales	94
5.2.12 Verificación térmica de los gabinetes	94
5.2.13 Costo de materiales y montaje	98

1. Análisis de la problemática y diagnóstico

1.1 Visitas a planta

Para comenzar con el plan de trabajos se realizó una serie de visitas a la planta de faena del frigorífico donde se recorrieron las instalaciones, haciendo énfasis en las salas de Trozado y Empaque, Eviscerado y Chillers. Además, se entrevistó al Responsable de Mantenimiento, al Responsable de Calidad y a Operarios de Planta, con lo cual se reunió la información que se detalla en esta sección.

Como se mencionó en la situación problemática, la presencia de condensados se debe a la humedad producida por el lavado y a la humedad producida durante el proceso de faena. A lo largo de este capítulo se consideran estos dos inconvenientes por separado, lo que explica la división de la recolección de datos en dos grupos: mediciones realizadas en faena (sección 1.1.3) y mediciones post lavado (sección 1.1.5).

1.1.1 Distribución en planta

Dentro de la superficie total del frigorífico, las salas de interés abarcan una superficie de 3452m². La sala de TyE incluye una zona de marinados, procesamiento de menudos, garras y MDM (carne mecánicamente separada), totalizando una superficie de 2870m². Por otro lado, las salas de EyC ocupan 325m² y 257m², respectivamente. La altura del techo para todas las salas es de 4m.

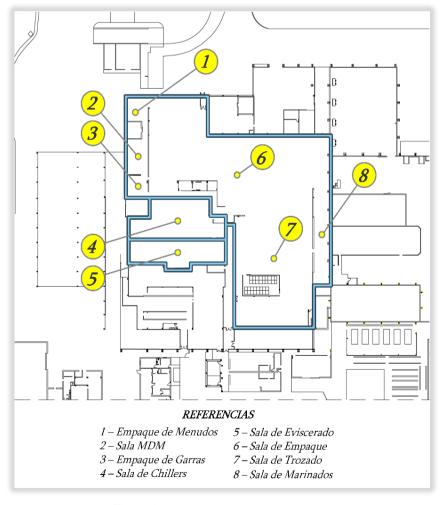


Figura 1: Distribución de las salas de interés.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

1.1.2 Relevamiento de equipos frigoríficos instalados

La sala de TyE cuenta con un total de 6 evaporadores de una capacidad nominal de 30000kcal/h ubicados dentro de la sala y 3 evaporadores de 50000kcal/h, que se encuentran por encima del cielorraso. Estos últimos tienen salida de aire frío distribuida mediante ductos, mientras que los demás tienen salida simple. Por otro lado, existe una conexión con la sala de Eviscerado mediante dos tuberías de circulación natural, por las cuales se produce un egreso de aire. De la misma manera, existe una conexión con la sala de Chillers de circulación forzada por un ventilador, que constituye un segundo egreso. La sala de Eviscerado cuenta con 3 extractores que expulsan aire hacia el exterior y en la sala de chillers también están presentes 2 extractores en igual funcionamiento.

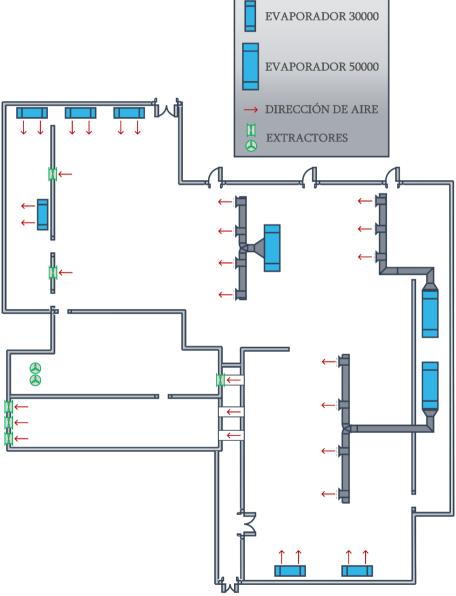


Figura 1: Ubicación de los equipos instalados actualmente.

1.1.3 Mediciones realizadas durante faena en sala de TyE

Para verificar el funcionamiento actual del sistema de acondicionamiento de aire se decidió realizar mediciones de humedad, velocidades de aire y temperaturas en los equipos. Para ello se utilizaron los siguientes instrumentos:

- Velocidad de aire y Humedad Relativa: Anemómetro Testo 410-2.
 - Sensor humedad capacitivo. Rango 0-100%. Resolución 0.1%HR.
 - Anemómetro de molinete Ø30mm. Rango 0,4 a 20m/s. Resolución 0,1m/s.
- Temperatura: Termómetro Testo 108.
 - Termopar tipo K. Rango -50 hasta 300°C. Resolución 0,1°C.

Figura 3: Anemómetro y termómetro utilizados para las mediciones en planta.

Los puntos de control fueron los siguientes:

- Velocidad de aire en la salida del ventilador
- Temperatura en la entrada y en la salida
- Humedad relativa en la entrada y en la salida

Como las mediciones entre los equipos de igual capacidad nominal resultaron aproximadas entre sí, se tomó un promedio y se muestra en la siguiente tabla:

Tabla 1 - Mediciones Realizadas en Faena							
	Velocidad	TBS 1	HR 1	TBS 2	HR 2	Cantidad de	Diámetro
	[m/s]	[°C]	[%]	[°C]	[%]	ventiladores	[m]
Evaporador 30000	9	12,84	90	7,6	98	2	0,45
							Área de
	Velocidad	TBS 1	HR 1	TBS 2	HR 2	Cantidad de	boca
	[m/s]	[°C]	[%]	[°C]	[%]	bocas	$[m^2]$
Evaporador 50000	1,25	12,84	90	0	98	4	0,46

Nota: TBS=Temperatura de bulbo seco; HR=Humedad relativa; 1=Entrada; 2=Salida.

Utilizando el diagrama psicrométrico se determinaron las propiedades restantes de los puntos de entrada y salida de los equipos, como se observa en las figuras 4 y 5, y en la tabla 2.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

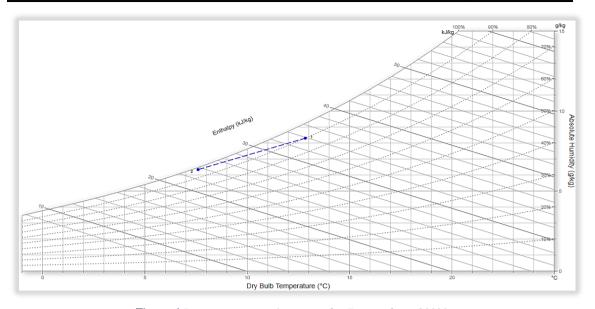


Figura 4: Diagrama psicrométrico para los Evaporadores 30000

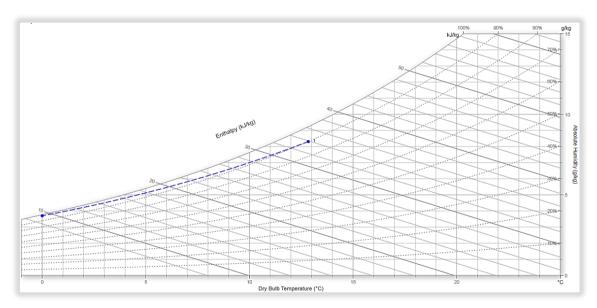


Figura 5: Diagrama psicrométrico para los Evaporadores 50000

Tabla 2 - Determinación de Propiedades de Entrada y Salida de Equipos

Evaporador 30000					
Temperatura	HR	Entalpía	Humedad Esp.	Volumen Esp.	
• T ₁ =12.84°C • T ₂ =7.6°C	HR₁=90%HR₂=98%	h1=33.86 kJ/kgh2=23.58 kJ/kg	μ1=8.33 g/kgμ2=6.37 g/kg	 v1=0.82 m³/kg v2=0.8 m³/kg 	
Evaporador 50000					
Temperatura	HR	Entalpía	Humedad Esp.	Volumen Esp.	
T₁=12.84°CT₂=0°C	HR₁=90%HR₂=98%	h1=33.86 kJ/kgh2=12.68 kJ/kg	μ1=8.33 g/kgμ2=4.29 g/kg	 v₁=0.82 m³/kg v₂=0.78 m³/kg 	

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

Luego se calculó el caudal volumétrico (\dot{V}) y másico (\dot{m}) de aire que maneja cada equipo, potencia resultante (\dot{Q}), cantidad de agua condensada ($\dot{m}_{aguacondensada}$), y calor latente (\dot{Q}_L) y sensible (\dot{Q}_S) extraídos, utilizando las siguientes expresiones:

$$\dot{Q} \left[\frac{kcal}{h} \right] = \frac{\dot{m} \cdot (h_1 - h_2)}{4.186} \qquad \dot{m}_{aguacondensada} \left[\frac{kg_{agua}}{h} \right] = \dot{m} \cdot (\mu_1 - \mu_2)$$

$$\dot{V} \left[\frac{m^3}{h} \right] = V \cdot Cant Ventiladores \cdot \frac{\pi \cdot d^2}{4} \qquad \dot{Q}_L \left[\frac{kcal}{h} \right] = \frac{\dot{m}_{aguacondensada} \cdot h_{fgAgua}}{4.186}$$

$$\dot{m} \left[\frac{kg_{aire}}{h} \right] = \frac{\dot{V}}{V} \qquad \dot{Q}_S \left[\frac{kcal}{h} \right] = \dot{Q} - \dot{Q}_L$$

Donde:

- V: Velocidad de aire en la entrada o en la salida del equipo
- *d* : Diámetro del ducto donde se midió la velocidad
- *v* : Volumen específico del aire
- *h* : Entalpía del aire
- *μ* : Humedad específica del aire
- *hfgAgua*: Calor latente de vaporización del agua (para las condiciones normales de acondicionamiento de aire se estima en 2477 kJ/kg)

En resumen:

Tabla 3 – Balance Másico y Energético en Equipos							
	Caudal	Caudal Potencia		Agua	Calor	Calor	
	Volumétrico	Másico	Resultante	Condensada	Latente	Sensible	
	$[m^3/h]$	[kg/h]	[kcal/h]	[kg/h]	[kcal/h]	[kcal/h]	
Evaporador 30000	10301	12825	31496	25,16	14888	16608	
Evaporador 50000	8820	10554	53384	42,62	25220	28164	

Finalmente, considerando los 9 evaporadores instalados se calcularon los valores globales de energía y agua total condensada:

Tabla 4 - Valores Totales de Extracción de EquiposAgua CondensadaPotencia TotalCalor Latente TotalCalor Sensible TotalTotal349128 kcal/h164987 kcal/h184141 kcal/h279 kg/h

Observaciones

Durante las visitas realizadas se observaron, además de las mediciones realizadas, ciertas anomalías en el proceso que no pudieron ser realmente cuantificadas, pero que tienen un impacto directo en nuestro trabajo, a saber:

- 1) Apertura de puertas: Se observó que existe una apertura deliberada de puertas en la sala que genera corrientes de aire desde el exterior. Es un fenómeno que se da con una frecuencia moderada durante los dos turnos de faena, pero que se acentúa notablemente durante el cambio de turnos de personal. Esto representa un problema importante ya que aumenta la carga térmica del lugar debido a infiltraciones.
- 2) *Distribución de aire deficiente:* La distribución inadecuada de los evaporadores en la sala genera por un lado zonas calientes, y por otro, zonas frías. Estas últimas producen un problema adicional que es el causante de la siguiente observación.
- 3) Apagado de equipos: En las zonas frías mencionadas anteriormente el personal siente incomodidad y solicita a los encargados de sala de máquinas que apaguen por momentos alguno de los evaporadores. Esta acción se realiza sin control alguno, derivando en una reducción de la potencia de refrigeración actuante sobre el recinto.
- 4) Rendimiento reducido de chillers: Según especialistas en producción avícola, a la salida del chiller el pollo debe contar con una temperatura de 3°C medida en la pechuga; en estas condiciones se evita que la carcasa pierda excesiva humectación en los procesos de trozado y empaque. En las entrevistas con los Ingenieros de planta se mencionó que el chiller no estaba garantizando una salida de carcasas lo suficientemente frías, lo que sugirió que gran parte del agua presente en las salas posteriores se debía a la enorme deshumectación del pollo. Hay que destacar que hace unos meses la empresa decidió mejorar esta falencia instalando una potencia frigorífica mayor para el enfriamiento del agua del chiller, por lo que hoy día el rendimiento de esta operación se ha optimizado notablemente.
- 5) *Variación de temperatura de sala:* Un dato interesante señalado por los Ingenieros de planta fue que la temperatura en las salas de trozado y empaque fluctúa considerablemente, como puede verse en la figura.

Figura 6: Evolución de temperaturas en sala de TyE a lo largo de un día. Medición del día 16/02/18.

Alrededor de las 04:00am, la faena comienza con una sala acondicionada a 10°C, y al cabo del primer turno se observan oscilaciones que alcanzan los 12°C. Lo interesante ocurre alrededor de las 13hs, que coincide con el cambio de turno del personal: la

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

temperatura se dispara hasta los 18°C y no logra reducirse durante la totalidad del segundo turno. Este fenómeno será retomado en las conclusiones al final de la sección.

El conjunto de observaciones presentado constituye un aporte importante de información adicional que será tenido en cuenta en el diagnóstico final de la situación.

1.1.4 Mediciones realizadas durante faena en salas de EyC

Actualmente en las salas de EyC la ventilación es realizada a través del aire proveniente desde el sector de trozado. Si bien este método es económico, ya que se utiliza su baja temperatura para climatizar las salas en cuestión, presenta un grave problema en lo que respecta al control de humedad.

Teniendo en consideración que esta corriente de aire se encuentra saturada de humedad, es de esperar que no sea capaz de secar las salas en cuestión. En el mejor de los escenarios, el arrastre de humedad que la corriente de aire pueda provocar en forma de gotitas en suspensión, se verá compensado por el agregado de agua que la misma aporta a la sala.

Por tales motivos se afirma que el resultado de este esquema de ventilación, visto desde las salas de EyC, termina siendo un flujo de humedad que atraviesa dichos ambientes sin lograr un retiro neto de la misma.

1.1.5 Mediciones realizadas post lavado

Como se mencionó en la presentación de la problemática, una de las causas de los condensados en las salas de proceso se debe al lavado que se realiza post faena para higienizar las instalaciones. A fin de cuantificar la cantidad de humedad residual que persiste al final de esta tarea, se realizó una medición de la cantidad de agua presente sobre un metro cuadrado de techo, lo que resultó en 130ml/m². Además, se tomó como hipótesis que esta cantidad de agua se hace presente tanto en techos como en paredes.

Teniendo en cuenta que para la sala de TyE el área total de estas superficies alcanza los 3892m² (ver figura 8 y tabla 6), se obtiene:

Cantidad total de condensados
$$m_{Condensados} = 130 \frac{ml}{m^2} \times 3892 m^2 \times \frac{1}{1000} \frac{kg}{ml} \Rightarrow m_{Condensados} = 506 kg$$

Y para la sala de EyC, considerando un área total de 1130 m², se obtiene:

Cantidad total de condensados
$$m_{Condensados} = 130 \frac{ml}{m^2} \times 1130 m^2 \times \frac{1}{1000} \frac{kg}{ml} \Rightarrow m_{Condensados} = 147 kg$$

Otra información que se debió consultar fue la sucesión de tareas que se dan en la planta durante el lavado nocturno, a fin de poder estimar un tiempo disponible para extraer esta humedad antes de que comience una nueva jornada de faena.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

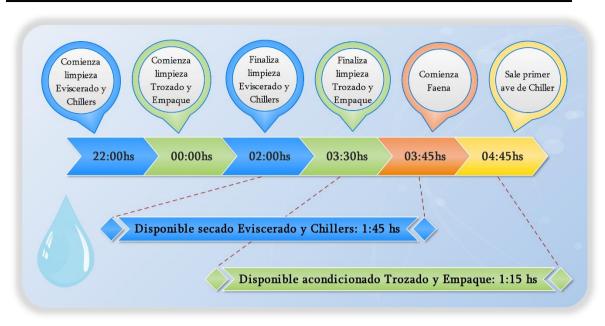


Figura 7: Línea de tiempo entre el final de faena y el comienzo de la misma al día siguiente.

Como se observa en la figura 5.7, a las 22hs sale el último ave del chiller y se da comienzo a la limpieza en las salas de EyC. No es hasta medianoche que culminan las tareas en la sala de TyE, por lo que en ese momento puede dar comienzo la limpieza de esa zona. Para las 02hs se tiene la primera zona desinfectada y para las 03:30hs lo mismo para la segunda. A las 03:45hs arranca la faena con el primer pollo descargado, por lo que la sala de EyC se debe encontrar libre de humedad. Este mismo sale luego del chiller a las 04:45hs, momento para el cual *la sala de TyE debe estar lista para trabajar*. Con este resumen podemos observar una disponibilidad de 1:45 horas para el secado de las salas de EyC, y un total de 1:15 horas para el acondicionamiento de la sala de TyE.

Considerando los tiempos disponibles se establecen los caudales mínimos de agua que el nuevo sistema de acondicionamiento ambiental debe extraer de las salas de proceso para poder eliminar los condensados producidos por el lavado. Los mismos se resumen en la tabla a continuación:

Tabla 5- Caudal Mínimo a Extraer Post Lavado								
Agua presente Tiempo Caudal mínimo								
	a extraer							
	[hs]	[kg/h]						
Trozado y Empaque	506	1,25	405					
Eviscerado y Chillers	, 1 1							

1.2 Condiciones ambientales de referencia

Antes de continuar es necesario definir lo que serán las condiciones ambientales de diseño.

El desarrollo de este proyecto tiene como objetivo dar cumplimiento a los parámetros ambientales —temperatura y humedad— dentro de las salas de proceso definidos por la reglamentación sanitaria nacional e internacional, según el mercado de destino del producto.

PFC1804C MC-Rev.02

Acondicionamiento ambiental de salas de proceso en frigorífico avícola Las Camelias S.A.

1.2.1 Temperatura

En lo que respecta al mercado interno, las exigencias de los establecimientos productivos de carne aviar son delineadas por el Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA). De acuerdo a los especificado por su decreto N°4238, la temperatura de las salas destinadas a despiece no puede superar los 12°C.

Para el mercado internacional los requerimientos son variables. En vista a las perspectivas de la empresa en la participación en el mercado canadiense, la normativa establecida por el Programa de Inspección de Aves de Corral dependiente de la Agencia Canadiense de Inspección de Alimentos, solicita una atmósfera controlada en las salas destinadas al procesamiento post chillers con temperaturas máximas de 10°C.

Por lo tanto, debido a que las condiciones exigidas por la normativa canadiense son las más restrictivas, fueron tomadas como referencia y se espera que el sistema sea capaz de acondicionar los ambientes post chiller bajo sus lineamientos.

En contraposición a lo anterior, las áreas de chillers y pre chillers no cuentan con normativa que regule los límites de temperatura ambiente. Lo cierto es que, en las etapas de escaldado y eviscerado, la temperatura de las canales y del agua de escaldado se encuentran aproximadamente a 40°C y 60°C, respectivamente. Esto inevitablemente eleva la temperatura ambiente del sector, generando incomodidad del personal y sometiendo al producto a condiciones donde la proliferación bacteriana se ve favorecida. Asimismo, mantener una sala en condiciones controladas de acuerdo a criterios básicos de seguridad alimentaria complementa las medidas de resguardo adoptadas en etapas de proceso posteriores, obteniendo consecuentemente un producto final de mayor calidad. Por esta razón, con el sistema propuesto se espera mantener la temperatura de las salas de EyC en 15°C.

1.2.2 Humedad relativa

Para cualquiera de los recintos mencionados las normativas no imponen limitaciones en la humedad relativa, por lo que dicho parámetro queda a definir por el proyectista. Como se presenta en la situación problemática, unas condiciones de aire ambiente saturado facilitan la presencia de condensados en superficies frías y con ello la aparición de patógenos. Por otra parte, según se recoge de bibliografía específica, los ambientes de baja humedad relativa son propicios para que el producto pierda peso por evaporación de humedad interna, lo cual afecta la rentabilidad del negocio. Además de los escenarios planteados está el factor humano, ya que el personal interviniente requiere entornos saludables para el desarrollo de labores. En resumen, se requiere un nivel de humedad relativa que sirva de equilibrio a tales situaciones, por lo que se propone para todos los ambientes un valor del 70%.

1.3 Análisis de ganancia térmica de la sala de TyE

Con la información suministrada por el personal de planta se evaluaron y cuantificaron los diferentes elementos que componen la ganancia térmica de las salas.

1.3.1 Ganancia a través de la envolvente

Para el cálculo se consideraron las siguientes hipótesis:

- Paredes y techos: panel sándwich de poliestireno de espesor 100mm.
- Coeficiente de transmisión: 0,318 kcal/m^{2*}h (según catálogo de paneles sándwich).
- Temperatura exterior: T_{ext}= 35°C.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

- Temperatura interior, según objetivo a alcanzar: Tint= 10°C.
- Temperatura Sala de Chillers: $T_{int}+5^{\circ}C = 15^{\circ}C$.
- Temperatura Antecámara: T_{ac}= -12°C.
- Temperatura de Cámara: T_c= -22°C.
- Paredes y techo bajo sombra.
- El calor transmitido a través de la envolvente es calor sensible.
- Un valor positivo de Q representa ganancia de calor hacia la sala, y uno negativo, pérdida desde la sala.

El calor transferido se determinó en base a la siguiente expresión:

$$Q_{Pared-Techo}\left[\frac{kcal}{h}\right] = k \cdot A \cdot \left(T_{ext} - T_{int}\right)$$

Donde:

- *Q*: Calor trensferido
- *k* : Coeficiente global de transferencia de calor
- *A* : Área de la superficie de intercambio

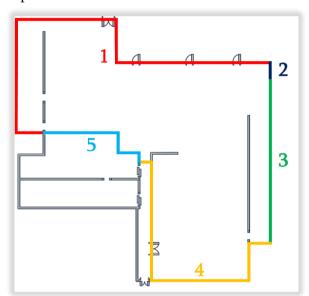


Figura 8: Referencia de paredes para el cálculo de ganancia térmica.

Tabla 6 - Ganancia Térmica por Paredes y Techo								
Ítem	Longitud [m]	Altura [m]	Área A [m^2]	Coef. <i>k</i> [kcal/h°cm²]	Tint [°C]	Text [°C]	ΔT [°C]	Calor Transf. <i>Q</i> [kcal/h]
Pared 1	110		440			35	25	3498
Pared 2	6		24			-22	-32	-244
Pared 3	43	4	172	0.210	10	-12	-22	-1203
Pared 4	78		312	0,318	10	35	25	2480
Pared 5	41		164			15	5	261
Techo	-	-	2870			35	25	24446
							Total	29238

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

1.3.2 Ganancia por personal de producción

Siguiendo el proceso de cálculo considerado en el Manual de Aire Acondicionado de la firma Carrier, se determinó el aporte de energía de los integrantes de cada sector.

Utilizando la clasificación de actividades de la tabla 48 – primera parte – pág. 94, se adoptó la más representativa de cada labor dentro de las salas de producción y se obtuvo el aporte de calor por operario. Como los 10°C previstos para el interior de las salas se ubican fuera del rango presentado en la tabla (de 21°C a 28 °C), se realizaron las extrapolaciones lineales correspondientes para obtener el aporte de calor por metabolismo a 10°C.

Las expresiones de cálculo utilizadas fueron:

$$Q_{sensible} \left[\frac{kcal}{h} \right] = Q_{sens/pers} \cdot N^{o}_{personas} \qquad Q_{latente} \left[\frac{kcal}{h} \right] = Q_{lat/pers} \cdot N^{o}_{personas}$$

$$Q_{total} \left[\frac{kcal}{h} \right] = \sum Q_{sensible} + \sum Q_{latente}$$

El número de personas en cada sala fue suministrado por la empresa y se muestra junto con los demás valores de cálculo en la siguiente tabla:

Tabla 7 - Ganancia Térmica por Personal de Proceso Calor Calor latente Calor Calor Calor Nivel de N° sensible por Sala por persona Sensible Latente Total actividad personas persona [kcal/h pers] [kcal/h] [kcal/h] [kcal/h] [kcal/h pers] Trabajo Trozado y ligero en 55 158 31 8690 1705 10395 Fileteado banco de taller 2250 1400 3650 Marinado 10 Trabajo 225 140 penoso 70 15750 9800 **Empaque** 25550 26690 39595 Total 12905

1.3.3 Ganancia por equipos

El conjunto formado por las salas de empaque, marinado, trozado y fileteado se consideró como un sistema cerrado donde la energía eléctrica que ingresa se transforma en un aumento de energía interna, es decir, calor sensible. Por lo tanto, de acuerdo a la potencia medida en los tableros de cada sala, se obtuvo la ganancia térmica debida a los equipos. Dichas mediciones fueron realizadas por el personal de la empresa.

Tabla 8 - Ganancia Térmica por Equipos					
Sala	P	otencia			
Empaque, Marinado, Trozado y Fileteado	$130 \mathrm{kW}$	111801 kcal/h			

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

1.3.4 Ganancia debida al producto

A medida que atraviesan las distintas etapas del procesamiento, las aves varían tanto su temperatura como su humedad intramuscular. Si bien individualmente estos cambios parecerían no tener un efecto apreciable sobre los ambientes, los grandes volúmenes de producción obligan a prestar especial atención a su evolución, ya que la misma condiciona el desempeño de los equipos de acondicionamiento ambiental.

En el paso por los chillers de agua fría, el producto disminuye su temperatura corporal y gana peso al hidratarse. Siguiente a los chillers, las canales ingresan en las salas de empaque y/o trozado según sea el objetivo final. Sea cual sea el destino, el producto empieza a circular por ambientes que se encuentran a mayor temperatura que la propia y, a causa de esta diferencia de temperatura, el ave comienza a absorber calor y a liberar humedad. Debido a la alta velocidad de circulación, la absorción de calor por parte de las canales no es suficiente como para generar un impacto en el ambiente. En cambio, la humedad desprendida por las aves sí representa un considerable aporte de calor latente hacia el ambiente.

De acuerdo a los datos recogidos del libro Procesamiento de Aves – Gerencia Productiva del autor Eduardo Cervantes López, la pérdida de hidratación post chillers suele encontrarse en un rango de 2% a 4% del peso del ave viva.

Esto es un parámetro de desempeño del chiller, ya que si éste funciona de forma óptima y disminuye la temperatura de las aves hasta los valores esperados (se estiman en 3°C medidos en la pechuga), la pérdida de humedad post chiller es de 2%, y en caso contrario asciende a 4%. Como se mencionó anteriormente, hoy día el chiller se encuentra funcionando con un rendimiento óptimo, por lo cual se considera que la pérdida de humedad post chiller es de un 2%.

Para determinar el calor latente aportado por el producto se utilizaron las siguientes expresiones:

Cantidad de agua liberada por ave
$$m_{Agua/Ave} \left[\frac{kg}{ave} \right] = \frac{peso}{ave} \cdot \frac{\% \ hidratación \ perdida}{100}$$
 Cantidad total de agua liberada
$$\dot{m}_{agua} \left[\frac{kg}{h} \right] = m_{agua/ave} \cdot \frac{cantidad \ de \ aves}{h}$$
 Calor latente aportado por el agua liberada
$$Q_{latente} \left[\frac{kcal}{h} \right] = \dot{m}_{agua} \cdot h_{fgAgua}$$

Los datos utilizados y los resultados obtenidos se presentan en la tabla a continuación:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

Tabla 9 – Cálculo del Calor Latente Aportado por el Producto					
Producción por hora 12000 aves/hor					
Peso promedio del ave	2,6 kg/ave				
Hidratación perdida en salas post chillers	2 %				
Cantidad de agua liberada por ave	0,05 kg agua/ave				
Cantidad total de agua liberada	617 kg agua/h				
Calor latente aportado por el agua liberada	364982 kcal/h				

1.3.5 Resumen

A continuación se resumen los resultados obtenidos:

Tabla 10 – Resumen de Ganancia Térmica					
Calor Latente Calor Sensible					
	[kcal/h]	[kcal/h]			
Paredes y techo	-	29238			
Personal	12905	26690			
Equipos	-	111801			
Producto	364982	-			
Total	377887	167729			
Calor Total					
	545616 kcal/h				

Un parámetro importante en el diseño de sistemas de acondicionamiento de aire es el factor de calor sensible de la sala (FCS), que se obtiene de la siguiente manera:

$$FCS = \frac{Q_{SENSIBLE}}{Q_{TOTAL}} = \frac{167729 \, kcal / h}{545616 \, kcal / h} \Rightarrow FCS = 0.31$$

Cabe aclarar que en el cálculo anterior no se consideraron infiltraciones debido a que el sistema de acondicionamiento propuesto constará de una sala presurizada.

Como es de amplio conocimiento, en la determinación de la ganancia térmica intervienen una innumerable cantidad de variables, muchas de éstas muy complejas de cuantificar. Un ejemplo claro son las eventuales infiltraciones que, a pesar de intentar mantener una sala presurizada, en la realidad pueden darse en ciertos sectores. Por ello y por demás variables no cuantificables se decidió agregar a los resultados obtenidos un adicional por incertidumbre que se fijó en un 25%, con lo que obtenemos los resultados finales:

Tabla 11 – Adicional por Incertidumbre: 25%					
Calor total	682020 kcal/h				
Calor latente	472358 kcal/h				
Calor sensible	209662 kcal/h				
Factor de calor sensible	0,31				

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

PFC1804C MC-Rev.02

Consultando con especialistas del rubro se pudo saber que comúnmente este tipo de salas se dimensiona con una carga térmica ubicada en un rango de 50 a 70 kcal/h por metro cúbico de sala. Este índice es un valor práctico muy utilizado que se decidió incorporar como referencia para este trabajo. Para un volumen de sala de 11480m³ y una ganancia térmica total ya calculada de 682020 kcal/h, obtenemos:

Ganancia Térmica por Metro Cúbico =
$$62 \frac{kcal}{h \cdot m^3}$$

Con lo cual el índice práctico de referencia queda verificado.

1.3.6 Conclusiones

De las tablas 4 y 10 se desprende que el calor sensible que extraen los equipos instalados actualmente y el calor sensible obtenido en la carga térmica inicial son muy aproximados entre sí. Este hecho sugiere que la capacidad instalada actual es aproximadamente correcta respecto al calor sensible a retirar (teniendo en cuenta que la carga térmica se calculó para condiciones de verano), pero no tiene suficiente capacidad para retirar calor latente condensando agua.

Volviendo a la figura 6 se puede ver que lo dicho anteriormente tiene sentido. Una vez que arranca el primer turno de faena (ya se tiene la temperatura de sala en 10°C) la carga térmica permanece constante y por lo tanto la temperatura de la sala se mantiene. Lo interesante sucede al arrancar el segundo turno, cuando la temperatura se encuentra en un valor alto debido a la apertura deliberada de puertas durante el cambio de turno, y se mantiene constante en ese valor. Esto se debe a que la instalación no tiene capacidad para extraer ese calor sensible extra, es decir que está al límite. Lo anterior amerita la consideración del adicional por incertidumbre que se añadió en la carga térmica final (tabla 11).

Por otro lado, la falta de capacidad para extraer calor latente se hace notoria en la fluctuación que presenta la temperatura. Esto se debe a que la presencia de grandes cantidades de calor latente hace inestable al sistema de acondicionamiento de aire.

1.4 Especificaciones de diseño para sala de TyE

1.4.1 Consideración de equipos instalados

Debido a la presencia de los equipos que decidieron conservarse (sección 4 IB), los parámetros de diseño del nuevo sistema difieren de los resultados obtenidos en el análisis de ganancia térmica. Por lo tanto es necesario realizar un balance de energía en la sala contemplando la potencia de los mismos.

Se consideró como hipótesis de aproximación que los equipos conservados retirarán los calores latente y sensible especificados en la tabla 4.

El cálculo realizado es el siguiente:

$$Q_{Ldiseño} = Q_{Lganterm} - Q_{Lactual}$$

$$= 472358 \frac{kcal}{h} - 164987 \frac{kcal}{h} \Rightarrow Q_{Ldiseño} = 307371 \frac{kcal}{h}$$

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

$$egin{align*} Q_{Sdise ilde{n}o} &= Q_{Sganterm} - Q_{Sactual} \ &= 209662 \, rac{kcal}{h} - 184141 \, rac{kcal}{h} \Rightarrow Q_{Sdise ilde{n}o} = 25521 \, rac{kcal}{h} \ Q_{Tdise ilde{n}o} &= Q_{Sdise ilde{n}o} + Q_{Ldise ilde{n}o} \ &= 25521 \, rac{kcal}{h} + 307371 \, rac{kcal}{h} \Rightarrow Q_{Tdise ilde{n}o} = 332892 \, rac{kcal}{h} \ \end{cases}$$

Donde:

- *QLdiseño* = Calor latente de diseño
- QLGanTerm = Calor latente calculado en la ganancia térmica
- QLActual = Calor latente extraído por los evaporadores instalados actualmente
- *Qsdiseño* = Calor sensible de diseño
- *QsGanTerm* = Calor sensible calculado en la ganancia térmica
- *QsActual* = Calor sensible extraído por los evaporadores instalados actualmente
- *Q*_{Tdiseño} = Calor total de diseño

Será de nuestro interés contar con el calor latente de diseño expresado en cantidad de agua a extraer (*H*₂*O*_{Extraer}), entonces:

$$H_{2}O_{Extraer} = \frac{Q_{Ldiseño}}{h_{fgAgua}} = \frac{307371 \frac{kcal}{h}}{2477 \frac{kJ}{kg}} \cdot 4.186 \frac{kJ}{kcal} \Rightarrow H_{2}O_{Extraer} = 520 \frac{kg_{Agua}}{h}$$

Con estos valores de calor latente y sensible obtenidos se observa que el FCS de diseño será diferente al FCS original de la sala (0,31), debido a que los evaporadores instalados actualmente funcionan con un FCS diferente de 0,31. Por lo tanto:

$$FCS_{Dise\tilde{n}o} = \frac{Q_{Sdise\tilde{n}o}}{Q_{Tdise\tilde{n}o}} = \frac{25521kcal/h}{332891kcal/h} \Rightarrow FCS_{Dise\tilde{n}o} = 0,07$$

1.4.2 Comentario sobre condensados debidos al lavado

En la sección 5.1.1.5 se determinó que el caudal mínimo de extracción de humedad residual del lavado para esta sala es de 405kg/h. Comparando con la cantidad de agua a extraer durante la faena (520 kg/h) se ve que este último es mayor, por lo que se decide dimensionar el sistema completo para extraer 520 kg/h.

1.4.3 Resumen

Finalmente se muestra un resumen de los parámetros de diseño para nuestro nuevo sistema de acondicionamiento:

Tabla 12 - Parámetros de Diseño para el Nuevo Sistema de Acondicionamiento

Condiciones de	seadas de sala	Energía a extraer			
Temperatura	Humedad	Calor total	Calor sensible	Calor latente	Agua a retirar
10°C	70%	332892 kcal/h	25521 kcal/h	307371 kcal/h	520 kg/h

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

1.5 Análisis de ganancia térmica de las salas de EyC

La determinación precisa de la ganancia térmica en estas salas se dificulta enormemente a causa de la complejidad de las variables que intervienen. Ejemplo de esto es la generación interna de humedad que tiene lugar durante el proceso, la cual tiene origen en los siguientes elementos:

- Deshidratación del producto
- Evaporación del agua caliente utilizada en el escaldado
- Evaporación del agua utilizada en el duchado post desplumado
- Evaporación del agua fría utilizada en el lavado post evisceración
- Metabolismo del personal actuante
- Infiltraciones de aire desde el exterior
- Humedad liberada en el ambiente por el agua de chillers

Excepto para el personal interviniente, que no representa un aporte significativo, no se cuenta con información veraz para el cálculo de los elementos listados. Algo análogo sucede con la ganancia de calor sensible.

Por lo tanto se decidió utilizar el índice práctico de referencia mencionado en la sección 1.3.5, pero en este caso directamente para dimensionar el sistema de acondicionamiento de estas salas. Se tomó como hipótesis que la ganancia térmica por metro cúbico es igual a la de la sala de TyE, entonces:

Ganancia Térmica por Metro Cúbico =
$$62 \frac{kcal}{h \cdot m^3}$$

Además de conocer cuánto es la ganancia térmica total, lo que se necesita determinar es el factor de calor sensible (FCS) del recinto. En nuestro caso, se adopta en primera instancia el FCS obtenido para la sala de trozado y empaque, cuyo valor es de 0,3. Haciendo la salvedad que la utilización de agua en el escaldado y el eviscerado es ampliamente mayor, se afecta en un 30% el factor adoptado, llevándolo al valor de 0,2. Esta disminución significa una menor porción de calor sensible y, por lo tanto, una mayor porción de calor latente en la ganancia total de las salas.

El cálculo se realizó con las siguientes expresiones:

$$Q_{total} \left[\frac{kcal}{h} \right] = V_{sala} \cdot 62 \frac{kcal}{h \cdot m^{3}} \qquad Q_{sensible} \left[\frac{kcal}{h} \right] = Q_{total} \cdot FCS$$

$$Q_{latente} \left[\frac{kcal}{h} \right] = Q_{total} - Q_{sensible} \qquad H_{2}O_{Extraer} = \frac{Q_{latente}}{h_{fgAgua}}$$

Donde:

- *Q*: calor transferido o ganancia térmica
- Vsala: volumen de sala eviscerado + sala de chillers
- *FCS*: factor de calor sensible de la sala
- hfgAgua: Calor latente de vaporización del agua (para las condiciones normales de acondicionamiento de aire se estima en 2477 kJ/kg)

Este procedimiento se resume en la tabla a continuación:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

Tabla 13 – Cálculo de Ganancia Térmica de Sala de						
Eviscerado y Chillers	S					
Superficie de salas	582 m^2					
Altura de salas	4 m					
Volumen de salas	2328 m^3					
Coeficiente de carga térmica	62 kcal/h*m³					
FCS	0,2					
Ganancia térmica total	144336 kcal/h					
Ganancia térmica sensible	28867 kcal/h					
Ganancia térmica latente	115469 kcal/h					
Agua a retirar de la sala	195 kg/h					

1.6 Especificaciones de diseño para salas de EyC

1.6.1 Condensados debidos al lavado

En la sección 5.1.1.5 se determinó que el caudal mínimo de extracción de humedad residual del lavado para esta sala es de 84 kg/h. Comparando con la cantidad de agua a extraer durante la faena (195 kg/h) se ve que este último es mayor, por lo que se decide dimensionar el sistema completo para extraer 195 kg/h.

1.6.2 Resumen

En la tabla a continuación se resumen los parámetros de diseño del sistema:

1abla 14 – Parametros de Diseno para el Nuevo Sistema de Acondicionamiento						
Condiciones de	seadas de sala		Energía	a extraer		
Temperatura	Humedad	Calor total	Calor sensible	Calor latente	Agua a retirar	
15°C	70%	144336 kcal/h	28867 kcal/h	115469 kcal/h	195 kg/h	

1.7 Análisis de tecnologías disponibles

A nivel industrial las tecnologías actualmente disponibles para la extracción de humedad del aire son dos y difieren en el principio físico sobre el cual basan su funcionamiento, los cuales se analizan a continuación.

Para comprender cómo se lleva a cabo la extracción de humedad del aire se debe tener en claro que dicha humedad no es más que vapor de agua mezclado con el aire. De esta manera, la separación del vapor de agua y el aire tiene lugar de las siguientes formas:

Deshumidificación por enfriamiento del aire

Llevar la temperatura del aire húmedo por debajo de su punto de rocío ocasiona que el vapor de agua presente cambie de fase y pase a estado líquido. Esta condensación produce una separación física entre el aire y el agua que permite apartar esta última de la corriente de aire.

Deshumidificación por adsorción

La existencia de una diferencia de humedad entre dos materiales es una condición suficiente para que la misma se transporte desde el más húmedo al menos húmedo. Este es un fenómeno físico ocasionado por la diferencia en las presiones de vapor que presentan ambos materiales. De esta manera se puede separar la humedad del aire haciéndolo pasar por un material cuya presión de vapor sea menor a la del aire.

El primero de los métodos es el que utilizan los sistemas de *refrigeración mecánica* y el segundo los sistemas de *rotor desecante*.

1.7.1 Deshumidificación por Refrigeración Mecánica

Los sistemas de refrigeración por compresión o refrigeración mecánica funcionan sencillamente transportando energía térmica desde un ambiente a otro, por medio de un fluido de transporte llamado refrigerante. Este último recorre cíclicamente un circuito cerrado, cambiando su temperatura debido a los cambios en la presión interna durante su trayecto. Gracias a las diferencias de temperaturas alcanzadas entre el refrigerante y los espacios de donde circula, se logra absorber energía térmica de un espacio para ser transportada y desechada en otro.

Para llegar a esto, el circuito del refrigerante se compone de cuatro elementos básicos: evaporador, compresor, condensador y válvula de expansión, como se muestra en la figura 9.

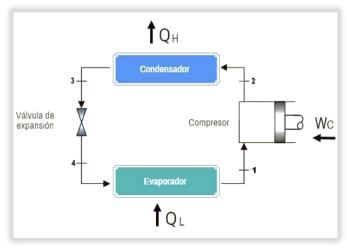
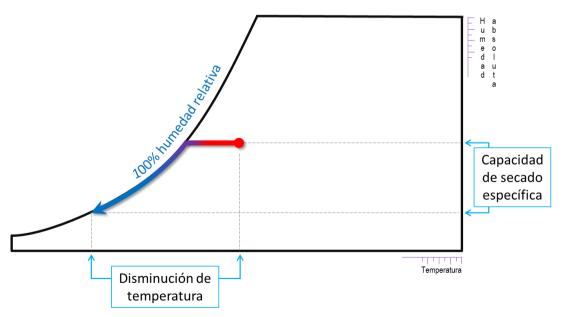


Figura 9: Sistema de refrigeración por compresión.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

El ciclo de funcionamiento comienza en el evaporador donde se absorbe calor del ambiente en el cual está instalado. Consiguiendo que el refrigerante dentro del evaporador esté a una presión suficientemente baja, se logra que su temperatura sea inferior a la del ambiente. Esta diferencia de temperatura es suficiente para que el espacio ceda energía al refrigerante. Tal absorción de energía se traduce en un cambio de estado del refrigerante, que pasa de estado líquido a vapor en su paso por evaporador.


Luego de esto, el refrigerante es aspirado por el compresor con el cual se eleva su presión y temperatura. El aumento de presión es suficiente para provocar que la temperatura del refrigerante sea mayor que la temperatura del espacio donde se desecha energía.

Seguidamente, el refrigerante ingresa al condensador donde, existiendo una diferencia de temperatura con el ambiente que lo rodea, cede energía. Este desecho de energía produce nuevamente un cambio de estado en el refrigerante, pasando del estado de vapor a líquido. De esta manera se logra un transporte de energía desde el ambiente del evaporador hacia el del condensador.

Para completar el circuito, el refrigerante que a la salida del condensador se encuentra a alta presión y temperatura, pasa a través de la válvula de expansión donde disminuye su presión y temperatura hasta los valores necesarios del evaporador, donde ingresa nuevamente para volver a comenzar el ciclo.

De todo el ciclo descripto anteriormente, el componente a través del cual se lleva a cabo la deshumidificación del aire es el evaporador.

Para generar la extracción de humedad, es imprescindible que la temperatura del refrigerante en el evaporador sea menor que el punto de rocío del aire. Además, mediante el diagrama psicrométrico se puede ver que secar aún más el aire implica disminuir la temperatura del refrigerante.

Figura 10: Proceso psicrométrico del aire al pasar por un evaporador.

Esto presenta limitaciones prácticas debido a las temperaturas que se pueden lograr con los refrigerantes comúnmente usados en la industria. Además, debe prestarse atención a la

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

implicancia económica que puede traer aparejada esta situación, ya que lograr temperaturas extremadamente bajas implica un mayor consumo energético, con mayores desgastes y mantenimiento de los equipos.

Por otro lado, es habitual que los sistemas funcionando a temperaturas por debajo de 0°C presenten bloqueos por escarcha en los evaporadores, lo que disminuye su rendimiento, requiere de energía extra para contrarrestar el problema (desescarche) y reduce la disponibilidad de funcionamiento del sistema (tiempos muertos).

Hay que resaltar también que cuando se enfría excesivamente el aire para lograr grandes deshumidificaciones es común la necesidad de un calentamiento posterior para conseguir temperaturas acordes a los requerimientos del ambiente a acondicionar.

En contraposición, los sistemas de refrigeración mecánica son sencillos de manejar, de mantenimiento bajo en condiciones normales y son los más utilizados en la industria de nuestro país.

1.7.2 Deshumidificación por Rotor Desecante

Los componentes elementales de los equipos de rotor desecante son dos: el rotor de material desecante y la batería de reactivación o calentamiento, según se observa en la figura 11. Se anexan los ventiladores de proceso y de reactivación para generar los movimientos de aire necesarios.

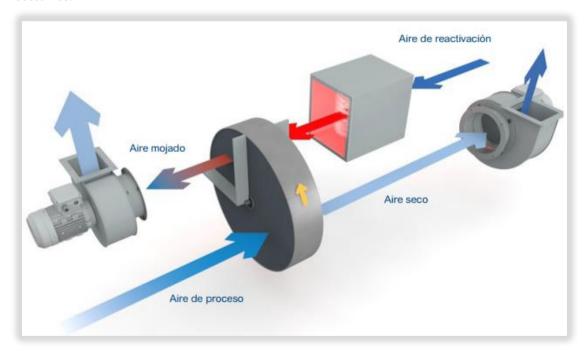


Figura 11: Sistema de deshumdificación mediante rotor desecante.

El funcionamiento consiste en hacer pasar el aire de proceso por una porción (270°) del rotor, mientras este último gira a una velocidad reducida. Este aire es el que ingresa al ambiente de condiciones controladas. Por la porción restante (90°) se hace pasar aire caliente, llamado aire de reactivación, el cual es expulsado al exterior.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

Figura 12: Porciones del rotor por las que pasa el aire de proceso (270°) y de reactivación (90°).

El proceso inicia con el material desecante seco y frío, con lo cual la superficie del desecante presenta una baja presión de vapor. El aire húmedo que atraviesa el rotor tiene una presión de vapor mayor que el desecante, por lo que sus moléculas de agua se mueven hacia este material haciendo que el aire pierda humedad. A medida que atrapa humedad, el desecante aumenta su presión de vapor hasta igualar la del aire que lo atraviesa, deteniéndose el transporte de moléculas de agua. En este momento, el material saturado ingresa en la zona de reactivación donde se pone en contacto con el aire de reactivación. Previo al contacto con el desecante, el aire de reactivación pasa por la batería de calentamiento donde aumenta su temperatura. En estas condiciones el aire de reactivación calienta el desecante, aumentando la presión de vapor de este último por encima de la presión del aire. Este diferencial en las presiones de vapor genera el movimiento de las moléculas de agua desde el desecante hacia el aire de reactivación. Cuando el rotor vuelve a entrar en la sección de secado se encuentra seco pero a alta temperatura, por lo que durante los primeros grados de giro se enfría mediante el propio aire húmedo, hasta que llega a las condiciones iniciales donde se encontraba frío y seco. La transferencia de energía desde el rotor caliente al aire húmedo, genera que este último aumente su temperatura durante la deshumidificación.

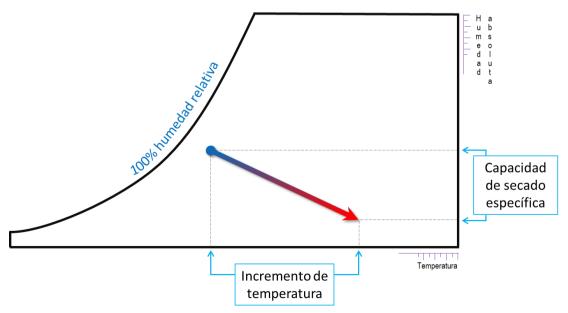


Figura 13: Proceso psicrométrico del aire al pasar por un rotor desecante

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

PFC1804C MC-Rev.02

La principal ventaja de este sistema es la posibilidad de obtener aire con temperaturas de punto de rocío sensiblemente bajas (en algunos casos hasta -22,5°C), requiriendo únicamente disponibilidad de una fuente de calor. Además de presentar una vida útil prolongada (según los fabricantes puede llegar a 30 años), son de gran simplicidad constructiva y operativa.

Por otro lado, el mayor inconveniente que presenta esta tecnología es la temperatura del aire seco a la salida del rotor. Esto se debe a que la relación entre capacidad de secado del equipo y temperatura del aire al final del proceso es directamente proporcional, según se puede ver en el diagrama psicrométrico. Esto significa que dependiendo de la industria en que se implemente, puede necesitarse una etapa de enfriamiento posterior para conseguir temperaturas acordes al proceso.

1.7.3 Análisis comparativo

Una vez estudiados ambos sistemas, se resumen las principales ventajas y desventajas de cada uno de ellos en la tabla 15.

Tabla 15 - Comparativa de Sistemas de Deshumidificación					
Características	Refrigeración Mecánica	Rotor Desecante			
Constructivas	Compleja, requiere varios componentes para su funcionamiento.	Sencilla, sólo se necesitan el rotor de material desecante y una fuente de calor.			
Operativas	 Problemas de bloqueo cuando hay gran presencia de humedad y baja temperatura de refrigerante. Funcionamiento intermitente cuando existen bloqueos (descongelado). Con temperaturas excesivamente bajas puede requerir etapa de post calentamiento. Mantenimiento reducido. 	 Temperaturas elevadas del aire deshumidificado, puede requerir etapa de post enfriamiento. Funcionamiento continuo sin intermitencias de bloqueos. Mantenimiento periódico para controlar estado del desecante y ventiladores 			
Económicas	 Costos operativos elevados en situaciones de alta humedad. Máquinas costosas si se requieren grandes capacidades de secado (compresores gran potencia). 	 Costos operativos bajos/intermedios con alta humedad. Costo de inversión inicial elevado. En situaciones de pequeña capacidad de secado, puede resultar antieconómico debido al calentamiento del aire. 			

2. Solución propuesta

Como se mencionó en la sección 1.7, se cuenta con dos alternativas de deshumidificación: por refrigeración mecánica y mediante rotores desecantes. En esta sección se realiza el cálculo de un sistema propuesto para ambas tecnologías y en base a los resultados se decidirá cuál de los dos será finalmente utilizado.

Por otro lado, para la toma de decisión se realiza el cálculo en la sala de TyE, ya que es la de mayor envergadura y la de mayores requisitos ambientales, lo que la hace la más representativa del conjunto. Luego se utilizará la misma tecnología para las salas de EyC.

2.1 Esquema de cálculo

Independientemente de la tecnología a utilizar, el esquema de funcionamiento del sistema será el mismo y se muestra en la figura 14.

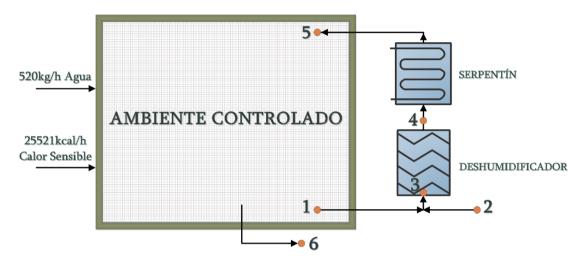


Figura 14: Esquema de funcionamiento del sistema

De la tabla 12 se sabe que la ganancia de calor sensible para esta sala es de 25521kcal/h, y la cantidad de agua a extraer es de 520kg/h. El aire acondicionado en la UTA es una mezcla de aire recirculado y de aire exterior. Los puntos considerados se describen a continuación:

- 1: Condiciones de diseño de sala, y son las condiciones del aire que tomará el equipo desde el interior para tratarlo.
- 2: Condiciones de aire exterior a introducir al sistema.
- 3: Mezcla de las dos condiciones de aire antes mencionadas e ingreso a la UTA.
- 4: Salida de la etapa de deshumidificación de la UTA.
- 5: Salida de la etapa de calefacción (UTA por refrigeración mecánica) o de refrigeración (UTA por rotor desecante), y punto de ingreso del aire tratado a la sala.
- 6: Condiciones del aire que egresa de la sala debido al ingreso de aire exterior.

2.2 Cálculo de aire de renovación

2.2.1 Salas de TyE

El caudal de aire exterior necesario se calculará según lo establecido por el Decreto N°351/79 de Higiene y Seguridad en el Trabajo. Este es función de las dimensiones del espacio y de la cantidad de personas que desarrollan tareas en el mismo. Dichos valores de cálculo fueron

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

presentados en el análisis de ganancia térmica, sección 5.1.2. En la tabla a continuación se muestran los resultados obtenidos:

Tabla 16 – Cálculo del Caudal de Renovación							
Volumen de la salas	Cantidad de personas presentes en la sala	Cubaje del local real	aire por pers.	Caudal de aire de renovación según decreto	de renovación		
11480 m ³	135	85 m³/pers	18 m ³ /h*pers	2430 m ³ /h	2500 m ³ /h		

2.2.2 Salas de EyC

El caudal de aire exterior necesario se calcula de igual manera que en la sección 2.2.1.

Para asegurar una renovación satisfactoria y evitar la acumulación de nieblas, se decide incrementar el caudal obtenido según el decreto, para alcanzar poco más de una renovación por hora del volumen de la sala.

En la tabla a continuación se muestran los resultados obtenidos:

Tabla 17 – Cálculo del Caudal de Renovación							
	Cantidad de Caudal de Caudal de aire Caudal de aire						
Volumen	personas presentes	Cubaje del	aire por pers.	de renovación	de renovación		
de la salas	en la sala	local real	(Dec. 351/79)	según decreto	para diseño		
2348 m ³	30	78 m ³ /pers	18 m ³ /h*pers	540 m ³ /h	2500 m ³ /h		

2.3 UTA por refrigeración mecánica para salas de TyE

Los distintos estados del aire a través de la UTA se muestran a continuación, distinguiendo de forma separada las transformaciones utilizadas en el acondicionamiento:

Figura 15: Etapas de acondicionamiento de la UTA por refrigeración mecánica.

2.3.1 Hipótesis de cálculo

Para comenzar con el cálculo del sistema se deben conocer las condiciones disponibles del refrigerante a utilizar. En el caso de las salas de proceso, se utiliza una línea de amoníaco cuya temperatura de evaporación es de -5°C.

Para evitar los problemas relacionados con bajas temperaturas de aire y el bloqueo de los equipos mencionados en el apartado 1.7.1, se asume que el aire en la etapa de deshumidificación (punto 4) alcanza la temperatura de 1°C. De forma análoga se considera

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

que la humedad relativa en esta etapa llega al 100%, como es habitual en la mayoría de los evaporadores deshumidificadores.

Estas condiciones adoptadas en el punto 4 definen directamente su humedad específica, que se mantiene constante hasta el momento en que es inyectado en el punto 5.

Se resumen las hipótesis consideradas:

- $T_1 = 10^{\circ}C$; $HR_1 = 70\%$
- $T_2 = 35$ °C; $HR_2 = 65$ %
- $T_4 = 1^{\circ}C$; $HR_4 = 100\%$
- $W_4 = W_5$
- $m_2 = m_6$
- $T_6 = T_1$; $HR_6 = HR_1$

Con la carta psicrométrica se localizan los valores conocidos de los puntos mostrados en la figura 5.14, resumiéndolos en la siguiente tabla:

Tabla 18 – Estados Psicrométricos del Aire

Punto	Temp. Bulbo Seco [°C]	Humedad Relativa [%]	Humedad específica [g/kg]	Volumen específico [m³/kg]	Entalpía específica [kJ/kg]
Condición de sala - 1	10,0	70,0	5,34	0,808	23,43
Aire de renovación - 2	35,0	65,0	23,40	0,905	95,151
Aire entrada rotor - 3	-	-	-	-	-
Aire salida rotor - 4	1,0	100	4,08	0,781	11,13
Aire inyectado en sala - 5	-	-	4,08	-	-

2.3.2 Cálculo

Para determinar el caudal que deberá manejar la UTA, se realiza el balance de masa de la humedad en la sala:

$$\begin{split} m_{H2O_Entrada} &= m_{H2O_Salida} \\ 520 \, \frac{kg}{h} + \dot{m}_5 \cdot w_5 &= \dot{m}_1 \cdot w_1 + \dot{m}_6 \cdot w_6 \\ 520 \, \frac{kg}{h} + \dot{m}_5 \cdot w_5 &= \dot{m}_1 \cdot w_1 + \dot{m}_2 \cdot w_1 \\ 520 \, \frac{kg}{h} + \dot{m}_5 \cdot w_5 &= w_1 \cdot \left(\dot{m}_1 + \dot{m}_2 \right) \end{split}$$

Teniendo en cuenta que $m_5 = m_1 + m_2$:

$$520 \frac{kg}{h} + \dot{m}_5 \cdot w_5 = w_1 \cdot \dot{m}_5$$

$$\dot{m}_5 = \frac{520 \frac{kg}{h}}{w_1 - w_5}$$

$$\dot{m}_5 = \frac{520 \frac{kg}{h}}{5,34 \frac{g}{kg} - 4,08 \frac{g}{kg}} \Rightarrow \dot{m}_5 = 412698 \frac{kg}{h}$$

Seguidamente se plantea un balance de masa de la UTA considerando las cantidades de aire que la atraviesan:

$$\begin{split} \dot{m}_{Aire_Entrada} &= \dot{m}_{Aire_Salida} \\ \dot{m}_3 &= \dot{m}_5 \\ \dot{m}_1 + \dot{m}_2 &= \dot{m}_5 \\ \dot{m}_1 &= \dot{m}_5 - \dot{m}_2 \\ \dot{m}_1 &= \dot{m}_5 - \frac{\dot{V}_2}{\dot{V}_2} \\ \dot{m}_1 &= 412698 \, \frac{kg}{h} - \frac{2500 \, \frac{m^3}{h}}{0,905 \, \frac{m^3}{kg}} \Rightarrow \dot{m}_1 = 409935 \, \frac{kg}{h} \end{split}$$

Una vez que se determinan los flujos másicos en los puntos 1 y 2, se puede calcular la condición del punto 3 desarrollando balances de energía y de agua entre las tres corrientes:

- Balance de energía

- Balance de agua

Revisó: GP - 09/10/2019

$$\begin{split} \dot{m}_{3} \cdot w_{3} &= \dot{m}_{1} \cdot w_{1} + \dot{m}_{2} \cdot w_{2} \\ w_{3} &= \frac{\dot{m}_{1} \cdot w_{1} + \dot{m}_{2} \cdot w_{2}}{\dot{m}_{3}} \\ & 409935 \frac{kg}{h} \cdot 5,34 \frac{g}{kg} + \frac{2500 \frac{m^{3}}{h}}{0,905 \frac{m^{3}}{kg}} \cdot 23,4 \frac{g}{kg} \\ w_{3} &= \frac{412698 \frac{kg}{h}}{1} \Rightarrow w_{3} = 5,46 \frac{g}{kg} \end{split}$$

Lo último que resta conocer para poder definir todos los estados psicrométricos del aire es la condición del punto 5.

Como el aire inyectado tiene que lograr retirar las cantidades correctas de calor latente y calor sensible, debe ubicarse sobre la recta definida por el FCS de la sala. Conociendo la humedad específica del punto 5, el mismo queda definido por la intersección entre la recta de sala y la recta de humedad específica constante pasando por el punto 4. Esto se puede observar en la figura 16 del diagrama psicrométrico.

Ubicando las coordenadas del punto 3 y del punto 5 en la carta psicrométrica quedan definidos todos los estados del aire según se muestra en la siguiente tabla y gráfica psicrométrica:

Tabla 19 – Estados Psicrométricos del Aire								
Punto	Temp. Bulbo Seco [°C]	Humedad Relativa [%]	Humedad específica [g/kg]	Volumen específico [m³/kg]	Entalpía específica [kJ/kg]			
Condición de sala - 1	10,0	70,0	5,34	0,808	23,43			
Aire de renovación - 2	35,0	65,0	23,40	0,905	95,15			
Aire entrada rotor - 3	10,2	70,7	5,46	0,808	23,91			
Aire salida rotor - 4	1,0	100	4,08	0,781	11,13			
Aire inyectado en sala - 5	9,7	54,6	4,08	0,806	19,97			

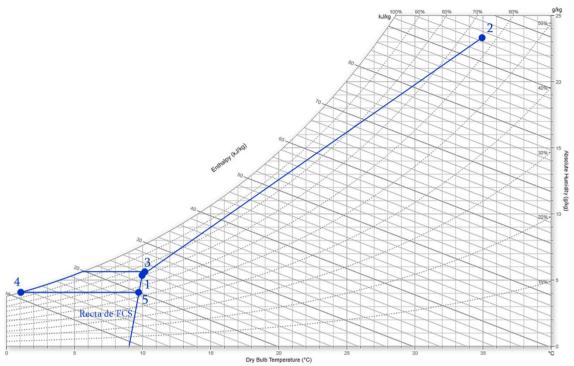


Figura 16: Estados psicrométricos del aire para UTA por refrigeración mecánica.

El próximo paso es el cálculo de potencia necesaria para la etapa de deshumidificación y la posterior calefacción. Las expresiones utilizadas para esto y los resultados obtenidos se muestran a continuación:

$$\dot{Q}_{refrigeración} \left[\frac{kcal}{h} \right] = \dot{m}_5 \cdot (h_3 - h_4)$$

$$\dot{Q}_{calefacción} \left[\frac{kcal}{h} \right] = \dot{m}_5 \cdot (h_5 - h_4)$$

Donde:

- Qrefrigeración : potencia de refrigeración necesaria para la deshumidificación
- Qcalefacción: potencia de calefacción necesaria para llevar el aire al estado 5
- \dot{m}_5 : flujo másico de aire circulado por el equipo
- *h* : entalpía específica del aire

Tabla 20 – Resultados del Cálculo de Potencia de Refrigeración y Calefacción

Flujo másico	Descripción	Proceso	hi - hj	Potencia
412698 kg/h	Refrigeración	3-4	12,77 kJ/kg	1258927 kcal/h
	Calefacción	4-5	8,84 kJ/kg	871475 kcal/h

2.3.3 Cotización

En este caso la determinación del costo de los equipos de refrigeración y calefacción se realiza de forma estimativa solo para fines académicos.

El análisis se efectuó considerando la utilización de *baterías aletadas* como equipos de transferencia de energía en el tratamiento del aire. Para esto se consultó con proveedores de tales artefactos, quienes aportaron los valores de cálculo utilizados.

Los mismos indicaron que la estimación del costo de equipos se lleva a cabo en base a la superficie de intercambio necesaria en el equipo. Para esto se utiliza la expresión de intercambio de calor sobre una placa plana:

$$\dot{Q} \left\lceil \frac{kcal}{h} \right\rceil = S \cdot U \cdot \Delta T$$

Donde:

- *Q*: energía que se transmite a través de la superficie de intercambio
- *S*: superficie total de intercambio del equipo
- *U*: coeficiente de transferencia de calor del equipo
- ΔT : diferencia de temperatura entre el aire y el refrigerante del equipo

El parámetro suministrado por especialistas es el producto de $U \cdot \Delta T = 100 \ kcal/h - m^2$. Este es un valor de referencia muy utilizado en los problemas de diseño de intercambiadores como el propuesto.

En nuestro caso, Q se determina como la suma de las potencias $Q_{refrigeración}$ y $Q_{calefacción}$. Esto representa la energía total que es necesaria intercambiar con el aire para que este alcance los estados psicrométricos de la tabla 19. Por lo tanto la única variable que resta determinar es la superficie S, despejándola de la expresión de Q.

Una vez conocida la superficie, se la multiplica por la relación de precio por metro cuadrado de superficie. Este valor también se obtuvo de los especialistas quienes sugirieron utilizar 22 USD/m^2 .

Los resultados del procedimiento descripto se resumen en la siguiente tabla:

Tabla 21 – Precio Estimado de Intercambiadores de Calor				
Potencia de refrigeración	1.258.927 kcal/h			
Potencia de calefacción	871.475 kcal/h			
Potencia total	2.130.402 kcal/h			
Producto U•ΔT	100 kcal/h·m ²			
Superficie necesaria	21304 m2			
Relación de precio-superficie	22 USD/m^2			
Costo total	468688 USD			

2.4 UTA por rotor desecante para salas de TyE

En primer lugar, y a fines del cálculo, en la figura 5.17 se presenta un esquema de funcionamiento de una UTA utilizando un rotor desecante. Se representan los puntos 3, 4 y 5 que ya fueron señalados en la figura 14.

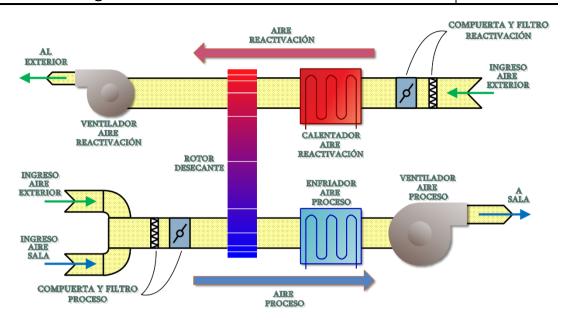


Figura 17: Etapas de acondicionamiento de la UTA por rotor desecante.

2.4.1 Hipótesis de cálculo

Luego de una investigación previa, para obtener los parámetros de diseño utilizados se realizaron una serie de videoconferencias con el fabricante de equipos de rotor desecante Fisair. En primera instancia se concluyó que, para las condiciones de sala presentadas, los rotores de dicho fabricante serían capaces de entregar un aire con una humedad específica de 0,98g/kg. Además, los puntos de rocío de ese aire suelen ser muy bajos, por lo que el enfriamiento post rotor no produciría saturación. Entonces se puede asumir que el aire introducido a la sala (punto 5) tendrá una humedad específica de 0,98g/kg.

Respecto al enfriamiento post rotor, el fabricante ofrece la opción de un equipo con serpentines de refrigeración que utilizan agua fría como refrigerante. Desde la oficina técnica del frigorífico sugirieron unificar los sistemas de enfriamiento de aire con los ya instalados, que utilizan amoníaco en intercambio directo y son de un proveedor determinado. De esta manera se decidió no hacer uso de los serpentines integrados al equipo, sino considerar la instalación de **baterías aletadas** particulares post rotor. De esta manera, el esquema de funcionamiento se reacomoda como sigue:

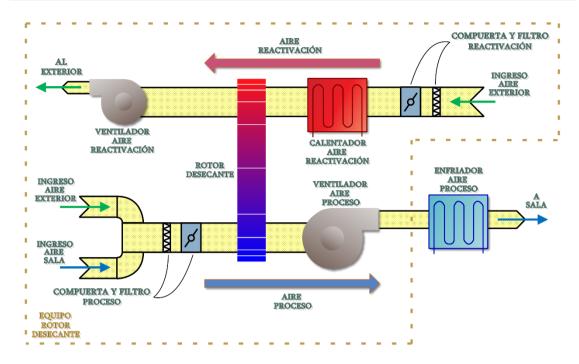


Figura 17 bis: Esquema de UTA adoptado.

Las demás hipótesis consideradas son las siguientes:

- $T_1 = 10^{\circ}C$; $HR_1 = 70\%$
- $T_2 = 35^{\circ}C$; $HR_2 = 65\%$
- $m_2 = m_6$
- W₅ = 0,98g/kg
- $T_6 = T_1$; $HR_6 = HR_1$

En la tabla 22 se resumen las condiciones de aire conocidas, determinadas con la ayuda de la carta psicrométrica.

Tabla 22 – Estados Psicrométricos del Aire							
Punto	Temp. Bulbo Seco [°C]	Humedad Relativa [%]	Humedad específica [g/kg]	Volumen específico [m³/kg]	Entalpía específica [kJ/kg]		
Condición de sala - 1	10,0	70,0	5,34	0,809	23,43		
Aire de renovación - 2	35,0	65,0	23,40	0,905	95,15		
Aire entrada rotor - 3	-	-	-	-	-		
Aire salida rotor - 4	-	-	0,98	-	-		
Aire inyectado en sala - 5	-	-	0,98	-	-		
Aire de egreso de sala - 6	10,0	70,0	5,34	0,809	23,43		

2.4.2 Cálculo

Para determinar el caudal que deberá manejar la UTA se realiza un balance de masa en la sala considerando las cantidades de humedad en cuestión:

$$m_{H2O_Entrada} = m_{H2O_Salida}$$

$$520 \frac{kg}{h} + \dot{m}_5 \cdot w_5 = \dot{m}_1 \cdot w_1 + \dot{m}_6 \cdot w_6$$

$$520 \frac{kg}{h} + \dot{m}_5 \cdot w_5 = \dot{m}_1 \cdot w_1 + \dot{m}_2 \cdot w_1$$

$$520 \frac{kg}{h} + \dot{m}_5 \cdot w_5 = w_1 \cdot (\dot{m}_1 + \dot{m}_2)$$

Teniendo en cuenta que $m_5 = m_1 + m_2$:

$$520 \frac{kg}{h} + \dot{m}_5 \cdot w_5 = w_1 \cdot \dot{m}_5$$

$$\dot{m}_5 = \frac{520 \frac{kg}{h}}{w_1 - w_5}$$

$$\dot{m}_5 = \frac{520 \frac{kg}{h}}{5,34 \frac{g}{kg} - 0.98 \frac{g}{kg}} \Rightarrow \dot{m}_5 = 119200 \frac{kg}{h}$$

Seguidamente se plantea un balance de masa de la UTA considerando las cantidades de aire que la atraviesan:

$$\begin{split} \dot{m}_{Aire_Entrada} &= \dot{m}_{Aire_Salida} \\ \dot{m}_3 &= \dot{m}_5 \\ \dot{m}_1 + \dot{m}_2 &= \dot{m}_5 \\ \dot{m}_1 &= \dot{m}_5 - \dot{m}_2 \\ \dot{m}_1 &= \dot{m}_5 - \frac{\dot{V}_2}{\dot{V}_2} \\ \dot{m}_1 &= 119200 \frac{kg}{h} - \frac{2500 \frac{m^3}{h}}{0,905 \frac{m^3}{kg}} \Rightarrow \dot{m}_1 = 116438 \frac{kg}{h} \end{split}$$

Una vez que se determinan los flujos másicos en los puntos 1 y 2, se puede calcular la condición del punto 3 desarrollando balances de energía y de agua entre las tres corrientes:

- Balance de energía

$$\begin{split} \dot{E}_{Aire_Entrada} &= \dot{E}_{Aire_Salida} \\ \dot{m}_1 \cdot h_1 + \dot{m}_2 \cdot h_2 &= \dot{m}_3 \cdot h_3 \\ h_3 &= \frac{\dot{m}_1 \cdot h_1 + \dot{m}_2 \cdot h_2}{\dot{m}_3} \\ &= \frac{116438 \frac{kg}{h} \cdot 23,43 \frac{kJ}{kg} + \frac{2500 \frac{m^3}{h}}{0,905 \frac{m^3}{kg}} \cdot 95,15 \frac{kJ}{kg}}{0,905 \frac{kJ}{kg}} \\ h_3 &= \frac{119200 \frac{kg}{h}}{0.905 \frac{kg}{h}} \end{split} \Rightarrow h_3 = 25,09 \frac{kJ}{kg} \end{split}$$

- Balance de agua

$$\begin{split} \dot{m}_{3} \cdot w_{3} &= \dot{m}_{1} \cdot w_{1} + \dot{m}_{2} \cdot w_{2} \\ w_{3} &= \frac{\dot{m}_{1} \cdot w_{1} + \dot{m}_{2} \cdot w_{2}}{\dot{m}_{3}} \\ &116438 \frac{kg}{h} \cdot 5,34 \frac{g}{kg} + \frac{2500 \frac{m^{3}}{h}}{0,905 \frac{m^{3}}{kg}} \cdot 23,4 \frac{g}{kg} \\ w_{3} &= \frac{119200 \frac{kg}{h}}{119200 \frac{kg}{h}} \Rightarrow w_{3} = 5,76 \frac{g}{kg} \end{split}$$

Con estos valores se acude a la carta psicrométrica para determinar la temperatura y la humedad del punto 3: $T_3 = 10,6$ °C; $HR_3 = 72,43$ %.

Para continuar con el objetivo de obtener el caudal del ventilador del equipo se hace uso de otro dato preliminar obtenido del fabricante: al pasar por el rotor el aire aumenta su temperatura en un rango de 15-20°C. De esta manera se estima una temperatura en el punto 4 de $T_4 = 25$ °C y de la carta psicrométrica se obtiene el volumen específico, $v_4 = 0.84$ m³/kg. Finalmente se puede calcular el flujo volumétrico requerido:

$$\begin{split} \dot{V}_{4} &= \dot{m}_{4} \cdot V_{4} \\ &= \dot{m}_{5} \cdot V_{4} \\ &= 119200 \frac{kg}{h} \cdot 0,84 \frac{m^{3}}{kg} \Rightarrow \dot{V}_{4} = 100128 \frac{m^{3}}{h} \end{split}$$

Otro dato de selección de equipos de rotor desecante es la capacidad de secado (Δw). Para calcularla se realiza un balance de masa de agua en el equipo:

$$\Delta \dot{w} = \dot{m}_3 \cdot \left(w_3 - w_4\right)$$

$$= 119200 \frac{kg}{h} \cdot \left(5,76 \frac{g}{kg} - 0,98 \frac{g}{kg}\right) \Rightarrow \Delta \dot{w} = 570 \frac{kg}{h}$$

2.4.3 Selección de equipos de rotor desecante

Finalmente, con el caudal de \dot{V}_4 =100128m3/h y la capacidad de secado de $\Delta \dot{w}$ = 570kg/h se ingresa a un catálogo de la marca Fisair para los deshumidificadores de la serie DFLEX,

mostrado en la figura 5.18. En el mismo se observa que a priori hay dos posibles alternativas para la aplicación requerida:

- 5 equipos modelo DFLEX2900, totalizando un caudal de aire de 100000 m3/h y una capacidad de secado de 628 kg/h de agua.
- 4 equipos modelo DFLEX3500, totalizando un caudal de aire de 96000 m3/h y una capacidad de secado de 608 kg/h de agua.

DFLEX0000E G0G0 0000 SFSF 000 000 405AE03								
Prestaciones (*)			DFLEX					
		1100	1300	1700	2100	2900	3500	
Capacidad de secado	(kg/h)	50,45	62,03	78,86	101,43	125,74	152,03	
	(kg/24h)	1210,8	1488,7	1892,6	2434,3	3017,8	3648,7	
Δx [Capacidad Especifica]	(g/kg)	5,66	5,8	5,53	5,69	5,29	5,33	
Δx [Aire Proceso / Seco]	(°C)	22,7	22,3	22	21,5	20,8	20,0	
Caudal de Aire Proceso / Seco	(m3/h)	7500	9000	12000	15000	20000	24000	
Presión Disponible Aire Seco	(Pa)	912	729	818	562	980	775	

Figura 18: Características de los modelos de rotor desecante según catálogo Fisair.

Hay que destacar que los datos del catálogo están dados para condiciones de entrada de aire de proceso y reactivación de 20°C y 60%HR, y para otras condiciones es necesario consultar con el fabricante.

2.4.4 Propuesta del fabricante

Las dos opciones anteriormente seleccionadas fueron presentadas al fabricante para ajustar las condiciones de funcionamiento. Para ello la firma cuenta con un software de simulación, por lo que fue necesario facilitar las condiciones de entrada al equipo (punto 3). Con esos datos más las condiciones requeridas de sala (punto 1) se simuló el proceso de deshumidificación con un equipo DFLEX2900 obteniendo el siguiente resultado:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

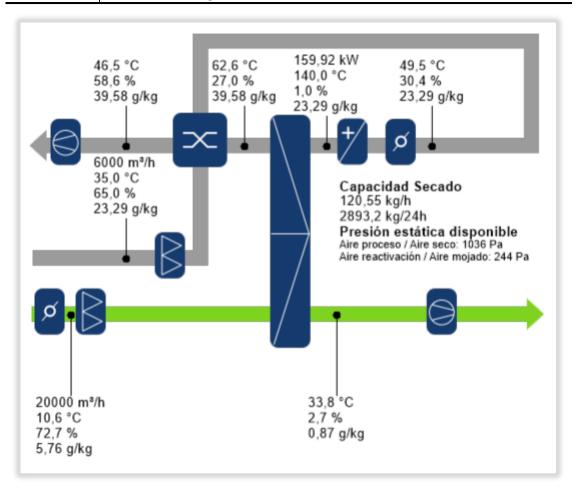


Figura 19: Resultado de la simulación del proceso realizada por el fabricante (captura del software).

En la imagen se observan tanto el flujo de aire de proceso (verde) como el aire de reactivación (gris). Como se señaló anteriormente, no se solicitaron serpentines post rotor.

En la línea de reactivación se destaca un recuperador de calor, el cual fue propuesto por el fabricante para mejorar la eficiencia del sistema.

Las condiciones de entrada al equipo son las del punto 3, y las condiciones de salida, punto 4, fueron actualizadas. La humedad específica es algo menor que la supuesta, $w_4 = 0.87g/kg$, lo que es muy favorable para la capacidad de secado. La temperatura es mayor que la supuesta, $T_4 = 33.8$ °C.

También se observa que la capacidad de secado con 5 equipos sería de:

$$5 \cdot 120,55 \frac{kg}{h} = 602,75 \frac{kg}{h}$$

Y el caudal volumétrico:

$$5 \cdot 20000 \frac{m^3}{h} = 100000 \frac{m^3}{h}$$

Por lo que el sistema es acorde a lo solicitado y será seleccionado. En el Anexo 6 del proyecto se adjunta la hoja de especificaciones.

2.4.5 Recálculo según propuesta del fabricante

Como ya se dijo, con la selección anterior se actualizó el valor de la humedad específica en el punto 4. Ahora resta conocer las condiciones finales del punto 5, es decir, del aire que debe introducirse en la sala.

Como el aire inyectado tiene que lograr retirar las cantidades correctas de calor latente y calor sensible, debe ubicarse sobre la recta definida por el FCS de la sala. Conociendo la humedad específica del punto 5 (0,87g/kg), el mismo queda definido por la intersección entre la recta de sala y la recta de humedad específica constante pasando por el punto 4. Esto se puede observar en el diagrama psicrométrico de la figura 20.

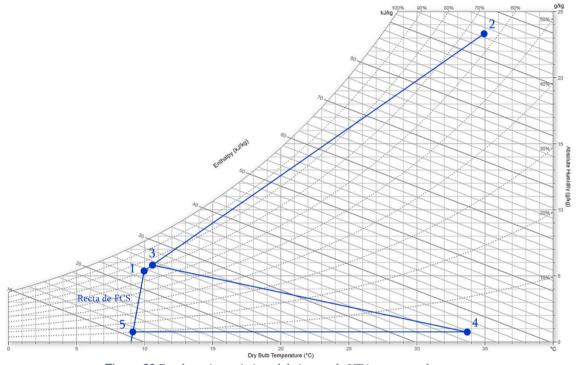


Figura 20: Estados psicrométricos del aire con la UTA por rotor desecante.

En este instante se pueden resumir los estados de todos los puntos del sistema, por lo que se reproduce la tabla 22, esta vez completa.

Tabla 23 – Estados Psicrométricos del Aire							
	Temp.	Humedad	Humedad	Volumen	Entalpía		
Punto	Bulbo Seco	Relativa	específica	específico	específica		
	[°C]	[%]	[g/kg]	$[m^3/kg]$	[kJ/kg]		
Condición de sala - 1	10,0	70,0	5,34	0,809	23,43		
Aire de renovación - 2	35,0	65,0	23,40	0,905	95,15		
Aire entrada rotor - 3	10,0	72,7	5,76	0,811	25,09		
Aire salida rotor - 4	33,8	2,7	0,87	0,870	36,11		
Aire inyectado en sala - 5	9,16	12,15	0,87	0,800	11,32		
Aire de egreso de sala - 6	10,0	70,0	5,34	0,809	23,43		

El próximo paso es el cálculo de potencia necesaria para la etapa de enfriamiento post rotor. La expresión utilizada se muestra a continuación y los resultados obtenidos, en la tabla 24

donde se adiciona la potencia de calefacción necesaria en la reactivación, obtenida en los resultados de la simulación.

$$\dot{Q}_{refrigeración} \left[\frac{kcal}{h} \right] = \dot{m}_{5} \cdot (h_{4} - h_{5})$$

Tabla 24 – Resultados del Cálculo de Potencia de Refrigeración y Reactivación

Flujo	Flujo				
volumétrico	másico	Descripción	Proceso	hi - hj	Potencia
100000 m ³ /h	118884 kg/h	Refrigeración	4-5	24,8 kJ/kg	680599 kcal/h
30000 m ³ /h	-	Reactivación	-	-	687664 kcal/h

Hay que destacar que en la tabla anterior se incluyó el flujo volumétrico real y su correspondiente flujo másico de 118884 kg/h, que se calculó utilizando el volumen específico del punto 4 (tabla 23). Con este flujo másico se logran extraer 513 kg/h de agua de la sala en lugar de los 520 kg/h planteados al inicio, diferencia que se considera totalmente aceptable para los objetivos propuestos.

2.4.6 Selección de la tecnología de calefacción de reactivación

Según el fabricante, el rango de temperaturas del aire de reactivación requerido es de 75°C a 140°C. Para un funcionamiento óptimo del sistema, y para aprovechar al máximo la capacidad del rotor desecante, es deseable acercarse al límite superior del rango. Teniendo en cuenta lo anterior se analizaron distintas alternativas para el suministro de calor de reactivación, a saber:

- Vapor de amoníaco a la salida del compresor: Esta opción no es viable ya que la temperatura del mismo ronda los 80°C, lo que es insuficiente.
- Gases de escape de calderas: Es una buena opción respecto a la temperatura de gases disponible, pero la lejanía de la sala de calderas respecto a la ubicación probable del sistema la convierte en inviable.
- Quemador de gas natural: se consideró como la mejor opción debido a la alta confiabilidad del servicio y a que la planta ya cuenta con una red de distribución instalada.

Por lo tanto, el proceso de reactivación se realizará por medio de un quemador de gas natural de contacto directo combustión-aire.

Se destaca que la planta cuenta con generación de biogás mediante el tratamiento de efluentes líquidos. En la actualidad la capacidad de generación es utilizada por completo para alimentar un grupo de calderas, pero no se descarta que en un futuro también pueda utilizarse para alimentar el sistema de acondicionamiento ambiental proyectado, lo que disminuiría considerablemente el consumo de gas natural.

2.4.7 Selección de la batería aletada post rotor

Acorde a lo explicado en la sección 2.4.1, cada equipo de rotor desecante estará equipado con su correspondiente batería de post enfriamiento. Es decir, que cada uno deberá contar con una etapa de refrigeración cuya potencia debe ser:

$$Pot_{\it Equipo} = rac{\dot{Q}_{\it refrigeración}}{N^{o} \it Equipos} = rac{680600 rac{kcal}{h}}{5} \Rightarrow Pot_{\it Equipo} = 136120 rac{kcal}{h}$$

Para seleccionar una unidad comercial con dicha capacidad se contactó al fabricante ALETAR S.A. Hay que destacar que en general las baterías aletadas se fabrican a medida según la aplicación requerida, por lo que se suministró al fabricante el dato de potencia necesaria, condiciones psicrométricas de entrada y salida (puntos 4 y 5), temperatura de evaporación del refrigerante (-5°C), tipo de aplicación, y el mismo cotizó un modelo con las siguientes características:

Potencia: 150000kcal/h
 Superficie de intercambio: 200m²
 Separación entre aletas: 6mm
 Tubos: aluminio, Ø19mm
 16 tubos en altura
 6 tubos en profundidad
 Circuito simple
 Ancho útil: 2000mm
 Alto útil: 1200mm
 Profundidad: 360mm
 Perdida de carga: 5mmca
 Precio: 4100 USD c/u

2.4.8 Cotización

Finalmente se solicitó una cotización de los equipos de rotor desecante seleccionados, y se muestra a continuación:

Tabla 25 – Cotización de Equipos de Rotor Desecante

		Precio	
Descripción	Cant.	unitario	Total
DFLEX2900G G0G0 0000 0000 SFSF 000 R00 N05AG170	5	85039 €	425195 €
Sensor combinado de humedad relativa y temperatura para conducto	1	458 €	458 €
		Precio total	425653 € * 480987 USD

^{*}Se convierte a dólar estadounidense, considerando la tasa de cambio de 1,13 USD/€ válida a la fecha de cotización de los rotores (31-05-2019), que figura en la ficha técnica de los mismos.

El precio considerado anteriormente corresponde a valor FOB (Free on Board). Para conocer los costos de importación adicionales se consultó con especialistas del rubro, de donde se concluyó en sumar un valor de un 40%. De esta manera, el costo final de los equipos de rotor desecante es el siguiente:

Por otro lado, la cotización de las baterías aletadas fue proporcionada también por el fabricante y se muestra a continuación:

Tabla 26 – Cotización de Baterías AletadasDescripciónCant.Precio unitarioTotal

4100 USD

5

Sumando los costos totales obtenidos en las tablas 25 y 26, se obtiene el valor del sistema de acondicionamiento por rotor desecante con sus 5 equipos, como se resume a continuación:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

Batería Aluminio 150000kcal/h

Aprobó:

20500 USD

PFC1804C MC-Rev.02

Acondicionamiento ambiental de salas de proceso en frigorífico avícola Las Camelias S.A.

Tabla 27 – Cotización Total de Cinco UTA por Rotor Desecante + Baterías Aletadas				
Descripción		Total		
Rotor desecante DFLEX2900 con sensor de ducto		673381 USD		
Batería Aluminio 150000kcal/h		20500 USD		
	Precio total	693881 USD		

2.5 Costos operativos

Con el objeto de contar con más elementos al momento de decidir la tecnología a adoptar, se obtienen los costos de funcionamiento para cada una.

Los precios de las distintas energías fueron brindados por la empresa, obteniendo su equivalencia en dólares estadounidenses para unificar el tipo de divisa con el utilizado en las secciones anteriores.

Tabla 28 - Precios de la Energía						
		Precio	Precio	IVA		
Energía	Tipo de suministro	\$/kWh *	USD/kWh **	gravable		
Electricidad	Tarifa T3 en 13,2kV	4,32	0,0755	27%		
		\$/m ³	USD/m³	_		
Gas natural	Contratación en boca de pozo	9,46	0,1652	27%		

^{*} Incluye costos de transporte, distribución, impuestos provinciales y locales, fideicomisos, etc.

El cálculo se realizó teniendo en cuenta hipótesis adicionales, que se detallan a continuación:

- Horas de funcionamiento de los equipos: 17h, de las cuales 16h corresponden a los dos turnos de faena más 1h de funcionamiento post lavado para la puesta a punto de las salas.
- Días laborables: suponiendo cada mes con 30 días, se descuentan sábados y domingos, de lo que resulta un total de 22 días hábiles.
- Poder calorífico del gas natural: se supone 9000 kcal/m³.
- Equivalencia de potencia frigorífica a potencia eléctrica absorbida por el compresor: según especialistas en la venta de esto últimos, la relación de conversión para una temperatura de saturación de -5°C es 3000 kcal/HP. Al mismo tiempo, la relación entre HP y kW es 0,7457 kW/HP.
- Rendimiento de los equipos de calefacción: se estima en 80%.
- Potencia de ventiladores en UTA por refrigeración mecánica: se seleccionaron 5 ventiladores que proporcionen el caudal total para este arreglo, a los fines del cálculo. Se tomó como hipótesis que la presión estática alcanzada por los mismos es la misma que la disponible en las UTA por rotor (1300 Pa). De esta manera se utilizó el software de la firma Sodeca S.A., con el cual se seleccionó el modelo CDXR-1000, que en las condiciones mencionadas absorbe una potencia de 30 kW.

El resultado obtenido para cada tecnología se resume en la siguiente tabla:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

^{**} Tasa de cambio 57,25 \$/USD, considerada al mes de Julio de 2019.

Tabla 29 – Determinación del Costo Operativo					
	UTA	UTA			
	Refrigeración	Rotor			
	Mecánica	Desecante			
Costo Operativo de Refrigeración					
Potencia de refrigeración	1258927	680599	kcal/h		
Potencia consumida de compresor	313	169	kW		
Costo energía eléctrica	0,0755	0,0755	USD/kWh		
Costo horario de funcionamiento	30	16	USD/h		
Tiempo de funcionamiento	17	17	h		
Costo anual de funcionamiento	134589	72761	USD/año		
Costo Operativo de Calefacción					
Potencia de calefacción	1025265	809016	kcal/h		
Caudal de GN consumido de red	114	90	m^3/h		
Costo gas natural (sin IVA)	0,1652	0,165	USD/m^3		
Costo horario de funcionamiento	24	19	USD/h		
Tiempo de funcionamiento	17	17	h		
Costo anual de funcionamiento	107292	84662	USD/año		
Costo Operativo de Ventiladores					
Caudal	332634	136000	m³/h		
Potencia eléctrica consumida	150	90	kW		
Costo energía eléctrica	0,0755	0,0755	USD/kWh		
Costo horario de funcionamiento	14	9	USD/h		
Tiempo de funcionamiento	17	17	h		
Costo anual de funcionamiento	64514	38709	USD/año		
Costo Operativo Total	306395	196131	USD/año		

2.6 Elección de tecnología a utilizar

Para determinar qué tecnología es conveniente utilizar, se conforma una tabla de decisión con los factores que inciden en la elección. Cada factor se pondera en una escala de 1 a 3 de acuerdo a su importancia, donde valores crecientes indican mayor importancia.

De igual modo, se valora cada tecnología respecto de cada factor, utilizando el mismo rango de calificación que el usado en la ponderación.

A continuación se listan los factores con su correspondiente ponderación seguidos de la tabla de decisión:

- Costo inicial: es el monto de adquisición de los equipos. Se considera que su importancia es intermedia, por lo que su ponderación es 2. Para la valoración de las tecnologías, cuanto mayor es el costo inicial más pequeño es el número.
- Costo operativo: es la cantidad de dinero que implica operar el equipo anualmente. Considerando que los equipos estarán destinados a funcionar durante largos periodos de tiempo (17hs/día) a lo largo de su vida útil (30 años o más), el costo operativo es un factor vital en la elección, por lo que su ponderación es 3. La valoración considera que un costo operativo elevado se corresponde con un número pequeño.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

- Punto de rocío del aire tratado: define la eficiencia del secado en la sala y la necesidad de desbloqueo en la etapa de refrigeración de los equipos. Su importancia es intermedia y la ponderación asignada es 2. Un punto de rocío bajo implica un secado más eficiente y evita la necesidad de desescarche de los serpentines. En esta situación, cuanto menor es el punto de rocío alcanzado por el equipo mayor es el número de valoración.
- Caudal de aire: es el volumen de aire que el equipo introduce en los ambientes para lograr el secado. Su importancia en relación a los demás factores es baja, asignándole una ponderación de 1. Un elevado caudal significa gran cantidad de ventiladores y la posibilidad de someter al personal al efecto de *air chilling*, donde velocidades de viento por encima de los límites de confort y la baja temperatura producen sensación de frío extremo. Por lo tanto, cuanto mayor es el caudal, menor es el número de valoración.
- Estabilidad de la de sala: considera la capacidad del equipo para mantener constantes la temperatura y la humedad del espacio, ante la aparición de cambios en el entorno. Debido a la importancia que esto tiene respecto a la seguridad alimentaria del proceso y las condiciones finales del producto, la ponderación es 3. Un equipo que pueda responder de forma adecuada a cada condición climática se valora con un número mayor.
- Disponibilidad en el mercado: contempla la facilidad de obtener repuestos, accesorios y los equipos mismos dentro del mercado nacional. Su importancia es intermedia, por lo cual la ponderación es 2. Para la valoración se considera que un producto fácilmente adquirible significa menores costos de logística y una reducción de tiempos por lo que le corresponde una valoración más alta que el resto.

Tabla 30 – Tabla de Decisión Refrigeración Rotor Tecnología desecante mecánica Factores de análisis Ponderación Valoración Costo inicial 2 1 3 3 3 Costo operativo 1 Punto de rocío del aire tratado 2 3 1 Caudal de aire 1 3 1 Estabilidad de condiciones en sala 3 3 1 2 2 3 Disponibilidad en el mercado 33 21 Total

En vista de los resultados arrojados por la tabla 30, se puede observar que la opción más conveniente es la tecnología por rotor desecante, siendo ésta la elegida para el acondicionamiento de la sala de TyE. Al mismo tiempo, para la sala de EyC se utilizará la misma tecnología de procesamiento de aire.

2.7 UTA por rotor desecante para salas de EyC

Como surge del análisis de ganancia térmica en la sección 1.5, es necesario retirar de la sala 195 kg agua/h. Comparando este valor con la capacidad de secado de los equipos (120 kg/h),

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

PFC1804C MC-Rev.02

es evidente que un solo equipo es incapaz de cumplir con la demanda. En consecuencia, el tratamiento del aire se realizará con dos equipos de idénticas características. La hoja de especificaciones técnicas se muestra en el Anexo 6.

2.7.1 Hipótesis de cálculo

A causa de que las condiciones del aire son diferentes a las utilizadas por el fabricante en la simulación del equipo, resulta necesario comprobar el funcionamiento de éstos en las nuevas circunstancias.

Para esto se utiliza el diagrama psicrométrico donde se representa el proceso de deshumidificación del aire en su paso por el rotor, tomando como hipótesis lo siguiente:

- La variación de humedad específica del aire a través del rotor es igual a la obtenida por simulación del fabricante: $\Delta w = 4,89 \, g/kg$
- La variación de temperatura del aire a través del rotor se adopta igual a la obtenida por simulación del fabricante: $\Delta T = 23.2 \,^{\circ}C$

Las demás hipótesis consideradas son las siguientes:

- $T_1 = 15 \, ^{\circ}\text{C}$; $HR_1 = 70\%$
- $T_2 = 35$ °C; $HR_2 = 65$ %
- $W_4 = W_5$
- $m_2 = m_6$
- $T_6 = T_1$; $HR_6 = HR_1$

2.7.2 Cálculo

La principal incógnita del cálculo es determinar qué condición debe tener el aire en el ingreso al rotor. Esto condiciona todo el proceso psicrométrico hasta llegar al punto 5, donde se debe verificar que las condiciones del aire son las necesarias para igualar la ganancia térmica de la sala.

Proponiendo la condición del aire ingresante al rotor, se permite conocer en qué estado el aire abandona el rotor. Este último define el caudal másico que opera el equipo, ya que el ventilador se encuentra inmediatamente después del rotor. Definido el estado a la salida del rotor, se realiza un enfriamiento a humedad específica constante hasta alcanzar la recta de sala definida por el FCS. La intersección entre ambas define la condición del aire inyectado en la sala. Seguidamente se verifica que el aire inyectado sea capaz de eliminar el agua y el calor total de la sala, procurando no superar el 2% de error.

El procedimiento de cálculo con las respectivas expresiones utilizadas se resume a continuación:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

Tabla 31 – Procedimiento de Cálculo Iterativo

Proponer condición de la mezcla (punto 3) sobre la recta entre los puntos 1 y 2

Representar el proceso del aire a través del rotor entre los puntos 3 y 4 manteniendo las variaciones de temperatura y humedad específica producidas por el rotor

Calcular el flujo másico de aire manejado por el equipo, con el volumen específico del aire en el punto 4

Determinar el caudal de agua retirado de la sala, con el flujo másico de aire y el delta de humedad entre $5\ y\ 1$

Calcular el calor total extraído de sala

Determinar la diferencia entre el calor total extraído por el flujo de aire y la ganancia térmica total calculada en Tabla 5.13

Calcular la capacidad de secado de cada equipo en estas condiciones

Calcular la potencia necesaria de refrigeración en etapa de post enfriamiento

Expresión

$$T_3 \left[{}^{\circ}C \right] \quad ; \quad w_3 \left[\frac{g}{kg} \right]$$

$$T_{4} \left[{^{\circ}C} \right] = T_{3} + \Delta T_{rotor}$$

$$W_{4} \left[\frac{g}{kg} \right] = W_{3} - \Delta W_{rotor}$$

$$m_{3;4;5} \left\lceil \frac{kg}{h} \right\rceil = \frac{2 \cdot V_{rotor}}{V_A}$$

$$H_2 \dot{O}_{\text{extraida}} \left\lceil \frac{kg}{h} \right\rceil = \frac{m_{3,4,5} \cdot (w_1 - w_5)}{1000}$$

$$Q_{\text{extraúdo}} \left\lceil \frac{kcal}{h} \right\rceil = m_{3;4;5} \cdot (h_5 - h_1)$$

$$Error [\%] = \frac{Q_{extraído} - Q_{total}}{Q_{total}} \cdot 100$$

$$H_2 \dot{O}_{Equipo} \left[\frac{kg}{h} \right] = \frac{\dot{m}_{3;4;5}}{2} \cdot \frac{\left(w_3 - w_4 \right)}{1000}$$

$$Q_{ref} \left\lceil \frac{kcal}{h} \right\rceil = m_{3;4;5} \cdot (h_5 - h_4)$$

Donde:

- ΔT_{rotor} : variación de temperatura que produce el rotor sobre el aire. Su valor se extrae de la simulación del equipo y es de 23,2 °C.
- w: humedad específica del aire.
- ΔW_{rotor} : variación de la humedad específica que produce el rotor sobre el aire. Su valor se extrae de la simulación del equipo y es 4,89 g/kg.
- $m_{3:4:5}$: flujo másico de aire circulado por el equipo. Este es el mismo en los puntos 3, 4 y 5 del esquema.
- V_{rotor} : caudal volumétrico nominal del rotor. Su valor es 20000 m³/h.
- v : volumen específico del aire en m³/kg.
- *H₂O extraída* : flujo de agua retirado de la sala por el aire inyectado.
- *Qextraído* : calor total extraído de la sala por el flujo de aire inyectado.
- *Qref* : potencia de refrigeración necesaria para el post enfriamiento.
- h: entalpía específica del aire en kJ/kg.

La tabla 32 muestra los estados psicrométricos resultantes de las iteraciones, seguida del gráfico psicrométrico con los procesos correspondientes entre dichos estados:

Tabla 32 – Estados Psicrométricos del Aire					
Punto	Temp. Bulbo Seco [°C]	Humedad Relativa [%]	Humedad específica [g/kg]	Volumen específico [m³/kg]	Entalpía específica [kJ/kg]
Condición de sala - 1	15,0	70,0	7,44	0,826	33,825
Aire de renovación - 2	35,0	65,0	23,40	0,905	95,151
Aire entrada rotor - 3	15,7	71,8	8,00	0,828	35,942
Aire salida rotor - 4	38,9	7,2	3,11	0,888	47,016
Aire inyectado en sala - 5	12,3	35,1	3,11	0,812	20,134

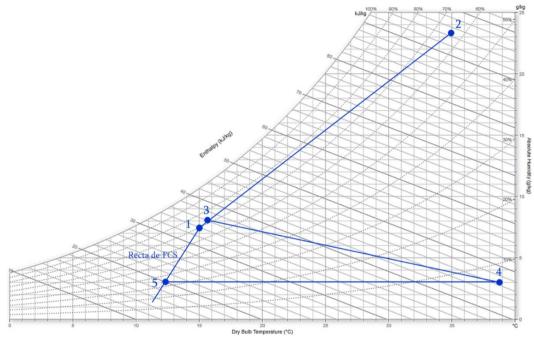


Figura 20: Estados psicrométricos del aire con la UTA por rotor desecante

Los resultados del cálculo se resumen en la tabla siguiente:

Tabla 33 – Determinación de Variables	para las UTA de EYC
Flujo volumétrico de aire	40000 m ³ /h
Flujo másico de aire	45041 kg/h
Agua extraída de sala	195,03 kg/h
Calor total extraído de sala	147313 kcal/h
Ganancia térmica total de sala	144336 kcal/h
Error	2,0%
Capacidad de secado del equipo	110,12 kg/h

Se puede apreciar que la capacidad de secado (110 kg/h) se ve disminuida respecto de los 120 kg/h, debido a que el aire que circulan los equipos se encuentra a mayor temperatura, por lo cual el flujo másico resulta menor en comparación a las salas de trozado y empaque.

El próximo paso es el cálculo de potencia necesaria para la etapa de enfriamiento post rotor. Las expresiones utilizadas se muestran a continuación y los resultados obtenidos en la tabla 5.32, donde se adiciona la potencia de calefacción necesaria en la reactivación, obtenida según datos de simulación.

$$\dot{Q}_{refrigeración} \left[\frac{kcal}{h} \right] = \dot{m}_5 \cdot (h_4 - h_5)$$

Tabla 34 – Resultados del Cálculo de Potencia de Refrigeración y Reactivación

Flujo volumétrico	Flujo másico	Descripción	Proceso	hi - hj	Potencia
40000 m ³ /h	45041 kg/h	Refrigeración	4-5	26,88 kJ/kg	289249 kcal/h
12000 m ³ /h	-	Reactivación	-	-	275065 kcal/h

2.7.3 Selección del evaporador post rotor

Utilizando el mismo procedimiento mostrado en la sección 2.4.7, se calcula la potencia de refrigeración con que debe estar provisto cada rotor en la etapa de post enfriamiento:

$$Pot_{Equipo} = \frac{\dot{Q}_{refrigeración}}{N^{\circ} Equipos} = \frac{289250 \frac{kcal}{h}}{2} \Rightarrow Pot_{Equipo} = 144625 \frac{kcal}{h} = 168,16 \, kW$$

Como la potencia necesaria en cada equipo es menor a 150000kcal/h, se adopta el mismo equipo que se utilizó para TyE. Por el detalle de características dirigirse a la sección 2.4.7.

Teniendo en cuenta que el ΔT entre el aire que ingresa al equipo y el refrigerante es mayor al especificado en TyE, la potencia que el equipo es capaz de entregar superará los 150000 kcal/h y cubrirá holgadamente los requerimiento de EyC.

Lo que resta conocer es dicho valor de potencia para las nuevas condiciones. Esto se realiza por medio de la expresión de transferencia de calor:

$$\dot{Q}_{bat.al} \left[\frac{kcal}{h} \right] = U \cdot A \cdot \left(T_{air} - T_{ref} \right)$$

Donde:

- $Q_{bat. aletada}$: potencia de refrigeración suministrada por la batería aletada.
- U: coeficiente global de transmisión térmica de la batería aletada, en kcal/h m² °C.
- *A* : área total de la superficie de intercambio de la batería aletada, m².
- Tair: temperatura del que ingresa a la batería aletada, en °C.
- T_{ref} : temperatura del refrigerante en el interior de los tubos de la batería, en $^{\circ}$ C.

Entonces es posible obtener la potencia entregada en las nuevas condiciones, planteando la transferencia de energía para dos condiciones distintas (Qbat. alet 1 y Qbat. alet 2) y reemplazando

PFC1804C MC-Rev.02

una en la otra, debido a que el producto U·A es constante porque no cambian los flujos másicos de aire ni refrigerante en el aparato. De esta manera se llega a que:

$$\dot{Q}_{2bat.al} = \dot{Q}_{1bat.al} \cdot \frac{\left(T_{air2} - T_{ref}\right)}{\left(T_{air1} - T_{ref}\right)} = 150000 \frac{kcal}{h} \cdot \frac{\left[39^{\circ}C - (-5^{\circ}C)\right]}{\left[34^{\circ}C - (-5^{\circ}C)\right]} \Rightarrow \dot{Q}_{2bat.al} \cong 170000 \frac{kcal}{h}$$

Los datos de las T_{air1} y T_{air2} corresponden al punto 4 (aire a la salida del rotor) de las tablas 23 y 32, respetivamente.

2.7.4 Cotización

El costo de los equipos se extrae de los homólogos analizados en la sección 2.4.8 y para la sala en cuestión se muestran a continuación:

Tabla 35 – Cotización de Equipos de Rotor Desecante

		Precio	
Descripción	Cant	unitario	Total
DFLEX2900G G0G0 0000 0000 SFSF 000 R00 N05AG170	2	85039€	170078 €
Sensor combinado de humedad relativa y temperatura para conducto	1	458€	458€
		Precio total	170536 € *
		riecio total	192705 USD

^{*}Se convierte a dólar estadounidense, considerando una tasa de cambio de 1,13 USD/€ vigente a la fecha de cotización de los rotores (31-05-2019), que figura en la ficha técnica de los mismos.

Nuevamente se adicionan al valor FOB los costos de importación, obteniendo:

Para las baterías aletadas tenemos lo siguiente:

Tabla 36 – Cotización Baterías Ald	etadas		
Descripción	Cant.	Precio unitario	Total
Batería Aluminio 150000kcal/h	2	4100 USD	8200 USD

Sumando los costos totales obtenidos en las tablas 35 y 36, se obtiene el valor del sistema de acondicionamiento por rotor desecante con sus 2 equipos, como se resume a continuación:

Tabla 37 – Cotización Total de Dos UTA por Rotor Desecante + Baterías Aletadas

Descripción	Total	
Rotor desecante DFLEX2900 con sensor	269787 USD	
Batería Aluminio 150000kcal/h	8200 USD	
I	Precio total	277987 USD

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

2.8 Codificación de UTA y baterías aletadas

Una vez definidos los equipos a utilizar y las cantidades, se les asignará un código de identificación acorde al estándar determinado en el Anexo 2.1, el cual se expone en la siguiente tabla:

Tabla 38 – Codificación de UTA y Baterías Aletadas				
Equipo	Sala	Código	Cant.	
		1804C-D1U-001	1	
		1804C-D1U-002	1	
UTA	TyE	1804C-D1U-003	1	
		1804C-D1U-004	1	
		1804C-D1U-005	1	
		1804C-D1O-007	1	
		1804C-D1O-009	1	
Batería Aletada	TyE	1804C-D1O-011	1	
		1804C-D1O-013	1	
		1804C-D1O-014	1	
T TOTA	E C	1804C-D2U-176	1	
UTA	EyC	1804C-D2U-177	1	
Determine Alexander	EC	1804C-D2O-180	1	
Batería Aletada	EyC	1804C-D2O-185	1	

2.9 Tratamiento de condensados debidos al lavado

Considerando lo expuesto en el apartado 6.1 de la IB, es necesario determinar con cuánta anticipación es necesario poner en funcionamiento los equipos para eliminar la humedad presente en las salas de proceso luego del lavado. Esto se calcula en función a la capacidad de secado del sistema y a la cantidad de humedad presente post lavado.

Para la sala de TyE la humedad residual es de 506 kg y la capacidad de secado del sistema es 600 kg/h, por lo que el tiempo de anticipación es:

$$t = \frac{506kg}{600\frac{kg}{h}} = 0,84h = 51min$$

Para la sala de EyC la humedad residual es de 147 kg y la capacidad de secado del sistema es 220 kg/h, por lo que el tiempo de anticipación es:

$$t = \frac{147kg}{220\frac{kg}{h}} = 0,67h = 40min$$

Con esto se comprueba que el sistema es capaz de acondicionar las salas dentro de los tiempos estipulados en el apartado 1.1.5.

3. Distribución de aire

El trazado del sistema y la ubicación de los artefactos para ingreso y salida de aire se realiza teniendo en cuenta los equipos existentes en las salas, procurando evitar puntos de gran corriente de aire, como también evitar que los equipos recirculen el aire tal cual es inyectado. De igual manera se espera lograr uniformidad en la distribución de aire a lo largo de toda la sala. Para ello se consideró necesario reubicar dos evaporadores de los ya existentes, como se muestra en la imagen a continuación:

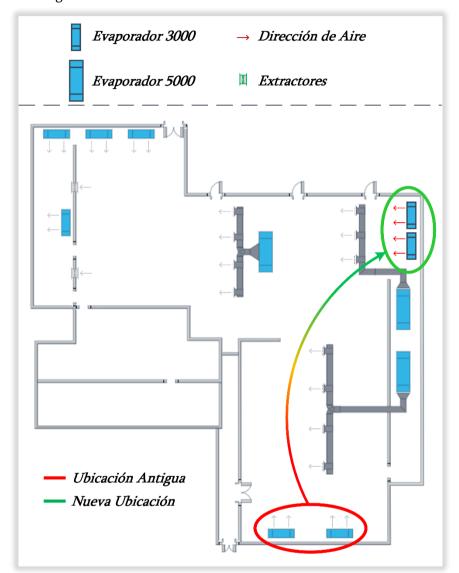


Figura XX: Movimiento de evaporadores existentes para lograr uniformidad en la distribución de aire.

En lo que sigue de esta sección se describen los elementos de inyección/aspiración de aire, y luego se desarrolla el trazado y cálculo de los ductos de impulsión/retorno, según sea la sala en cuestión.

3.1 Difusores de impulsión

Atendiendo al problema de condensación en techos, se eligen difusores que permitan un flujo de aire tangente a los mismos. Esto acelera el contacto entre el aire seco que ingresa desde los ductos y el agua condensada en las superficies de la sala. Al mismo tiempo se evita el contacto directo con los operarios y su exposición a velocidades de aire incómodas.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

El modelo de difusor a utilizar es único para ambas salas y se selecciona del catálogo de la firma Induterm Ingeniería S.R.L, presentado en el Anexo 6. Se considera una velocidad de salida de 5 m/s en los artefactos, lo cual define la cantidad de difusores necesarios en cada ambiente. Los resultados se muestran en la siguiente tabla:

Tabla 39	Tabla 39 – Difusores de Impulsión						
Sala	Código	Modelo	Dimensiones	Caudal	Pérdida de	Cant.	
Sala	Codigo	Modelo	[mm]	$[m^3/h]$	carga [mmca]	Cant.	
TyE	1004G DOLL 041	4 DC 00	000 000	0000	1	34	
TyE EyC	1804C-D3H-241	ADS 22	900 x 300	3000	1	25	

El costo de 59 difusores es de 3717USD (63USD c/u).

3.2 Rejillas de retorno

Con el objetivo de lograr un secado del agua presente en los pisos de las salas, se ubican las rejillas de retorno cercanas a los mismos.

Los modelos se eligen del catálogo utilizado para la selección de los difusores. Los resultados son los siguientes:

Tabla 4	Tabla 40 – Rejillas de Retorno					
Sala	Cádigo	Modelo	Dimensiones	Caudal	Pérdida de	Cont
Saia	Código	Modelo	[mm]	$[m^3/h]^*$	carga [mmca]	Cant.
TyE	1004C DDI 242	ADDC 1/ D	1000 (00	3900	1	25
EyC	1804C-D3I-242	ARRS – ½ R	1000 x 600	3750	1	10

El costo de 35 rejillas de retorno es de 2100USD (60USD c/u).

3.3 Rejillas de aspiración de AE

Las tomas de aire exterior se ubican al final de las líneas de retorno, en puntos con una cota considerable para evitar la aspiración de aire contaminado.

Utilizando el mismo catálogo que para el caso anterior, el modelo seleccionado es el siguiente:

Tabla 4	Tabla 41 – Rejillas de Toma de Aire Exterior					
Sala	Cádigo	Modelo	Dimensiones	Caudal	Pérdida de	Cant.
Sala	Código	Modelo	[mm]	$[m^{3}/h]^{*}$	carga [mmca]	Cant.
TyE	1804C-D1I-124		(00 1000	25.00	1	1
EyC	1804C-D2I-218	TAE-F-R	600 x 1000	2500	1	1

El costo de 2 rejillas de aspiración es de 120USD (60USD c/u).

3.4 Ductos de impulsión para sala de TyE

3.4.1 Generalidades

El cálculo y dimensionamiento se consigue por el método de recuperación estática, desarrollado en el Manual de Aire Acondicionado de la firma Carrier, sección 2, página 54. El

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

PFC1804C MC-Rev.02

mismo consiste en mantener constante la presión estática a lo largo de todo el sistema, compensando las pérdidas de carga con disminuciones sucesivas de la presión dinámica.

Esta técnica presenta mayores costos constructivos pero el costo operativo resulta menor que en comparación con otros métodos de cálculo. Además, debido a la ecualización de presión estática obtenida en el sistema, resulta innecesario el uso de elementos como compuertas o válvulas en las derivaciones. Así también las tareas de puesta a punto y calibración del sistema se reducen al mínimo y/o se eliminan.

Proyectándose el montaje de los ductos en el entretecho, las dimensiones de estos no encuentran grandes restricciones de espacio, por lo cual el sistema se calcula para circulación en categoría "baja velocidad", según el Manual. Sin embargo, se tiene en cuenta que adoptar velocidades muy bajas conlleva a dimensiones de ductos que pueden resultar imprácticas desde el punto de vista técnico y económico. Es así que se decide dimensionar el ducto principal de distribución con la máxima velocidad recomendada para esta categoría. Dicho valor es sugerido por el manual como 12,5 m/s, siendo el límite para evitar problemas de ruido o vibraciones en la instalación.

En lo que respecta al tipo de ducto utilizado, se opta por secciones rectangulares porque requieren menor espacio que las circulares. Si bien existe libertad para el trazado de los ductos, se decide limitar el alto de los mismos para evitar cualquier tipo de obstáculo que surja durante el futuro montaje.

Los pasos de cálculo realizados se describen a continuación:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

Tabla 42 – Procedimiento de Cálculo por Recuperación Estática

Tabla 42 – Procedimiento de Calculo por Rec	-
Pasos	Expresiones y gráficos
Establecer la velocidad a utilizar en el primer tramo de ducto	Se adopta como velocidad del primer tramo: V=12,5 m/s
Calcular la sección necesaria para que circule el caudal del tramo principal	$s[m^2] = \frac{\dot{V}}{3600 \cdot v}$
Dimensionar el ducto para cumplir con la sección "s" y determinar su diámetro equivalente.	Según Tabla Anexo 3.1
Calcular la pérdida de carga del tramo principal	Según expresión de página 35 del manual:
Carcarar la perara de carga del tramo principar	$\Delta P[mmca] = 0, 4 \cdot f \cdot \left(\frac{L}{d^{1,22}}\right) \cdot v^{1,82}$
Determinar la relación entre la longitud equivalente y el caudal (L/Q)	$\left(\frac{L}{\dot{V}}\right) = 4,324 \cdot L \cdot \dot{V}^{-0.601} 6$
	Gráfico N°10 – Relación L/Q – pág. 55
Pasar al tramo siguiente: obtener la velocidad necesaria ingresando con su longitud equivalente y la relación (L/V) obtenida para el tramo anterior	Según ábaco Anexo 3.2
Calcular la sección necesaria para que circule el caudal	$s_2 [\text{m}^2] = \frac{\dot{V_2}}{\text{v}_2}$
Dimensionar el ducto para cumplir con la sección "s"	Según Tabla Anexo 3.1
Determinar la relación entre la longitud equivalente y el caudal.	$\left(\frac{L_2}{\dot{V}_2}\right) = 4,324 \cdot L_2 \cdot \dot{V}_2^{-0,601} \acute{\text{o}}$ Gráfico N°10 – Relación L/Q – pág. 55
Pasar al tramo siguiente y repetir el proceso hasta completar todos los tramos restantes	

Donde:

- \dot{V} : caudal volumétrico de aire en m³/h.
- v: velocidad media del aire en el tramo considerado, en m/s.
- f: coeficiente de pérdida del material. Para hierro galvanizado se considera 0,9 según propuesta del manual.
- L: longitud equivalente total, sin tener que considerar las reducciones con las secciones previas, en m.
- d: diámetro equivalente de la sección del tramo, en cm.

Los tramos que conectan a las UTA con el ramal principal se calcularon proponiendo una sección y verificando que la misma no resulte con velocidad mayor a 12,5 m/s. Además, para

evitar diferencias en el caudal entregado por los equipos, las dimensiones adoptadas aseguran que la pérdida de carga sea la misma para todos los tramos.

El trazado de los ductos de impulsión junto con las bocas de impulsión se presenta en el plano **1804C-BD-001**.

3.4.2 Hipótesis de cálculo

- El tendido de distribución se ubica a 1,5m por encima del nivel del techo (medido desde la línea media del ducto).
- Las dimensiones de los codos se adoptan del valor más aproximado que presente la tabla del Anexo 3.3. De esta manera se obtiene su longitud equivalente.
- Por simplicidad y a fines del presente cálculo, las UTA se nombran con la letra U seguida del número de cada unidad (ej: U1, U2, etc.). Así quedan definidos los puntos de inicio de los tramos que conectan las unidades con el ramal principal.

La numeración de los tramos utilizada para el cálculo se muestra en la figura 21.

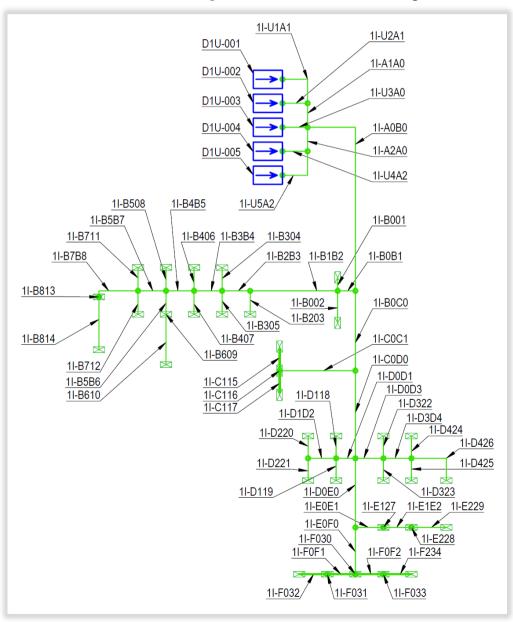


Figura 21: Tramos de impulsión para sala de TyE

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

PFC1804C MC-Rev.02

Acondicionamiento ambiental de salas de proceso en frigorífico avícola Las Camelias S.A.

3.4.3 Cálculo

Los resultados de cálculo tramo a tramo se muestran en la tabla a continuación:

Tabla 43	- Cálcul	o de 1	Ducto:	s de In	npuls	ión - T	vΕ			
Código	Caudal	Lrecta	Lacc	L _{total}	1 /0	Vel	Área	Lados hxb	Øeq	ΔPe
de línea	$[m^3/h]$	[m]	[m]	[m]	L/Q	[m/s]	$[m^2]$	[mm]	[mm]	[mmca]
1I-U1A1	20000	8,2	8,8	17,0		11,77	0,47	700x700	777	2,69
1I-U2A1	20000	4	8,8	12,8		11,77	0,47	700x700	777	2,02
1I-A1A0	40000	4,2	6,8	11,0		11,43	0,97	1000x1000	1114	1,06
		Pérd	lida de	presi	ón des	de U1 h	asta A0		•	3,75
1I-U3A0	20000	4,2	4,4	8,6		11,77	0,47	700x700	777	1,36
1I-A2A0	40000]	gual q	ue A1	-A0		1000x1000		
1I-U4A2	20000]	gual q	ue U2	-A1		700x700		
1I-U5A2	20000]	gual q	ue U1	-A1		700x700		
11 4000	100000	37				12,5	2,22	1300x1800	1692	
1I-A0B0	100000		8,3					1200x1800		
1I-A0B0	100000	37	8,3	45,3		12,5	2,22	1300x1800	1692	3,09
11 DOD1	42000	3,1			0,02	12,15	0,96	1300x800		
1I-B0B1	42000		5,9					1200x900		
1I-B0B1	42000	3,1	5,9	9,0	0,06	11,60	1,01	1300x850		
11 D101	3000	3,9			0,14	10,15	0,08	300x300		
1I-B101	3000		4,0					300x300		
1I-B101	3000	3,9	4,0	7,9	0,28	8,10	0,10	300x350		
1I-B102	2000	3,9			0,14	10,15	0,08	300x300		
11-D102	3000		4,0					300x300		
1I-B102	3000	3,9	4,0	7,9	0,28	8,10	0,10	300x350		
1I-B1B2	36000	15,3		15,3	0,12	10,30	0,97	1300x850		
1I-B203	3000	5,6			0,20	8,60	0,10	300x350		
11-0203	3000		4,0					300x300		
1I-B203	3000	5,6	4,0	9,6	0,34	7,95	0,10	300x350		
1I-B2B3	33000	4,9		4,9	0,04	9,85	0,93	1150x850		
1I-B304	3000	5,6			0,20	8,30	0,10	300x350		
11-0004	5000		4,0					300x300		
1I-B304	3000	5,6	4,0	9,6	0,34	7,65	0,11	350x350		
1I-B305	3000	5,6			0,20	8,30	0,10	300x350		
11 0505	5000		4,0					300x300		
1I-B305	3000	5,6	4,0	9,6	0,34	7,65	0,11	350x350		
1I-B3B4	27000	4,9		4,9	0,05	9,50	0,79	1000x850		
1I-B406	3000	5,6			0,20	8,00	0,10	300x350		
	5000		4,0					300x300		
1I-B406	3000	5,6	4,0	9,6	0,34	7,40	0,11	350x350		
1I-B 4 07	3000	5,6			0,20	8,00	0,10	300x350		
			4,0					300x300		
1I-B407	3000	5,6	4,0	9,6	0,34	7,40	0,11	350x350		
1I-B4B5	21000	4,9		4,9	0,05	9,05	0,64	1000x700		
1I-B508	3000	5,6			0,20	7,65	0,11	350x350		

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

Tabla 43	- Cálcul	o de I	Ducto	s de I1	npuls	ión - T	yΕ			
Código	Caudal	Lrecta	Lacc	Ltotal	T /O	Vel	Área	Lados hxb	Øeq	ΔPe
de línea	$\lceil m^3/h \rceil$	[m]	[m]	[m]	L/Q	[m/s]	$\lceil m^2 \rceil$	[mm]	[mm]	[mmca]
			4,0					300x300		
1I-B508	3000	5,6	4,0	9,6	0,34	7,05	0,12	350x350		
		4,1	-		0,10	8,30	0,20	450x450		
1I-B5B6	6000		2,7		,	,	,	400x400		
1I-B5B6	6000	4,1	2,7	6,8	0,16	7,90	0,21	450x450		
1I-B509	3000	-,-	_,,		que B4	· ·	0,=1	350x350		
11 2507		10,3		guur	0,36	6,20	0,13	350x350		
1I-B610	3000	10,0	2,0		0,50	0,20	0,10	300x300		
1I-B610	3000	10,3	2,0	12,3	0,43	6,00	0,14	450x450		
1I-B5B7	12000	4,9	2,0	4,9	0,07	8,50	0,39	600x700		
ועכם זו	12000	5,6		1,7	0,20	7,20	0,12	350x350		
1I-B711	3000	3,0	4,0		0,20	7,20	0,12	300x300		
1I-B711	3000	5,6	4,0	9,6	0,34	6,60	0,13	350x400		
11-D/11	3000	5,6	∓ ,∪	9,0	0,34	7,20	0,13	350x400 350x350		
1I-B712	3000	٥,٠	4,0		0,20	1,20	0,12	300x300		
1I-B712	3000	E 6	-	0.6	0.24	6.60	0,13			
11-D/12	3000	5,6	4,0	9,6	0,34	6,60		350x400		
1I-B7B8	6000	7,8	2.0		0,18	7,30	0,23	600x400		
11 D7D0	6000	7.0	2,9	10.7	0.05	7.00	0.04	600x400		
1I-B7B8	6000	7,8	2,9	10,7	0,25	7,00	0,24	600x450		
1I-B813	3000	10.7		Igual	que Bé		0.15	350x350		
1I-B814	3000	10,7	0.7		0,38	5,50	0,15	450x450		
11 D014	2000	10.5	2,7	10.4	0.45	F 00	0.16	400x400		
1I-B814	3000	10,7	2,7	13,4	0,47	5,20	0,16	400x450		
1I-B0C0	60000	14,0	0,0	14,0	0,08	11,40	1,46	1300x1200		
1I-C0C1	9000	12,3			0,22	11,10	0,23	600x400		
			2,9					600x400		
1I-C0C1	9000	12,3	2,9	15,2	0,28	11,08	0,23	600x400		
1I-C115	3000	5,7			0,20	10,80	0,08	300x300		
			4,0					300x300		
1I-C115	3000	5,7	4,0	9,7	0,34	10,65	0,08	300x300		
1I-C116	3000	1,5			0,05	10,97	0,08	300x300		
			2,0					300x300		
1I-C116	3000	1,5	2,0	3,5	0,12	10,88	0,08	300x300		
1I-C117	3000	5,7			0,20	10,80	0,08	300x300		
11 (117	5000		4,0					300x300		
1I-C117	3000	5,7	4,0	9,7	0,34	10,65	0,08	300x300		
1I-C0D0	51000	15,3	0,0	15,3	0,10	10,32	1,37	1200x1200		
11 D0D1	12000	3,4			0,05	9,80	0,34	600x600		
1I-D0D1	12000		3,7					600x600		
1I-D0D1	9000	3,4	3,7	7,1	0,13	9,15	0,27	600x500		
1I D110	3000	5,4			0,19	7,78	0,11	350x350		
1I-D118	3000		4,0					300x300		

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

Tabla 43	- Cálcul	o de I	Ducto	s de I1	npuls	ión - T	yΕ			
Código	Caudal	Lrecta	Lacc	L _{total}	I /O	Vel	Área	Lados hxb	Øeq	ΔPe
de línea	$[m^3/h]$	[m]	[m]	[m]	L/Q	[m/s]	$[m^2]$	[mm]	[mm]	[mmca]
1I-D118	3000	5,4	4,0	9,4	0,33	7,20	0,12	350x350		
1I-D119	3000			Igual q	ue D1	-18		350x350		
1I-D1D2	6000	4,9	0,0	4,9	0,11	8,25	0,20	450x500		
17.7000		5,4	-		0,19	7,05	0,12	350x350		
1I-D220	3000	-	4,0			-	-	300x300		
1I-D220	3000	5,4	4,0	9,4	0,33	6,55	0,13	450x300		
1I-D221	3000		-		ue D2			450x30		
		4,9			0,07	9,60	0,43	750x600		
1I-D0D3	15000	,	3,8		,	,	,	700x600		
1I-D0D3	15000	4,9	3,8	8,7	0,12	9,20	0,45	800x600		
		5,4	,	,	0,19	7,80	0,11	350x350		
1I-D322	3000	- ,	4,0		-, -	,	- ,	300x300		
1I-D322	3000	5,4	4,0	9,4	0,33	7,15	0,12	350x350		
1I-D323	3000	-,-			ue D3		- ,- -	350x350		
1I-D3D4	9000	4,9	0,0	4,9	0,09	8,40	0,30	550x600		
		5,4	-,-	-,-	0,19	7,20	0,12	350x350		
1I-D424	3000	3,1	4,0		0,12	7,20	0,12	300x300		
1I-D424	3000	5,4	4,0	9,4	0,33	6,60	0,13	450x300		
1I-D425	3000	3,1	-		ue D4		0,10	450x300		
		11,5	-	guar 9	0,40	6,40	0,13	450x300		
1I-D426	3000	11,5	4,0		0,10	0,10	0,10	400x300		
1I-D426	3000	11,5	4,0	15,5	0,55	5,95	0,14	550x300		
1I-D0E0	24000	12,0	0,0	12,0	0,12	9,20	0,72	950x800		
17 0001	2222	4,9	-		0,09	8,45	0,30	600x550		
1I-E0E1	9000		3,7			-		600x600		
1I-E0E1	9000	4,9	3,7	8,6	0,16	7,95	0,31	600x550		
1I-E127	3000			Igual o	ue D3	-22		350x350		
17 7170		4,9			0,11	7,20	0,23	600x400		
1I-E1E2	6000		2,9					600x600		
1I-E1E2	6000	4,9	2,9	7,8	0,18	6,80	0,25	600x450		
1I-E228	3000			· ·	ue D3	-22		350x350		
11 8000		7,6			0,27	5,65	0,15	350x450		
1I-E229	3000		2,7		-	-	-	400x400		
1I-E229	3000	7,6	2,7	10,3	0,36	5,75	0,14	350x450		
1I-E0F0	15000	8,2	0,0	8,2	0,11	8,30	0,50	650x800		
1I-F030	3000	-		Igual o	ue D3	-22	-	350x350		
11 0001	6000	4,9			0,11	7,55	0,22	600x400		
1I-F0F1	6000		2,9		-	-	-	600x400		
1I-F0F1	6000	4,9	2,9	7,8	0,18	7,15	0,23	600x400		
1I-F131	3000	-		Igual o	ue D3	-22	-	350x350		
		6,4			0,23	6,00	0,14	400x400		
1I-F132	3000		2,7					400x400		
1I-F132	3000	6,4	2,7	9,1	0,32	5,70	0,15	400x400		
1I-FF2	6000	4,9			0,11	7,55	0,22	600x400		
		· /·	1	l		,			I	1

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

Tabla 43	Tabla 43 - Cálculo de Ductos de Impulsión - TyE												
Código	Caudal	Lrecta	Lacc	L _{total}	1/0	Vel	Área	Lados hxb	Øeq	ΔPe			
de línea	$[m^3/h]$	[m]	[m]	[m]	L/Q	[m/s]	$[m^2]$	[mm]	[mm]	[mmca]			
			2,9					600x400					
1I-FF2	6000	4,9	2,9	7,8	0,18	7,15	0,23	600x400					
1I-F233	3000			Igual c	ue D3	-22		350x350					
1I-F234	2000	6,4			0,23	6,00	0,14	400x400					
11-7234	3000		2,7					400x400					
1I-F234	3000	6,4	2,7	9,1	0,32	5,70	0,15	400x400					

3.5 Ductos de retorno para sala trozado y empaque 3.5.1 Hipótesis de cálculo

- El tendido de distribución se ubica a 3,5m por encima del nivel del techo (medido desde la línea media del ducto).
- Las rejillas de retorno se ubican a 3,6 m por debajo del techo (40cm sobre el nivel del suelo).
- Las dimensiones de los codos se adoptan del valor más aproximado que presente la tabla del Anexo 3.3. De esta manera se obtiene su longitud equivalente.
- Las unidades de tratamiento se nombran con la letra U seguida del número de cada unidad (ej: U1, U2, etc.). Así quedan definidos los puntos de finalización de los tramos que conectan las unidades con el ramal principal.

El trazado de los ductos de retorno junto con las rejillas de aspiración se presenta en el plano **1804C-BD-002**.

La numeración de los tramos utilizada para el cálculo se muestra en la figura 22.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

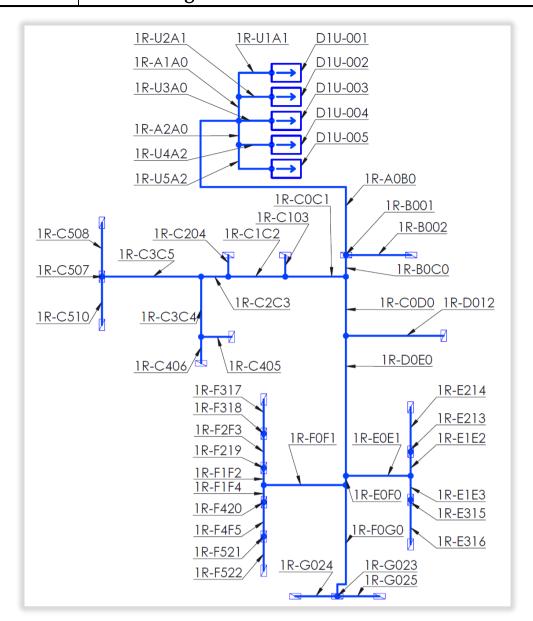


Figura 22: Tramos de retorno para sala de TyE

3.5.2 Cálculo

El cálculo y dimensionamiento se realiza de igual forma que para los ductos de impulsión en el apartado anterior. Los resultados tramo a tramo se muestran en la tabla a continuación:

Tabla 44 - Cálculo de Ductos de Retorno - TyE											
Código	Caudal	Lrecta	Lacc	L _{total}	L/Q	Vel	Área	Lados hxb	Øeq	ΔPe	
de línea	$[m^3/h]$	[m]	[m]	[m]	L/Q	[m/s]	$[m^2]$	[mm]	[mm]	[mmca]	
1R-U1A1	20000	10,2	8,8	19,0		11,77	0,47	700x700	777	3,00	
1R-U2A1 20000 4 8,8 12,8 11,77 0,47 700x700 777											
1R-A1A0	40000 4,2 6,8 11,0 11,43 0,97 1000x1000 1114										
		Pérdi	da de	presió	n desd	le U1 ha	sta A0			4,07	
1R-U3A0	20000	4,0	8,8	12,8		11,77	0,47	700 x 700	777	2,02	
1R-A2A0	40000]	lgual q	ue A1	-A0		1000x1000			
1R-U4A2	20000	20000 Igual que U2-A1 700 x 700									
1R-U5A2 20000 Igual que U1-A1 700 x 700											

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

Tabla 44 -	- Cálculo	o de D	Ouctos	de R	etorno	o – TyE	7			
Código	Caudal	Lrecta	$L_{\rm acc}$	L _{total}	L/Q	Vel	Área	Lados hxb	Øeq	ΔPe
de línea	$[m^3/h]$	[m]	[m]	[m]	L/Q	[m/s]	$[m^2]$	[mm]	[mm]	[mmca]
		1		1	1		1	T		T
1R-A0B0		48,0				12,50	2,17	1300x1800	1692	
			8,3					1200x1800	1692	
1R-A0B0	97500	48,0	8,3	56,3		12,50	2,17	1300x1800	1692	3,84
1R-B101	3900	7,1			0,21	10,30	0,11	450x300		
			2,0					400x300		
1R-B101	3900	7,1	2,0	9,1	0,27	9,80	0,11	450x300		
1R-B102	3900	18,5			0,56	8,50	0,13	450x300		
			2,1					400x300		
1R-B102	3900	18,5	2,1	20,6	0,62	8,30	0,13	450x300		
1R-B0C0	89700	3,8	0,0	3,8	0,02	12,25	2,03	1300x1800		
1R-C0C1	35100	10,6			0,09	11,20	0,87	1050x900		
	55100		5,9					1050x900		
1R-C0C1	35100	10,6	5,9	16,5	0,13	10,70	0,91	1050x950		
1R-C103	3900	10,9			0,33	8,40	0,13	450x300		
1100	5700		4,0					400x300		
1R-C103	3900	10,9	4,0	14,9	0,45	7,90	0,14	450x300		
1R-C1C2	31200	9,9	0,0	9,9	0,09	9,80	0,88	1050x950		
1R-C204	3900	10,9			0,33	7,70	0,14	450x300		
11X-G204	3700		4,0					400x300		
1R-C204	3900	10,9	4,0	14,9	0,45	7,25	0,15	450x350		
1R-C2C3	27300	4,7	0,0	4,7	0,04	9,80	0,77	900x950		
1R-C3C4	7800	10,5			0,21	8,30	0,26	700x400		
IN-COC4	7000		3,0					700x400		
1R-C3C4	7800	10,5	3,0	13,5	0,27	7,95	0,27	650x450		
1R-C405	3900	12,4			0,37	6,20	0,17	450x400		
1K-C403	3900		5,3					400x400		
1R-C405	3900	12,4	5,3	17,7	0,53	5,75	0,19	450x450		
1R-C406	3900			Igual c	que C4	-05		450x450		
1R-C3C5	19500	17,3	0,0	17,3	0,20	8,30	0,65	900x750		
1R-C507	3900	7,1	2,0	9,1	0,27	6,75	0,16	400x400		
1R-C5-08	7800	16,5			0,33	6,60	0,33	450x750		
1K-C3-06	7800		8,9					400x800		
1R-C5-08	7800	16,5	8,9	25,4	0,50	6,10	0,36	500x750		
1R-C5-10	7800		Ig	ual qu	e C5-(08-09		500x750		
1R-C0D0	54600	10,3	0,0	10,3	0,06	11,50	1,32	1100x1250		
1D D012	2000	24,2			0,73	7,50	0,14	450x350		
1R-D012	3900		4,0					500x300		
1R-D012	3900	24,2	4,0	28,2	0,85	7,20	0,15	450x350		
1R-D0E0	50700	24,5	0,0	24,5	0,16	9,90	1,42	1100x1350		
1D 001	15/00	11,3			0,15	8,65	0,50	750x700		
1R-EE1	15600		4,4					700x700		

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

PFC1804C MC-Rev.02

Acondicionamiento ambiental de salas de proceso en frigorífico avícola Las Camelias S.A.

Tabla 44	– Cálculo	o de L	Ouctos	de R	etorno	o – TyE	7			
Código	Caudal	Lrecta	\mathcal{L}_{acc}	Ltotal	L/Q	Vel	Área	Lados hxb	Øeq	ΔPe
de línea	[m ³ /h]	[m]	[m]	[m]	L/Q	[m/s]	$[m^2]$	[mm]	[mm]	[mmca]
1R-EE1	15600	11,3	4,4	15,7	0,20	8,30	0,52	750x700		
1R-E1E2	7800	4,2			0,08	7,75	0,28	550x550		
IK-EIEZ	7800		3,3					600x500		
1R-E1E2	7800	4,2	3,3	7,5	0,15	7,35	0,29	550x550		
1R-E213	3900	7,1	2,7	9,8	0,29	5,90	0,18	450x450		
1D E014	2000	14,9			0,45	5,50	0,20	450x450		
1R-E214	3900		2,7					500x400		
1R-E214	3900	14,9	2,7	17,6	0,53	5,30	0,20	450x450		
1R-E1E3	7800			Igual	a E1-	E2		550x550		
1R-E315	3900			Igual	a E2-	13		450x450		
1R-E316	3900			Igual	a E2-	14		450x450		
			P	ara evi	itar un	cambic	de			
1R-EF0	35100	1,6	sec	ción e	n tran	no tan c	orto,	1100x1350		
					ual a I					
1D PP1	22.400	14,3			0,15	8,65	0,75	900x900		
1R-FF1	23400		5,6					900x900		
1R-FF1	23400	14,3	5,6	19,9	0,20	8,30	0,78	900x900		
15 5150	11700	3,0			0,05	7,85	0,41	650x650		
1R-F1F2	11700	,	3,8					700x600		
1R-F1F2	11700	3,0	3,8	6,8	0,11	7,60	0,43	650x650		
1R-F219	3900	-		Igual	a E2-			450x450		
1R-F2F3	7800	6,0	0,0	6,0	0,12	6,90	0,31	650x500		
1R-F318	3900			· ·	a E2-			450x450		
		13,1			0,39	5,50	0,20	400x500		
1R-F317	3900		2,7		- ,	- ,	-, -	400x500		
1R-F317	3900	13,1	2,7	15.8	0,47	5,25	0,21	400x500		
1R-F1F4	11700	- ,	,		a F1-		- /	650x650		
1R-F420	3900				a E2-			450x450		
1R-F4F5	7800				a F2-			650x500		
1R-F521	3900				a E2-			450x450		
1R-F522	3900				a F3-			400x500		
	3700	21,0		15441	0,33	7,75	0,42	700x700		
1R-F0G0	11700	21,0	7,7		0,00	7,73	0,12	700x700		
1R-F0G0	11700	21,0	7,7	28,7	0,45	7,25	0,45	700 x700		
TR TOGO	11700	7,1	7,7	20,7	0,43	6,30	0,17	400x450		
1R-G023	3900	1,1	2,7		0,41	0,00	0,17	400x400		
1R-G023	3900	7,1	2,7	9,8	0,29	5,85	0,19	450x450		
1K-G025	3900		۷,7	9,0						
1R-G024	3900	14,4	5 2		0,43	5,40	0,20	450x450		
1D C024	2000	111	5,3	10.7	0.50	5 20	0.21	500x400		
1R-G024	3900	14,4	5,3	19,7		5,20	0,21	450x450		
1R-G025	3900			igual	a G0-	24		450x450		

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

3.6 Verificación de presión estática del ventilador para TyE

Estando definido el cálculo de los ductos de impulsión y retorno, se corrobora que la pérdida de presión estática de todo el sistema sea inferior o igual a la presión estática disponible del ventilador de las UTA, la cual es de 103,6 mmca.

A continuación se muestran los resultados:

Tabla 45 – Verificación de ΔPe del 1	Ventilador
Elemento	ΔPe [mm
Elemento	c.a.]
Tramo Impulsión 1I-U1A1+1I-A1A0	3,75
Tramo Impulsión 1I-A0B0	3,09
Tramo Retorno 1R-A0B0	3,84
Tramo Retorno 1R-U1A1+1R-A1A0	4,07
Sub Total	14,75
Evaporador	5,00
Difusor y rejilla	2,00
Compuerta	0,03
Filtros	0,25
Rotor	0,22
Total	22,24
Ventilador	103,60

3.7 Ductos de impulsión para sala EyC

3.7.1 Hipótesis de cálculo

Se consideran las mismas hipótesis que en los ductos de impulsión para TyE, sección 3.4.2.

El trazado de los ductos de impulsión junto con las bocas de impulsión se presenta en el plano **1804C-BD-001**.

La numeración de los tramos utilizada para el cálculo se muestra en la figura 23:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

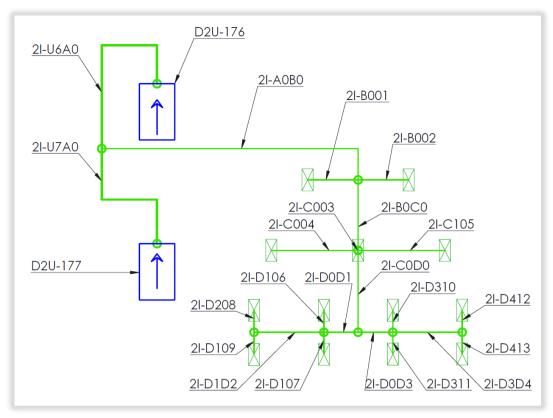


Figura 23: Tramos de impulsión para sala de EyC.

3.7.2 Cálculo

El cálculo y dimensionamiento se realiza de igual forma que para los ductos de impulsión en el apartado 3.4.3. Los resultados tramo a tramo se muestran en la tabla a continuación:

Tabla 46 – Cálculo de Ductos de Impulsión para EyC										
Código	Caudal	Lrecta	Lacc	Ltotal	L/Q	Vel	Área	Lados hxb	Øeq	ΔPe
de línea	$[m^3/h]$	[m]	[m]	[m]	L/Q	[m/s]	$[m^2]$	[mm]	[mm]	[mmca]
2I-U6A0	20000	11,0				11,77	0,47	700x700	777	
21-00A0	20000		13,2							
2I-U6A0	20000	11,0	13,2	24,2		11,77	0,47	700x700	777	3,83
2I-U7A0	20000		Ig	ual qu	e U6- <i>A</i>	A0		700x700	777	3,83
21 4000	40000	25,8				12,50	0,89	1000x1000	1114	
2I-A0B0	40000		20,4					1050x1050		
2I-A0B0	40000	25,8	20,4	46,2		12,50	0,89	1000x1000	1114	5,25
21 D001	2000	6,1			0,21	10,30	0,08	300x300		
2I-B001	3000		4,0					300x300		
2I-B001	3000	6,1	4,0	10,1	0,36	9,40	0,09	300x300		
2I-B002	3000			Igual a	B0-01			350 x 300		
2I-B0C0	33000	6,3	0,0	6,3	0,05	11,80	0,78	900 x900		
21 (2002	2000	1,5			0,05	11,25	0,07	300x300		
2I-C003	3000		2,0					300x300		
2I-C003	3000	1,5	2,0	3,5	0,12	10,50	0,08	300x300		
21 (2004	2000	9,3			0,33	9,15	0,09	300x300		
2I-C004	3000		4,0					300x300		

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

PFC1804C MC-Rev.02

Tabla 46 – Cálculo de Ductos de Impulsión para EyC										
Código	Caudal	Lrecta	Lacc	Ltotal	L/Q	Vel	Área	Lados hxb	Øeq	ΔPe
de línea	$[m^3/h]$	[m]	[m]	[m]	L/Q	[m/s]	$[m^2]$	[mm]	[mm]	[mmca]
2I-C004	3000	9,3	4,0	13,3	0,47	8,50	0,10	300x350		
2I-C005	3000		Ιg	gual a l	a C0-0)4		400 x 350		
2I-C0D0	24000	7,4	0,0	7,4	0,07	11,00	0,61	700x900		
01 D0D1	12000	3,1			0,05	10,40	0,32	700x500		
2I-D0D1	12000		3,5					700x500		
2I-D0D1	12000	3,1	3,5	6,6	0,10	10,00	0,33	700x500		
01 D106	2000	3,4			0,12	6,90	0,12	350 x 350		
2I-D106	3000		4,0					400 x 300		
2I-D106	3000	3,5	4,0	7,5	0,26	8,10	0,10	300x350		
2I-D107	3000		Ig	ual qu	e D1-0	06		350 x 350		
2I-D1D2	6000	6,3	0,0	6,3	0,15	8,70	0,19	400x500		
DI D000	2000	3,5			0,12	7,90	0,11	400x300		
2I-D208	3000		4,0					400x300		
2I-D208	3000	3,5	4,0	7,5	0,26	7,15	0,12	400x300		
2I-D209	3000		Ig	ual qu	e D2-0	08		400 x 300		
2I-D0D3	12000		Ig	ual qu	e D0-I	D1		700 x 500		
2I-D310	3000		Ig	ual qu	e D1-0	06		350 x 350		
2I-D311	3000			_	e D1-0			350 x 350		
2I-D3D4	6000		Igual que D1-D2 400							
2I-D412	3000				e D2-0			400 x 300		
2I-D413	3000		Igual que D2-08 400 x 300							

3.8 Ductos de retorno para sala EyC

3.8.1 Hipótesis de cálculo

Se consideran las mismas hipótesis que en los ductos de impulsión de EyC, sección 3.7.1.

El trazado de los ductos de retorno junto con las rejillas de aspiración se presenta en el plano **1804C-BD-002**. La numeración de los tramos utilizada para el cálculo se muestra en la figura 24.

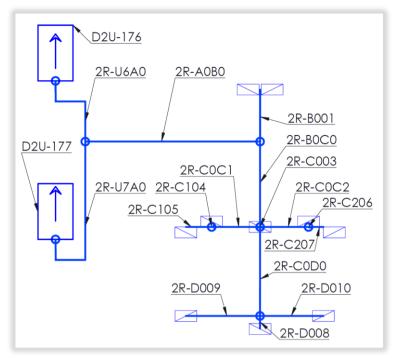


Figura 24: Tramos de retorno para sala de EyC.

3.8.2 Cálculo

El cálculo y dimensionamiento se realiza de igual forma que para los ductos de impulsión en el apartado 3.7.2. Los resultados tramo a tramo se muestran en la tabla a continuación:

Tabla 46 – Cálculo de Ductos de Retorno para EyC											
Código de línea	Caudal [m³/h]	L _{recta}	L _{acc} [m]	L _{total} [m]	L/Q	Vel [m/s]	Área [m²]	Lados hxb [mm]	Øeq [mm]	ΔPe [mmca]	
2R-U6A0	20000	13,2				11,77	0,47	700x700	777		
ZK-UUAU	20000		17,6								
2R-U6A0	20000	13,2	17,6	30,8		11,77	0,47	700x700	777	4,87	
2R-U7A0	20000			Igual qu	1e U6-	A0		700x700	777	4,87	
2R-A0B0	37500	17,3	0,0	17,3		12,50	0,83	1000x100 0	1114	1,97	
2D D001	7500	13,9			0,28	9,80	0,21	450x500			
2R-B001	7500		6,5					500x500			
2R-B001	7500	13,9	6,5	20,4	0,41	9,15	0,23	450x550			
2R-B0C0	30000	5,7			0,05	11,70	0,71	1000x750			
ZK-DUCU	30000		5,0					1050x750			
2R-B0C0	30000	5,7	5,0	10,7	0,09	11,30	0,74	1000x800			
2R-C003	3750	7,1			0,22	9,25	0,11	400x300			
2K-C003	3730		2,0					400x300			
2R-C003	3750	7,1	2,0	9,1	0,28	8,90	0,12	400x300			
2R-C0C1	7500	4,4			0,09	10,30	0,20	500x450			
2R-C0C1	7300		3,3					500x450			
2R-C0C1	7500	4,4	3,3	7,7	0,16	9,60	0,22	500x450			
2R-C104	3750	7,1			0,22	8,00	0,13	450x300			

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

Tabla 46 – Cálculo de Ductos de Retorno para EyC												
Código de línea	Caudal [m³/h]	L _{recta}	Lacc [m]	L _{total} [m]	L/Q	Vel [m/s]	Área [m²]	Lados hxb [mm]	Øeq [mm]	ΔPe [mmca]		
			2,7					400x400				
2R-C104	3750	7,1	2,7	9,8	0,30	7,60	0,14	400x400				
2R-C105	3750	9,5			0,29	7,60	0,14	400x400				
2R-C105	3730		2,7					400x400				
2R-C105	3750	9,5	2,7	12,2	0,37	7,30	0,14	400x400				
2R-C0C2	7500			Igual qu	ıe C0-	C1		500 x 450				
2R-C206	3750			Igual q	ue C1-	04		400 x 400				
2R-C207	3750			Igual q	ue C1-	05		400 x 400				
2R-C0D0	11250	8,1	0,0	8,1	0,13	10,00	0,31	600x600				
2R-D008	3750	8,3			0,26	8,15	0,13	450x300				
2K-D006	3730		2,7					400x400				
2R-D008	3750	8,3	2,7	11,0	0,34	7,70	0,14	400x400				
2D D000	2750	13,9			0,43	7,35	0,14	400x400				
2R-D009	3750		2,7					400x400				
2R-D009	3750	13,9	2,7	16,6	0,51	7,15	0,15	400x400				
2R-D010	3750			Igual qı	ue D0-	-09		400 x 400				

3.9 Verificación de presión estática del ventilador para EyC

Estando definido el cálculo de los ductos de impulsión y retorno, se corrobora que la pérdida de presión estática de todo el sistema sea inferior o igual a la presión estática disponible del ventilador de las UTA, la cual es de 103,6 mmca. A continuación se muestran los resultados:

de ΔPe del Ventilador
ΔPe [mm c.a.]
3,83
5,25
1,97
4,87
15,91
5,00
2,00
0,03
0,25
0,22
23,40
103,60

3.10 Determinación del espesor de chapa

3.10.1 Generalidades

Se utiliza la normativa de ductos del ente DITAR de Chile, una asociación de profesionales de climatización y refrigeración, donde se desarrollan los métodos de cálculo para definir los espesores mínimos de cada elemento.

3.10.2 Hipótesis de cálculo

Las consideraciones utilizadas son las siguientes:

- Presión del conducto: se considera que la presión de trabajo del conducto resulta igual a la pérdida de carga que éste genera. Ya sea impulsión o retorno de TyE o de EyC, la presión de cualquiera ellos queda dentro de la categoría B.1 (baja presión) fijada por la norma, donde el límite de dicha categoría es ±150 Pa. Cabe aclarar que el tendido de ductos de retorno para TyE es el que mayor pérdida de carga ocasiona, con 7.9mmca (79Pa). Dicho valor se obtiene al sumar la pérdida de las líneas 1R-U1A0 y 1R-A0B0, mostradas en la tabla 45.
- Para definir los espesores de cada parte del sistema se utiliza tabla 4P de la norma citada (figura 25).
- La superficie de cada elemento se obtiene de acuerdo a las dimensiones y cantidades tabuladas en los planos BD-11 al BD-30.
- La superficie de chapa coincide con la superficie calculada para cada parte, sin considerar los desperdicios que resulten del proceso de fabricación.

3.10.3 Resultados del cálculo

Al comprobar que todo el sistema clasifica dentro de la categoría de baja presión B.1, se ingresa en la tabla de la imagen a continuación y, con el lado mayor del conducto, se obtiene el espesor de chapa mínimo que exige la normativa.

1,2 m	CLASE																	
entre Uniones		B1	2		B2			B3			M1	0		M2			M3	
	+	- 125 P	a	4	- 250 P	a		+ - 500 F	a	. 4	- 750 F		+	1000	Pa	+	1500	Pa
Lado Mayor	Espesor	Unión	Refzo	Espesor	Unión	Refzo	Espeso	Unión	Refzo	Espeso	Unión	Refzo	Espesor	Unión	Refzo	Espesor	Unión	Refzo
Dimensión mm	nomin	Transv	interm	nomin	Transv	interm	nomin	Transv	interm	nomin	Transv		nomin	Transv	1111111111	nomin	Transv	
≤ 200	(5)	Balleta/S	Sin	(5)	Balleta/S	Sin	(5)	Balleta/S	Sin	(5)	Balleta/S	Sin	(6)	TDC	Sin	(8)	TDC	Sin
201 a 250	(5)	Balleta/S	Sin	(5)	Balleta/S	Sin	(5)	Balleta/S	Sin	(5)	Balleta/S	Sin	(6)	TDC	Sin	(8)	TDC	Sin
251 a 300	(5)	Balleta/S	Sin	(5)	Balleta/S	Sin	(5)	Balleta/S	Sin	(5)	Balleta/S	Sin	(6)	TDC	Sin	(8)	TDC	Sin
301 a 350	(5)	TDC	Sin	(6)	TDC	Sin	(6)	TDC	Sin	(6)	TDC	Sin	(6)	TDC	Sin	(8)	TDC	Sin
351 a 400	(5)	TDC	Sin	(6)	TDC	Sin	(6)	TDC	Sin	(6)	TDC	Sin	(6)	TDC	Sin	(8)	TDC	Sin
401 a 450	(5)	TDC	Sin	(6)	TDC	Sin	(6)	TDC	Sin	(6)	TDC	Sin	(6)	TDC	Sin	(8)	TDC	Sin
451 a 500	(5)	TDC	Sin	(6)	TDC	Sin	(6)	TDC	Sin	(8)	TDC	Sin	(8)	TDC	Sin	(8)	TDC	Sin
501 a 550	(5)	TDC	Sin	(6)	TDC	Sin	(6)	TDC	Sin	(8)	TDC	Sin	(8)	TDC	Sin	(8)	TDC	Sin
551 a 600	(5)	TDC	Sin	(6)	TDC	Sin	(6)	TDC	Sin	(8)	TDC	Sin	(8)	TDC	Sin	(8)	TDC	Sin
601 a 650	(5)	TDC	Sin	(6)	TDC	Sin	(6)	TDC	Sin	(8)	TDC	Sin	(8)	TDC	Sin	(8)	TDC	Sin
651 a 700	(5)	TDC	Sin	(6)	TDC	Sin	(6)	TDC	Sin	(8)	TDC	Sin	(8)	TDC	Sin	(10)	TDC	Sin
701 a 750	(6)	TDC	Sin	(6)	TDC	Sin	(8)	TDC	Sin	(8)	TDC	Sin	(8)	TDC	Sin	(10)	TDC	Sin
751 a 900	(6)	TDC	Sin	(6)	TDC	Sin	(8)	TDC	Sin	(8)	TDC	Sin	(10)	TDC	Sin	(10)	TDC	*Z40x1,5
901 a 1000	(6)	TDC	Sin	(8)	TDC	Sin	(8)	TDC	Sin	(8)	TDC	Z50x1	(10)	TDC	Z40x1,5	(10)	TDC	*Z40x1,5
1001 a 1200	(6)	TDC	Sin	(8)	TDC	Sin	(8)	TDC	Z50x1	(8)	TDC	Z40x1,5	(10)	TDC	Z40x1,5	(10)	TDC	*Z50x2,5
1201 a 1300	(6)	TDC	Z25x1	(8)	TDC	Sin	(8)	TDC	Z40x1,5	(10)	TDC	Z40x1,5	(10)	TDC	*Z40x3	(10)	TDC	*Z50x2,5
1301 a 1500	(6)	TDC	Z25x1,5	(8)	TDC	Sin	(8)	TDC	Z40x1,5	(10)	TDC	Z40x1,5	(10)	TDC	*Z40x3	(10)	TDC	*Z50x2,5
1501 a 1800	(8)	TDC	Z50x1	(8)	TDC	Z40x1,5	(10)	TDC	*Z40x3	(10)	TDC	*Z50x2,5	(10)	TDC	*Z50x2,5	(15)	TDC	*Z50x3
1801 a 2000	(8)	TDC	Z40x1,5	(10)	TDC	Z40x1,5	(10)	TDC	*Z50x2,5	(10)	TDC	*Z50x2,5	(15)	TDC	*Z50x2,5	(15)	TDC	*Z75x2,5
2001 a 2400	(10)	TDC	Z40x1,5	(10)	TDC	*Z40x3	(10)	TDC	*Z50x2,5	(10)	TDC	*Z50x2,5	(15)	TDC	*Z50x3	(15)	TDC	*Z75x3
≥ 2401	(15)	TDC	Z40x1,5	(15)	TDC	*Z50x2,5	(15)	TDC	*Z50x3	(15)	TDC	*Z75x2,5	(15)	TDC	*Z75x3	(15)	TDC	*Z75x3

Figura 25: Tabla de espesores de chapa según normativa adoptada.

De este proceso surge que los espesores a utilizar se agrupan según se muestra:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

Tabla 48 - Espesores de Chapa para Ductos según Norma						
Longitud	Espesor	Calibre	Masa			
del lado mayor	mínimo	ASTM				
[mm]	[mm]	A924/924M-94	[kg/m2]			
0 a 700	0.48	28	3.81			
701 a 1500	0.55	26	4.42			
1501 a 2000	0.85	22	6.86			

A continuación se calcula la superficie de cada parte que conforma el sistema e ductos, y se obtiene el peso de cada elemento. Sumando las cantidades se obtienen la superficie total y el peso total de chapa a utilizar, como figura en la siguiente tabla:

Tabla 49 - Cálculo de Chapa para Ductos **TyE** EyC TyE + EyCSup. de Peso de Sup. de Peso de Sup. de Peso de Elemento chapa chapa chapa chapa chapa chapa [m2][kg] [m2][kg] [m2][kg] Tramos rectos 2273 10635 572 2298 12933 2845 Curvas 90° 578 84 335 914 132 216 63 127 10 20 Derivaciones Simples* 71 142 29 Derivaciones en T** 12 26 41 89 63 897 Reducciones 141 815 19 81 160 2639 12218 697 2761 3333 14974 Total

Nota: se desprecia el aporte de las derivaciones triples por ser muy pequeño.

El resultado del cálculo para cada una de las partes según su código se presenta en el Anexo 3.4.

3.10.4 Costo de chapa

Considerando un precio de chapa galvanizada (dentro de los calibres utilizados) de 1,25 USD/kg de acero y tomando el peso total de la tabla 49, se obtiene un **costo total de chapa de 18717 USD.**

3.11 Soportería

Como la ingeniería de montaje no está incluida dentro de los alcances del proyecto, se realiza un cálculo aproximado de materiales de soportería para estimar un costo. Para ello se utiliza nuevamente la norma DITAR chilena, la cual mediante la tabla que se muestra en la figura siguiente, fija el espaciamiento y el largo de los tirantes que soportan los ductos:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

^{*}Se calculan como la mitad de una curva a 90°

^{**}Se considera como 2 curvas a 90°

Máxima suma de lados o			Distanc	cia entra par	ejas da sopor	tes m			
semiperi- metro	3.	3.0		3.0 2.4		1.9	5	1.2	
М	pletinas mm	varillas mm	pletinas mm	varillas mm	pletinas mm	varillas mm	pletinas mm	varillas mm	
1.8	25 x(8)	6							
2.4	25x(12)	8	25x(10)	6	25 x(8)	6	25 x(8)	6	
3	25x(15)	10	25x(12)	6	25 x(8)	6	25 x(8)	6	
4.2	40x(15)	12	25x(15)	10	25x(12)	8	25x(12)		
4.8		12	40x(15)	12	25x(15)	8	25x(15)	8 8	

Figura 26: Dimensiones del sistema de soportería de ductos según normativa adoptada.

Se realiza un promedio de la máxima suma de lados de los ductos horizontales de toda la instalación, la cual resulta en 2m. Luego, seleccionando una distancia entre soportes de 3m, se observa en la figura que corresponde un diámetro de tirantes (varillas) de 8mm.

Para determinar la cantidad de material se toma un promedio de los lados horizontales de ductos (para la longitud de ángulos) de 800mm y una altura promedio de tirantes de 3m (para la longitud de varillas). Además se contempla una longitud de varilla roscada 5/16" de 100mm para la unión tirante-ángulo, con tuerca y contratuerca. Con todo ello se determina la cantidad de material para un soporte:

- Varilla de acero Ø8mm: 6m.
- Varilla roscada 5/16": 200mm.
- Ángulo 1 1/2 x 1/8": 900mm.
- Tuercas 5/16": 4.

Luego, con la distancia entre soportes adoptada se obtiene una cantidad total de 134 soportes, con lo que se determina la cantidad total de materiales necesarios:

- Varilla de acero Ø8mm: 134 barras de 6m.
- Varilla roscada 5/16": 27 varillas de 1m.
- Ángulo 1 1/2 x 1/8": 20 barras de 6m.
- Tuercas 5/16": 536.
- Peso total de acero: 535kg.

Finalmente, considerando los precios de mercado se obtiene el costo total de materiales:

Tabla 50 – Costo de Materiales para Soportería					
	Costo unitario USD	Costo total USD			
Varilla de acero Ø8mm (barra de 6m)	3,4	455,6			
Varilla roscada 5/16" (varilla de 1m)	0,75	20,25			
Ángulo 1 1/2 x 1/8" (barra de 6m)	12	240			
Tuercas 5/16"	0,02	10,72			
	Total	727 USD			

3.12 Costos de fabricación y montaje

Para el cálculo del costo de la instalación de ductos se toman las siguientes hipótesis, cuyos valores son estándares utilizados en la industria metalúrgica de la zona:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

- Índice de mano de obra de taller (HH: Horas Hombre):
 - o Ductos (corte, plegado y armado): 0,14 HH/kg de acero.
 - o Soportería (corte, soldado y perforado): 0,1 HH/kg de acero.
- Índice de mano de obra de montaje: 0,08 HH/kg de acero.
- Precio de mano de obra: 6,5 USD/HH.

De la tabla 49, el peso total de chapa galvanizada es de 14974kg, y de la tabla 50 se obtiene el peso total de acero para la soportería de 535kg, lo que hace un total de acero de 15500kg. De igual manera, ya fueron calculados los costos de chapa y materiales de soportería, por lo tanto:

Tabla 51 – Costo de Fabricación y Montaje de Ductos					
	Cantidad de HH	Precio mano de obra USD			
Ductos	2096	13624			
Soportería	53,5	348			
Montaje	1240	8060			
	Total mano de obra	22032 USD			
	Difusores y rejillas	5937 USD			
	Materiales ductos	18717 USD			
	Materiales soportería	727 USD			
Costo t	otal fabricación y montaje	47413 USD			

3.13 Aislación de ductos

3.13.1 Generalidades

Para la aislación de los ductos se analiza la posibilidad de utilizar dos materiales distintos: polietileno expandido o espuma elastomérica. Con cada uno se calcula el espesor necesario para evitar la condensación de humedad en la superficie exterior de los ductos y seguidamente se determina la ganancia térmica resultante con dicho espesor. Por último se verifica que dicha ganancia no supere la potencia de refrigeración disponible del conjunto de UTA.

Se utiliza el mismo procedimiento de cálculo para ambas salas.

3.13.2 Hipótesis de cálculo - TyE

- En cálculo se realiza considerando la superficie total de los ductos de la sala, indicados en la tabla 49: 2639m².
- Condiciones del aire exterior: T= 35°C; HR= 65%; Trocío= 27,5°C.
- El aire en el interior de los ductos se considera a la misma temperatura que se lo inyecta en la sala: 9,16°C (punto 5 tabla 23 de MC).
- Se desprecia la resistencia pelicular en el interior de los ductos y se asume que la pared del conducto se encuentra a la misma temperatura que el aire en su interior.
- El coeficiente de transmisibilidad superficial por convección (h₀) se calcula de acuerdo a la expresión indicada por la norma UNE-EN ISO 12241.
- Los coeficientes de conductividad (λ) de los materiales se obtienen a partir de los datos de catálogos, en función del espesor y la resistencia térmica que figuran en los mismos.
- Para el cálculo del espesor mínimo de aislación se considera que la temperatura superficial del aislante es igual a la temperatura de rocío del aire.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

3.13.3 Cálculo - TyE

Las propiedades de los materiales a comparar se listan a continuación:

Tabla 52 – Características de Materiales Aislantes

Tabla 32 - Galacteristicas de Materiales Misiantes					
Material	Polietileno expandido con film de aluminio	Espuma elastomérica sin recubrimiento			
Conductividad térmica $(\lambda)^*$	0,033 W/m°C	0,034 W/m°C			
Coeficiente de emisividad superficial $(\epsilon)^{**}$	0,2	0,9			

^{*}Calculada como: espesor [m] / resistencia térmica [°C*m2/W]

Las expresiones para el cálculo son:

$$h_{r}\left[\frac{W}{m^{2}K}\right] = \varepsilon \cdot \sigma \cdot \left(T_{s}^{2} + T_{amb}^{2}\right) \cdot \left(T_{s} + T_{amb}\right) \qquad h_{sup}\left[\frac{W}{m^{2} \circ C}\right] = h_{r} + h_{c}$$

$$h_{c}\left[\frac{W}{m^{2}K}\right] = 1,32 \cdot \sqrt[4]{\frac{\left(T_{s} + T_{amb}\right)}{H}} \qquad R_{sup}\left[\frac{m^{2} \circ C}{W}\right] = \frac{1}{h_{sup}}$$

$$e[m] = \left(\frac{\lambda}{h_{c} + h_{r}}\right) \cdot \frac{\left(T_{sup} - T_{int}\right)}{\left(T_{amb} - T_{sup}\right)} \qquad R_{ais}\left[\frac{m^{2} \circ C}{W}\right] = \frac{e}{\lambda}$$

$$\dot{Q}[W] = \frac{A}{R_{ais} + R_{sup}} \cdot \left(T_{amb} - T_{int}\right) \qquad T'[\circ C] = T_{int} + \frac{\dot{Q} \cdot R_{ais}}{A}$$

Donde:

- h_r : coeficiente de transmitancia térmica superficial por radiación
- h_c : coeficiente de transmitancia térmica superficial por convección
- h_{sup}: coeficiente de transmitancia térmica superficial por convección y radiación combinadas.
- *R*_{sup}: resistencia térmica superficial.
- *e* : espesor del aislante.
- Rais : Resistencia térmica del material a la conducción de calor.
- Q: ganancia de calor a través del aislante.
- A: área de la superficie cubierta por el aislante, en m^2 .
- ε : coeficiente de emisividad térmica por radiación, adimensional.
- σ : constante de Stefan-Boltzman (5.67x10-8 W/m²K⁴)
- *Ts :* temperatura superficial de la cara exterior del aislante, en K para todas las expresiones, excepto cuando se calcula una diferencia de temperaturas, donde es indistinto utilizar °C.
- T_{amb} : temperatura del ambiente exterior, en K o °C.
- *T_{int} :* temperatura del aire en el interior del conducto, en K o °C.
- *H* : altura de la pared del conducto. Como valor de referencia se utiliza 1m.
- λ: coeficiente de conductancia térmica del material, en W/m°C.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

^{**}Valores adoptados del Manual ASHRAE 2017 – Fundamentals Book – pág. 688 – tabla 12

T': temperatura real en la superficie del aislante obtenida por iteración, en °C.

Los resultados del cálculo se muestran en la tabla a continuación:

Tabla 53 – Cálculo del Espesor Mínimo - TyE

Tuota 35 Galeano del Espesol 17111111110	1,2		
Datos		Polietileno	Espuma
Datos		Expandido	Elastomérica
Temperatura en interior del (Tint)	°C	9,16	9,16
Temperatura del ambiente exterior (T _{amb})	°C	35	35
Humedad relativa	%	65	65
Temperatura de punto de rocío del aire	$^{\circ}\mathrm{C}$	27,5	27,5
Conductividad térmica del aislante (λ)	W/m °C	0,033	0,034
Coeficiente de emisividad sup (ϵ)	-	0,2	0,9
Constante de Stefan-Boltzman (σ)	W/m^2K^4	5,67E-08	5,67E-08
Coef. de transmitancia por radiación (hr)	$W/^{\circ}C$ m^2	1,28	5,758
Coef. de transmitancia por convección (h _c)	W/°C m²	2,18	2,184
Alto del conducto (H)	m	1	1,000
Coef. de transmitancia superficial (hsup)	$W/^{\circ}C^{*}m^{2}$	3,46	7,943
Resistencia térmica superficial (R _{sup})	$^{\circ}C^{*}m^{2}/w$	0,29	0,126
E d- li-li/i- (-)	m	0,023	0,010
Espesor de la aislación necesario (e)	mm	23,1	10,468
Espesor comercial	mm	25	13,000
Resistencia térmica del espesor comercial	$^{\circ}$ C m^2 /W	0,764	0,382
Superficie aislada	m^2	2639	2639
Commiss (/www.iss. (O)*	kW	64,8	134
Ganancia térmica (Q)*	kcal/h	55690	115375
*Para practicidad en esta tabla se consideró insignificante l	a diferencia de temp	peratura superficial di	io piioda ovietir optro ol

^{*}Para practicidad, en esta tabla se consideró insignificante la diferencia de temperatura superficial que pueda existir entre el espesor comercial y el necesario, por lo cual se considera contante h_{sup}.

Al comparar los resultados se puede observar que es posible evitar la condensación superficial utilizando un espesor más pequeño si se opta por la espuma elastomérica, pero la ganancia térmica resulta ser aproximadamente el doble respecto al polietileno expandido. Esto es de esperar porque los coeficientes de conductancia son aproximadamente iguales y el espesor de la espuma elastomérica es la mitad que el de polietileno.

Por lo tanto, para poder analizar de forma adecuada la conveniencia de uno u otro material, se calcula la ganancia térmica resultante de aplicar ambos materiales con igual espesor, según se muestra en la siguiente tabla:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

Tabla 54 — Cálculo de Ganancia Térmica a Igual Espesor - TyE						
Datos		Polietileno	Espuma			
Datos		Expandido	Elastomérica			
Nuevo Espesor elegido	mm	25	25			
Resistencia térmica del aislante	°C m2/W	0,764	0,735			
Área considerada	m2	2639	2639			
Temperatura superficial del aislante $(T_{ais})^*$	°C	28,0	31,2			
Coef. de transmitancia por radiación (hr)	W/°C m2	1,28	5,86			
Coef. de transmitancia por convección (hc)	W/°C m2	2,15	1,84			
Alto del conducto (H)	m	1	1			
Coef. de transmitancia superficial (hsup)	W/°C m2	3,43	7,71			
Resistencia térmica superficial (Rsup)	°C m2/W	0,29	0,13			
Committee (O)	kW	64,6	78,8			
Ganancia térmica (Q)	kcal/h	55538	67787			
Temperatura real en la sup del aislante (T')	°C	27,9	31,1			

^{*}Debido a que es necesario conocer la temperatura superficial del aislante al momento de calcular la transmitancia pelicular, se supone dicha temperatura. Luego, con el valor obtenido de Q, se calcula temperatura real que tendría el aislante (a través de la expresión de T') para que se produzca un flujo de energía igual a Q. Si la temperatura supuesta coincide con la real T', se verifica que el valor de Q es correcto, en caso contrario se estima otra temperatura superficial y se itera el cálculo.

En consecuencia, la utilización de espuma elastomérica resulta ser desfavorable en comparación al polietileno, por lo que se elige este último como aislante de aplicación en los ductos, con un espesor de 25mm.

Como se muestra en la siguiente tabla, el espesor adoptado es suficiente para no generar una ganancia térmica mayor a la potencia de refrigeración disponible:

Tabla 55 – Verificación de Potencia de Refrigeración Disponible - TyE					
Potencia instalada por UTA	150000	kcal/h			
Potencia necesaria para acondicionar el aire por UTA*	136600	kcal/h			
Potencia disponible por UTA para contrarrestar ganancia térmica	13400	kcal/h			
Potonoje total dienonible para contrarrector ganancie térmica	67000	kcal/h			
Potencia total disponible para contrarrestar ganancia térmi	77,9	kW			

^{*}Valor extraído de tabla 24. Se lo divide en 5 para obtener el valor por cada UTA.

3.13.4 Hipótesis de cálculo – EyC

Las hipótesis que se utilizan para el cálculo resultan ser las mismas a las consideradas para TyE (2.1.2), con excepción de:

- Se considera de la superficie total de los ductos de la sala: 697 m² (taba 49).
- El aire en el interior de los ductos se considera a la misma temperatura que se lo inyecta en la sala: 12,3 °C (punto 5 tabla 32 de MC).

3.13.5 Cálculo - EyC

Las expresiones y el procedimiento a utilizar son los mismos que en el apartado 2.1.3.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

Debido a que los resultados obtenidos para TyE muestran que es conveniente el uso de polietileno expandido, se realiza el cálculo sólo para este material. Los resultados aparecen en la siguiente tabla:

Tabla 56 – Cálculo del Espesor Mínimo - EyC					
Datos		Polietileno Expandido			
Temperatura en interior del (T _{int})	°C	12,3			
Temperatura del ambiente exterior (Tamb)	°C	35			
Humedad relativa	%	65			
Temperatura de punto de rocío del aire	°C	27,5			
Conductividad térmica del aislante (λ)	W/m °C	0,033			
Coeficiente de emisividad sup (ϵ)	-	0,2			
Constante de Stefan-Boltzman (σ)	W/m^2K^4	5,67E-08			
Coef. de transmitancia por radiación (h _r)	W/°C m²	1,28			
Coef. de transmitancia por convección (hc)	W/°C m²	2,18			
Alto del conducto (H)	m	1			
Coef. de transmitancia superficial (hsup)	$W/^{\circ}C^{*}m^{2}$	3,46			
Resistencia térmica superficial (R _{sup})	$^{\circ}C^{*}m^{2}/w$	0,29			
Espacer de la ciclosión massaria (a)	m	0,019			
Espesor de la aislación necesario (e)	mm	19,1			
Espesor comercial	mm	20			
Resistencia térmica del espesor comercial	$^{\circ}$ C m^2 /W	0,611			
Superficie aislada	m^2	697			
Canancia térmica (O)*	kW	17,6			
Ganancia térmica (Q)*	kcal/h	15119			

^{*}Para fines prácticos, en esta tabla se consideró insignificante la diferencia de temperatura superficial que pueda existir entre el espesor comercial y el necesario, por lo cual se considera contante h_{sup}.

Con la tabla 57 se verifica que la aislación de polietileno expandido en 20mm de espesor es suficiente para no generar una ganancia térmica mayor a la potencia de refrigeración disponible:

Tabla 57 – Verificación de Potencia de Refrigeración Disponible - EyC					
Potencia instalada por UTA	170000	kcal/h			
Potencia necesaria para acondicionar el aire por UTA*	144600	kcal/h			
Potencia disponible por UTA para contrarrestar ganancia térmica	25400	kcal/h			
Potencia total disponible para contrarrestar ganancia térmica		kcal/h			
rotencia total disponible para contrarrestar ganancia termica	59,1	kW			

^{*}Valor extraído de tabla 43. Se lo divide en 2 para obtener el valor por cada UTA.

3.13.6 Costo de materiales y montaje para la aislación

La cotización de materiales es realizada en base al precio suministrado por la firma ASTS Obras Acústicas SRL. Cabe aclarar que el precio de referencia es el mismo para ambos espesores de

polietileno expandido, 20mm y 25mm, por lo cual la superficie de cálculo corresponde al total de la tabla 49: 3333m².

Para el costo de montaje se toma un índice de precio de mano de obra de 2 veces el precio del material de aislación.

Tabla 58 – Costo de Aislación para Ducto	OS .			
Descripción	Superficie	Precio	Total	
	de aislante	unitario		
Espuma de polietileno expandido con film de aluminio - Espesor de 20 y 25 mm	3333 m ²	2,60 USD/m ²	8667 USD	
	17334 USD			
Costo total materiales y montaje para aislación				

4. Selección de componentes de control

4.1 Dámpers

La selección de los dámpers para realizar el bypass de control de humedad se realiza teniendo en cuenta tamaño del ducto de salida de los equipos de rotor desecante, el cual es de 700x700mm tanto para TyE como para EyC. Por lo tanto se selecciona una unidad del mismo tamaño.

Mec	lidas	s re	rsıar	na A				1	C 1			
				iu /	lera	Op	ues:	ra y	501	orep	res	ion
TARI A	DE MEDID	AS EN CE	NTIMETRO	ns.								
15X15		/ IO ZIN OZ										
20X15	20X20											
25X15	25X20	25X25										
30X15	30X20	30X25	30X30									
35X15	35X20	35X25	35X30	35X35								
40X15	40X20	40X25	40X30	40X35	40X40							
45X15	45X20	45X25	45X30	45X35	45X40	45X45						
50X15	50X20	50X25	50X30	50X35	50X40	50X45	50X50					
60X15	60X20	60X25	60X30	60X35	60X40	60X45	60X50	60X60				
70X15	70X20	70X25	70X30	70X35	70X40	70X45	70X50	70X60	70x70			
80X15	80X20	80X25	80X30	80X35	80X40	80X45	80X50	80X60	80x70	80x80		
90X15	90X20	90X25	90X30	90X35	90X40	90X45	90X50	90X60	90x70	90x80	90x90	
100X15	100X20	100X25	100X30	100X35	100X40	100X45	100X50	100X60	100x70	100x80	100x90	100x100
110X15	110X20	110X25	110X30	110X35	110X40	110X45	110X50	110X60	110x70	110x80	110x90	110x100
120x15	120x20	120x25	120x30	120x35	120X40	120X45	120X50	120X60	120x70	120x80	120x90	120x100

Figura 27: Captura de catálogo de dámpers de chapa galvanizada.

Los dámpers para TyE llevan el código D1R-251, y los de EyC D2R-253.

4.2 Actuadores para comando de dámpers

La selección de los actuadores se basa en el tamaño de la sección del dámper (700x700mm), lo cual define el par disponible del instrumento. Además se tiene en cuenta la tensión de

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

alimentación, que debe ser 24V; la señal de entrada admitida, que debe ser una tensión 0..10V; y el tipo de motor, el cual debe ser un servomotor modulante para lograr un control de caudal de aire preciso.

El modelo seleccionado es el MN7505A20 de Honeywell, el cual es apto para secciones de dámpers de hasta 2m², y las demás características acordes a lo detallado anteriormente.

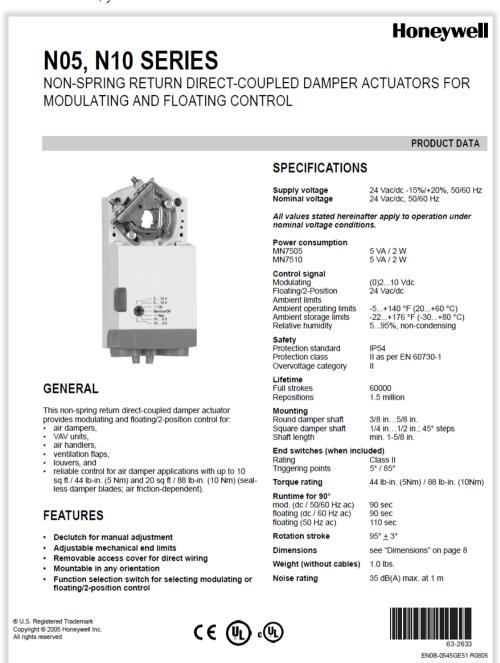


Figura 28: Captura de catálogo de actuadores.

Los actuadores para TyE llevan el código D1S-260, y los de EyC D2S-261.

4.3 Costo de componentes

Los 7 dámpers tienen un costo total de 581USD (83USD c/u), mientras que los 7 actuadores hacen un total de 1050USD (150USD c/u).

Por lo tanto, el costo total de componentes para control es de **1631USD**.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

5. Alimentación de servicios

5.1 Gas natural

5.1.1 Generalidades

El cálculo de la red de gas natural para alimentar las UTA se realizó conforme a la norma NAG201. El diagrama de tendido es el siguiente:

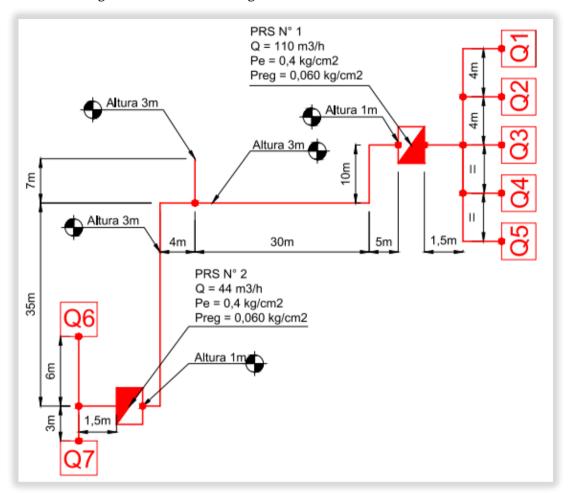


Figura 29: Instalación de gas natural

Los datos para el cálculo se resumen como sigue:

- Presión de toma: 400g/cm2
- Diámetro de tubería de toma: 4"
- Presión de alimentación de equipos: 40-60g/cm2
- Caudal de consumo de equipos: 22m3/h c/u

5.1.2 Hipótesis de cálculo

Para el cálculo de cañerías se tomaron las siguientes consideraciones:

- Debido a la reducción de presión que se debe realizar para alimentar a los equipos, se instalarán 2 Plantas de Regulación Secundaria (PRS), una para cada sala.
- Según la norma, en las plantas de regulación sólo pueden utilizarse cañerías de acero.
 Para la distribución interna puede usarse acero o polietileno enterrado, y se optó por

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

PFC1804C MC-Rev.02

el primero ya que se realizará una distribución aérea. Las uniones en acero serán soldadas para reducir costos por espesores de cañería.

- En la norma podemos ver que los niveles de presión utilizados se consideran "media presión", por ello para el dimensionado de las cañerías se utiliza la fórmula de Renouard Simplificada:

$$P_A^2 - P_B^2 = 48600 \times s \times L \times Q^{1.82} \times D^{-4.82}$$

Donde:

- P_A y P_B . Presiones absolutas en ambos extremos del tramo, en kg/cm².
- s: Densidad del gas (0.61)
- *L*: Longitud del tramo en km, incrementada por la longitud equivalente de los accesorios que la componen.
- Q: Caudal en m³/h.
- *D*: Diámetro en mm
- De acuerdo a las caídas de presión máximas admitidas por la norma, y teniendo en cuenta las demás variables de la fórmula anterior, se determinó un diámetro de cálculo. Luego se seleccionó el diámetro comercial inmediato superior, el cual ocasionará menores pérdidas que las admisibles. Por lo tanto, se recalculó la pérdida de carga con la misma fórmula empleando el diámetro comercial, para obtener la presión real al final del tramo.
- Por otro lado, se verificó la velocidad de flujo, la cual no puede ser mayor a 40m/s en ningún punto de la instalación, según la norma. Para ello se utilizó la siguiente expresión:

$$V = \frac{365.35 \times Q}{D^2 \times P}$$

Donde:

- Q = Caudal en m3/h.
- P = Presión de cálculo, en kg/cm2A.
- D = Diámetro interior del caño en mm.
- Además se verificaron los espesores mínimos de cañerías según las tablas 3 y 4 de la norma.

5.1.3 Resultados de cálculo y elementos seleccionados

Los resultados finales y los componentes de la instalación de gas natural se especifican en los planos 1804C-BG-031, 1804C-BG-032 y 1804C-BG-033, los cuales se confeccionaron acorde a los requerimientos de la normativa, ya que es de esta forma en la que se presenta la documentación ante las autoridades de control.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

5.1.4 Costo de materiales y montaje

Tabla 59 – Costo de Materiales para Instalación de Gas Natural

Materiales tramos de conducción

	Código	Cant.	Descripción	Precio U.	Total USD
	G3F-264	1	Reducción para soldar 4" x 2"	15,5	15,5
(G3A-265	80 m	Caño negro sin costura 1 1/4"	9	720
(G3A-266	62 m	Caño negro sin costura 2"	15	930

Materiales Planta Regulación Secundaria nº1

Código	Cant.	Descripción	Precio U.	Total USD
G3A-266	2 m	Caño negro sin costura 2"	15	30
G3K-267	1	Válvula esférica 3 partes SW p/total 2"	74,9	74,9
G3K-268	3	Válvula esférica 3 partes SW p/total 1/2"	18,9	56,7
G3G-269	2	Media cupla roscada para soldar 1/2"	3,3	6,6
G3F-270	2	Niple de reducción 1/2"x1/4"	1,4	2,8
G3G-271	2	Cupla roscada 1/4''	1,5	2,9
G3J-272	1	Manómetro 0-1 bar Ø 2 1/2''- Bourdon	7,1	7,1
G3P-273	8	Espárrago 5/8" x 31/2"	1,4	11,4
G3M-274	2	Brida Slip-on S-300 2"	19,4	38,9
G3P-275	16	Tuerca hexagonal 5/8"	0,2	2,8
G3L-276	1	Válvula reguladora mod S-292 bridado	674,6	674,6
G3J-277	1	Manómetro 0-250 mbar Ø 2 1/2"- Bourdon	46	46
G3A-278	2m	Caño negro sin costura 1/2"	5	10

Materiales Planta Regulación Secundaria nº2

Código	Cant.	Descripción	Precio U.	Total USD
G3A-265	2 m	Caño negro sin costura 1 1/4"	9,0	18
G3L-279	1	Válvula esférica 3 partes SW p/total 1 1//4"	38,3	38,3
G3L-280	3	Válvula esférica 3 partes SW p/total 1/2"	18,9	56,7
G3G-269	2	Media cupla roscada para soldar 1/2''	3,3	6,6
G3F-270	2	Niple de reducción 1/2''x1/4''	1,4	2,8
G3G-271	2	Cupla roscada 1/4''	1,5	3
G3J-272	1	Manómetro 0-1 bar Ø 2 1/2''- Bourdon	7,1	7,1
G3F-270	2	Reducción para soldar 2" x 1 1/4"	6,6	13,2
G3P-273	8	Espárrago 5/8'' x 31/2''	1,4	11,2
G3M-274	2	Brida Slip-on S-300 1 1/4"	14,3	28,7
G3P-275	16	Tuerca hexagonal 5/8"	0,2	3,2
G3L-276	1	Válvula reguladora mod S-292 bridado	674,6	674,6
G3J-277	1	Manómetro 0-250 mbar Ø 2 1/2''- Bourdon	46	46
G3A-278	2m	Caño negro sin costura 1/2"	5	10

Costo total materiales 3.550 USD

Para el costo de mano de obra de montaje se tomó la consideración que se requieren dos auxiliares y un supervisor para el tendido de las cañerías. De esta manera, el tiempo necesario

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

para finalizar la obra será de 6 días con 8 horas de trabajo. Según se pudo recoger de empresas dedicadas a este tipo de tareas, el costo por HH es:

- Personal auxiliar: 4 USD/h.

- Personal de supervisión: 6 USD/h.

Al mismo tiempo se requiere la contratación de responsables de seguridad e higiene, como también de un soldador calificado para lograr habilitación de la instalación. Para el total de tiempo estimado, se considera que representa 80USD para seguridad e higiene y 1500 USD de trabajo de soldadura. En total se tiene:

Tabla 60 – Costo de Materiales y Montaje de Instalación de Gas Natural				
	Cantidad de HH	Precio mano de obra USD		
Montaje auxiliar	48	4		
Montaje supervisor	48	6		
Total mano de ob	ora p/tendido	480 USD		
Total supervisión seg	uridad e higiene	80 USD		
Total trabajos d	e soldadura	1500 USD		
Materia	ıles	3550 USD		
Costo total materia	ales y montaje	5610 USD		

5.2 Energía eléctrica

5.2.1 Generalidades

La determinación de la sección necesaria y sus correspondientes verificaciones se realiza de acuerdo a lo expuesto en la norma AEA 90364, parte 7, sección 771. Los datos para el dimensionamiento y cálculo de los conductores se extraen del catálogo para baja tensión de la firma Prysmian, adjunto en el Anexo 6.

El detalle de la instalación dentro de la planta se encuentra en el plano **1804C-BE-037**, donde aparece la ubicación de cada tablero. Cabe mencionar que tanto el tablero principal como el seccional de EyC se disponen en el exterior del edificio, lo cual hace necesaria la construcción de una sala para resguardarlos y al mismo tiempo evitar problemas de mantenimiento en condiciones climáticas desfavorables.

El diagrama unifilar de la instalación se muestra en el plano **1804C-BE-038**. Por su parte, el diagrama topográfico de cada tablero seccional figura en los planos **1804C-BE-039** y **1804C-AE-040**.

5.2.2 Potencia de cálculo

Se determina la potencia eléctrica consumida por cada UTA según los datos mostrados en el catálogo general de FISAIR, donde se listan las características de un equipo con reactivación eléctrica:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

DFLEX0000E G0G0 0000 SFSF 000 000 405AE03

Prestaciones (*)		DFLEX						
		1100	1300	1700	2100	2900	3500	
Potencia eléctrica BR (Batería de Reactivación)	(kW)	81,0	99,0	126,0	162,0	200,0	240,0	
Potencia eléctrica Total	(kW)	88,8	107,6	137,6	173,6	219,1	262,6	

Figura 30: Potencia eléctrica de las UTA.

De esta forma, la potencia eléctrica necesaria para el accionamiento de los ventiladores y el rotor desecantes es:

$$P_{Eauipo} = 219,1kW - 200kW \Longrightarrow P_{Eauipo} = 19,1kW$$

5.2.3 Diagrama de la instalación

La alimentación del tendido eléctrico se lleva a cabo desde el tablero principal de la planta, por lo cual se utiliza el espacio disponible en dicho tablero para instalar los elementos de protección y maniobra del nuevo tendido. Esto implica que el dimensionamiento solo se realiza aguas abajo del tablero principal. A continuación se presenta el diagrama de la instalación con los códigos de cada línea y entre paréntesis el código de parte del conductor perteneciente a la línea:



Figura 31: Diagrama general de la instalación.

El diagrama unifilar con los códigos de los elementos de protección y maniobra, es el siguiente:

Figura	<i>32:</i>	Diagrama	unifilar.
--------	------------	----------	-----------

Tabla 61 – Códigos de Partes				
Código de Dispositivo	Descripción			
E3X-281	Interruptor seccionador			
E3Y-282	Interruptor diferencial			
E3Y-283	Interruptor termomagnético			
E1Y-284	Interruptor diferencial			
E1Y-285	Interruptor termomagnético			
E1X-286	Interruptor seccionador			
E2Y-287	Interruptor diferencial			
E2Y-288	Interruptor termomagnético			
E2X-289	Interruptor seccionador			
E1V-290	Conductor de potencia tetrapolar			
E1V-291	Conductor de potencia tetrapolar			
E2V-292	Conductor de potencia tetrapolar			
E2V-293	Conductor de potencia tetrapolar			

5.2.4 Dimensionamiento térmico de los conductores

Para el funcionamiento seguro de los circuitos en las condiciones de instalación consideradas, se debe evitar que los conductores pierdan las propiedades de la aislación por efectos térmicos. Para esto es necesario considerar las influencias externas al circuito como:

- Método de instalación
- Condiciones de utilización de los equipos
- Simultaneidad de funcionamiento de los equipos
- Temperatura ambiental de la instalación e influencia térmica de otros circuitos cercanos.

5.2.4.1. Hipótesis de cálculo para dimensionamiento térmico

Las consideraciones utilizadas son las siguientes:

- El tipo de tendido es aéreo sobre bandea perforada, método E de la norma.
- La temperatura ambiente se considera a 40°C.
- Los conductores son de cobre, tetrapolares, con aislación de PVC, fabricados bajo norma IRAM 2178. Su denominación comercial de catálogo es Sintenax Valio, y la hoja de características se encuentra en el Anexo 6.
- La sección del conductor de neutro es de igual tamaño que la sección de los conductores de fase. De esta manera se evitan problemas de sobrecalentamientos por efecto de las componentes armónicas homopolares que puedan existir.
- Se desconoce el valor del $cos(\phi)$ de funcionamiento de los equipos, por lo cual se adopta según sección 771.19.3, página 141: $cos(\phi)$ =0,85.
- Se conoce con precisión los estados de carga de los equipos, por lo cual se adopta como factor de utilización: Fu=1.
- La simultaneidad de las cargas es del 100% por lo cual el factor de simultaneidad es: *Fs*=1.
- El ingreso y egreso de los conductores a los tableros seccionales se realiza por una única bandeja perforada, por lo que existe un agrupamiento de 6 conductores para TyE y de 3 conductores para EyC. Por medio de la tabla 771.16.IV, ítem 4 (bandeja perforada) se asignan los factores de agrupamiento (*Fa*) de los conductores.

Las expresiones para el cálculo se resumen a continuación:

$$I_{L}[A] = \frac{P_{Equipo}}{\sqrt{3} \cdot U_{L} \cdot cos(\varphi)} \quad sen(\varphi) = \sqrt{1 - cos(\varphi)^{2}}$$

$$I_{adm \, nec} \left[A \right] = \frac{I_L}{F_n \cdot F_s \cdot F_a}$$

Donde:

- *L*: corriente de línea en régimen, en A.
- P_{Equipo} : potencia activa que debe transportar el conductor, en W.
- *Ul:* tensión de línea, en V.
- *I*_{sdm nec}: corriente admisible del conductor necesaria para estar protegido de los factores externos (agrupamiento, utilización, etc.), en A.

5.2.4.2. Cálculo para dimensionamiento térmico

Para determinar la sección necesaria en cada línea se debe verificar que el conductor elegido admita una corriente igual o mayor a calculada considerando los factores externos ($I_{adm\ nec}$). Esto se expresa:

$$I_{adm\,cond} \ge I_{adm\,nec}$$

En la siguiente tabla se muestran los resultados del cálculo y las características del conductor seleccionado:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

PFC1804C MC-Rev.02

Tabla 62 – Dimensionamiento Térmico de los Conductores						
Código		E1V-290	E1V-291	E2V-292	E2V-293	
Potencia	[kW]	95,5	19,1	38,2	19,1	
Tensión Línea	[V]	380	380	380	380	
Cos Fi	-	0,85	0,85	0,85	0,85	
SENO(FI)	-	0,53	0,53	0,53	0,53	
${ m I}_{ m L}$	[A]	171	34	68	34	
Fu	-	1	1	1	1	
Fs	-	1	1	1	1	
Fa	-	0,73	0,73	0,82	0,82	
$\it I_{admnec}$	[A]	234	47	83	42	
S_{cond}	[mm2]	4x120	4x10	4x25	4x10	
$\it I_{adm\ cond}$	[A]	240	52	88	52	
r	$\left[\Omega/km\right]$	0,1840	2,2900	0,9330	2,2900	
X	$[\Omega/km]$	0,0729	0,0860	0,0780	0,0860	

5.2.5 Verificación por caída de tensión

Para corroborar que la caída de tensión de la instalación no resulta excesiva y no afecta al funcionamiento normal de los equipos, se debe cumplir lo expuesto en el apartado 771.13 de la AEA que indica:

- La máxima caída de tensión entre los bornes del tablero principal y los bornes de la carga no debe superar el 5% durante el funcionamiento en régimen: $\Delta U < 5\%$
- La máxima caída de tensión entre los bornes del tablero principal y los bornes de la carga no debe superar el 15% durante el período de arranque: $\Delta U_{arr} < 15\%$

5.2.5.1. Hipótesis de cálculo para verificación por caída de tensión

Las consideraciones utilizadas son las siguientes:

- La verificación por caída de tensión se realiza con la distancia a la UTA más alejada, según se en el *plano BE-037*.
- Las características de los equipos en el momento de arranque se desconocen por lo que se adoptan los valores sugeridos por la norma: $cos(\varphi)_{arr} = 0,3$.
- La corriente de arranque se determina suponiendo: *Iarr/IL= 6*.

Las expresiones para el cálculo se resumen a continuación:

$$\Delta U[V] = \sqrt{3} \cdot I_{L} \cdot L[r \cdot \cos(\varphi) + x \cdot \sin(\varphi)] \qquad \Delta U[\%] = \frac{\Delta U}{U_{L}} \cdot 100$$

$$\Delta U_{total}[\%] = \sum \Delta U_{\%} \qquad I_{arr}[A] = I_{L} \cdot 6$$

$$\Delta U_{arr}[V] = \sqrt{3} \cdot I_{arr} \cdot L[r \cdot \cos(\varphi)_{arr} + x \cdot \sin(\varphi)_{arr}]$$

Donde:

- ΔU : caída de tensión entre los extremos del conductor, en V.
- *IL:* corriente de línea en régimen, en A.

86

- $\Delta U_{\%}$: caída de tensión porcentual en referencia a la tensión de línea, en %.
- *Ul:* tensión de línea en bornes del tablero principal, en V.
- ΔU_{total} : caída de tensión total, desde los bornes del tablero principal hasta el extremo de utilización del circuito terminal.
- *Iarr:* corriente en el instante de arranque de los equipos, en A.
- Δ*Uarr:* caída de tensión producida entre los extremos del conductor, al momento del arranque de los equipos, en V.
- *L:* distancia total del conductor, en km.
- r: resistencia eléctrica del conductor adoptado, en Ω /km.
- x: reactancia eléctrica del conductor adoptado, en Ω /km.

5.2.5.2. Cálculo para verificación por caída de tensión

En la siguiente tabla se muestran los resultados de cálculo donde se verifica que se cumplen las condiciones mencionadas:

Tabla 63 – Verificación de Caída de Tensión						
Código		E1V-290	E1V-291	E2V-292	E2V-293	
Longitud L	[m]	2,0	29,1	73,7	14,0	
r	$\left[\Omega/km\right]$	0,1840	2,2900	0,9330	2,2900	
X	$\left[\Omega/km\right]$	0,0729	0,0860	0,0780	0,0860	
411	[V]	0,2	4,7	7,3	1,6	
ΔU	%	0,04%	1,2%	1,9%	0,4%	
$arDelta U_{total}$	%	1,2	28%	2,	35%	
$I_{ m arr}/I_{ m nom}$	-	6	6	6	6	
$I_{arr}\left[A ight]$	[A]	1024	205	410	205	
cos(arphi)arr	-	0,3	0,3	0,3	0,3	
sen(arphi)arr	-	0,95	0,95	0,3	0,3	
477	[V]	0,4	7,9	18,5	3,5	
∆Uarr	%	0,12%	2,09%	4,9%	0,9%	
ΔU total	%	2,2	1%	5,8	31%	

5.2.6 Verificación por cortocircuito

Se debe corroborar que la sección de conductor adoptada sea adecuada para soportar los efectos térmicos y electrodinámicos provocados durante las fallas de cortocircuito (CC). Además se debe determinar bajo qué magnitud de corriente de CC los elementos de protección deben poder conmutar. Para esto se siguen los métodos de cálculo del Manual para Instalaciones de Baja Tensión de Schneider Electric y la norma AEA.

5.2.6.1. Hipótesis de cálculo para verificación por CC

- Se desprecian las impedancias de los elementos de maniobra y protección, como también de las barras conductoras.
- En los circuitos terminales solo se verifica que la sección del conductor sea adecuada para soportar las fallas de cortocircuito, ya que las UTA cuentan con protección

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

PFC1804C MC-Rev.02

termomagnética. Esto se realiza de acuerdo a la norma AEA, según se expone en la sección 771.19.2.2.3.

- Aguas arriba del tablero principal existe un único transformador de 13.2/0.38kV, 630kVA. Los datos de tensión de vacío (*Uo*), tensión de cc (Ucc) y potencia de cc (Pcc) del transformador, se extraen de los catálogos de la firma Tadeo Czerweny: *Uo= 440V; Ucc= 4%*; *Pcc= 7250W*.
- Las características de la red de AT se suponen según las recomendaciones del manual Schneider: $Scc red = 500 \ MVA$; $cos(\varphi)_{red} = 0,15$.

Las expresiones para el cálculo se resumen a continuación:

$$Z_{red} [m\Omega] = \frac{(U_o)^2}{S_{red}} \qquad R_{red} [m\Omega] = Z_{red} \cdot \cos(\varphi)_{red}$$

$$X_{red} [m\Omega] = \sqrt{(Z_{red})^2 - (R_{red})^2} \qquad Z_{tr} [m\Omega] = \frac{U_{cc}}{100} \cdot \frac{(U_o)^2}{S_{tr}}$$

$$I_{ntr} [A] = \frac{S_{tr}}{\sqrt{3} \cdot U_o} \qquad R_{tr} [m\Omega] = \frac{P_{cc}}{3 \cdot (I_{ntr})^2}$$

$$X_{tr} [m\Omega] = \sqrt{(Z_{tr})^2 - (R_{tr})^2} \qquad R_{cond} [m\Omega] = r \cdot L$$

$$X_{cond} [m\Omega] = x \cdot L \qquad I_{cc} [kA] = \frac{U_o}{\sqrt{3} \cdot \sqrt{(\sum R)^2 + (\sum X)^2}}$$

Donde:

- Z_{red} : impedancia de la red aguas arriba del transformador, en m Ω .
- *U_o:* tensión de línea en el secundario del transformador en vacío, en V.
- *Sred:* potencia aparente de la red, en kVA.
- R_{red} : resistencia de la red aguas arriba del transformador, en m Ω .
- X_{red} : reactancia de la red aguas arriba del transformador, en m Ω .
- Z_{tr} : impedancia del transformador, en m Ω .
- *Ucc:* tensión de línea en cortocircuito, en V.
- *Str:* potencia aparente nominal del transformador, en kVA.
- *In tr:* corriente nominal del transformador, en A.
- R_{tr} : resistencia del transformador, en m Ω .
- *Pcc:* potencia de cortocircuito del transformador, en mW.
- X_{tt} : reactancia del transformador, en m Ω .
- R_{cond} : resistencia total del conductor, en m Ω .
- X_{cond} : reactancia total del conductor, en m Ω .
- *Icc:* corriente de cortocircuito en el punto de la instalación considerado, en kA.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

- ΣR : sumatoria de las resistencias aguas arriba del punto de la instalación considerado, en m Ω .
- ΣX : sumatoria de las reactancias aguas arriba del punto de la instalación considerado, en m Ω .

5.2.6.2. Cálculo para verificación por CC

Para corroborar que las protecciones de la instalación son capaces de soportar las corrientes resultantes cuando sucede un CC, se debe cumplir lo expuesto en el apartado 771.19.2.2.2 de la AEA:

$$I_{cu} \ge I_{cc}$$

Donde:

- *Icu:* poder de corte de la protección, en kA.
- *Icu:* corriente de cortocircuito en el punto de la instalación donde se instala la protección, en kA.

A continuación se calculan los valores de resistencia y reactancia de la red y el transformador, los cuales constituyen los valores homólogos en bornes del tablero principal, R_{TP} y X_{TP} :

Tabla 64 – Cálculo de Impedancias				
	Red			
\mathcal{S}_{red}	MVA	500		
U_o	V	440		
$Z_{\it red}$	$m\Omega$	0,387		
cos(arphi)red	-	0,15		
R_{red}	$m\Omega$	0,058		
X_{red}	$m\Omega$	0,620		
Tra	nsformador	•		
\mathcal{S}_{tr}	kVA	630		
U_{cc}	[%]	4		
Z_{tr}	$m\Omega$	12,29		
$I_{n \ tr}$	A	826,6		
P_{cc}	W	7250		
R_{tr}	$m\Omega$	3,54		
X_{tr}	$m\Omega$	11,772		
R_{TP}	$m\Omega$	3,6		
X_{TP}	$m\Omega$	12,4		

La *Icc* en bornes de los tableros seccionales, se calcula con la impedancia del tablero principal más la impedancia de la línea que alimenta dicho tablero seccional. Debido a que el tablero seccional de TyE se encuentra muy próximo al tablero principal, se obtiene una impedancia prácticamente igual a la de este último, y por lo tanto una *Icc* mucho mayor que la del tablero seccional de EyC. Esto condiciona el poder de corte de las protecciones de cada tablero, como se verá más adelante en la selección de las mismas.

Los resultados se muestran en la siguiente tabla:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

PFC1804C MC-Rev.02

Tabla 65 – Cálculo de la Icc en el Inicio de los Conductores							
Código del conductor		E1V-290	E1V-291	E2V-292	E2V-293		
Resistencia aguas arriba del conductor	$\boldsymbol{m}\Omega$	3,6	4,0	72,4	72,4		
Reactancia aguas arriba del conductor	$\boldsymbol{m}\Omega$	12,4	12,5	18,1	18,1		
Icc en el inicio del conductor	kA	19,9	19,5	3,4	3,4		

El próximo paso consiste en verificar que las secciones adoptadas son capaces de soportar el efecto térmico de la *Icc* durante el tiempo que tarde la protección en abrir el circuito. Para la mayoría de las protecciones utilizadas comúnmente, el tiempo de desconexión ronda los 10ms, valor que se adopta para el cálculo.

Por lo tanto, se debe cumplir la condición exigida por la norma en el apartado 77119.2.2.3:

$$k^2 \cdot S^2 \ge I_{cc}^2 \cdot t$$

Donde:

- *S:* sección del conductor, en mm².
- *Icc:* corriente de cortocircuito en el inicio de la línea, en kA.
- *t:* tiempo de desconexión de la protección, en s.
- k: factor que tiene en cuenta la resistividad del material, el coeficiente de temperatura y la capacidad térmica volumétrica el conductor, y las temperaturas inicial y final del mismo. Según tabla 771.19.II, para conductores de cobre de S<300mm², k=115.

En la tabla siguiente aparecen los resultados de cálculo y se corrobora que las secciones adoptadas cumplen la condición antes expuesta:

Tabla 66 – Verificación de Sección del Conductor al CC						
Conductor	$I_{cc}\left[\mathrm{A}\right]$	S [mm2]	k2*S2	>	I_{cc} $^{2*}t$	
E1V-290	19,9	120	190440000	>	199190	
E1V-291	19,9	10	1322500	>	199190	
E2V-292	3,4	25	8265625	>	34453	
E2V-293	3,4	10	1322500	>	34453	

5.2.7 Selección de dispositivos de protección y maniobra

Con los valores obtenidos de I_{cc} en cada punto de la instalación y junto con los valores de corriente nominal de cada línea, se selecciona las protecciones señaladas en el diagrama unifilar. El fabricante de los elementos es *Schneider Electric*.

Esto se resume en la tabla siguiente:

Tabla 67- Dispositivos de Protección									
Requerimientos mínimos			ínimos	Características d	Características del dispositivo*				
Código	Tipo	In nec [A]	Icu nec [kA]	Nombre comercial	In [A]	${\rm I_{cu}}\\ [kA]$	$I_{ m dn}$ $[A]$		
E3Y-282	ID	239	19,9	Bloque Vigi L431536	250	-	0,03 a 10		
E3Y-283	ITM	239	19,9	Easypact CVS LV525323	250	25	-		
E1Y-284	ID	171	19,5	Bloque Vigi L431536	250	-	0,03 a 10		
E1Y-285	ITM	171	19,5	Easypact CVS LV525322	250	25	-		
E2Y-287	ID	68	3,4	Acti9 A9R11480	80	-	0,03		
E2Y-288	ITM	68	3,4	Acti9 A9N18372	80	7,5			

Nota:

Los interruptores seccionadores (IS) que de la instalación se seleccionan con los mismos parámetros (I_n e I_{cc}), como se resume en la tabla a continuación:

Tabla 68 – Dispositivos de Maniobra							
Código	Tipo	Nombre comercial	$I_n[A]$	$I_{cm}^* [kA]$			
E3X-281	IS	Compact Ins250 4x250A -Fa	250	30			
E1X-286	IS	Compact Inc. 40 4x40 A Fo	40	15			
E2X-289	IS	Compact Ins 40 4x40A –Fa	40	15			

^{*}Capacidad de cierre de cortocircuito

5.2.8 Protección de puesta a tierra

Para la protección contra descargas indirectas se propone utilizar el sistema de puesta a tierra ya instalado por el frigorífico. De esta manera se pretende que los conductores destinados a protección se conecten a la barra principal de puesta a tierra, ubicada en el tablero principal.

En base a lo mencionado, resta determinar las secciones mínimas del conductor de protección de tierra (PE), lo cual se logra por medio de la tabla 771-C.II siguiente:

Sección de los conductores de	Sección nominal del correspondiente conductor de protección "S _{PE} " [mm²] y del conductor de puesta a tierra "S _{PAT} " [mm²]						
línea de la instalación S [mm²]	Si el conductor de protección (o el de puesta a tierra) es del mismo material que el conductor de línea	Si el conductor de protección (o el de puesta a tierra) no es del mismo material que el conductor de línea					
S ≤ 16	S	$\frac{k_1}{k_2} \times S$					
16 <s 35<="" th="" ≤=""><th>16</th><th>$\frac{k_1}{k_2} \times 16$</th></s>	16	$\frac{k_1}{k_2} \times 16$					
S > 35	S/2	$\frac{k_1}{k_2} \times \frac{S}{2}$					

Figura 33: Tabla 771-C.II - AEA 90634.

In: corriente nominal de funcionamiento continuo.

Icu: poder de corte último. Dependiendo del dispositivo, este resulta igual que el poder de corte de servicio (Ics).

Idn: corriente de fuga para actuación del dispositivo. Algunos de ellos expresan un rango de valores debido a la posibilidad de regulación del parámetro.

Las secciones resultantes para cada línea se resumen a continuación donde se lista la línea a la que pertenece el conductor de PE y el código de parte que asignado:

Tabla 69 – Sección Mínima del Conductor de PE									
Conductor	de línea	Conductor de PE							
Código	$S [mm^2]$	Código	$S_{PE}\left[mm^{2}\right]$						
E1V-290	120	E1V-295	70						
E1V-291	10	E1V-296	10						
E2V-292	25	E2V-297	16						
E2V-293	10	E2V-298	10						

El nombre comercial del conductor elegido para la PE es Superastic Flex, fabricado bajo norma IRAM 247-3. La norma en el apartado 771.12.1 h) especifica que los conductores bajo IRAM 247-3 únicamente pueden ser instalados en bandeja si se utilizan como PE, razón por la se lo utiliza en esta instalación.

5.2.9 Selección de bandeas perforadas

Para la selección se utiliza el catálogo de la firma SAMET, quienes indican que el cálculo de la sección de la bandeja se realiza con la siguiente expresión:

$$S_{bandeja} = \frac{K \cdot (100 + e)}{100} \cdot \sum S_{total\ cond}$$

Donde:

- Sbandeja: sección de la bandeja, en mm².
- *K:* coeficiente de apilamiento, para conductores de sección > 2,5mm2, K=1,4.
- e: porcentaje de espacio a adicionar por futuras ampliaciones, en %. Se asume un 30% para ampliaciones.
- *Stotal cond:* sección del conductor, considerando aislantes, en mm².

Este cálculo se realiza considerando los conductores de potencia más un conductor de PE correspondiente a la sección del conductor de potencia considerado. Los resultados se resumen a continuación:

Tabla 70 – 0	Tabla 70 – Cálculo para Selección de Bandejas											
Conductor que soporta	Tipo	Cant	$S_{nom\ cond}$ $[mm^2]$	$\phi_{ m ext\ cond}$	$S_{total\ cond}$ $[mm^2]$	$S_{bandeja} \ [mm^2]$	Nombre comercial	h x b [mm]				
E1V-290	Potencia	1	120	47	1734							
E1V-295	PE	1	70	15	177	8106	TRP-200	200 x 50				
E1V-291	Potencia	5	10	18	254	8100	1 KP-200	200 x 30				
E1V-296	PE	5	10	18	254							
E2V-292	Potencia	1	25	28	615							
E2V-297	PE	1	16	10	79	2115	TDD 100	100 50				
E2V-293	Potencia	2	10	18	254	3115	TRP-100	100 x 50				
E2V-298	PE	2	10	18	254							

Para identificar las bandejas y sus accesorios, se utilizan los códigos siguientes:

Tabla 71	Tabla 71 – Codificación de Elementos para Conducción de Conductores										
Código	Elemento	Nombre Comercial									
E1A-299	Bandeja portacable 200mm x 50mm	TRP-200									
E2A-300	Bandeja portacable 100mm x 50mm	TRP-100									
E1B-301	Curva vertical descendente 200mm x 50mm	CUPS-200-90-Z									
E1D-302	Derivación en T 200mm x 50mm	TPS-200-Z									
E2B-303	Curva plana 90° 100mm x 50mm	CPS-100-90-Z									
E2D-304	Derivación en T 100mm x 50mm	TPS-100-Z									
E2E-305	Derivación en triple 100mm x 50mm	XPS-100-Z									
E1A-306	Tapa ciega 200mm x 50mm	TTRS-200-22-Z									
E2A-307	Tapa ciega 100mm x 50mm	TTRS-100-22-Z									

5.2.10 Selección barras de cobre para tableros seccionales

Se utiliza el catálogo de la firma NOLLMANN S.A. donde se presentan los diferentes modelos según sea la intensidad nominal de la corriente que ingresa al tablero. Para la codificación, se considera a las barras como un conductor.

Para cada tablero seccional, se eligen los siguientes modelos:

- Barras TyE (E1V-308): Barras de Cu 3+N Modelo NRT 200
- Barras EyC (**E2V-309**) : Barras de Cu 3+N Modelo NRT 125

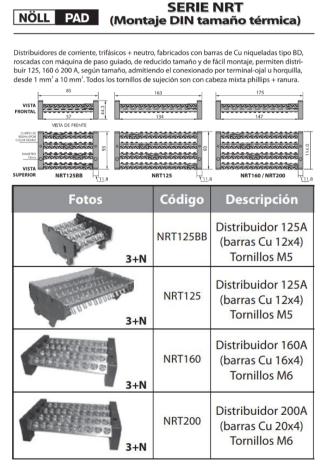


Figura 34: Barras de cobre para tableros seccionales.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

5.2.11 Selección de gabinetes para tableros seccionales

Para montar los tableros seccionales se eligen gabinetes de envolvente metálica con pintura epóxica, grado IP65. Los mismos cuentan con bandea de chapa galvanizada desmontable, sobre la cual se fijan los dispositivos.

En base a las dimensiones y ubicación de los dispositivos propuesta en los planos topográficos BE-039 y AE-040, se determina el tamaño del gabinete que permita un montaje sin inconvenientes de espacio. Además se admite una porción de espacio libre dentro del mismo para ser utilizado en futuras ampliaciones de la instalación.

Los mismos son seleccionados de los catálogos de la empresa FORLI:

Tabla 72— Tableros Seleccionados										
Cádigo	Ubicación	Nombre comercial	Dimensiones [mm]							
Código	Ubicación	Nombre comerciai	Alto	Ancho	Prof					
E1W-310	TyE	Modular L50M - 9012030C	1200	1000	300					
E2W-311	EyC	Gabinete estanco 0494	900	750	260					

5.2.12 Verificación térmica de los gabinetes

Como resultado del pasaje de la corriente, los elementos dentro de los gabinetes disipan calor y se debe corroborar que las condiciones de temperatura dentro de los mismos no sean superiores a las consideradas en la selección de cada dispositivo. De no controlarse la temperatura, tales dispositivos pueden llegar a presentar funcionamientos anormales, como es el caso de los falsos disparos en las protecciones.

Para el cálculo de verificación se utiliza la *Guía de Gestión Térmica* de la firma GENROD, basada en la norma IEC 60890.

La primera etapa consiste en determinar la potencia que disipan los elementos del gabinete para la corriente de funcionamiento. Para esto se utilizan las hojas de características de los dispositivos, donde figura potencia disipada.

La corriente de funcionamiento para cada dispositivo aparece en la tabla 62 como corriente de línea (IL). Con este valor, se busca en las hojas de datos la condición más próxima y se extrae la potencia disipada por polo. Esto se realiza con cada elemento, como sigue:

 Interruptor termomagnético Easy Pact CVS LV525322 (E1Y-285): se adoptan los valores tabulados para el modelo EZ250, considerando que las diferencias son mínimas.

Easy Pact

Power loss and impedance

	Rating	Impedance	Power loss			
	Rating	1 pole	1 pole	3 poles		
	(A)	(milliohms)	(W)	(W)		
EZ250	100	0,90	9	27		
	125	0,55	9	26		
1	150	0,47	11	32		
1	160	0,47	12	36		
ı	175	0,38	12	35		
ı	200	0,30	12	36		
l l	225	0,24	12	36		
1	250	0,21	13	39		

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

Figura 35: Potencia disipada por interruptor termomagnético.

 Bloque Vigi L431536 (E1Y-284): se utiliza los valore mostrados en la hoja de datos de interruptor Compact con igual relé de disparo que el modelo seleccionado (Easy Pact CVS).

Compact NS

potencia disipada, resistencia

Compact NS equipados de bloques de relés

características técnicas

Potencia disipada por polo (P/polo): en watios (W). Resistencia por polo (P/polo): en miliohmios (m Ω). La potencia total disipada es el valor medido a I $_{\rm N}$, 50/60 Hz, para un aparato tripolar o tetrapolar (valores

magnetotérmicos

superiores a la potencia P = 3Rl2).

Figura 36: Potencia disipada por bloque diferencial.

- Interruptor seccionador manual Compact Ins 40 4x40A –Fa (E1X-286 y E1X-289): al no contar con las características del dispositivo, se recurre a valores tabulados para interruptores seccionadores de iguales características nominales. Para esto se utilizan las tablas de la firma Zoloda:

			SD 1		SD 2			
Características IEC 60947-1 / IEC 60947-3		25 A	40 A	63 A	80 A	100 A	125A	
Tensión nominal de aislación Ui	(V)				800	800	800	
Tensión nominal de impulso Uimp	(KV)	8	8	8	8	8	8	
Corriente térmica nominal @ 40 °C lth/lthe	(A)	25	40	63	80	100	125	
Potencia disipada por polo	(W)	0,1	0,3	0,8	1,3	2,0	3,1	

Figura 37: Potencia disipada por interruptor seccionador manual.

- Interruptor diferencial Acti9 A9R11480 (E2Y-287) e interruptor termomagnético Acti9 A9N18372 (E2Y-288):

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP – 09/10/2019

Technical Advice

Dissipated power, Impedance and Voltage drop

Acti9 products

The following table indicates the average dissipated power per pole in W for a current equal to the rating of the device and at the operating voltage.

Ratir	ng (A)	0.5	1	1.6	2	2.5	3	4	6	6.3	10	12.	5 13	16	20	25	32	40	50	63	80	100	125
Circui	it breakers					*	160				100			2010	-	10	No.		10			***	*
iC60N/	/H/L	2.3	2.3		1.9		2.2	2.4	1.3		2		2	2.1	2.2	2.7	2.8	3.6	4	5.6		1	
iC60L-	MA			0.7		0.2		0.6		0.9	1.1	1.5		1.6		0.8		2					
iK60			2.3		1.9	1	2.2	2.4	2.7		1.8			2.5	3	3.1	3.5	3.6	4	5.6			
RCCB	3					1																	
iID	2P		1			1								0.8		0.9		2.6		2.6	3	5	
	4P															0.7		1.9		1.5	2.6	4.3	
DPN			2.5		1.9		2.1	2.6	2.7		2.7		3.3	3.2	4.7	4.7	4.6	5.8					
C60/C	60H-DC	2.2	2.3		2.6		2.2	2.4	2.7		1.8		2.5	2.5	3	3.1	3.5	4.3	4.8	6.1			
C120											1.3			2.1	2.3	2.5	3.2	3.1	3.2	3	3.2	2	4.1

Figura 38: Potencia disipada por interruptores Acti9.

Se considera una simultaneidad de funcionamiento del 100%, el resultado del cálculo aparece en la siguiente tabla:

Tabla 73 – Potencia Disipada por Elementos del Gabinete – TyE									
Código	Nombre comercial	Itrabajo	Polos	Pot/polo	Pot total				
Courgo	Nombre comercial	[A]	activos	[W/p]	[W]				
E1Y-284	Bloque Vigi L431536	171	3	2,8	8,4				
E1Y-285	Easypact CVS LV525322	171	3	12	36				
E1X-286	Compact Ins 40 4x40A –Fa	35	3	0,3	4,5*				
	To	otal			49				

^{*}Se tiene en cuenta que existen 5 interruptores seccionadores.

Tabla 74— Potencia Disipada por Elementos del Gabinete - EyC									
Código	Nombre comercial	Itrabajo [A]	Polos activos	Pot/polo [W/p]	Pot total [W]				
E2Y-287	Acti9 A9R11480	68	3	1,5	4,5				
E2Y-288	Acti9 A9N18372	68	3	3	9				
E2X-289	Compact Ins 40 4x40A -Fa	35	3	0,3	1,8*				
Total									

^{*}Se tiene en cuenta que existen 2 interruptores seccionadores.

A continuación se necesita determinar la capacidad de disipación del gabinete hacia el ambiente circundante, para lo cual se utiliza la expresión de transferencia de calor:

$$\dot{Q}_{Gabinete}[W] = U \cdot S_e \cdot (T_{int} - T_{ext})$$

Donde:

- *Q*_{Gabinete}: potencia que disipa el gabinete hacia el ambiente por convección natural, en W.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

- *U:* coeficiente global de transmisión térmica del gabinete, en W/m² °C. Por recomendación del manual Genrod, para gabinetes de chapa: *U=5,5 W/m² °C*.
- Se: superficie efectiva de intercambio del gabinete, m².
- *T_{int}*: temperatura interna del gabinete, en °C. Como los elementos seleccionados presentan están considerados a 40°C en sus hojas de datos, se considera este valor para el cálculo: *T_{int}*=40°C.
- T_{ext} : temperatura del ambiente exterior del gabinete, en °C. Se mantiene la consideración utilizada para el proyecto, por lo cual: T_{ext} =35°C.

La superficie efectiva de intercambio considera la capacidad de disipación de cada cara del gabinete, según sea su posición y dependiendo de si se encuentra libremente expuesta o contigua a otro elemento (pared, suelo, techo). Para esto se realiza el cálculo de acuerdo a lo indicado en el manual, que aparece en la siguiente figura:

Superficie Equivalente En función de lo expuesto, la superficie efectiva de un gabinete se conoce como Superficie Equivalente y se calcula según la siguiente tabla: Superficie Factor de Uso Techo Libre A x P x 1.4 AxPx0.7 Techo Cubierto Lateral Libre H x P x 0.9 H x P x 0.5 Lateral Cubierto Fondo / Puerta Libre $A \times H \times 0.9$ Fondo Cubierto A x H x 0.5 Piso Luego, la suma de lo calculado en cada cara nos dará la superficie equivalente de disipación de nuestro ga-

Figura 39: Método de cálculo de la superficie efectiva.

Considerando que los gabinetes se encuentran montados con su cara posterior sobre una pared, la capacidad de disipación calculada en cada caso es la siguiente:

Tabla 75 – Potencia Disipada por el Gabinete											
Código	Di	mensiones	[mm]	Se	U	ΔΤ	QGabinete				
	Alto	Ancho	Prof	$[m^2]$	$[W/m2^{\circ}C]$	[°C]	[W]				
E1W-310	1200	1000	300	1,488	5,5	5	40,9				
E2W-311	900	750	260	0,967	5,5	5	26,6				

Como se puede observar, la potencia que es capaz de disipar el gabinete de TyE (E1W-310) es menor que la potencia que disipan los elementos internos del mismo. Por lo tanto se decide instalar dos kits de ventilación para evacuar el excedente de calor. El cálculo el caudal necesario se realiza de acuerdo a la siguiente expresión dada por el manual:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

$$\dot{V}_{nec}[W] = \frac{3.1 \cdot \Delta P}{\left(T_{int} - T_{ext}\right)}$$

Donde:

- *V*_{Nec}: caudal de aire que es necesario que entregue el ventilador, en m³/h.
- ΔP : diferencia entre la potencia disipada por los elementos del gabinete y la potencia que es capaz de disipar dicho gabinete, en W.

Por último se determina el caudal necesario y se adopta un kit de ventilación (GENROD) cuyo caudal nominal sea igual o mayor al necesario, los resultados aparecen en la tabla debajo:

Tabla 76 – Ventilador para Ventilación del Gabinete										
Código	$V_{ ext{necesario}}$	$V_{nominal}$	Nombre	Dimensio	Cantidad					
Courgo	[m3/h]	[m3/h]	/h] comercial Diá		Prof	Calitidad				
E1Z-312	4,9	20	FAN 80	80	70	2				

5.2.13 Costo de materiales y montaje

A continuación se listan los costos de los materiales necesarios para la instalación completa:

Tabla 77 – 0	Costo de Materiales			
Código	Nombre comercial	Cant.*	Precio unitario [USD]	Total
E3Y-282	Bloque Vigi L431536 - 250A - 0,0310A	1	1779	1779
E3Y-283	Easypact CVS LV525323 250A - 25kA	1	873	873
E1Y-284	Bloque Vigi L431536 250A - 0,0310A	1	1779	1779
E1Y-285	Easypact CVS LV525322 - 250A - 25kA	1	790	790
E2Y-287	Acti9 A9R11480 - 80A - 0,03A	1	376	376
E2Y-288	Acti9 A9N18372 - 80A - 7,5kA	1	257	257
E1V-290	Sintenax Valio - 4 x 120 mm2	2	79	159
E1V-291	Sintenax Valio - 4 x 10 mm2	114	8	905
E2V-292	Sintenax Valio - 4 x 25 mm2	74	19	1410
E2V-293	Sintenax Valio - 4 x 10 mm2	28	8	222
E1V-295	Superastic Flex - PE 1 x 70	2	8	16
E1V-296	Superastic Flex - PE 1 x 10	114	2	235
E2V-297	Superastic Flex - PE 1 x 16	74	3	188
E2V-298	Superastic Flex - PE 1 x 10	28	2	58
E3X-281	Compact Ins250 4x250A -Fa	1	698	698
E1X-286	Compact Ins 40 4x40A –Fa	1	127	127
E2X-289	Compact Ins 40 4x40A –Fa	1	127	127
E1A-299	TRP-200	15	12	175
E2A-300	TRP-100	30	8	238
E1B-301	CUPS-200-90-Z	6	3	20

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP - 09/10/2019

Tabla 77 – Costo de Materiales								
Código	Nombre comercial	Cant.*	Precio unitari [USD]	o Total				
E1D-302	TPS-200-Z	1	4	4				
E2B-303	CPS-100-90-Z	5	2	10				
E2D-304	TPS-100-Z	1	3	3				
E2E-305	XPS-100-Z	1	5	5				
E1A-306	TTRS-200-22-Z	15	8	125				
E2A-307	TTRS-100-22-Z	30	5	142				
E1V-308	Modelo NRT 200	1	310	310				
E2V-309	Modelo NRT 125	1	179	179				
E1W-310	Modular L50M - 9012030C	1	395	395				
E2W-311	Gabinete estanco 0494	1	192	192				
E1Z-312	Kit de ventilación FAN 80	2	106	213				
E3A-313	200x60 RG	1	19	38				
E3A-314	100x60 RG	2	13	26				
E3A-315	Barra BD 255 - Nollmed	2	4	8				
	Total		1	1641 USD				

^{*}Para los conductores la unidad es en m, para los demás elementos es en unidades de venta. En el caso de bandejas se contabiliza cada tramo recto de 3m como una unidad.

Para el costo de mano de obra de montaje se tomó como referencia los valores del cuadro tarifario vigente al mes de Octubre de 2019, publicado en la revista Electroinstalador y adjunto en el Anexo 6. A continuación se resume el cómputo con los valores utilizados:

Tabla 78 – Costo de Mano de Obra de Montaje							
Tarea	Costo U.	Cant.	Total				
	USD	Cant.	USD				
Montaje de bandejas altura menor a 4m hasta 300mm ancho	5,6	135m	758,6				
Cableado en bandejas altura <4m cable subterraneos >4x10mm2	4,2	76m	319,7				
Cableado en bandejas altura <4m cable subterraneos <4x10mm2	2,7	57m	154,7				
Instalación interruptor termomagnético tetrap. en tablero nuevo	5,7	2	11,3				
Instalación interruptor diferencial tetrapolar en tablero nuevo	6,9	2	13,7				
Instalación interruptor diferencial tetrapolar en tablero existente	46,3	1	46,3				
Instalación interruptor diferencial tetrapolar en tablero existente	46,3	1	46,3				
Interruptor de 4 vías	3,8	8	30,2				
Total		138	31 USD				

Por lo tanto, el costo total de la instalación eléctrica resulta:

Tabla 79 – Costo de Materiales y Montaje de Instalación Eléctrica				
Descripción Costo				
Mano de obra	1381 USD			
Materiales	11641 USD			
Costo total materiales y montaje	13022 USD			

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

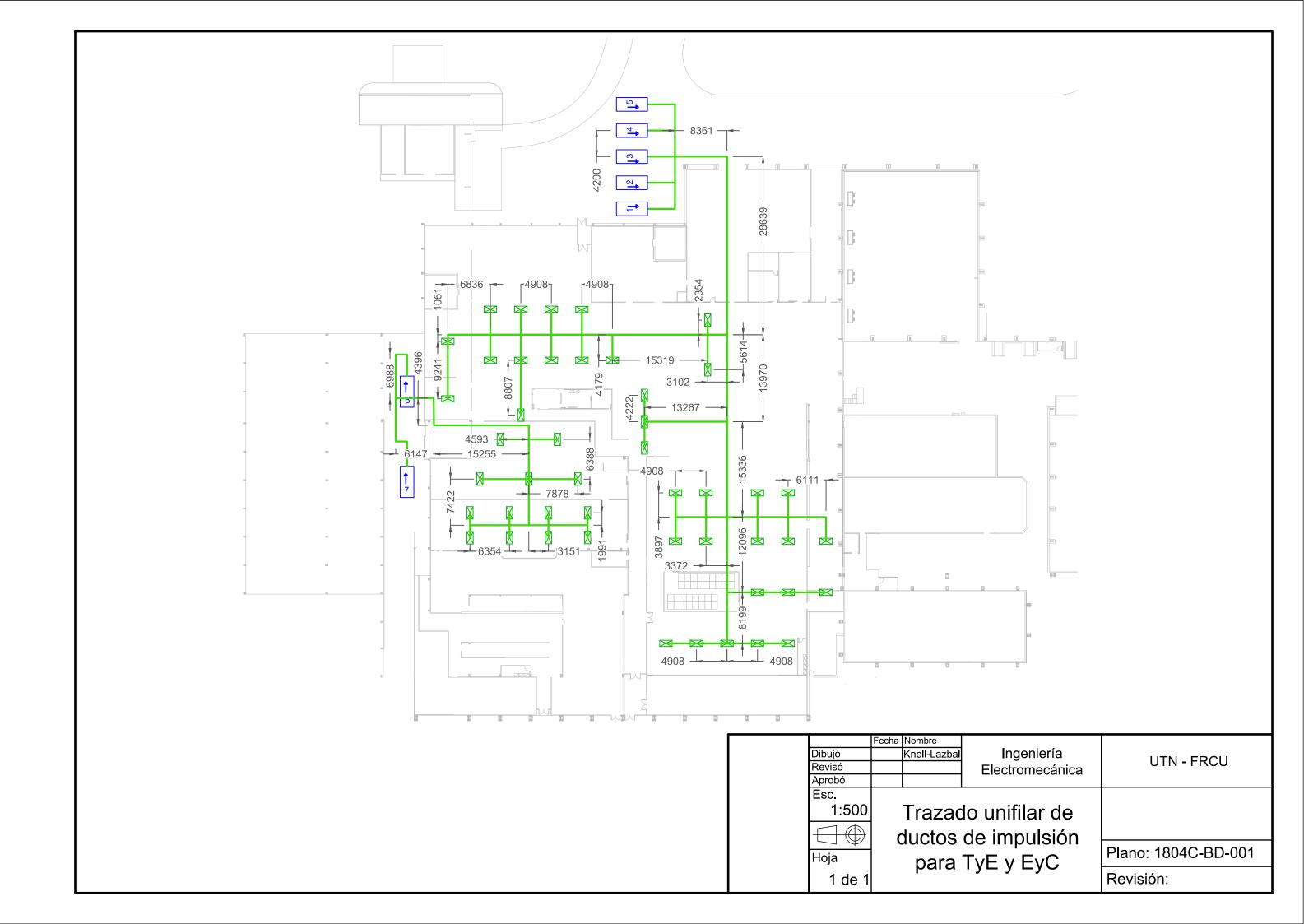
Revisó: GP - 09/10/2019

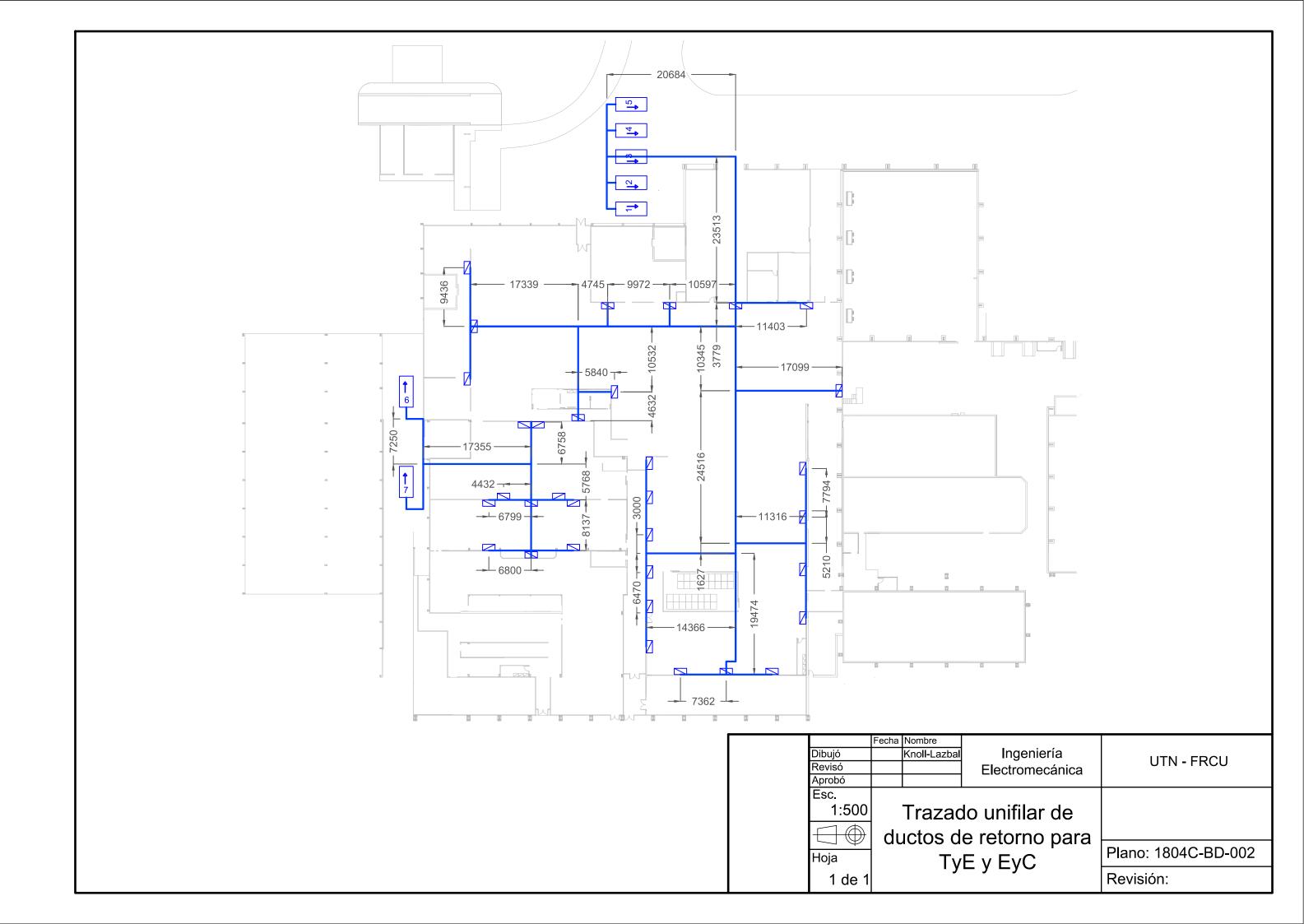
TOMO III PLANOS

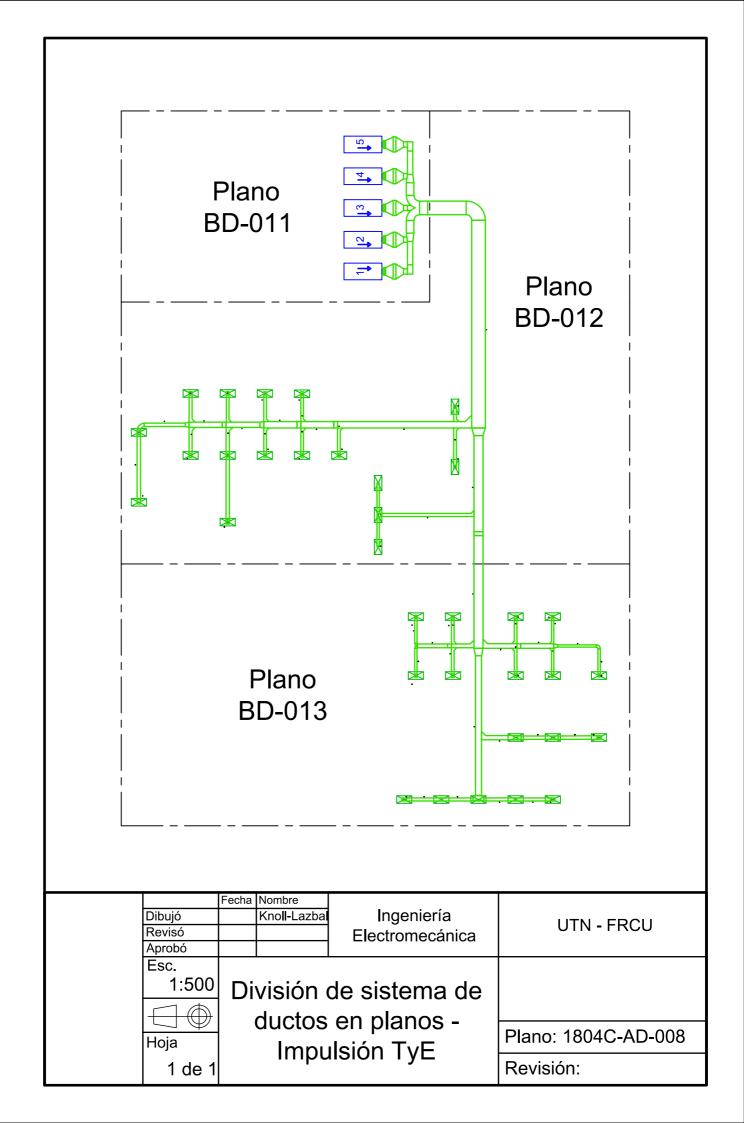
PFC 1804C

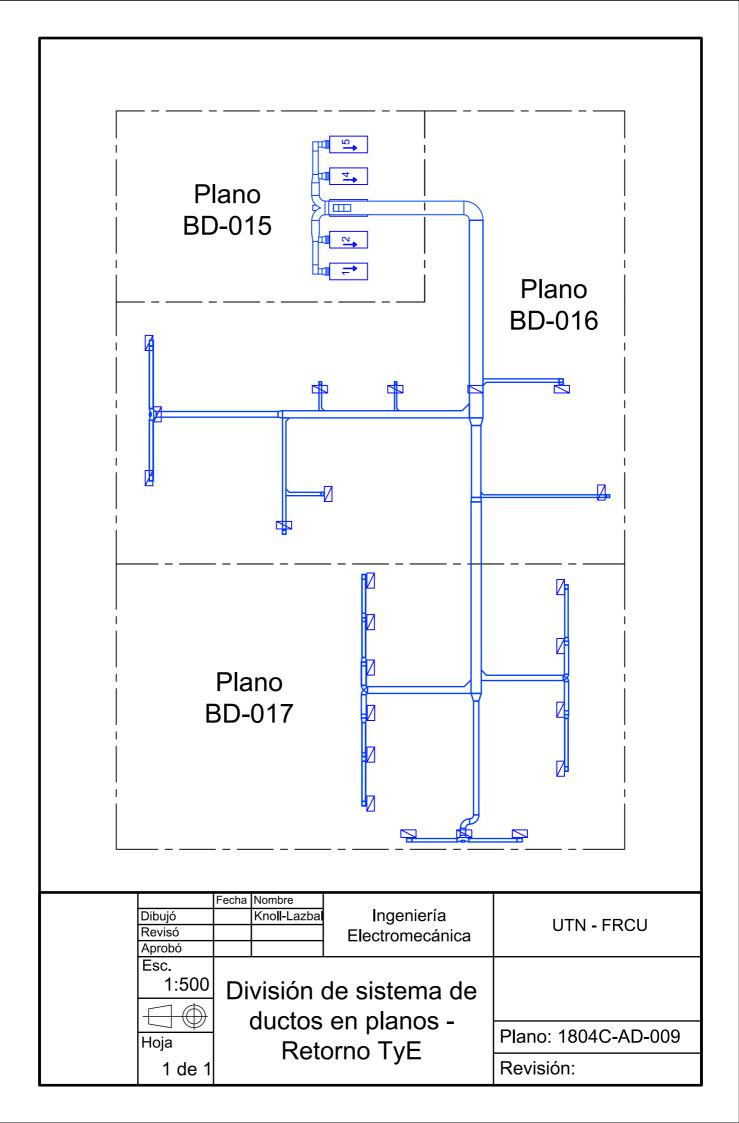
Resumen de planos

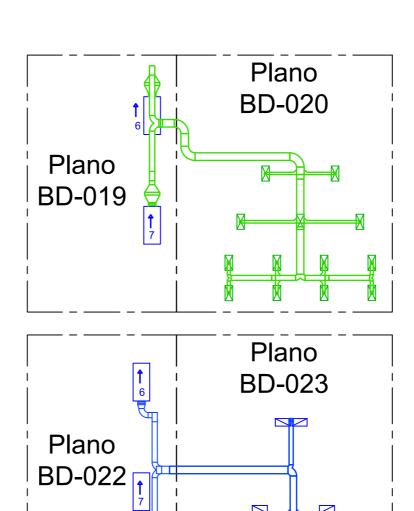
Tabla 1	Tabla 1 - Resumen de Planos								
Código	Título	Observaciones							
BD-001	Trazado unifilar de ductos de impulsión para TyE y EyC	Trazado en plano de planta							
BD-002	Trazado unifilar de ductos de retorno para TyE y EyC	Trazado en plano de planta							
AD-08	División de sistema de ductos en planos	Impulsión TyE							
AD-09	División de sistema de ductos en planos	Retorno TyE							
AD-010	División de sistema de ductos en planos	Impulsión y retorno EyC							
BD-011	Conexión UTA lado de impulsión TyE	Detalle de conexión entre UTA y ductos de impulsión							
BD-012	Ductos de Impulsión TyE	Primer segmento del trazado de ductos							
BD-013	Ductos de Impulsión TyE	Segundo segmento del trazado de ductos							
BD-014	Detalle de bajadas de planos BD-012 y BD- 013	Bajadas de impulsión TyE							
BD-015	Conexión UTA lado de retorno TyE	Detalle de conexión entre UTA y ductos de retorno							
BD-016	Ductos de Retorno TyE	Primer segmento del trazado de ductos							
BD-017	Ductos de Retorno TyE	Segundo segmento del trazado de ductos							
BD-018	Detalle de bajadas de planos BD-016 y BD- 017	Bajadas de retorno TyE							
BD-019	Conexión UTA lado de impulsión EyC	Detalle de conexión entre UTA y ductos de impulsión							
BD-020	Ductos de Impulsión EyC	Trazado de ductos							
BD-021	Detalle de bajadas de planos BD-020	Bajadas de impulsión EyC							
BD-022	Conexión UTA lado de retorno EyC	Detalle de conexión entre UTA y ductos de retorno							
BD-023	Ductos de Retorno EyC	Trazado de ductos							
BD-024	Detalle de bajadas de planos BD-023	Bajadas de retorno EyC							
BD-025	Detalle de Tramos Rectos	-							
BD-026	Detalle de Curvas 90°	-							
BD-027	Detalle de Derivaciones Simples	-							
BD-028	Detalle de Derivaciones en T	-							

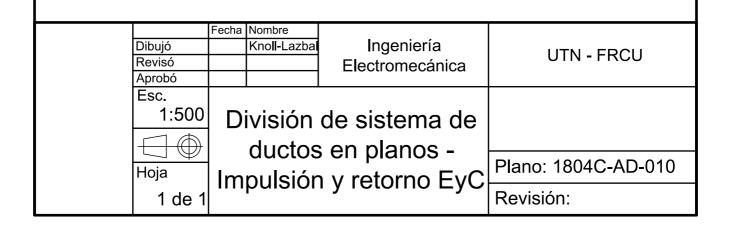

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

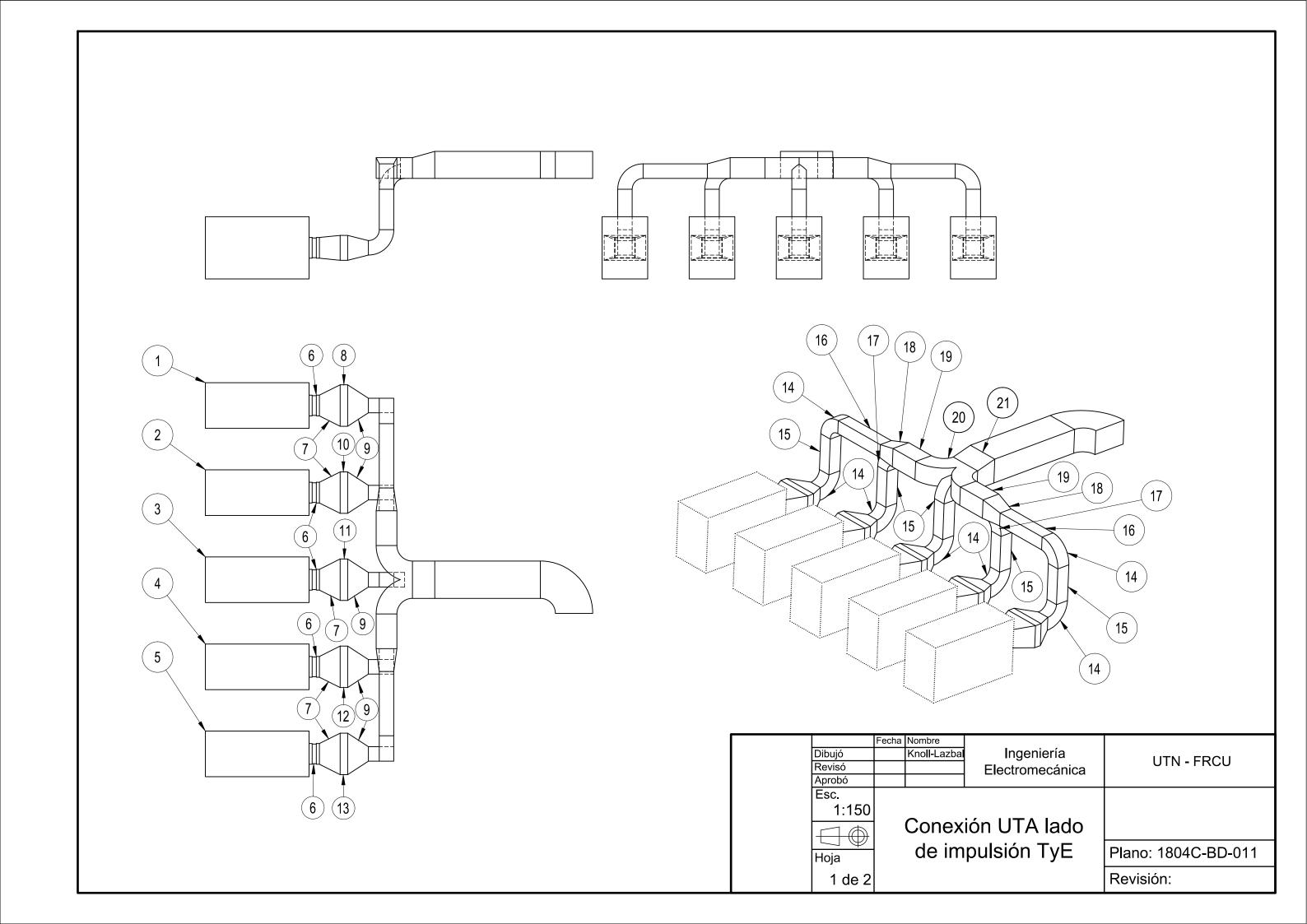

Revisó: GP-29/10/2019

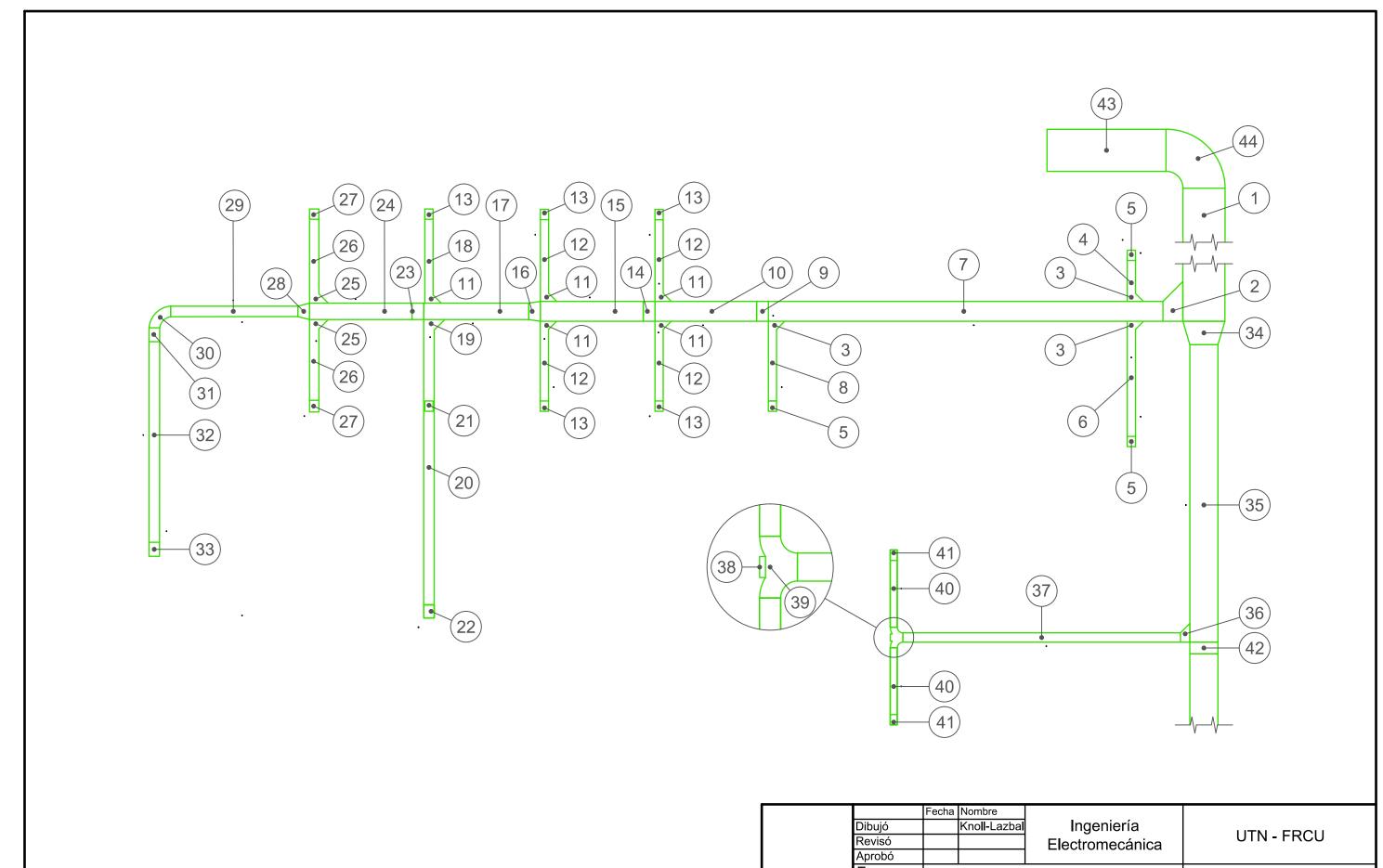

Tabla 1 - Resumen de Planos								
Código	Título	Observaciones						
BD-029	Detalle de Derivaciones Triples	-						
BD-030	Detalle de Reducciones	-						
BG-031	Plano General de Instalación de GN	Líneas codificadas y dimensiones						
BG-032	Planta de Regulación Secundaria Nº 1	Detalle mecánico de PRS para TyE						
BG-033	Planta de Regulación Secundaria № 2	Detalle mecánico de PRS para EyC						
AD-034	Unión Antivibratoria	-						
AD-035	Bypass control temperatura	ТуЕ						
AD-036	Bypass control temperatura	ЕуС						
BE-037	Instalación eléctrica en planta	ТуЕ - ЕуС						
BE-038	Diagrama unifilar de instalación eléctrica	ТуЕ - ЕуС						
BE-039	Plano topográfico del tablero seccional	ТуЕ						
AE-040	Plano topográfico del tablero seccional	ЕуС						


Elaboró: KNOLL, Andrés – LAZBAL, Rubén

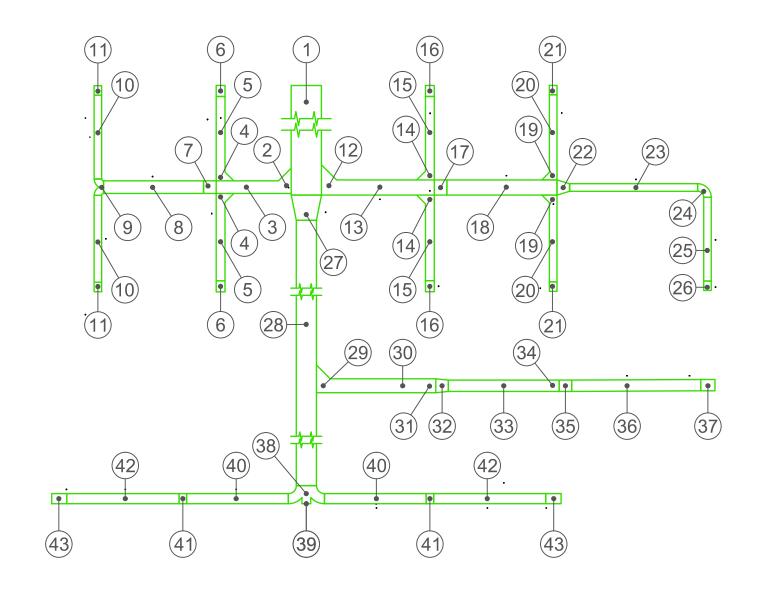

Revisó: GP-29/10/2019



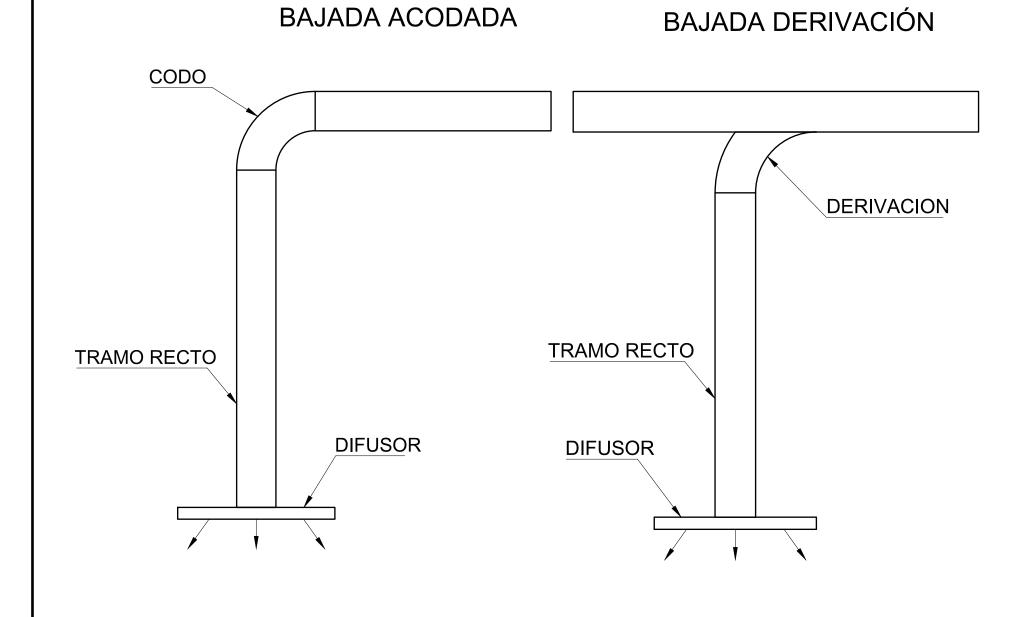




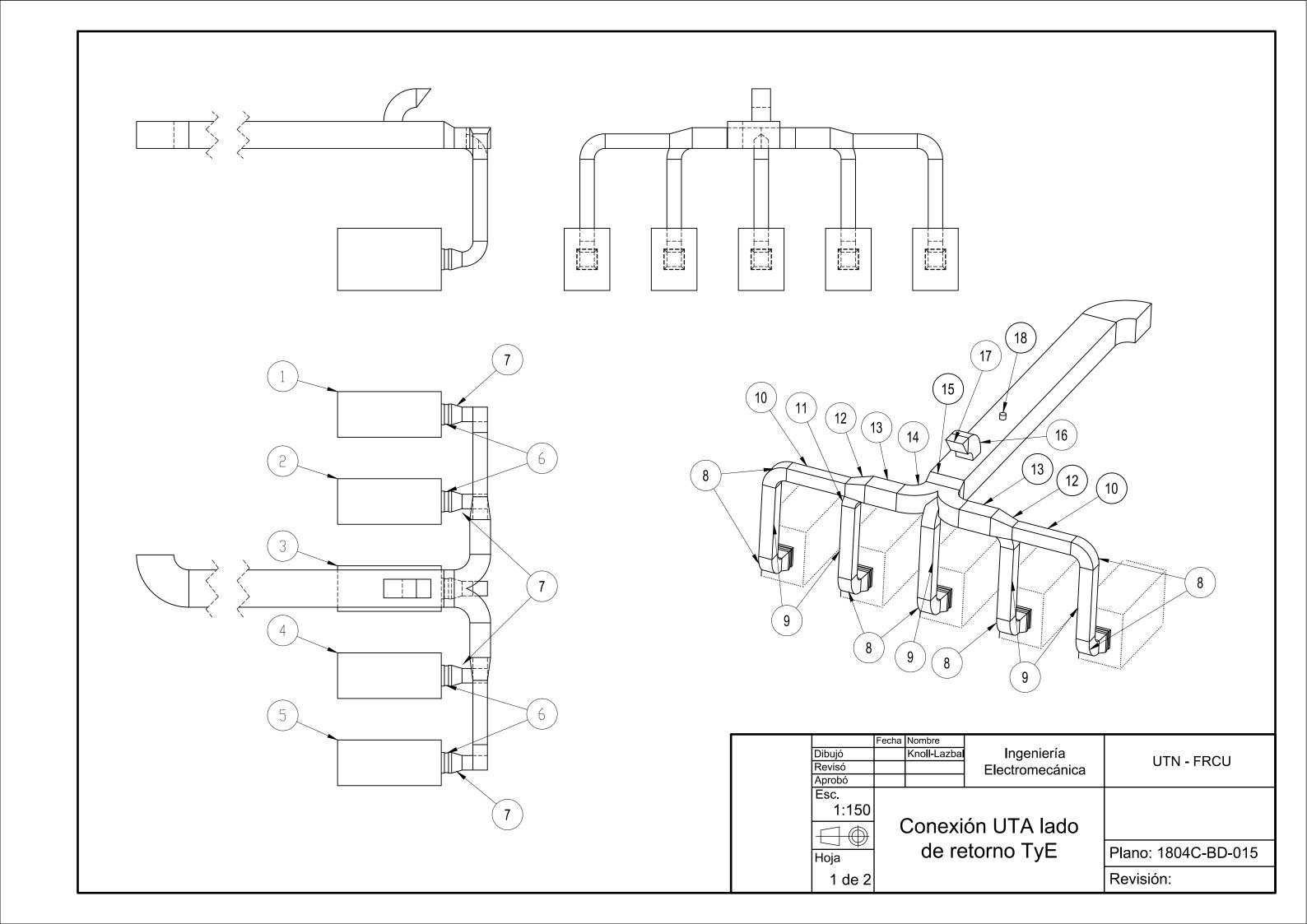
Partes del Plano BD-011									
Ubicación	Código	Descripción	Longitud [mm]	Dimensiones h x b [mm]	Cant.	Plano de pieza			
1	D1U-001	UTA	-	-	1	-			
2	D1U-002	UTA	-	-	1	-			
3	D1U-003	UTA	-	_	1	-			
4	D1U-004	UTA	-	-	1	-			
5	D1U-005	UTA	-	-	1	-			
6	D1N-006	Unión antivibratoria	-	1000x1000	5	AD-034			
7	D1F-007	Reducción	1000	-	5	BD-030			
8	D1O-008	Batería aletada	360	1200x2000	1	-			
9	D1F-009	Reducción	1000	-	5	BD-030			
10	D1O-010	Batería aletada	360	1200x2000	1	-			
11	D1O-011	Batería aletada	360	1200x2000	1	-			
12	D1O-012	Batería aletada	360	1200x2000	1	-			
13	D1O-013	Batería aletada	360	1200x2000	1	-			
14	D1B-014	Curva 90°	-	700x700	7	BD-026			
15	D1A-015	Tramo recto	1950	700x700	5	BD-025			
16	D1A-016	Tramo recto	3100	700x700	2	BD-025			
17	D1C-017	Derivación simple	-	700x700	2	BD-027			
18	D1F-018	Reducción	1100	-	2	BD-030			
19	D1A-019	Tramo recto	1675	1000x1000	2	BD-025			
20	D1E-020	Derivación Triple	-	-	1	BD-029			
21	D1F-021	Reducción	1075	=	1	BD-030			


		Fecha	Nombre		
Dib	oujó		Knoll-Lazbal	Ingeniería	UTN - FRCU
Re	visó			Electromecánica	UIN-FRCU
Ар	robó				
Es	SC.				
	1:150		•	·/ .	
	7	1		ión UTA lado	
Ho	oja		de im	pulsión TyE	Plano: 1804C-BD-011
	2 de 2				Revisión:

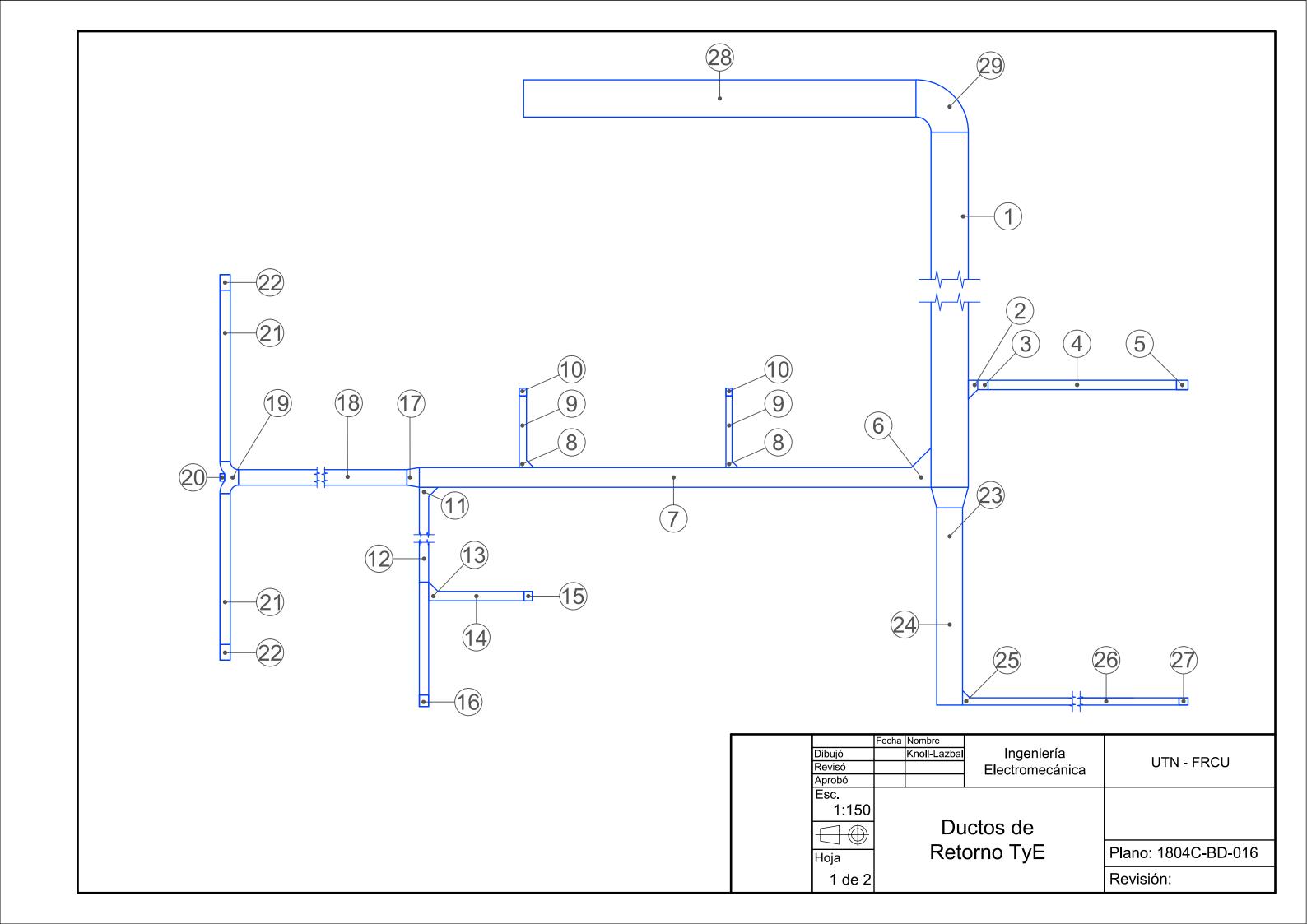
ı			Fecha	Nombre		
	D)ibujó		Knoll-Lazbal	Ingeniería	LITAL EDOLL
ı	R	Revisó			Electromecánica	UTN - FRCU
	А	probó			Electromodamea	
	E	SC.		-		
		1:150				
	-				ctos de	
	I-(Du	Clos de	
	<u> </u>	 		imnı	ılsión TyE	Plano: 1804C-BD-012
	I ⊢	loja		ппри		1 Idilo: 100+0 BB 012
ı		1 de 2				Revisión:
		1 UC Z				1 (0 (101011.


Partes del Plano BD-012								
Ubicación	Código	Descripción	Longitud	Dimensiones	Cant.	Plano de		
Obleacion	Codigo	Descripcion	[mm]	AxB [mm]	Cant.	pieza		
1	D1A-025	Tramo recto	27500	1300x1800	1	BD-025		
2	D1C-026	Derivación simple	-	1300x850	1	BD-027		
3	D1C-027	Derivación simple	-	300x350	3	BD-027		
4	D1A-028	Tramo recto	1400	300x350	1	BD-025		
5		Bajada N° 1	-	-	3	BD-014		
6	D1A-029	Tramo recto	4570	300x350	1	BD-025		
7	D1A-030	Tramo recto	16880	1300x850	1	BD-025		
8	D1A-031	Tramo recto	3060	300x350	1	BD-025		
9	D1G-032	Reducción	-	-	1	BD-030		
10	D1A-033	Tramo recto	4350	1150x850	1	BD-025		
11	D1C-034	Derivación simple	-	350x350	5	BD-027		
12	D1A-035	Tramo recto	3060	350x350	4	BD-025		
13		Bajada N° 2	-	-	5	BD-014		
14	D1F-036	Reducción	-	-	1	BD-030		
15	D1A-037	Tramo recto	4400	1000x850	1	BD-025		
16	D1F-038	Reducción	-	-	1	BD-030		
17	D1A-039	Tramo recto	4400	1000x700	1	BD-025		
18	D1A-040	Tramo recto	3240	350x350	1	BD-025		
19	D1C-041	Derivación simple	-	350x350	1	BD-030		
20	D1A-042	Tramo recto	11755	450x450	2	BD-025		
21		Bajada N° 3	-	-	1	BD-014		
22		Bajada N° 4	-	-	1	BD-014		
23	D1F-043	Reducción	-	-	1	BD-030		
24	D1A-044	Tramo recto	4385	600x700	1	BD-025		
25	D1C-045	Derivación simple	-	350x400	2	BD-027		
26	D1A-046	Tramo recto	3190	350x400	2	BD-025		
27		Bajada N° 5	-	-	2	BD-014		
28	D1F-047	Reducción	-	-	1	BD-030		
29	D1A-048	Tramo recto	5436	600x450	1	BD-025		
30	D1B-049	Curva 90°	-	600x450	1	BD-026		
31		Bajada N° 6			1	BD-014		
32	D1A-050	Tramo recto	8590	400x450	1	BD-025		
33		Bajada N° 7	-	-	1	BD-014		
34	D1F-051	Reducción	-	-	1	BD-030		
35	D1A-052	Tramo recto	12730	1300x1200	1	BD-025		
36	D1C-053	Derivación simple	-	600x400	1	BD-027		
37	D1A-054	Tramo recto	11890	600x400	1	BD-025		
38		Bajada N° 8	-	-	1	BD-014		
39	D1E-055	Derivación triple	-	-		BD-029		
40	D1A-056	Tramo recto	3800	300x300	2	BD-025		
41		Bajada N° 9	-	-	2	BD-014		
42	D1F-057	Reducción	-	-	1	BD-030		
43	D1A-247	Tramo recto	5100	1300x1800	1	BD-025		
44	D1B-248	Curva 90°	_	1300x1800	1	BD-026		

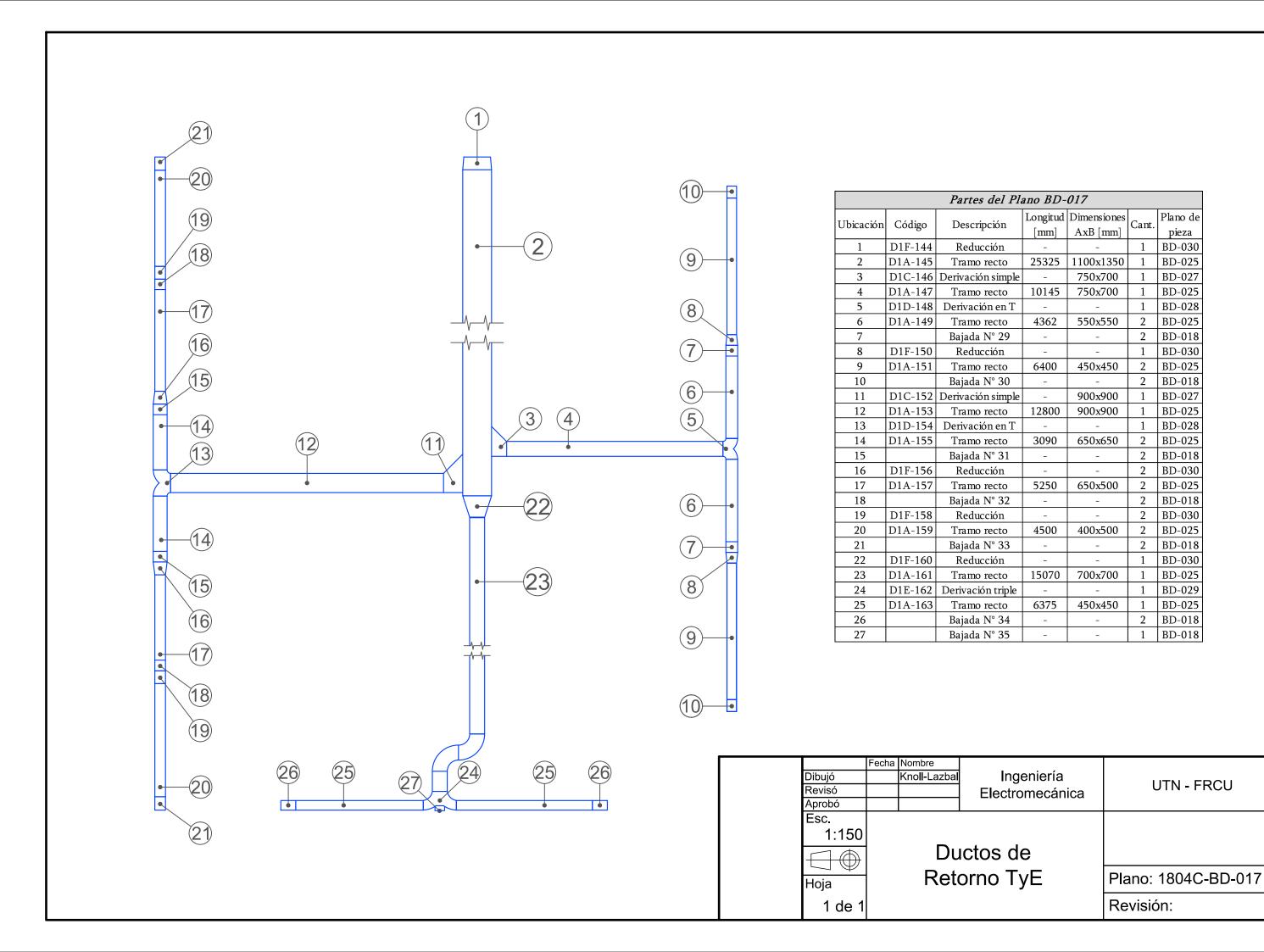
			Nombre		
	Dibujó		Knoll-Lazbal	Ingeniería	UTN - FRCU
	Revisó			Electromecánica	OTN-TRCO
	Aprobó				
	Esc.				
	1:150		_	_	
	\Box		Ductos de Impulsión TyE		
	Hoja				Plano: 1804C-BD-012
	•		•	,	
	2 de 2				Revisión:

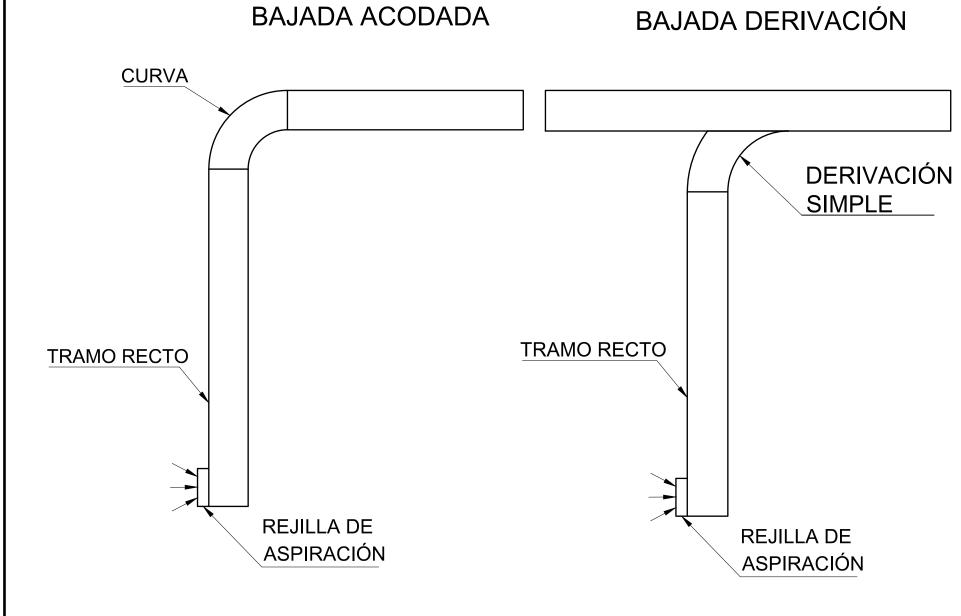

		Partes del Pla	ano BD-	-013		
Ubicación	Código	Descripción	Longitu	Dimensione	Cant.	Plano de
Obleacion	Courgo	Descripcion	d [mm]	s AxB [mm]	Cant.	pieza
1	D1A-058	Tramo recto	14900	1200x1200	1	BD-025
2	D1C-059	Derivación simple	-	600x500	1	BD-027
3	D1A-060	Tramo recto	2475	600x500	1	BD-025
4	D1C-061	Derivación simple	-	350x350	2	BD-027
5	D1A-062	Tramo recto	3000	350x350	2	BD-025
6		Bajada N° 10	-	-	2	BD-014
7	D1F-063	Reducción	-	-	1	BD-030
8	D1A-064	Tramo recto	3975	450x500	1	BD-025
9	D1D-065	Derivación en T	-	-	1	BD-028
10	D1A-066	Tramo recto	3300	450x300	2	BD-025
11		Bajada N°11	-	_	2	BD-014
12	D1C-067	Derivación simple	-	800x600	1	BD-027
13	D1A-068	Tramo recto	3880	800x600	1	BD-025
14	D1C-069	Derivación simple	-	350x350	2	BD-027
15	D1A-070	Tramo recto	2965	350x350	2	BD-025
16		Bajada N° 12	_	_	2	BD-014
17	D1F-071	Reducción	_	_	1	BD-030
18	D1A-072	Tramo recto	4375	550x600	1	BD-025
19	D1C-073		-	450x300	2	BD-027
20	D1A-074	Tramo recto	2965	450x300	2	BD-025
21	D 111 07 1	Bajada N° 13	-	-	2	BD-014
22	D1F-075	Reducción	_	_	1	BD-030
23	D1A-076	Tramo recto	5090	550x300	1	BD-025
24	D1B-077	Curva 90°	-	550x300	1	BD-026
25	D1A-078	Tramo recto	3325	550x300	1	BD-025
26	D171-070	Bajada N° 14	-	-	1	BD-023
27	D1F-079	Reducción			1	BD-014 BD-030
28	D1A-080	Tramo recto	18480	950x800	1	BD-030
29	D1C-081	Derivación simple	10400	600x550	1	BD-023
30	D1C-081		3690		1	BD-027 BD-025
	D1W-097	Tramo recto	3090	600x550	1	BD-025
31	D1E 002	Bajada N° 15	_	_		
32	D1F-083	Reducción	2000	600-450	1	BD-030
33	D1A-084	Tramo recto	3900	600x450	1	BD-025
34	D1E 005	Bajada N° 16	-	-	1	BD-014
35	D1F-085	Reducción	F120	250450	1	BD-030
36	D1A-086	Tramo recto	5130	350x450	1	BD-025
37	D1E 007	Bajada N° 17	-	-	1	BD-014
38	D1E-087	Derivación triple	-	-	1	BD-029
39	D14 00-	Bajada N° 18	-	-	1	BD-014
40	D1A-088	Tramo recto	4040	600x400	1	BD-025
41		Bajada N° 19	-	100 100	2	BD-014
42	D1A-089	Tramo recto	4460	400x400	2	BD-025
43		Bajada N° 20	-		2	BD-014

	Fecha	Nombre		
Dibujó		Knoll-Lazbal	Ingeniería	UTN - FRCU
Revisó			Electromecánica	UIN-FRCU
Aprobó				
Esc.				
1:150				
\bigcirc		Dı	uctos de	
Hoja		Impi	ulsión TyE	Plano: 1804C-BD-013
1 de 1				Revisión:

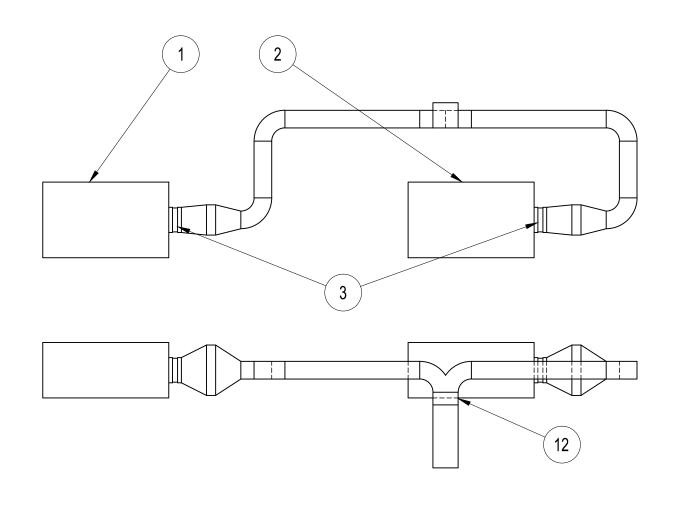

Bajadas de Planos BD-012 y BD-013							
Bajada N°	Código	Descripción	Longitud	Dimensiones	Plano de	Cant.	
Dajada N	Codigo	Descripcion	[mm]	AxB [mm]	pieza	Cant.	
1	D1B-090	Curva 90°	-	300x350	BD-026	3	
1	D1A-091	Tramo recto	1500	300x350	BD-025	3	
2	D1B-092	Curva 90°	-	350x350	BD-026	4	
4	D1A-093	Tramo recto	1500	350x350	BD-025	4	
3	D1C-094	Derivación simple	-	350x350	BD-027	1	
3	D1A-093	Tramo recto	1500	350x350	BD-025	1	
4	D1B-095	Curva 90°	-	450x450	BD-026	1	
4	D1A-096	Tramo recto	1500	450x450	BD-025	1	
5	D1B-090	Curva 90°	-	350x400	BD-026	2	
3	D1A-091	Tramo recto	1500	350x400	BD-025	2	
6	D1C-094	Derivación simple	-	350x350	BD-027	1	
0	D1A-093	Tramo recto	1500	350x350	BD-025	1	
7	D1A-097	Curva 90°	-	400x450	BD-026	1	
7	D1F-098	Tramo recto	1500	400x450	BD-025	1	
0	D1B-099	Curva 90°	-	300x300	BD-026	1	
8	D1A-100	Tramo recto	1500	300x300	BD-025	1	
0	D1B-099	Curva 90°	-	300x300	BD-026	2	
9	D1A-100	Tramo recto	1500	300x300	BD-025	2	
10	D1B-092	Curva 90°	-	350x350	BD-026	2	
10	D1A-093	Tramo recto	1500	350x350	BD-025	2	
11	D1B-101	Curva 90°	-	450x300	BD-026	2	
11	D1A-102	Tramo recto	1500	450x300	BD-025	2	
10	D1B-092	Curva 90°	-	350x350	BD-026	2	
12	D1A-093	Tramo recto	1500	350x350	BD-025	2	
10	D1B-101	Curva 90°		450x300	BD-026	2	
13	D1A-102	Tramo recto	1500	450x300	BD-025	2	
1.4	D1B-103	Curva 90°	-	550x300	BD-026	1	
14	D1A-104	Tramo recto	1500	550x300	BD-025	1	
1.5	D1C-094	Derivación simple		350x350	BD-027	1	
15	D1A-093	Tramo recto	1500	350x350	BD-025	1	
1.0	D1C-094	Derivación simple		350x350	BD-027	1	
16	D1A-093	Tramo recto	1500	350x350	BD-025	1	
17	D1B-105	Curva 90°		350x450	BD-026	1	
	D1A-106	Tramo recto	1501	350x450	BD-025	1	
18	D1A-093	Tramo recto	1500	350x350	BD-025	1	
19	D1C-094		-	350x350	BD-027	2	
	D1A-093	Tramo recto	1500	350x350	BD-025	2	
0.0	D1B-106	Curva 90°	-	400x400	BD-026	2	
20	D1A-107	Tramo recto	1500	400x400	BD-025	2	
-	D3H-241	Difusor	-	1000x300	-	34	
-	D3H-241	Ditusor	_	1000x300	-	34	

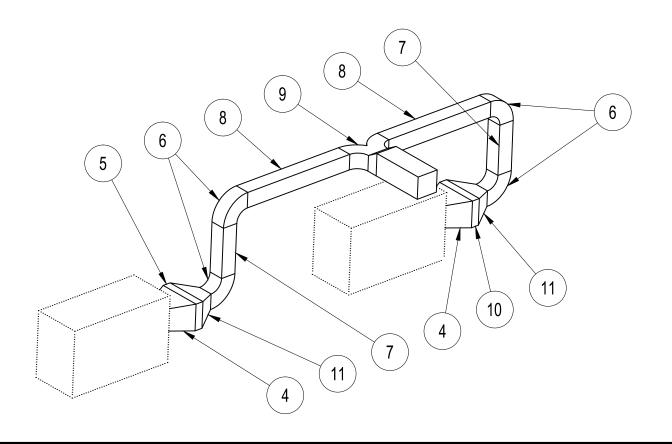
	Fecha	Nombre				
Dibujó		Knoll-Lazbal	Ingeniería	UTN - FRCU		
Revisó			Electromecánica			
Aprobó			<u> </u>			
Esc.						
1:150	l	Detalle	de Bajadas			
			•			
	l a	ie Pian	os BD-012 y	Plano: 1804C-BD-014		
Hoja		R	D-013	1 10110. 100 10 00 011		
1 de 1				Revisión:		

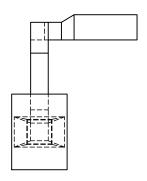

Partes del Plano BD-015								
I Ibiaa aida	Código	Dogarinaión	Longitud	Dimensiones	C	Plano de		
Ubicación		Descripción	[mm]	AxB [mm]	Cant.	pieza		
1	D1U-001	UTA	-	-	1	-		
2	D1U-002	UTA	-	-	1	-		
3	D1U-003	UTA	-	-	1	-		
4	D1U-004	UTA	-	-	1	-		
5	D1U-005	UTA	-	-	1	-		
6	D1N-006	Unión antivibratoria	-	1000x1000	5	AD-034		
7	D1F-108	Reducción	500	-	5	BD-030		
8	D1B-014	Curva 90°	-	700x700	7	BD-026		
9	D1A-109	Tramo recto	3950	700x700	5	BD-025		
10	D1A-016	Tramo recto	3100	700x700	2	BD-025		
11	D1C-017	Derivación simple	-	700x700	2	BD-027		
12	D1F-018	Reducción	1100	-	2	BD-030		
13	D1A-019	Tramo recto	1675	1000x1000	2	BD-025		
14	D1E-020	Derivación Triple	-	-	1	BD-029		
15	D1F-021	Reducción	1100	-	1	BD-030		
16	D1B-110	Curva 90°	-	1000x600	1	DB-026		
17	D1T-249	Rejilla de aspiración AE	-	600x1000	1	-		
18	D1Q-250	Sensor de Temp y HR	-	-	1	_		


		Fecha	Nombre				
	Dibujó		Knoll-Lazbal	Ingeniería	UTN - FRCU		
	Revisó			Electromecánica	OTN-FRCO		
	Aprobó						
	Esc.						
	1:150						
Ī		(Conexión UTA lado				
	Hoja		de re	etorno TyE	Plano: 1804C-BD-015		
	2 de 2				Revisión:		

Partes del Plano BD-016							
Ubicación	Código	Descripción	Longitud [mm]	Dimensiones AxB [mm]	Cant.	Plano de pieza	
1	D1A-125	Tramo recto	26150	1300x1800	1	BD-025	
2	D1C-126	Derivación simple	-	450x300	1	BD-027	
3		Bajada N° 21	-	-	1	BD-018	
4	D1A-127	Tramo recto	9600	450x300	1	BD-025	
5		Bajada N° 22	-	-	1	BD-018	
6	D1C-128	Derivación simple	-	1050x950	1	BD-027	
7	D1A-129	Tramo recto	23745	1050x950	1	BD-025	
8	D1C-130	Derivación simple	1	450x300	2	BD-027	
9	D1A-131	Tramo recto	3160	450x300	2	BD-025	
10		Bajada N° 23	-	-	2	BD-018	
11	D1C-132	Derivación simple	-	650x450	1	BD-027	
12	D1A-133	Tramo recto	14390	650x450	1	BD-025	
13	D1C-134	Derivación simple	-	450x450	1	BD-027	
14	D1A-135	Tramo recto	4155	450x450	1	BD-025	
15		Bajada N° 24	ı	-	1	BD-018	
16		Bajada N° 25	ı	-	1	BD-018	
17	D1F-136	Reducción	-	-	1	BD-030	
18	D1A-137	Tramo recto	16100	900x750	1	BD-025	
19	D1E-138	Derivación triple	-	-	1	BD-029	
20		Bajada N° 26	-	-	1	BD-018	
21	D1A-139	Tramo recto	8260	500x750	2	BD-025	
22		Bajada N° 27	-	-	2	BD-018	
23	D1F-140	Reducción	-	-	1	BD-030	
24	D1A-141	Tramo recto	9515	1100x1250	1	BD-025	
25	D1C-142	Derivación simple		450x350	1	BD-027	
26	D1A-143	Tramo recto	16250	450x350	1	BD-025	
27		Bajada N° 28	-	-	1	BD-018	
28	D1A-243	Tramo recto	18940	1300x1800	1	BD-025	
29	D1B-244	Curva 90°	-	1300x1800	1	BD-026	

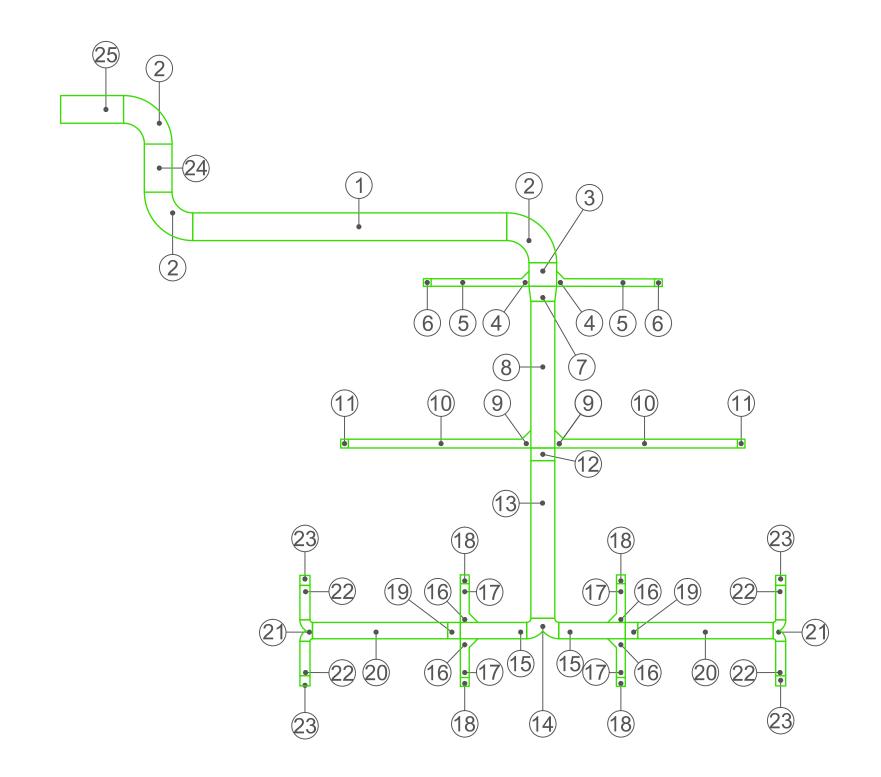

	Fecha	Nombre				
Dibujó		Kno ll- Lazbal	Ingeniería	LITH FDCLL		
Revisó			Electromecánica	UTN - FRCU		
Aprobó						
Esc.						
1:150		_	_			
		Ductos de Retorno TyE				
Hoja	1			Plano: 1804C-BD-016		
2 de 2				Revisión:		

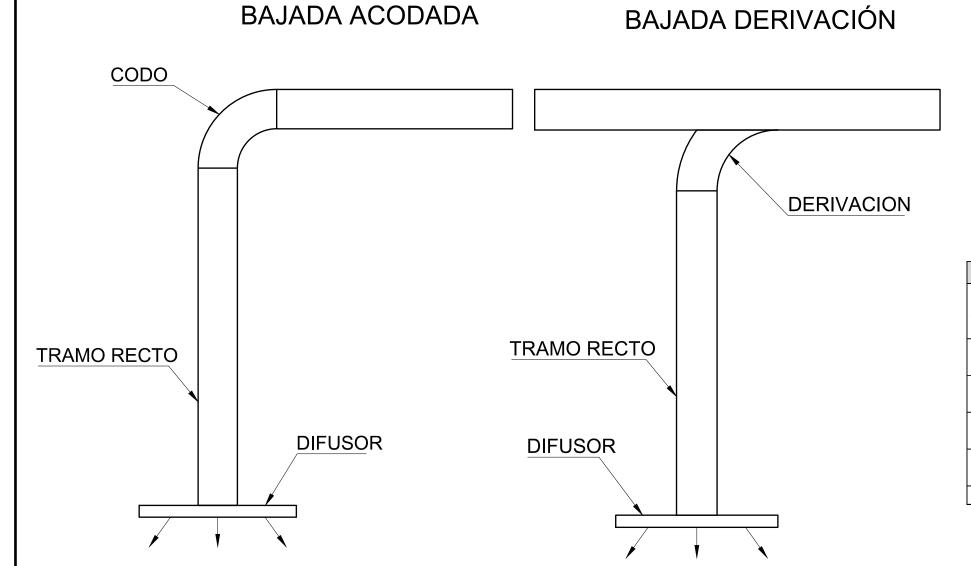




		Bajadas de Plano	s BD-016	y BD-017		
Daiada Nº	Cádica	Dogarin aión	Longitud	Dimensiones	Plano de	
Bajada N°	Código	Descripción	[mm]	AxB [mm]	pieza	Cant
21	D1C-165	Derivación simple	-	450x300	BD-027	1
21	D1A-165	Tramo recto	7100	450x300	BD-025	1
22	D1B-101	Curva 90°	ı	450x300	BD-026	1
22	D1A-166	Tramo recto	7100	450x300	BD-025	1
23	D1B-101	Curva 90°	-	450x300	BD-026	2
23	D1A-166	Tramo recto	7100	450x300	BD-025	2
24	D1B-095	Curva 90°	-	450x450	BD-026	1
2 4	D1A-167	Tramo recto	7100	450x450	BD-025	1
25	D1B-168	Curva 90°	-	650x450	BD-026	1
25	D1A-169	Tramo recto	7100	650x450	BD-025	1
26	D1A-165	Tramo recto	7100	400x400	BD-025	1
27	D1B-170	Curva 90°	-	500x750	BD-026	2
21	D1F-171	Tramo recto	7100	500x750	BD-025	2
28	D1B-172	Curva 90°	-	450x350	BD-026	1
20	D1A-165	Tramo recto	7100	450x350	BD-025	1
29	D1C-173	Derivación simple	-	450x450	BD-027	2
29	D1A-167	Tramo recto	7100	450x450	BD-025	2
30	D1B-095	Curva 90°	-	450x450	BD-026	2
30	D1A-167	Tramo recto	7100	450x450	BD-025	2
31	D1C-173	Derivación simple	-	450x450	BD-027	2
31	D1A-167	Tramo recto	7100	450x450	BD-025	2
32	D1C-173	Derivación simple	-	450x450	BD-027	2
32	D1A-167	Tramo recto	7100	450x450	BD-025	2
33	D1B-174	Curva 90°	-	400x500	BD-026	2
33	D1A-175	Tramo recto	7100	400x500	BD-025	2
34	D1B-095	Curva 90°	-	450x450	BD-026	2
34	D1A-167	Tramo recto	7100	450x450	BD-025	2
35	D1A-167	Tramo recto	7100	450x450	BD-025	1
_	D3I-242	Rejilla de retorno	-	1000x600	-	25

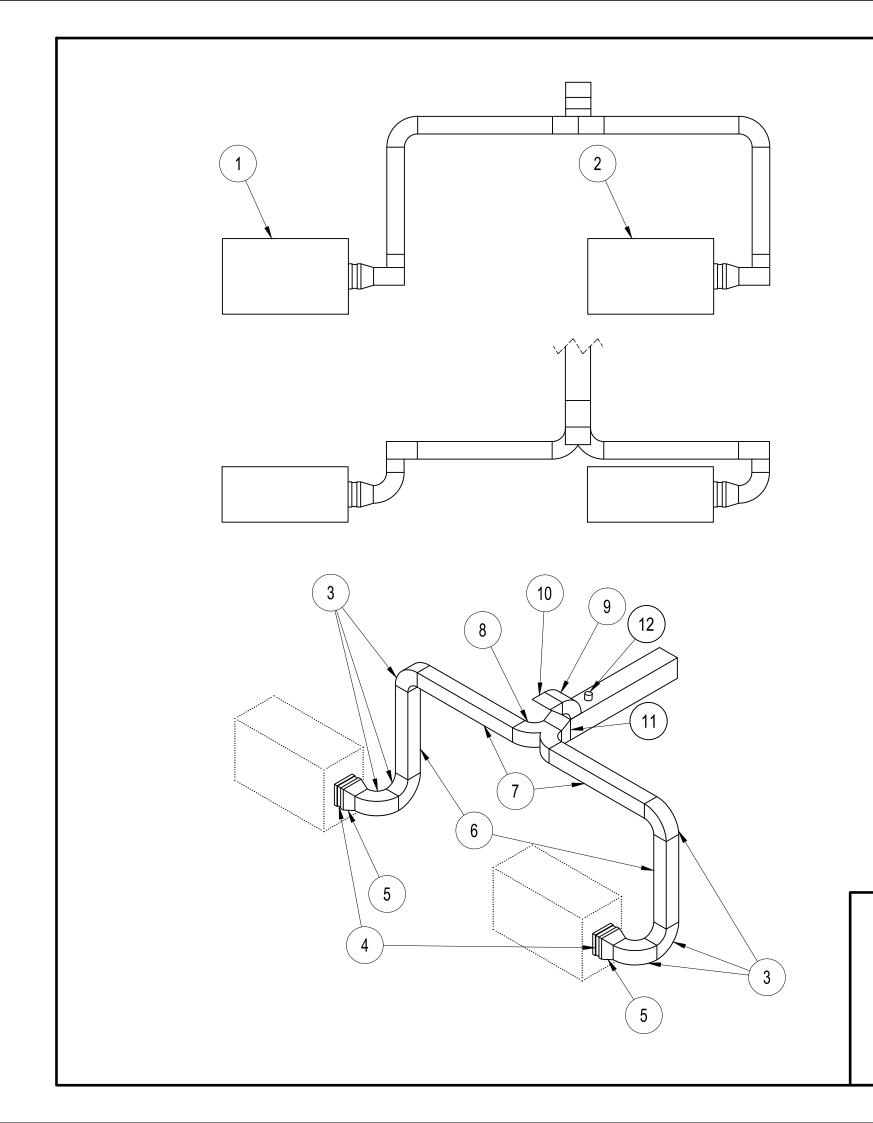
-				
Dibujó Revisó Aprobó	Fecha	Nombre Knoll-Lazbal	Ingeniería Electromecánica	UTN - FRCU
Esc. 1:150	l .		de Bajadas os BD-016 y	
Hoja 1 de 1			D-017	Plano: 1804C-BD-018 Revisión:

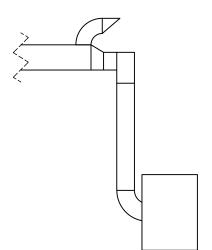



Partes del Plano BD-019									
T T1. ! : /	C (1:	D : /	Longitud	Dimensiones	Carat	Plano de			
Ubicación	Código	Descripción	[mm]	h x b [mm]	Cant.	pieza			
1	D2U-176	UTA	-	-	1	-			
2	D2U-177	UTA	-	-	1	-			
3	D2N-178	Unión antivibratoria	-	1000x1000	2	AD-034			
4	D2F-179	Reducción	1000	-	2	BD-030			
5	D2O-180	Batería aletada	360	1200x2000	1	-			
6	D2B-181	Curva 90°		700x700	4	BD-026			
7	D2A-182	Tramo recto	2250	700x700	2	BD-025			
8	D2A-183	Tramo recto	5350	700x700	2	BD-025			
9	D2D-184	Derivación en T		-	1	BD-028			
10	D2O-185	Batería aletada	360	1200x2000	1	-			
11	D2F-186	Reducción	1000	-	2	BD-030			
12	D2F-187	Reducción	500	_	1	BD-030			

	Fecha	Nombre		
Dibujó		Knoll-Lazbal	Ingeniería	LITAL EDOLL
Revisó			Electromecánica	UTN - FRCU
Aprobó				
Esc.				
1:150		_		
		Conex	ión lado de	
Hoja		impu	Isión EyC	Plano: 1804C-BD-019
1 de 1		-	-	Revisión:

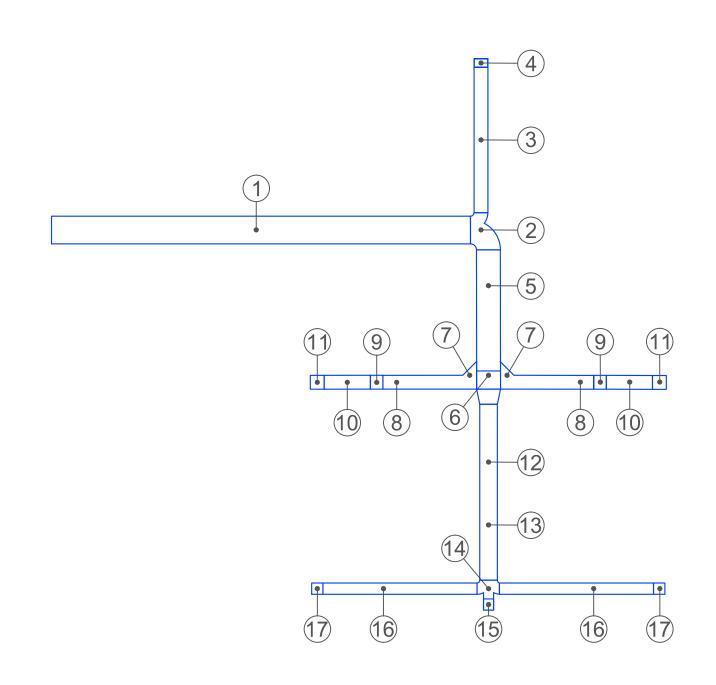
			Longitud	Dimensione		Plano de
Ubicación	Código	Descripción	[mm]	s hxb [mm]	Cant.	pieza
1	D2A-190	Tramo recto	12500	1000x1000	1	BD-025
2	D2B-186	Curva 90°	12300	1000x1000	3	BD-023
3	D2B-180	Tramo recto	950	1000x1000	1	BD-026
4	D2C-191	Derivación simple	930	350x300	2	BD-023
5	D2C-192 D2A-193	Tramo recto	3590	350x300	2	BD-027
6	D2A-193		3390	330x300	2	
<u>6</u> 	D2F-194	Bajada N° 36	-	-	1	BD-021
<u>-</u>		Reducción	-	-		BD-030
8	D2A-195	Tramo recto	5825	900x900	1	BD-025
9		Derivación simple	-	400x350	2	BD-027
10	D2A-197	Tramo recto	6900	400x350	2	BD-025
11		Bajada N°37	-	-	2	BD-021
12	D2F-198	Reducción	-	-	1	BD-030
13	D2A-199	Tramo recto	6325	700x900	1	BD-025
14	D2D-200	Derivación en T	-	-	1	BD-028
15	D2A-201	Tramo recto	2640	700x500	2	BD-025
16	D2C-202	Derivación simple	-	300x350	4	BD-027
17	D2A-203	Tramo recto	1190	300x350	4	BD-025
18		Bajada N° 38	_	-	4	BD-021
19	D2F-204	Reducción	-	-	2	BD-030
20	D2A-205	Tramo recto	8515	400x500	2	BD-025
21	D2D-206	Derivación en T	ı	-	2	BD-028
22	D2A-207	Tramo recto	1370	400x300	4	BD-025
23		Bajada N° 39	_	_	4	BD-021
24	D2A-245	Tramo recto	1910	1000x1000	1	BD-025
25	D2A-246	Tramo recto	2500	1000x1000	1	BD-025

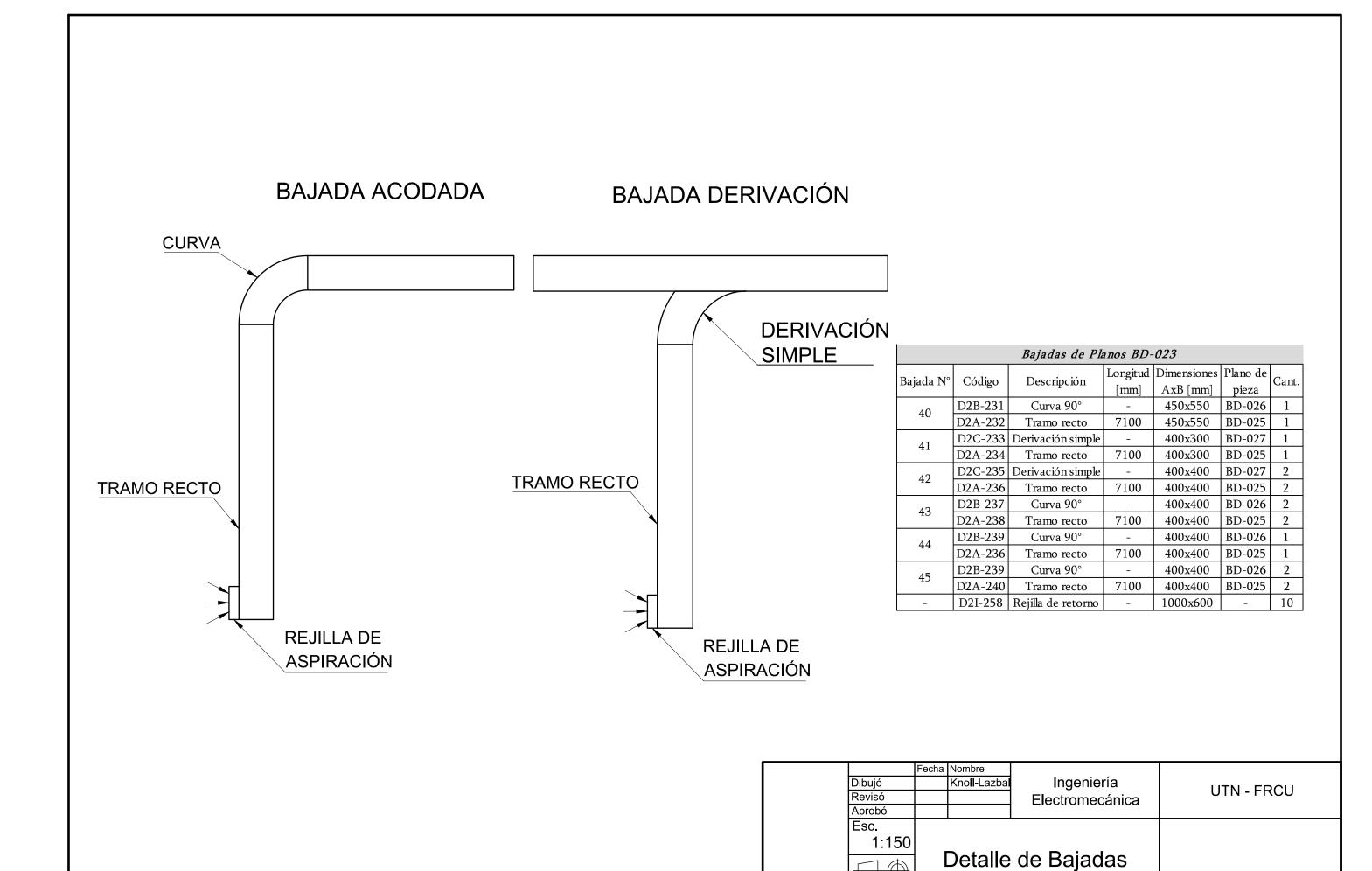

Ē	Dibujó Revisó Aprobó	Nombre Knoll-Lazbal	Ingeniería Electromecánica	UTN - FRCU
- -	Esc. 1:150	Dı	uctos de	
- -	Hoja	Impi	ulsión EyC	Plano: 1804C-BD-020
	1 de 1			Revisión:



BAJADA ACODADA

Bajadas de Planos BD-020									
Bajada N°	Código	Descripción	Longitud [mm]	Dimensiones h x b [mm]	Plano de pieza	Cant.			
36	D2B-208	Curva 90°	-	350x300	BD-026	2			
30	D2A-209	Tramo recto	1500	350x300	BD-025	2			
37	D2B-210	Curva 90°	ı	400x350	BD-026	2			
37	D2A-211	Tramo recto	1500	400x350	BD-025	2			
38	D2B-212	Curva 90°	ı	300x350	BD-026	4			
30	D2A-213	Tramo recto	1500	300x350	BD-025	4			
39	D2B-214	Curva 90°	-	400x300	BD-026	4			
	D2A-215	Tramo recto	1500	400x300	BD-025	4			
_	D2H-257	Difusor	_	1000x300	_	25			

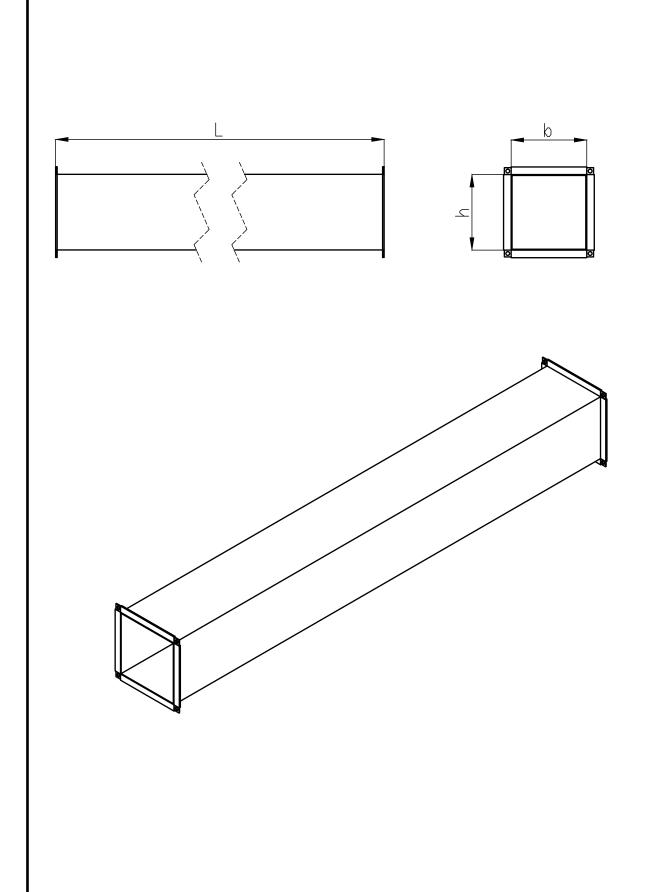

Dibujó Revisó Aprobó	Fecha	Nombre Knoll-Lazbal	Ingeniería Electromecánica	UTN - FRCU
Esc. 1:150	[Detalle	de Bajadas	
Hoja		de Pla	no BD-020	Plano: 1804C-BD-021
1 de 1				Revisión:


	Partes del Plano BD-022									
T T1-::/	C	D	Longitud	Dimensiones	C	Plano de				
Ubicación	Código	Descripción	[mm]	AxB [mm]	Cant.	pieza				
1	D2U-176	UTA	-	1	1	-				
2	D2U-177	UTA	-	1	1	-				
3	D2B-181	Curva 90°	-	700x700	6	BD-026				
4	D2N-178	Unión antivibratoria	-	1000x1000	2	AD-034				
5	D2F-186	Reducción	1000	ı	2	BD-030				
6	D2A-216	Tramo recto	4250	700x700	2	BD-025				
7	D2A-217	Tramo recto	5350	700x700	2	BD-025				
8	D2D-184	Derivación en T	-	1	1	BD-028				
9	D2B-218	Curva 90°	-	600x1000	1	BD-026				
10	D2T-259	Rejilla de aspiración AE	-	600x1000	1	-				
11	D2F-187	Reducción	500	1	1	BD-030				
12	D2Q-256	Sensor de Temp y HR	-	-	1	_				

	Fecha	Nombre		
Dibujó		Knoll-Lazbal	Ingeniería	UTN - FRCU
Revisó			Electromecánica	UIN-FRCU
Aprobó				
Esc.				
1:150				
$ \bigcirc$		Conex	ción lado de	
)		reto	rno EyC	Plano: 1804C-BD-022
Hoja		1010	ine Eye	1 141101 10010 00 000
1 de 1				Revisión:

Partes de	Partes del Plano BD-023							
I This sión	Cádica	Dogarin aión	Longitud	Dimensiones	Cant.	Plano de		
Ubicación	Código	Descripción	[mm]	h x b [mm]	Cant.	pieza		
1	D2A-219	Tramo recto	16650	1000x1000	1	BD-025		
2	D2D-220	Derivación en T	-	-	1	BD-028		
3	D2A-221	Tramo recto	5780	450x550	1	BD-025		
4		Bajada N° 40	-	-	1	BD-024		
5	D2A-223	Tramo recto	5530	1000x800	1	BD-025		
6		Bajada N° 41	1	_	1	BD-024		
7	D2C-224	Derivación simple	-	500x450	2	BD-027		
8	D2A-225	Tramo recto	3170	500x450	2	BD-025		
9		Bajada N° 42	-	-	2	BD-024		
10	D2A-226	Tramo recto	1835	400x400	2	BD-025		
11		Bajada N°43	-	-	2	BD-024		
12	D2F-227	Reducción	-	_	1	BD-030		
13	D2A-228	Tramo recto	6990	600x600	1	BD-025		
14	D2E-229	Derivación triple	-	-	1	BD-029		
15		Bajada N°44	-	-	1	BD-024		
16	D2A-230	Tramo recto	6120	400x400	2	BD-025		
17		Bajada N° 45	-	-	2	BD-024		

	Fecha	Nombre		
Dibujó		Knoll-Lazbal	Ingeniería	LITAL EDOLL
Revisó			Electromecánica	UTN - FRCU
Aprobó			Lioutionnoamoa	
Esc.				
1:150				
1.100		D.	estas da	
		Du	ıctos de	
		Pot	orno EyC	Plano: 1804C-BD-023
Hoja		1760	JITIO LYC	Platio. 1604C-6D-023
1 de 1				Revisión:
. 40 1				


de Plano BD-023

Hoja

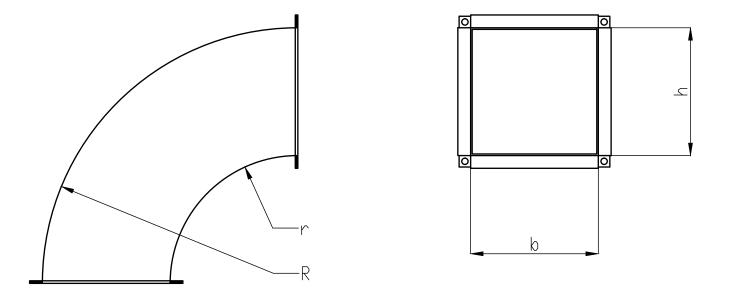
1 de 1

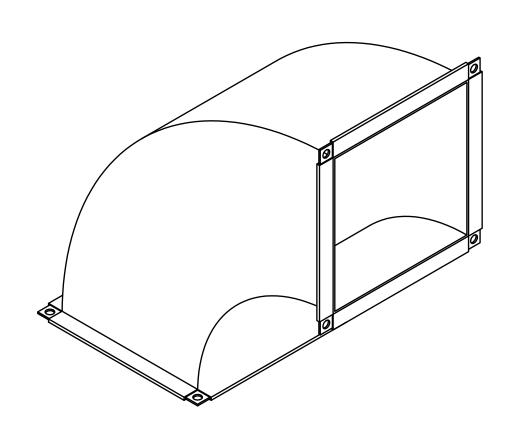
Plano: 1804C-BD-024

Revisión:

Dimensiones de Tramos Rectos Plano BD-025

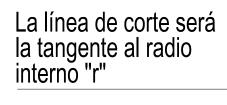
Código	Dimen	Dimensiones [mm]					
Codigo	L	h	Ъ	Cant.			
D1A-015	1950	700	700	5			
D1A-016	3100	700	700	4			
D1A-019	1675	1000	1000	4			
D1A-025	27500	1300	1800	1			
D1A-028	1400	300	350	1			
D1A-029	4570	300	350	1			
D1A-030	16880	1300	850	1			
D1A-031	3060	300	350	1			
D1A-033	4350	1150	850	1			
D1A-035	3060	350	350	4			
D1A-037	4400	1000	850	1			
D1A-039	4400	1000	700	1			
D1A-040	3240	350	350	1			
D1A-042	11755	450	450	2			
D1A-044	4385	600	700	1			
D1A-046	3190	350	400	2			
D1A-048	5436	600	450	1			
D1A-050	8590	400	450	1			
D1A-052	12730	1300	1200	1			
D1A-054	11890	600	400	1			
D1A-056	3800	300	300	2			
D1A-058	14900	1200	1200	1			
D1A-060	2475	600	500	1			
D1A-062	3000	350	350	2			
D1A-064	3975	450	500	1			
D1A-066	3300	450	300	2			
D1A-068	3880	800	600	1			
D1A-070	2965	350	350	2			
D1A-072	4375	550	600	1			
D1A-074	2965	450	300	2			
D1A-076	5090	550	300	1			
D1A-078	3325	550	300	1			
D1A-080	18480	950	800	1			
D1A-082	3690	600	550	1			
D1A-084	2000	600	450	1			
D111 001	3900	000					
D1A-086	5130	350	450	1			

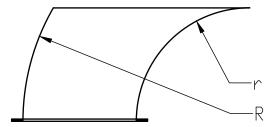

Dimensiones de Tramos Rectos Plano BD-025

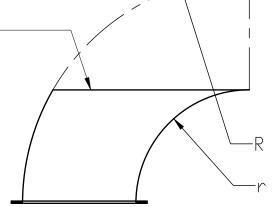

Código	Dimen	siones	[mm]	Cant.
Codigo	L	h	Ъ	Cant.
D1A-089	4460	400	400	2
D1A-091	1500	300	350	5
D1A-093	1500	350	350	15
D1A-096	1500	450	450	1
D1A-100	1500	300	300	3
D1A-102	1500	450	300	4
D1A-104	1500	550	300	1
D1A-106	1501	350	450	1
D1A-107	1500	400	400	2
D1A-109	3950	700	700	5
D1A-125	26150	1300	1800	1
D1A-127	9600	450	300	1
D1A-129	23745	1050	950	1
D1A-131	3160	450	300	2
D1A-133	14390	650	450	1
D1A-135	4155	450	450	1
D1A-137	16100	900	750	1
D1A-139	8260	500	750	2
D1A-141	9515	1100	1250	1
D1A-143	16250	450	350	1
D1A-145	25325	1100	1350	1
D1A-147	10145	750	700	1
D1A-149	4362	550	550	2
D1A-151	6400	450	450	2
D1A-153	12800	900	900	1
D1A-155	3090	650	650	2
D1A-157	5250	650	500	2
D1A-159	4500	400	500	2
D1A-161	15070	700	700	1
D1A-163	6375	450	450	1
D1A-165	7100	450	300	3
D1A-166	7100	450	300	3
D1A-167	7100	450	450	12
D1A-169	7100	650	450	1
D1A-175	7100	400	500	2
D1A-243	18940	1300	1800	1
D1A-247	5100	1300	1800	1

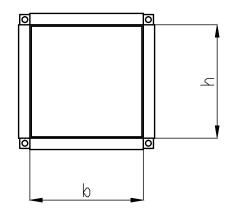
Dimensiones de Tramos Rectos Plano BD-025

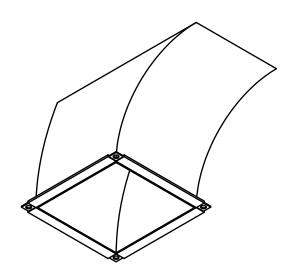
Código	Dime	nsiones	[mm]	Cant.
Codigo	L	h	Ъ	Cant.
D1F-098	1500	400	450	1
D1F-171	7100	500	750	2
D2A-182	2250	700	700	2
D2A-183	5350	700	700	2
D2A-190	12500	1000	1000	1
D2A-191	950	1000	1000	1
D2A-193	3590	350	300	2
D2A-195	5825	900	900	1
D2A-197	6900	400	350	2
D2A-199	6325	700	900	1
D2A-201	2640	700	500	2
D2A-203	1190	300	350	4
D2A-205	8515	400	500	2
D2A-207	1370	400	300	4
D2A-209	1500	350	300	2
D2A-211	1500	400	350	2
D2A-213	1500	300	350	4
D2A-215	1500	400	300	4
D2A-216	4250	700	700	2
D2A-217	5350	700	700	2
D2A-219	15645	1000	1000	1
D2A-221	5780	450	550	1
D2A-223	5530	1000	800	1
D2A-225	3170	500	450	2
D2A-226	1835	400	400	2
D2A-228	6990	600	600	1
D2A-230	6120	400	400	2
D2A-232	7100	450	550	1
D2A-234	7100	400	300	1
D2A-236	7100	400	400	3
D2A-238	7100	400	400	2
D2A-240	7100	400	400	2
D2A-245	1550	1000	1000	1
D2A-246	1670	1000	1000	1
D1A-252	700	700	535	5
D2A-254	700	700	535	2
·			·	

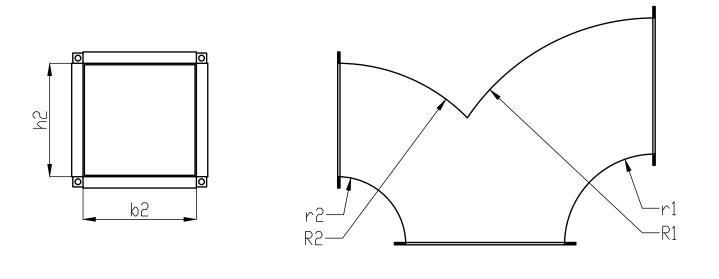

Dibujó	Fecha	Nombre Knoll-Lazbal	Ingeniería	UTN - FRCU
Revisó			Electromecánica	OTN - FRCU
Aprobó				
Esc.				
1:150				
\Box		Detalle	e de tramos	
Hoja		r	rectos	Plano: 1804C-BD-025
-				—
1 de 1				Revisión:

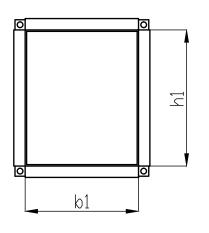


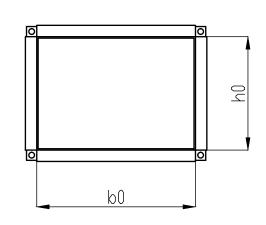


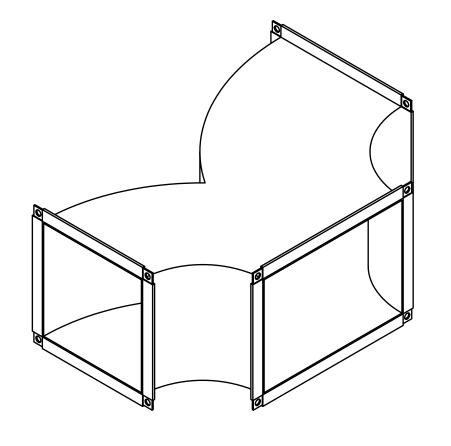

	Dimensione	es de Curva	s 90° - Pla1	no BD-026	
Cádigo		Dimensio	nes [mm]		Cant.
Código	h	Ъ	r	R	Calit.
D1A-097	400	450	338	788	1
D1B-014	700	700	525	1225	19
D1B-049	600	450	338	788	1
D1B-077	550	300	225	525	1
D1B-090	300	350	263	613	5
D1B-092	350	350	263	613	7
D1B-095	450	450	338	788	7
D1B-099	300	300	225	525	3
D1B-101	450	300	225	525	6
D1B-103	550	300	225	525	1
D1B-105	350	450	338	788	1
D1B-106	400	400	300	700	2
D1B-110	1000	600	450	1050	1
D1B-168	650	450	338	788	1
D1B-170	500	750	563	1313	2
D1B-172	450	350	263	613	1
D1B-174	400	500	375	875	2
D1B-244	1300	1800	1350	3150	1
D2B-181	700	700	525	1225	12
D2B-186	1000	1000	750	1750	3
D2B-208	350	300	225	525	2
D2B-210	450	300	225	525	2
D2B-212	350	350	263	613	2
D2B-214	400	400	300	700	2
D2B-218	1000	600	450	1050	1
D2B-231	500	550	413	963	1
D2B-237	350	550	413	963	2
D2B-239	450	400	300	700	3


	Fecha	Nombre		
Dibujó		Knoll-Lazbal	Ingeniería	UTN - FRCU
Revisó			Electromecánica	UIN-FRCU
Aprobó				
Esc.				
1:150				
		Detalle	e de curvas	
Hoja			90°	Plano: 1804C-BD-026
1 de 1				Revisión:

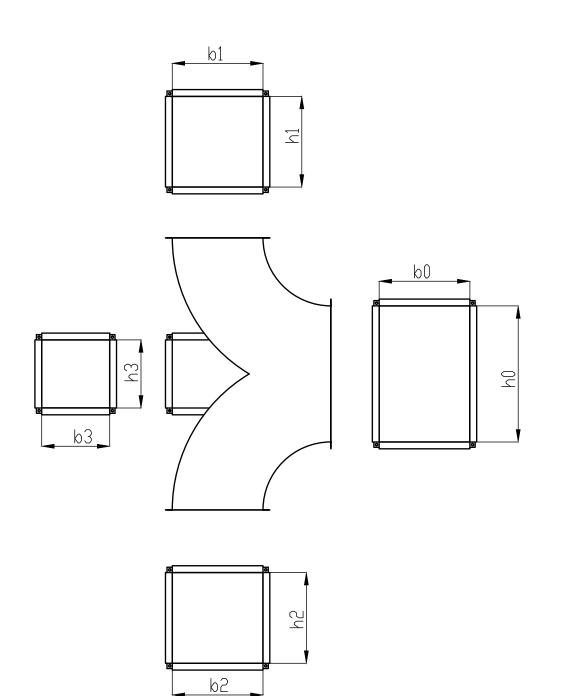






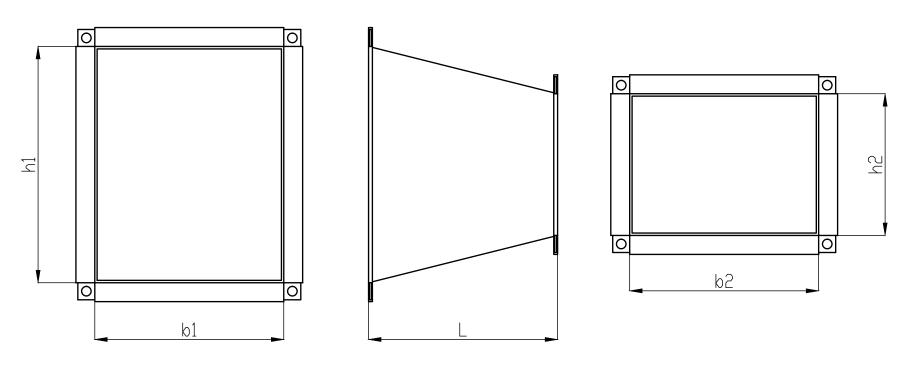

Dimensiones	de Deriv	aciones l	Simples -	Plano B.	D-027
Código		Dimensio	nes [mm]		Cant.
Codigo	h	Ъ	r	R	Calit.
D1C-017	700	700	525	1225	9
D1C-026	1300	850	638	1488	1
D1C-027	300	350	263	613	3
D1C-034	350	350	263	613	5
D1C-041	350	350	263	613	1
D1C-045	350	400	300	700	2
D1C-053	600	400	300	700	1
D1C-059	600	500	375	875	1
D1C-061	350	350	263	613	2
D1C-067	800	600	450	1050	1
D1C-069	350	350	263	613	2
D1C-073	450	300	225	525	2
D1C-081	600	550	413	963	1
D1C-094	350	350	263	613	6
D1C-126	450	300	225	525	1
D1C-128	1050	950	713	1663	1
D1C-130	450	300	225	525	2
D1C-132	650	450	338	788	1
D1C-134	450	450	338	788	1
D1C-142	450	350	263	613	1
D1C-146	750	700	525	1225	1
D1C-152	900	900	675	1575	1
D1C-165	450	300	225	525	1
D1C-173	450	450	338	788	6
D2C-192	350	300	225	525	2
D2C-196	400	350	263	613	2
D2C-202	300	350	263	613	4
D2C-224	500	450	338	788	2
D2C-233	400	300	225	525	1
D2C-235	400	400	300	700	2
D2C-255	700	700	525	1225	2

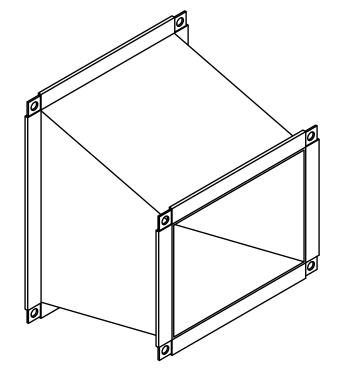
1	Dibujó Revisó Aprobó	Fecha	Nombre Knoll-Lazbal	Ingeniería Electromecánica	UTN - FRCU
	Esc. 1:150 Hoja 1 de 1	d		etalle de ones simples	Plano: 1804C-BD-027 Revisión:

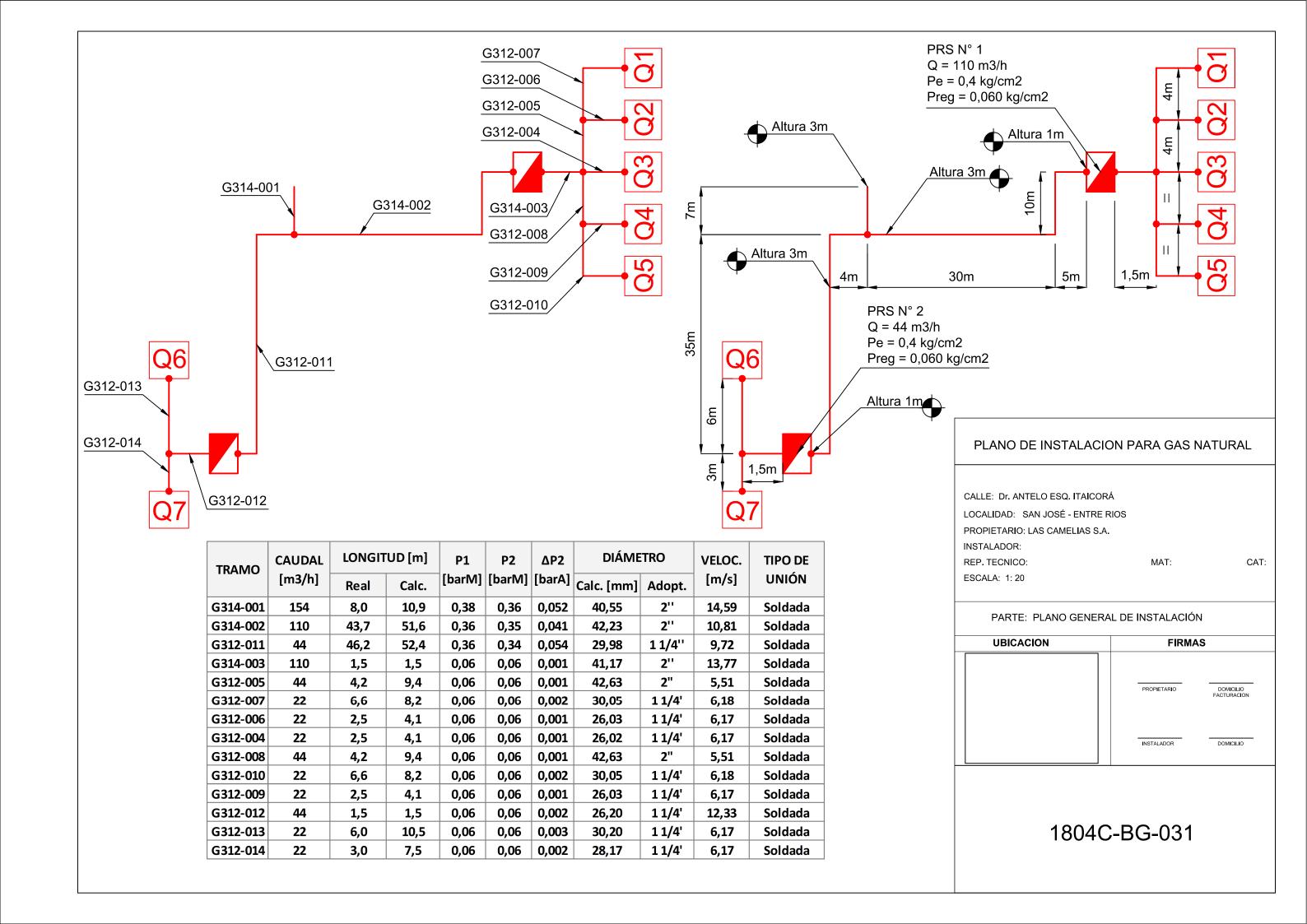


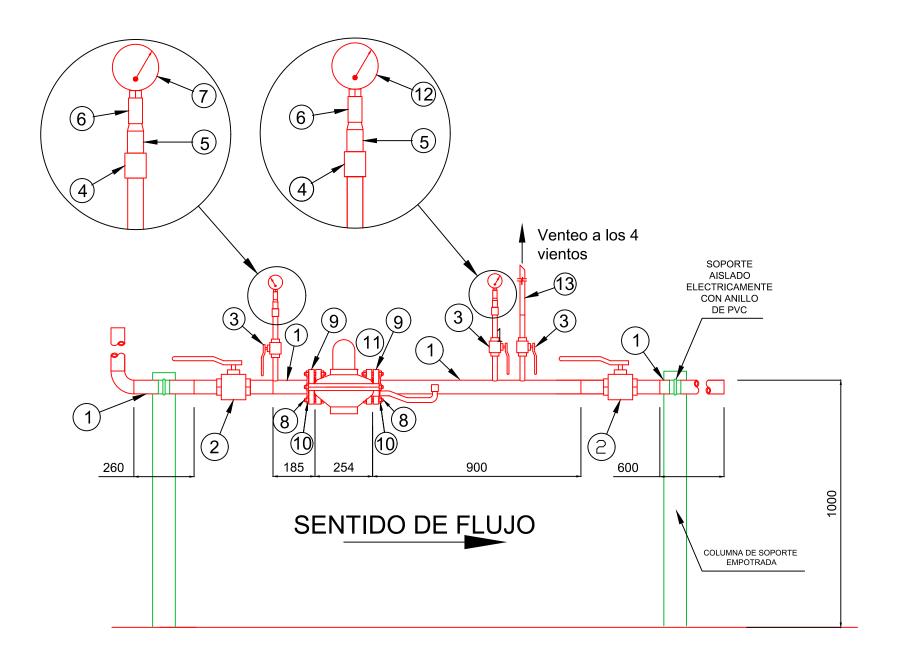


	Dimensiones de Derivaciones en T- Plano BD-028											
Código		Dimensiones [mm]										
	ho	b0	h1	b1	r1	R1	h2	b2	r2	R2	Cant.	
D1D-065	450	500	450	300	225	525	450	300	225	525	1	
D1D-148	750	700	550	550	413	963	550	550	413	963	1	
D1D-154	900	900	650	650	488	1138	650	650	488	1138	1	
D1D-184	700	1000	700	700	525	1225	700	700	525	1225	2	
D2D-200	700	900	700	500	375	875	700	500	375	875	1	
D2D-206	400	500	400	300	225	525	400	300	225	525	2	
D2D-220	1000	1000	450	550	413	963	1000	800	600	1400	1	


	Fecha Nombre		
Dibujó	Knoll-Lazba	Ingeniería	UTN - FRCU
Revisó		Electromecánica	UIN-FRCU
Aprobó			
Esc.			
1:150	_		
	D€	etalle de	
Hoja	deriva	ciones en T	Plano: 1804C-BD-028
li ioja	0.0	3.333 3	
1 de 1			Revisión:


Dimensiones de Derivaciones Triples - Plano BD-029															
Código	Dimensiones [mm]					Cant.									
Codigo	h0	b 0	h1	b 1	r1	R1	h2	b2	r2	R2	h3	b 3	r3	R3	Cant.
D1E-020	1000	1800	1000	1000	750	1750	1000	1000	750	1750	700	700	525	1225	2
D1E-055	600	400	300	300	225	525	300	300	225	525	300	300	225	525	1
D1E-087	950	800	600	400	300	700	600	400	300	700	350	350	263	613	1
D1E-138	900	750	500	750	563	1313	500	750	563	1313	400	400	300	700	1
D1E-162	700	700	450	450	338	788	450	450	338	788	450	450	338	788	1
D2E-229	600	600	400	400	300	700	400	400	300	700	450	400	300	700	1


		Fecha	Nombre		
	Dibujó		Knoll-Lazbal	Ingeniería	UTN - FRCU
	Revisó			Electromecánica	UIN-FRCU
	Aprobó			— () () () () () () () () () (
	Esc.				
	1:150		_	4 11 1	
				etalle de	
ŀ	Hoja		derivac	ciones triples	Plano: 1804C-BD-029
	1 de 1				Revisión:



Dimensiones de Reducciones- Plano BD-030							
Cádica		Di	mensiones [m	ım]		Comt	
Código	h1	b1	Longitud	h2	b2	Cant.	
D1F-007	1200	2000	1000	1000	1000	7	
D1F-009	1200	2000	1000	700	700	7	
D1F-018	1000	1000	1100	700	700	4	
D1F-021	1300	1800	200	1000	1800	2	
D1F-032	1300	850	500	1150	850	1	
D1F-036	1150	850	500	1000	850	1	
D1F-038	1000	850	500	1000	700	1	
D1F-043	1000	700	500	600	700	1	
D1F-047	600	700	500	600	450	1	
D1F-051	1300	1800	1000	1300	1200	1	
D1F-057	1300	1200	500	1200	1200	1	
D1F-063	600	500	500	450	500	1	
D1F-071	800	600	500	550	600	1	
D1F-075	550	600	500	550	300	1	
D1F-079	1200	1200	1000	950	800	1	
D1F-083	600	550	500	600	450	1	
D1F-085	600	450	500	350	450	1	
D1F-108	1000	1000	500	700	700	5	
D1F-136	1050	950	600	900	750	1	
D1F-140	1300	1800	1000	1100	1250	1	
D1F-144	1100	1250	600	1100	1350	1	
D1F-150	550	550	500	450	450	1	
D1F-156	650	650	600	650	500	2	
D1F-158	650	500	600	400	500	2	
D1F-160	1100	1350	1000	700	700	1	
D2F-186	1000	1000	500	700	700	2	
D2F-187	1000	1000	1000	700	1000	2	
D2F-194	1000	1000	600	900	900	1	
D2F-198	900	900	500	700	900	1	
D2F-204	700	500	500	400	500	2	
D2F-227	1000	800	600	600	600	1	

	Fecha	Nombre		
Dibujó		Knoll-Lazbal	Ingeniería	LITAL EDOLL
Revisó			Electromecánica	UTN - FRCU
Aprobó				
Esc.				
1:150				
		De	talle de	
Hoja		redu	ucciones	Plano: 1804C-BD-030
·				D :::
1 de 1				Revisión:

		MATERIALES PLANTA REGULACIÓN	SECUNDARIA	N°1		
UBICACIÓN	CANT.	DESCRIPCION	DIAM	MATERIAL	NORMA	FABRICANTE
1	2 m	CAÑO NEGRO SIN COSTURA	2"	ASTM A53	ASTM A53	TENARIS
2	1	VALVULA ESFERICA 3 PARTES SW P/TOTAL C/PROL. 100mm	2"	VARIOS	ANSI B16.5	ESFEROMATIC
3	3	VALVULA ESFERICA 3 PARTES SW P/TOTAL C/PROL. 100mm	1/2"	VARIOS	ANSI B16.5	ESFEROMATIC
4	2	MEDIA CUPLA ROSCADA PARA SOLDAR	1/2"	ASTM A105	ANSI B-16.5	TUPY
5	2	NIPLE DE REDUCCIÓN	1/2"x1/4"	ASTM A105	ANSI B-16.5	TUPY
6	2	CUPLA ROSCADA	1/4"	ASTM A105	ANSI B-16.5	TUPY
7	1	MANOMETRO 0-1 bar Diam 2 1/2" TIPO BOURDON	1/4"	VARIOS		BEYCA
8	8	ESPÁRRAGO	5/8" x 31/2"	ASTM A193 / 194	ANSI 300	DELGADO S.A.
9	2	BRIDA SLIP - ON S-300	2"	ASTM A197M	ANSI B-16.5	FUTURA
10	16	TUERCAS	5/8"	ASTM A194	ANSI 300	DELGADO S.A.
11	1	VALVULA REGULADORA MOD:S-292 BRIDADO	2"	VARIOS		EQA SAIC
12	1	MANOMETRO 0-250 mbar Diam 2 1/2" TIPO BOURDON	1/4"	VARIOS		BEYCA
13	2m	CAÑO NEGRO SIN COSTURA	1/2"	ASTM A53	ASTM A53	TENARIS

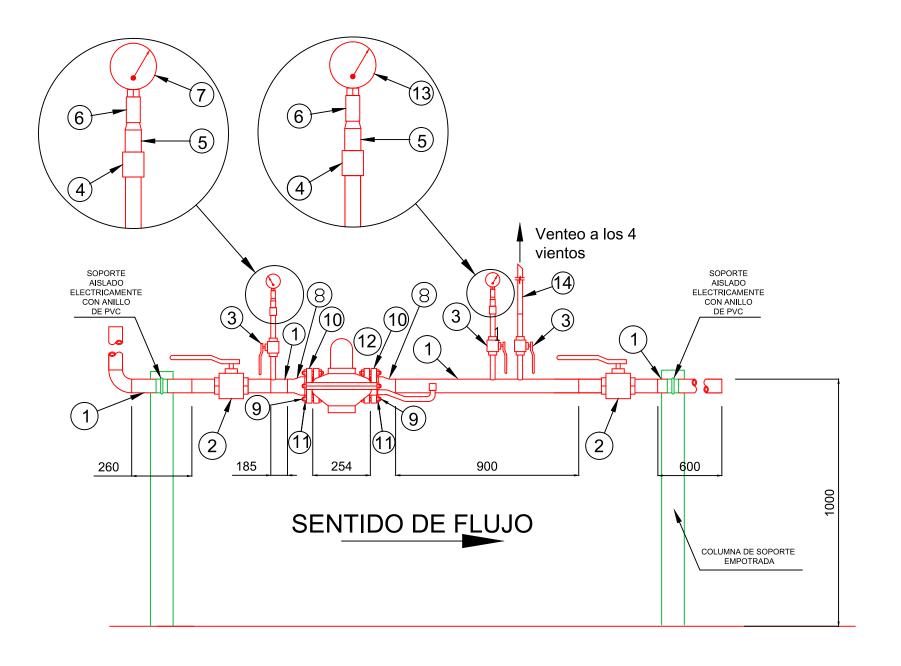
PLANO DE INSTALACION PARA GAS NATURAL

CALLE: Dr. ANTELO ESQ. ITAICORÁ
LOCALIDAD: SAN JOSÉ - ENTRE RIOS
PROPIETARIO: LAS CAMELIAS S.A.

INSTALADOR:

REP. TECNICO: MAT:

ESCALA: 1: 20


PARTE:

PLANTA DE REGULACIÓN SECUNDARIA Nº 1 (PRS 1)

UBICACION	FIRMAS			
	PROPIETARIO DOMICILIO FACTURACION			
	INSTALADOR DOMICILIO			

CAT:

1804C-BG-032

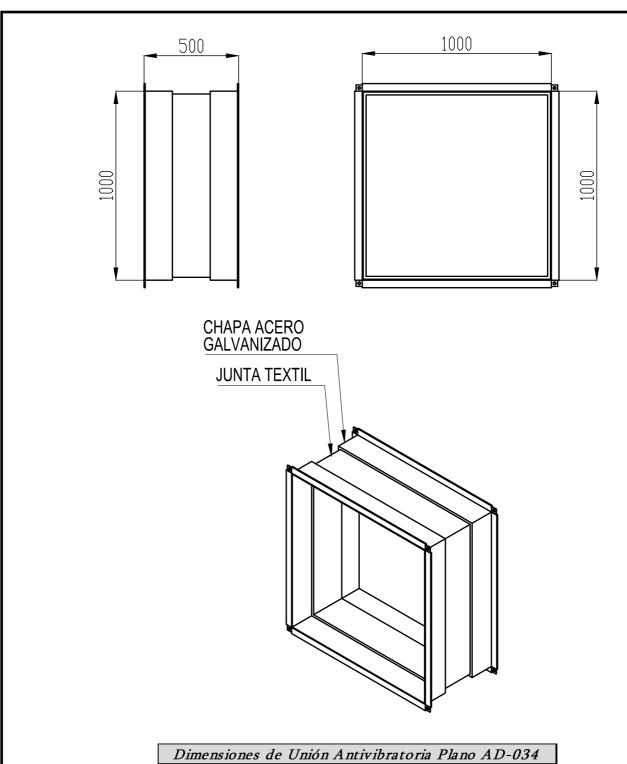
		MATERIALES PLANTA REGULACIÓN	SECUNDARIA	N°2		
UBICACIÓN	CANT.	DESCRIPCION	DIAM	MATERIAL	NORMA	FABRICANTE
1	2 m	CAÑO NEGRO SIN COSTURA	1 1/4"	ASTM A53	ASTM A53	TENARIS
2	1	VALVULA ESFERICA 3 PARTES SW P/TOTAL C/PROL. 100mm	1 1//4"	VARIOS	ANSI B16.5	ESFEROMATIC
3	3	VALVULA ESFERICA 3 PARTES SW P/TOTAL C/PROL. 100mm	1/2"	VARIOS	ANSI B16.5	ESFEROMATIC
4	2	MEDIA CUPLA ROSCADA PARA SOLDAR	1/2"	ASTM A105	ANSI B-16.5	TUPY
5	2	NIPLE DE REDUCCIÓN	1/2"x1/4"	ASTM A105	ANSI B-16.5	TUPY
6	2	CUPLA ROSCADA	1/4"	ASTM A105	ANSI B-16.5	TUPY
7	1	MANOMETRO 0-1 bar Diam 2 1/2" TIPO BOURDON	1/4"	VARIOS		BEYCA
8	2	REDUCCIÓN PARA SOLDAR	2" x 1 1/4"	ASTM A53	ANSI B-16.5	TUPY
9	8	ESPÁRRAGO	5/8" x 31/2"	ASTM A193 / 194	ANSI 300	DELGADO S.A.
10	2	BRIDA SLIP - ON S-300	1 1/4''	ASTM A197M	ANSI B-16.5	FUTURA
11	16	TUERCAS	5/8"	ASTM A194	ANSI 300	DELGADO S.A.
12	1	VALVULA REGULADORA MOD:S-292 BRIDADO	2"	VARIOS		EQA SAIC
13	1	MANOMETRO 0-250 mbar Diam 2 1/2" TIPO BOURDON	1/4"	VARIOS		BEYCA
14	2m	CAÑO NEGRO SIN COSTURA	1/2"	ASTM A53	ASTM A53	TENARIS

PLANO DE INSTALACION PARA GAS NATURAL

CALLE: Dr. ANTELO ESQ. ITAICORÁ
LOCALIDAD: SAN JOSÉ - ENTRE RIOS
PROPIETARIO: LAS CAMELIAS S.A.

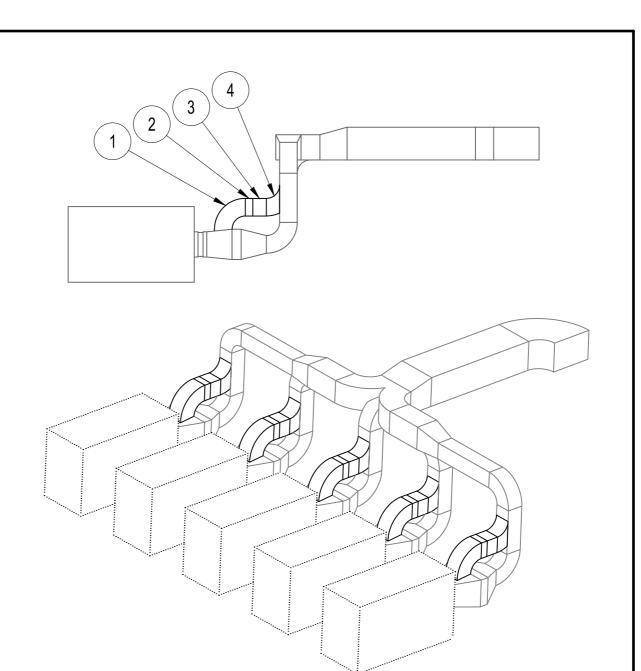
INSTALADOR:

REP. TECNICO:

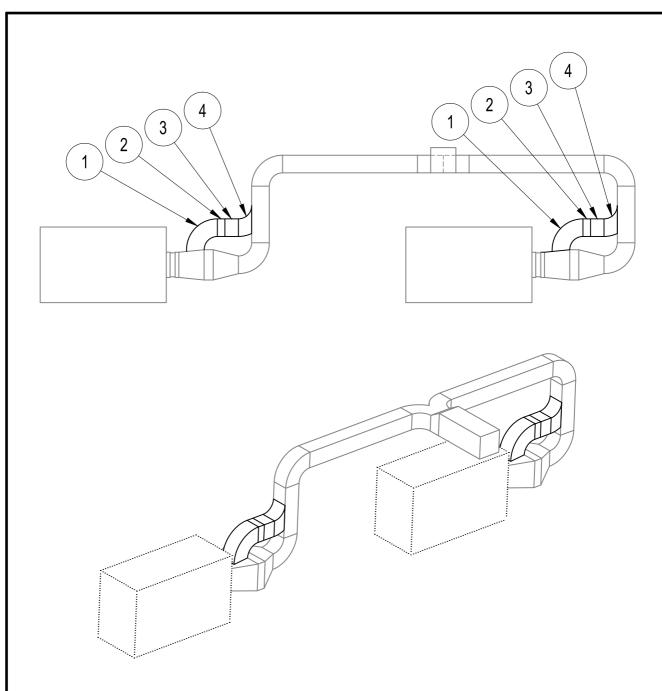

MAT:

CAT:

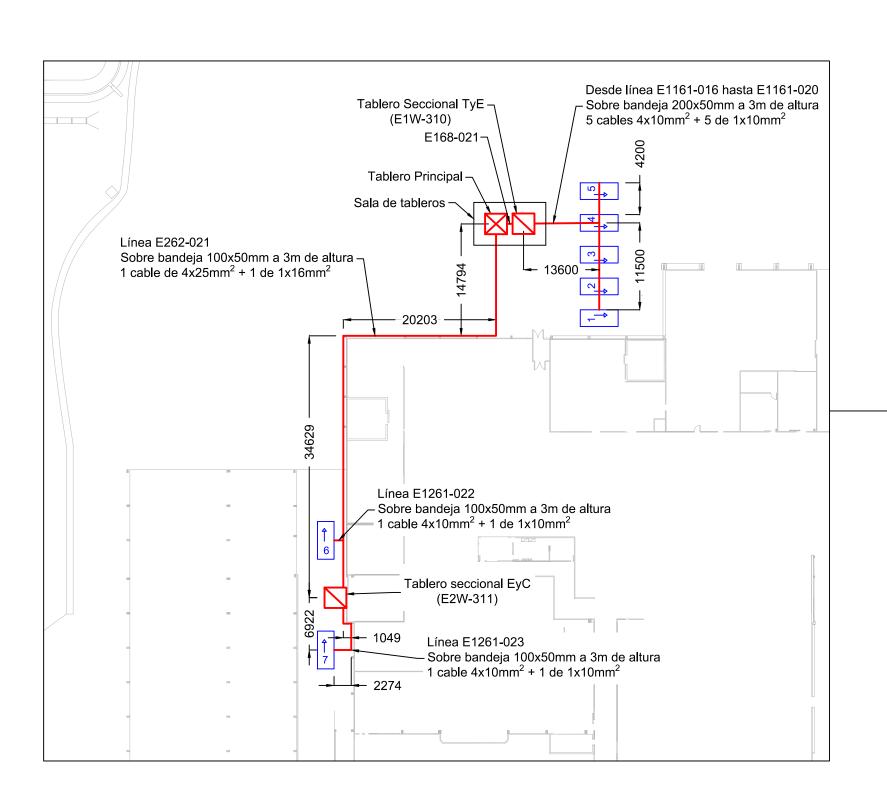
ESCALA: 1: 20

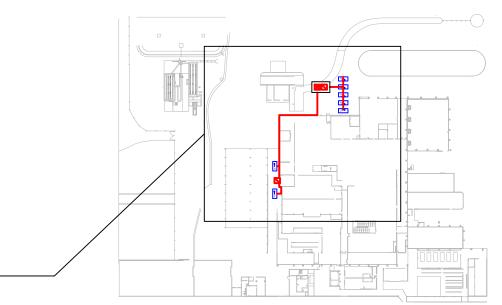

UBICACION	FIRMAS		
	PROPIETARIO INSTALADOR	DOMICILIO FACTURACION DOMICILIO	

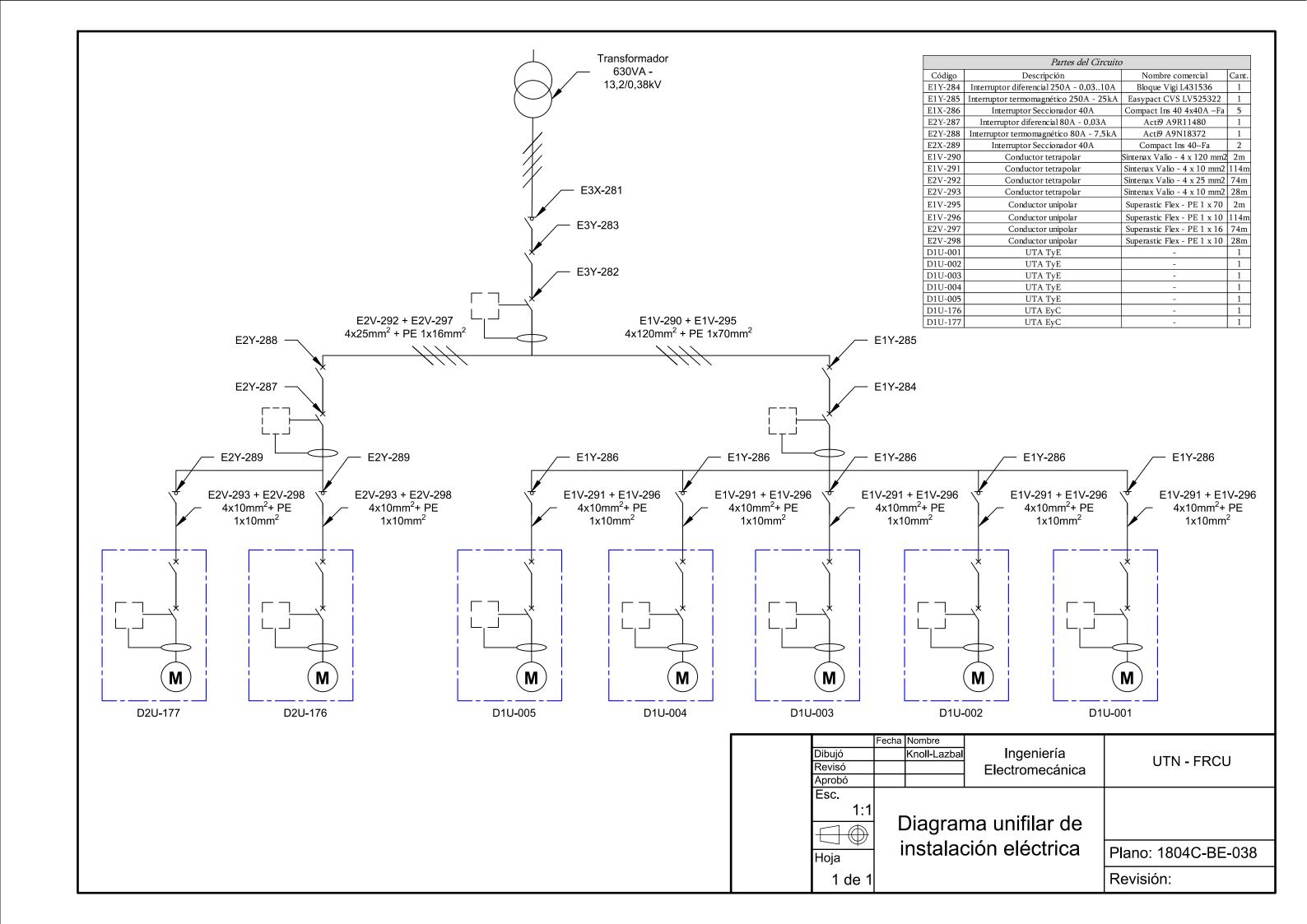
1804C-BG-033

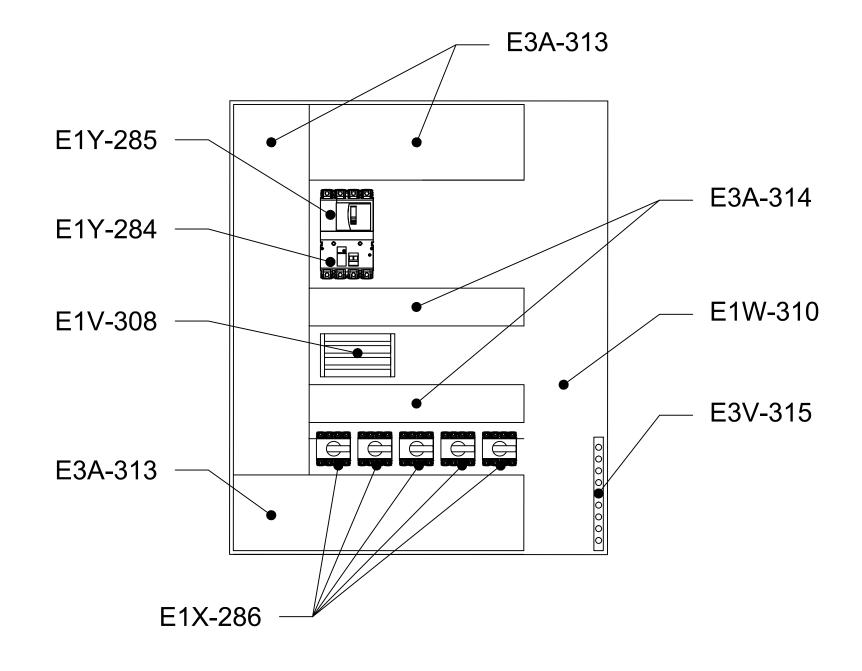

Dimensiones de Unión Antivibratoria Plano AD-034						
Código	Dime	Cant.				
Codigo	L	L hxb				
D1N-006	500	1000x1000	10			
D2N-178	500	1000x1000	4			

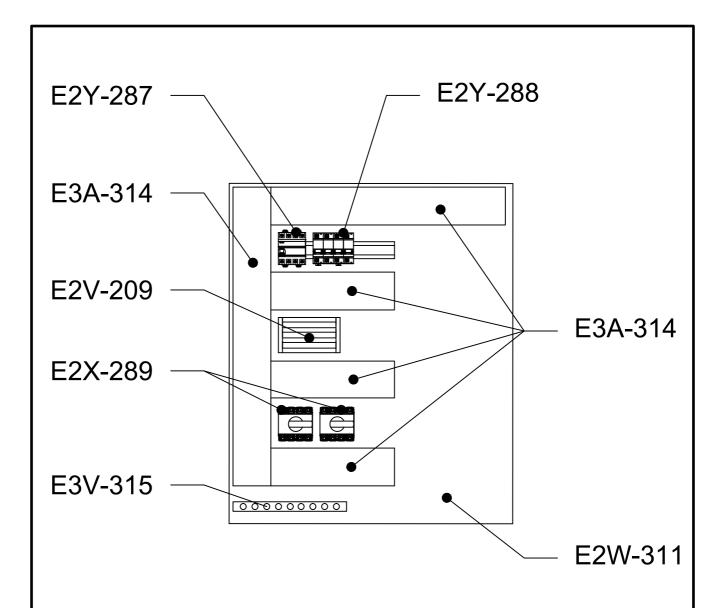
		Nombre		
Dibujó		Knoll-Lazbal	Ingeniería	UTN - FRCU
Revisó			Electromecánica	UIN-FRCU
Aprobó				
Esc.				
1:20				
	l	Jnión A	Antivibratoria	
Hoja		31110117	With violatoria	Plano: 1804C-AD-034
1 de 1				Revisión:


	Partes del Plano AD-035									
Ubicación	Código	Descripción	Longitud [mm]	Dimensiones h x b [mm]	Cant.	Plano de pieza				
1	D1B-014	Curva 90°	-	700x700	5	BD-026				
2	D1R-251	Dámper	-	-	5	-				
3	D1A-252	Tramo recto	535	700x700	5	BD-025				
4	D1C-017	Derivación simple	_	700x700	5	BD-027				


I		Fecha	Nombre		
ı	Dibujó		Kno ll- Lazbal	Ingeniería	UTN - FRCU
ı	Revisó			Electromecánica	UIN-FRCU
ı	Aprobó				
ı	Esc.				
ı	1:150		_		
ı			Bypass	s para control	
ı	Hoja	С	le temp	peratura - TyE	Plano: 1804C-AD-035
	1 de 1				Revisión:


	Partes del Plano AD-036									
Ubicación	Código	Descripción	Longitud [mm]	Dimensiones h x b [mm]	Cant.	Plano de pieza				
1	D2B-181	Curva 90°	-	700x700	2	BD-026				
2	D2R-253	Dámper	-	-	2	-				
3	D2A-254	Tramo recto	535	700x700	2	BD-025				
4	D2C-255	Derivación simple	-	700x700	2	BD-027				


		Nombre		
Dibujó		Knoll-Lazbal	Ingeniería	UTN - FRCU
Revisó			Electromecánica	J OTN-TROU
Aprobó				
Esc.				
1:150				
		Bypass	s para control	
Hoja	d	le temp	peratura - EyC	Plano: 1804C-AD-036
1 de 1				Revisión:


Dibujó		Nombre Knoll-Lazbal	Ingeniería	LITAL EDOLL
Revisó			Electromecánica	UTN - FRCU
Aprobó				
Esc.				
1:500	_	.	la !aa(alaa!/	
\Box	_		le instalación	
Hoja		eléctri	ca en planta	Plano: 1804C-BE-037
1 de 1				Revisión:

	Componentes Tablero Sec	cional TyE	
Código	Descripción	Nombre comercial	Cant.
E1Y-284	Interruptor diferencial 250A - 0,0310A	Bloque Vigi L431536	1
E1Y-285	Interruptor termomagnético 250A - 25kA	Easypact CVS LV525322	1
E1X-286	Interruptor Seccionador 40A	Compact Ins 40 4x40A –Fa	5
E1V-308	Barras de Cu 3+N	Modelo NRT 200	1
E1W-310	Gabinete de chapa con pintura epoxi	Modular L50M - 9012030C	1
E1Z-312	Ventilador para gabinete	Kit de ventilación FAN 80	2
E3A-313	Cable canal plástico ranurado 200x60mm	200x60 RG	2m
E3A-314	Cable canal plástico ranurado 100x60mm	100x60 RG	1,2m
E3V-315	Bornera de cobre para PE	Barra BD 255 - Nollmed	1

·	Fecha	Nombre		
Dibujó		Knoll-Lazbal	Ingeniería	UTN - FRCU
Revisó			Electromecánica	UIN-FRCU
Aprobó				
Esc.				
1:10			/ C'	
			pográfico del	
Hoja	ta	blero s	eccional - TyE	Plano: 1804C-BE-039
i ioja			-	
1 de 1				Revisión:

	Componentes Tablero Seccional EyC												
Código	Descripción	Nombre comercial	Cant.										
E2Y-287	Interruptor diferencial 80A - 0,03A	Acti9 A9R11480	1										
E2Y-288	Interruptor termomagnético 80A - 7,5kA	Acti9 A9N18372	1										
E2X-289	Interruptor Seccionador 40A	Compact Ins 40–Fa	2										
E2V-309	Barras de Cu 3+N	Modelo NRT 125	1										
E2W-311	Gabinete de chapa con pintura epoxi	Gabinete estanco 0494	1										
E3A-314	Cable canal plástico ranurado 100x60mm	100x60 RG	2,5m										
E3V-315	Bornera de cobre para PE	Barra BD 255 - Nollmed	1										

		Fecha	Nombre	_	
Dil	bujó		Knoll-Lazbal	Ingeniería	UTN - FRCU
Re	evisó			Electromecánica	UIN-FRCU
Ap	orobó			<u> </u>	
E	SC.		_		
	1:10				
l –		Р	lano to	pográfico del	
				. •	
	$\frac{1}{\cdot}$	l tal	olero s	eccional - EyC	Plano: 1804C-AE-040
I H	oja			_, _, _	1 Idilo: 100+0 /\L 0+0
	1 de 1				Revisión:
	1 46 1				1 (0 (101011.

TOMO IV ANEXOS

PFC 1804C

PFC1804C AX-Rev.01

Acondicionamiento ambiental de salas de proceso en frigorífico avícola Las Camelias S.A.

Índice

1.	Normativas de aplicación	2
2.	Sistema de codificación	2
	2.1 Codificación de partes	2
	2.2 Codificación de ductos de distribución de aire	3
	2.3 Codificación de líneas de servicios	4
	2.4 Codificación de planos	5
3.	Ábacos y tablas utilizados para cálculos de ductos	7
	3.1 Dimensiones de ductos rectangulares	7
	3.2 Recuperación estática en ductos de baja velocidad	11
	3.3 Pérdida de carga en accesorios de sección rectangular	12
	3.4 Resultados del cálculo de chapa necesaria para cada parte	14
4.	Glosario	19
5.	Bibliografía	20
6.	Características técnicas de fabricantes	21

1. Normativas de aplicación

- SENASA, Decreto 4238, capítulo XX "Mataderos de aves", apartado 20.7 "Sala de despiece y deshuesado de aves de cría. Condiciones."
- Agencia Canadiense de Inspección de Alimentos (ACIA), Manual de métodos de higiene de carnes, capítulo 19 "Programa de Inspección de Aves de Corral"
- Ley Nacional N° 19.587 "Higiene y Seguridad en el Trabajo", decreto reglamentario N° 351/79, anexo I "Disposiciones generales", capítulo 11 "Ventilación".
- ENARGAS, NAG 201 (1985) "Disposiciones, normas y recomendaciones para uso de gas natural en instalaciones industriales".
- AEA, AEA 90364-7-771 "Reglamentación para la ejecución de instalaciones eléctricas en inmuebles –Viviendas, Oficinas y locales (unitarios)".
- DITAR, Asociación Gremial de Profesionales de Climatización y Refrigeración "Normativa de ductos en plancha metálica para transporte de aire" (2015).

2. Sistema de codificación

A lo largo del proyecto se utilizan diferentes formas de codificación, las cuales se explican en esta sección.

2.1 Codificación de partes

Esta codificación se utiliza para designar todas las partes, incluyendo las de fabricación como las adquiridas mediante proveedores. La misma indica el código del proyecto, la sala donde se encuentra, el tipo de sistema donde se halla, tipo de componente y un número correlativo único.

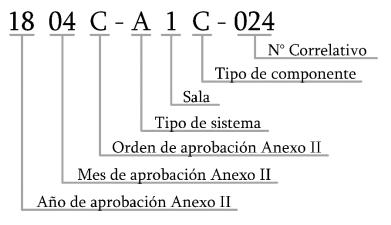


Figura 1: Sistema de codificación de partes.

El carácter que representa al **tipo de sistema** puede tomar los siguientes valores:

- D: Distribución de aire
- E: Eléctrico
- G: Gas natural
- A: Amoníaco

Para representar la sala se utilizan números, a saber:

- 1: Trozado y empaque

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

PFC1804C AX-Rev.01

Acondicionamiento ambiental de salas de proceso en frigorífico avícola Las Camelias S.A.

- 2: Eviscerado y chillers
- 3: Común a ambas

El tipo de componente es identificado por una letra como se muestra a continuación:

- A: Tramo recto
- B: Curva 90°
- C: Derivación simple
- D: Derivación en T
- E: Derivación triple
- F: Reducción
- G: Cupla
- H: Difusor
- I: Rejilla retorno
- J: Manómetro
- K: Válvula
- L: Regulador de presión
- M: Brida
- N: Unión flexible antivibratoria
- Ñ: Bandeja portacable
- O: Bateria aletada
- P: Bulonería
- Q: Sensor
- R: Dámper para aire
- S: Actuador modulante
- T: Rejilla de aspiración de AE
- U: UTA
- V: Conductor eléctrico
- W: Gabinete eléctrico
- X: Interruptor-seccionador
- Y: Protección eléctrica
- Z: Ventilación gabinete eléctrico

2.2 Codificación de ductos de distribución de aire

Debido a la complejidad del sistema de ductos se optó por generar una codificación particular que permita identificar de manera clara el trazado de líneas. El esquema utilizado es el siguiente:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

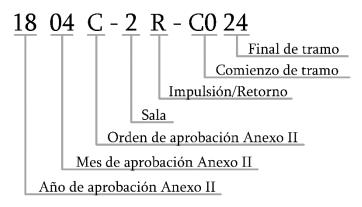


Figura 2: Sistema de codificación de ductos.

Al igual que en el sistema anterior, para representar la sala se utilizan números:

- 1: Trozado y empaque
- 2: Eviscerado y chillers
- 3: Común a ambas (no hay ductos comunes a ambas)

La letra a continuación identifica al elemento como parte de la **impulsión** o del **retorno** de aire:

- I: Impulsión
- R: Retorno

Los últimos 4 dígitos, agrupados de a pares, identifican el **comienzo y el final de tramos**. Observando la figura XXX, a modo de ejemplo, el tramo comenzaría en el nodo C0 y finalizaría en la rejilla 24.

2.3 Codificación de líneas de servicios

Las líneas de servicios incluyen gas natural y energía eléctrica. En este caso se denomina línea al segmento de un elemento conductor de gas natural o energía eléctrica, que entre dos puntos mantiene características constructivas y operativas constantes (por ej. caudal o corriente eléctrica). Dentro de este código se indica el tipo de línea, sala, forma constructiva, tamaño y un número correlativo único.

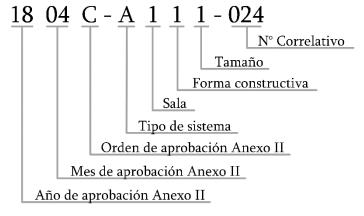


Figura 3: Sistema de codificación de líneas.

El carácter **tipo de sistema** denota al servicio correspondiente:

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

- G: Gas natural
- E: Energía eléctrica

Como lo dicho anteriormente, el dígito sala puede ser:

- 1: Trozado y empaque
- 2: Eviscerado y chillers
- 3: Ambas

La **forma constructiva** indica el tipo de cable para líneas eléctricas y tipo de tubería para gas natural, a saber:

- 1: Tubo de acero al carbono
- 3: Cable unipolar
- 4: Cable bipolar
- 5: Cable tetrapolar
- 6: Barra de cobre

El carácter **tamaño** se utiliza para tener una referencia rápida de los diámetros de tubería o sección transversal de cables. Se representa con un número que se detalla en la siguiente tabla:

Tabla	1 - Tamaño	
N°	Diámetro de tubos de acero	Sección de cables [mm ²]
1	1"	10
2	1 1/4"	16
3	1 1/2"	25
4	2"	35
5	-	50
6	-	70
7	-	95
8	-	120

2.4 Codificación de planos

Los planos se codificarán teniendo en cuenta el formato IRAM del papel (según IRAM 4504), el tipo de sistema que representan y un número correlativo.

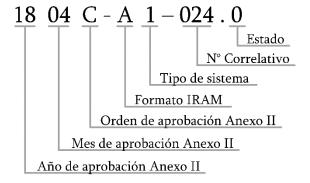


Figura 4: Sistema de codificación de planos.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

PFC1804C AX-Rev.01

Para denotar el **formato IRAM** se utilizan letras:

- A: A4
- B: A3
- C: A2

El **tipo de sistema** se representa de igual manera que en la codificación de partes. Finalmente, el **estado** del plano puede tomar los siguientes valores:

- A: Elaboración
- B: Revisión
- 0: Aprobado
- 1: Versión
- 2: Versión

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

3. Ábacos y tablas utilizados para cálculos de ductos

3.1 Dimensiones de ductos rectangulares

TABLA 6. DIMENSIONES DE CONDUCTOS, AREA DE LA SECCIÓN, DIAMETRO EQUIVALENTE, Y TIPO DE CONDUCTO *

MEDIDAS	18	50	20	00	25	0	3	00	3	50	40	00	45	0	50	00	5	50
DEL CON- DUCTO (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m²)	Diam. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m³)	Diám. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m³)	Diám. equiv. (mm)	Sec. (m²)	Diám. eguiv. (mm)
250	0,036	213	0,048/	249	0,06	287												
300	0.042	231	0,057-	L ₂₇₂	0,071	302	0,087	333										
350	0.048	249	0,067	j 292	0,084	328	0,103	361	0,119	389	l							
400	0,055	264	0,075	308	0,094	348	0,115	~_384	0,134	414	0,154	445					Γ	
450	0,061	280	0,084	328	0,106	368	0,129	D 407	0,151	439	0,173	470	0,196	501			l	
500	0,067	292	0,092	343	0,117	384	0,142	427	0,168	460	0,192	496	0,216	526	0,242	556		
550	0,072	305	0,10	358	0,128	404	0,156	447	0,184	485	0,21	518	0,238	551	0,264	582	0,292	612
600	0,078	315	0,107	371	0,139	422	0,169	465	0,198	503	0,229	541	0,257	574	0,288	607	0,316	638
650	0,082	326	0,116	384	0,149	435	0,182	483	0,214	524	0,246	561	0,278	597	0,31	630	0,341	664
700	0,088	335	0,123	396	0,158	450	0,193	498	0,229	541	0,265	582	0,301	620	0,333	655	0,368	688
750	0,093	346	0,13	409	0,168	3 465	0,205	514	0,244	559	0,283	602	0,32	640	0,36	677	0,392	71
800	0,099	356	0,137	419	0,179	478	0,218	529	0,26	576	0,301	620	0,341	661	0,381	698	0,418	734
850	0,105	366	0,146	432	0,188	490	0,23	544	0,274	592	0,318	637	0,36	678	0,404	719	0,443	756
900	0,109	374	0,153	442	0,198	504	0,242	556	0,288	607	0,336	656	0,378	696	0,424	736	0,467	77
950	0,113	381	0,16	452	0,208	516	0,255	572	0,303	622	0,352	671	0,398	714	0,448	757	0,494	79
1,000	0,118	389	0,167	463	0,216	526	0,267	585	0,318	637	0,368	686	0,418	732	0,469	. 775	0,517	81
1.050	0,123	396	0,172	470	0,225	536	0,276	595	0,33	650	0,384	701	0,436	747	0,492	793	0,54	83
1.100	0,128	404	0,18	480	0,233	546	0,288	607	0,343	662	0,401	716	0,453	762	0,513	810	0,563	85.
1.150	0,132	412	0,186	488	0,242	556	0,298	. 618	0,359	678	0,416	729	0,472	777	0,534	825	0,586	86
1.200	0,137	419	0,193	498	0,25	567	0,31	630	0,373	691	0,43	742	0,491	793	0,553	841	0,611	88
1.250		-	0,196	506	0,26	577	0,32	641	0,384	701	0,448	757	0,51	808	0,573	856	0,633	90
1.300			0.205	514	0,27	587	0,33	651	0,398	714	0,463	= =770	0,53	824	0,594	871	0,656	91
1.350			0,212	521	0,276	595	0,343	664	0,41	724	0,478	782	0,546	836	0,614	896	0,679	93
1.400			0,218	531	0,286	605	0,354	674	0,422	734	0,492	793	0,563	849	0,636	902	0,702	95
1.450			0,225	536	0,296	615	0,365	684	0,434	744	0,507	806	0,58	862	0,654	915	0,724	96
1.500			0,237	544	0,303	622	0,376	694	0,448	756	0,523	819	0,602	876	0,673	927	0,747	98
1.600			0,244	559	0,32	640	0,392	709	0,472	778	0,548	841	0,636	902	0,714	956	0,79	1.00
1.700			l		0,336	656	0,415	729	0,497	798	0,58	862	0,665	923	0,752	981	0,831	1.03
1.800			l		0,355	674	0,436	746	0,527	820	0,61	885	0,697	946	0,786	1.004	0,876	1.06
1.900	١.		١.		0,38	696	0,454	762	0,543	834	0,632	900	0,735	971	0,824	1.029	0,923	1.08
2.000					0,384	701	0,478	782	0,57	854	0,67	925	0,766	991	0,853	1.052	0,961	1.11
2.100					l		0,502	800	0,594	876	0,698	946	0,792	1.008	0,9	1:075	0,998	1.13
2:200	1				1		0,517	813	0,615	887	0,73	966	0,827	1.030	0,934	1.095	1,035	1.15
2.300					1		0,535	828	0,64	905	0,753	982	0,868	1.055	0,962	1,113	1,081	1.17
2.400		•			1		0,546	839	0,65	920	0,778	996	0,898	1.070	0,999	1.130	1,118	1.20
2.500	1						I		0,685	937	0,787	1.020	0,907	1.080	1,045	1.155	1,138	1.21
2.600	T .		1		1		1		0,704	951	0,824	1.030	0,94	1.105	1,072	1.172	1,202	1.24
2.700	ļ.		1		1		1		0,731	966	0,852	1.045	0,952	1.119	1,11	1.194	1,238	1.26
2.800	1				1		1		0,75	981	0,88	1.063	1,005	1.135	1,138	1.205	1,275	1.27
2.900			<u> </u>						<u> </u>		0,908	1.078	1,040/	7.758	1,165	1.222	1,32	1.30
3.000	ļ		1				l				0,925	1.090	1,065	D168	1,21	1.248	1,33	1.30
3.100	l										0,94	1.105	1,1	1.185	1,238	1.260	1,387	1.33
3.200									T .		0,953	1.120	1,12	1.197	1,277	1.279	1,432	1.35
3.300			1 .				1						1,156	1.216	1,302	1.292	1,46	1.36
3,400	l .		1				1		L		l		1,185	1,231	1,334	1.310	1,498	1.38
3.500													1,22	1.241	1,352	1.321	1,525	1.39
3.600	1		1		1		1		1		1 .		1,23	1.252	1,397	1.344	1,551	1.41

[·] Los números de mayor tamaño que figuren en la tabla indican la clase de conducto.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

TABLA 6. DIMENSIONES DE CONDUCTOS, ÁREA DE LA SECCIÓN, DIÁMETRO EQUIVALENTE Y TIPO DE CONDUCTO * (Cont.)

MEDIDAS	60	00	6	50	70	00	7:	50	8	00	8!	50	9	00	9	50	1.000	
DEL CON- DUCTO (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m³)	Diám. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m³)	Diám. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)
250 300 350			•										i					
400																		
450											ł							
500																		
550											[
600	0,346	6 66							ļ									٠.
650	0,373	692	0,407	722										1				
700	0,401	716	0,437	749	0,472	777												
750	0,433	745	0,468	775	0,502	803	0,543	834										
800	0,457	765	0,497	798	0,536	829	0,576	859	0,618	889								
850	0,485	788	0,527	823	0,568	854	0,61	884	0,654	914	0,697	944						
900	0,517	813	0,549	838	0,603	875	0,646	909	0,692	940	0,736	971	0,783	1.002		•		
950	0,542	834	0,591	869	0,636	903	0,679	934	0,728	966	0,775	996	0,822	1.028	0,873			
1,000	0,569	853	0,622	893	0,668	925	0,714	7 955	0,767	992	0,816	1.020	0,864	1.052	0,914	1.083	0,972	1.114
1.050	0,597	874	0,65	914	0,702	948	0,752	لہ .	0,803	1.015	0,853	1.044	0,907	1.078	0,963	1.108	1,018	1.139
1.100	0,624	894	0,679	934	0,733	969	0,786	1.004	0,840	1.038	0,89	1.068	0,952	1.103	1,0	1.133	1,054	1.165
1.150	0,652	914	0,706	951	0,764	990	0,818	1.025	0,877	1.057	0,934	1.093	0,99	1.127	1,045	1.159	1,1	1.190
1.200	0,675	930	0,736	971	0,794	1.009	0,856	1.046	0,915	1.082	0,972	1.116	1,027	1.148	1,092	1.180	1,148	1.215
1.250	0,702	949	0,764	990	0,823	1.028	0,89	1.068	0,953	1.105	1,008	1.139	1,072	1.171	1,128	1.204	1.2	1.240
1.300	0,728	966	0,792	1.006	0,856	1.046	0,924	1.089	0,99	1,126	1,054	1.161	1,118	1.198	1,175	1.226	1,248	1.263
1.350	0,755	984	0,818	1.025	0,89	1.066	0,963	1.108	1,018	1,143	1,092	1.181	1,165	1.219	1,22	1.248	1,295	1.286
1.400	0,779	999	0,848	1.042	0,92	1.084	0,99	1.126	1,055	1.163	1,128	1.201	1,2	1,241	1,268	1,272	1,34	1.308
1.450	0,798	1.011	0,877	1.059	0,952	1.102	1,018	1.143	1,092	1.184	1,165	1.223	1,238	1.260	1,312	1.296	1,388	1.331
1.500	0,822	1.027	0,902	1.074	0,97	1.118	1,055	1.165	1,128	1.202	1,2	1.242	1,275	1.280	1,35	1.318	1,435	1.355
1.600	0,872	1.057	0,952	1.105	1,035	1.154	1,118	1.199	1,192	1.238	1,275	1.280	1,358	1.321	1,432	1.356	1,525	1.398
1.700	0,923	1.088	1,008	1.135	1,091	1.185	1,183	1.229	1,267	1.275	1,35	1.316	1,441	1.359	1,525	1.396	1,616	1.438
1.800	0,961	1.115	1,063	1.165	1,147	1.215	1,248	1.262	1,331	1,308	1,423	1.351	1,515	1.395	1,608	1.435	1,692	1.475
1,900	0,998	1.141	1,108	1.194	1,21	1.245	1,302	1.292	1,396	1.340	1.498	<u>_1,388</u>	1,599	1.430	1,692	1.470	1,785	1.511
2.000	1,063	1.168	1,165	1.219	1,267	1.272	1,359	1.321	1,46	1.368	1,57	21.418	1,673	1.462	1,775	1.505	1,875	1.599
2.100	1,108	1.192	1,22	1.248	1,312	1.299	1,423	1.350	1,525	1.397	1,636	1.448	1,748	1.496	1,858	1.542	1,96	1.584
2.200	1,155	1.217	1,266	1.272	1,368	1.325	1,488	1.380	1,598	1.429	1,71	1.478	1,821	1.528	1,932	1.575	2,042	1.618
2.300	1,192	1.237	1,312	1.299	1,433	1.355	1,543	1.405	1,665	1.457	1,775	1.507	1,895	1.557	2,015	1.604	2,128	1.650
2.400	1,228	1.258	1,368	1.325	1,469	1.371	1,59	1.426	1,72	1.486	1,821	1.530	1,95	1.580	2,095	1.639	2,22	1.682
2.500	1,285	1.285	1,386	1.344	1,545	1.402	1,655	1.455	1,775	1.508	1,905	1.562	1,998	1.600	2,165	1.664	2,293	1.715
2.600	1,35	1.315	1,46	1.368	1,58	1.422	1,72	1.485	1,84	1.538	1,98	1.592	2,095	1.639	_,			
2.700	1,368	1.325	1,498	1.388	1,627	1.443	1,775	1.508	1,895	1.559	2,035	1.612	2,17	1.669	2,293	1.715	2,45	1.770
2.800	1,396	1.348	1,552	1.410	1,692	1.473	1,82	1.528	1,95	1.582	2,08	1.632	2,265	1.702	2,375	1.745	2,505 2,605	1.790
2.900	1,46	1.370	1,6	1.432	1,747	1.495	1,878	1.552	2,035	1.615	2,17	1.670	2,295	1.715	2,425	1.762	2,683	1.825 1.855
3.000	1,497	1.387	1,645	1.451	1,793	1.515	1,932	1.575	2,095	1.639	2,235	1.695	2,41	1.768	2,515 2,605	1.825	2,735	1.881
3.100	1,535	1,402	1,7	1.475	1,83	1.532	1,995	1.600	2,145	1.660	2,33	1.728	2,45 2,525	1.775	2,655	1.825	2,735	1.894
3,200	1,58	1.425	1,738	1.492	1,878	1.552	2,06	1.628	2,19	1.678	2,37	1.744	,					1.894
3.300	1,608	1.436	1,785	1.512	1,922	1.570	2,09	1.635	2,265	1.703	2,43	1.765	2,61	1.830	2,765	1.880	2,855 3.015	
3.400	1,655	1.456	1,822	1.528	1,978	1.593	2,125	1.650	2,32	1,723	2,485	1.785	2,65	1.845		1.900	3,015	1.988
3.500	1,71	1.478	1,877	1.550	2,06	1.627	2,23	1.689	2.395	1.752	2,545	1.805	2,715	1.868	2,915 2,955	1.948	3,095	2.010
3,600	1,738	1.490	1,905	1.562	2,095	1.638	2,29	1.715	2,43	1.765	2,61	1.829	2,765	1.885	2,500	1.340	3,14	2.010

[•] Los números de mayor tamaño que figuran en la tabla indican la clase de conducto.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

TABLA 6. DIMENSIONES DE CONDUCTOS, AREA DE LA SECCIÓN, DIÁMETRO EQUIVALENTE, Y TIPO DE CONDUCTO * (Cont.)

MEDIDAS	1.0	50	1.1	00	1.1	50	1.	200	1.2	50	1.3	300	1.8	350	1.400		1.4	150
DEL CON- DUCTO (mm)	Sec. (m²)	Diém. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m³)	Diám. equiv. (mm)	Sec. (m³)	Diám. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m²)	Diám, equiv. (mm)	Sec. (m²)	Diém. equiv. (mm)
1.050	1,085	1.165									ļ							
1.100	1,109	1.190	1,165	1.222														
1.150	1,155	1.215	1,21	1.248	1,276	1.278					L							
1.200	1,2	1.240	1,265	1.275	1,32	1.302	1,395	1.336										
1.250	1,248	1.265	1,322	1.300	1,378	1.327	1,452	1.361	1,505	1.389								
1.300	1,302	1.290	1,368	1.325	1,432	1.352	1,497	1.388	1,57	1.418	1,598	1.444			<u> </u>			
1.350	1,349	1.316	1,42	1.350	1,486	1.378	1,55	1.413	1,625	1.443	1,69	1.469	1,773	1.508				
1.400	1,395	1.339	1,468	1.375	1,542	1.403	1,605	1.435	1,68	1.468	1,745	1.495	1,81	1.523	1,894	1.555	ŀ	
1.450	1,45	1.363	1,525	1.398	1,588	1.426	1,66	1.460	1,735	1.495	1,81	1.523	1,885	1.555	1,948	1.582	2,03	1.612
1.500	1,495	1.388	1,57	1.418	1,645	1.451	1,718	1.485	1,8	1.519	1,875	1.550	1,948	1.579	2,014	1.608	2,075	1.634
1.600	1,597	1,432	1,67	1.467	1,755	1.489	1,828	1.531	1,912	1.565	1,995	1.595	2,07	1.630	2,145	1.658	2,028	1.698
1.700	1,69	1.473	1,782	1.511	1,855	1.545	1,95	1.578	2,025	1.609	2,115	1.646	2,195	1.679	2,28	1.709	2,355	1.735
1.800	1,792	1.515	1,875	1.552	1,975	1.591	2,05	1.621	2,135	1.655	2,235	1.692	2,315	1.723	2,41	1.756	2,505	1.790
1.900	1,885	1.555	1,975	1.592	2,07	1.629	2.16	1.668	2,265	1.702	2,355	1.738	2,44	1.769	2,54	1.802	2,67	1.850
2.000	1.975	1.592	2,07	1.630	2,17	1.668	2,27	1.708	2,374	1.745	2,475	1.782	2,595	1.825	2,66	1.848	2,78	1.885
2.100	2,07	1.629	2,17	1.670	2,28	1.708	2,385	1.748	2,485	1.785	2,595	1.825	2,69	1:858	2,79	1.892	2,91	1.932
2,200	2,15	1.660	2,26	1.702	2,375	1.745	2,485	1.785	2,595	1.825	2,715	1.863	2,825	1.900	2,93	1.938	3,02	1.970
2.300	2,245	1.698	2,365	1.740	2,475	1.702	2,595	1.825	2,705	1.862	2,815	1.900	2,95	1.944	3,055	1.978	3,155	2.010
2.400	2.33	1.727	2,47	1.778	2,55	1.805	2,715	1.865	2,79	1.892	2,935	1.940	3,065	1.980	3,13	2.002	3,295	2.050
2.500	2,405	1.755	2,505	1.790	2,675	1.850	2,79	1.891	2,915	1.935	3,02	1.968	3,12	1.998	3,28	2.050	3,38	2.085
2,600	2.505	1.790	2,625	1.832	2,715	1.878	2,873	1.916	3,02	1.968	3,145	2.008	3,305	2.055	3,425	2.095	3,555	2.135
2.700	2.59	1.821	2,725	1.870	2,83	1.900	2,985	1.955	3,075	1.982	3,26	2.045	3,38	2.085	3,555	2.132	3,675	2.172
2.800	2,695	1.859	2,79	1.892	2,95	1.942	3,06	1.982	3,225	2.030	3,48	2.085	3,51	2.120	3,675	2.170	3,775	2.195
2.900	2,775	1.885	2,955	1.945	3,02	1.968	3,145	2.008	3,815	2.060	3,505	2.120	3,68	2.170	3,79	2.200	3,92	2.240
3,000	2,835	1.905	3,02	1.968	3,105	1.992	3,31	2.055	3,455	2.105	3,635	2.155	3,775	2.200	3,87	2.225	4,025	2.270
3.100	2,91	1.930	3,105	1.993	3,175	2.027	3,37	2.075	3,555	2.135	3,755	2.188	3,835	2.215	4,0	2.265	4,12	2.295
3.200	2,97	1.952	3,14	2.005	3,345	2.070	3,465	2.110	3,62	2.144	3,825	2.210	3,965	2.250	4,12	2.295	4,33	2.350
3.300	3,065	1.980	3,22	2.030	3,405	2.090	3,58	2.140	3,755	2.190	3,935	2.248	4,075	2.285	4,24	2.332	4,43	2.385
3.400	3.14	2.008	3.285	2.050	3,51	2.120	3,665	2.165	3,85	2.220	4,05	2.275	4,14	2.305	4,375	2.370	4,58	2.425
3.500	3,26	2.045	3,415	2.090	3,58	2.145	3,74	2.190	3,915	2.235	4,14	2.305	4,29	2.345	4,49	2.395	4,64	2.443
3.600	3,305	2.060	3,49	2.115	3,695	2.175	3.82	2,210	4,07	2.285	4,22	2.325	4,42	2.375	4,58	2.425	4.76	2.470
3.503	10,000	2.000	10,,,0	2	1,,,,,,,			,			<u> </u>		L		ـــــــ			

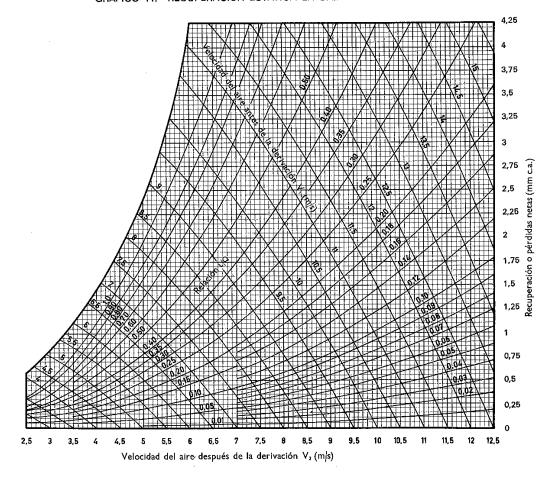
[·] Los números de mayor tamaño que figuran en la tabla indican la clase de conducto.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

TABLA 6. DIMENSIONES DE CONDUCTOS, AREA DE LA SECCIÓN, DIÁMETRO EQUIVALENTE Y TIPO DE CONDUCTO * (Cont.)

MEDIDAS	1.500		1.	600	1.	700	1.	800	1.	900	2.	000	2.	100	2.	200	2.	300
DEL CON- DUCTO (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)	Sec. (m²)	Diám, equiv. (mm)	Sec. (m²)	Diám. equiv. (mm)								
1.050																		
1.100						-												
1.150							ĺ											
1.200																		
1.250																		
1 300	ĺ																	
1.350																		
1:400							1											
1.450					1													_
1.500	2,17	1.670																
1.600	2,31	1.720	2,47	1.780						U	į.				l '			
1.700	2,45	1.770	2,62	1:833	2,79	1.890				(€)	₽							
1.800	2,59	1.823	2,76	1.883	2,94	1.941	3,12	2.005				-						
1.900	2,73	1.872	2,92	1.934	3,09	1.992	3,3	2.057	3,48	2.115								
2.000	2,87	1.913	3,07	1.985	3,25	2.043	3,46	2.105	3,66	2.165	3,85	2.222			L			
2.100	3,0	1.960	3,22	. 2.028	3,42	2.094	3,62	2.156	3,82	2.215	4,04	2.275	4,25	2.332				
2.200	3,14	2.008	3,35	2.073	3,57	2.138	3,83	2.207	4,02	2.265	4,22	2.325	4,43	2.385	4,67	2.445	1	
2.300	3,29	2.055	3,5	2.115	3,73	2.185	3,96	2.255	4,18	2.315	4,41	2.380	4,63	2.435	4,87	2.495	5,1	2.552
2.400	3,42	2,100	3,68	2.170	3,89	2.240	4,12	2.300	4,38	2.370	4,6	2.430	4,78	2.480	5,1	2.554	5,34	2.615
2.500	3,55	2.130	3,81	2.210	4,08	2.292	4,38	2.370	4,64	2.440	4,78	2.485	4,92	2.510	5,24	2.605	5,56	2.670
2.600	3,72	2.185	3,96	2.250	4,27	2.335	4,46	2.385	4,76	2.520	4,96	2.525	5,29	2.605	5,49	2.655	5,76	2.715
2.700	3,85	2.225	4,08	2.285	4,33	2.355	4,63	2.435	4,89	2.505	5,14	2.555	5,41	2.630	5,64	2.685	5,98	2.770
2.800	3,91	2.235	4,18	2.315	4,52	2.405	4,78	2.470	5,02	2.530	5,3	2.605	5,44	2.640	5,88	2.750	6,21	2.805
2.900	4,07	2.285	4,4	2.375	4,73	2.455	4,98	2.520	5,27	2.595	5,56	-2.665	5,85	2.735	6,12	2.800	6,4	2.860
3.000	4,2	2.320	4,59	2.425	4,78	2.475	5,16	2.570	5,44	2.640	5,76	2.715	6,05	2.785	6,37	2.855	6,66	2.920
3.100	4,36	2.360	4,6	2.427	4,97	2.515	5,24	2.590	5,56	(2.665	5,88	2.740	6,12	2.800	6,4	2.862	6,77	2.945
3.200	4,4	2.372	4,74	2.464	5,12	2.555	5,42	2.635	5,71	2:703	6,05	2.780	6,3	2.830	6,68	2.930	7,05	3.000
3.300	4,58	2.422	4,9	2.490	5,2	2.575	5,56	2.665	5,93	2.754	6,32	2.838	6,64	2.905	6,9	2.980	7,26	3.046
3.400	4,64	2.440	5,07	2.536	5,44	2.640	5,75	. 2.710	5,98	2.766	6,44	2.852	6,74	2.935	7,08	3.010	7,53	3.105
3.500	4,84	2.490	5,14	2.565	5,57	2.675	5,89	2.745	6,26	2.830	6,59	2.890	6.98	2.990	7,32	3.055	7,64	3.130
3.600	5,0	2.530	5,34	2.615	5,65	2.692	5,97	2.765	6,39	2.858	6,77	2.928	7,21	3.035	7,5	3.100	7,87	3.175


^{*} Los números de mayor tamaño que figuran en la tabla indican la clase de conducto.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

3.2 Recuperación estática en ductos de baja velocidad

GRÁFICO 11. RECUPERACIÓN ESTÁTICA EN BAJA VELOCIDAD

Revisó: GP-30/10/2019

3.3 Pérdida de carga en accesorios de sección rectangular

TABLA 12. ROZAMIENTO EN CODOS RECTANGULARES

 	1	CODO DE RADIO SIN GUÍAS	CODO	DE RADIO	CON GUÍAS	***	CODOS CUA	DRADOS ***
DIMENS DEL CON (cr	IDUCTO	SIN GOIAS						T IN
w	· D	Relación de radio ** R/D = 1,25	R _t = 15 (Recome	0 mm ndado)	Rt = 75 (Acept	mm able)	Guías cambio dirección Doble espesor	Guías cambio dirección Simple espesor
		LONGITUD A	DICIONAL E	QUIVALENT	E DE COND	UCTO REC	TO (METROS)	<u> </u>
			٠	Deflec- tores		Deflec- tores	· · · · · · · · · · · · · · · · · · ·	
240	120 90 75 60 50	9,22 7,38 6,51 5,65 4,67	13,40 10,82 9,22 9,84 8,23	2 2 2 1	12,60 9,22 11 8,36 7,30	3 2 2 2	11,80 8,85 7,30 5,90 5	17,70 13,40 10,95 8,85 7,30
180	120 90 75 60 50 40 30	8,25 6,90 6,20 5,05 4,42 3,80 3,56	13,04 9,80 8,40 8,48 6,76 5,30	2 2 2 1 1 1	11,92 8,65 9,80 7,31 5,75 4,72 4,50	3 3 2 2 2 2 1	10,45 8,56 7,43 6,33 5,31 4,42 3,20	17,70 13,40 10,95 8,85 7,30 5,95 4,50
150	120 90 75 60 50 40 30	8 6,51 5,65 4,77 4,18 3,56 2,95	12,17 9,10 7,50 8,06 6,44 4,67	2221111	11,43 8,06 9,20 7,75 6,17 4,47 4,21	3 2 2 2 2 1	9,74 8,56 6,88 5,98 5,01 3,80 2,95	17,70 13,40 10.95 8,85 7,30 5,95 4,50
120	240 120 90 75 60 50 40 30 25 20	13,31 7,67 5,90 5,28 4,42 4,18 3,26 2,62 2,40 2,39	10,48 10,38 7,67 6,88 7,13 5,65 4,42	3 2 2 2 1 1 1	9,96 6,60 8,40 6,20 5,03 4,18 3,80 3,24 2,67	3 3 2 2 2 2 2 1	8,55 6,88 6,20 5,28 4,46 3,59 2,95 2,38 2,08	17,70 13,40 10,95 8,85 7,30 5,95 4,50 3,56 2,98
105	105 90 75 60 50 40 30 25 20	6.81 5.90 5.03 4.42 3.87 3.25 2.66 2.40 2.08	8,23 7,05 6,30 6,26 5,28 4,11	2 2 2 1 1	7,57 6,31 7,74 5,64 4,70 3,85 3,80 2,99 2,33	3 3 2 2 2 2 2 1 1	7,17 6,56 5,92 4,75 4,18 3,54 2,66 2,36 1,72	15,55 13,40 10,95 8,85 7,30 5,95 4,50 3,56 2,98
90	180 ° 90 ° 75 ° 60 ° 50 ° 40 ° 30 ° 25 ° 20 °	10,04 5,60 4,79 4,14 3,53 2,98 2,70 2,36 2,08	8,04 6,59 5,70 5,95 5,03 3,82	3 2 2 1 1	5,69 6,64 6,47 4,42 3,62 3,56 2,65 2,36	3 2 2 2 2 1 1 1	5,90 5,28 4,42 3,80 3,25 2,70 2,33 1,72	13,40 10,95 8,85 7,30 5,95 4,50 3,56 2,98
80	80 75 60 50 40 30 25 20	5,00 4,76 4,11 3,54 2,95 2,33 2,08 1,72	5,53 5,45 5,69 4,67 3,52	2 2 1 1	5,10 6,20 5,00 4,18 3,56 3,51 2,66 2,38	3 2 2 2 2 1 1	5,09 5,03 4,39 3,56 3,19 2,33 2,08 1,72	11,98 10,95 8,85 7,30 5,95 4,50 3,56 2,98

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

TABLA 12. ROZAMIENTO EN CODOS RECTANGULARES (Cont.)

		CODO DE RADIO SIN GUÍAS	CODO	DE RADIO	CON GUÍAS	 ; · · ·	CODOS CUA	ADRADOS ***
DIMENSION DEL CONDU (cm)	NES ICTO	R,			I S			- M - 1 (21)
w	D	Relación de radio ** R/D = 1,25	Rt = 15 (Recome	0 mm ndado)	Rt = 75 (Acepta	mm able)	Gulas cambio dirección Doble espesor	Gulas cambio dirección Simple espesor
-		LONGITUD A	DICIONAL E	QUIVALENT	E DE CONDI	UCTO REC	TO (METROS)	
				Deflec- tores		Deflec- tores		
70	70 60 50 40 30 25 20	4,40 3,84 3,54 2,95 2,33 2,08 1,72	4,22 5,10 4,40 3,19	2 1 1	5,03 4,45 3,80 3,26 3,21 2,66 2,38	2 2 2 1 1 1	4,16 3,84 3,54 2,95 2,33 2,08 1,72	10,33 8,85 7,35 5,95 4,50 3,56 2,98
60	240 * 180 * 120 * 60	11,28 9,46 6,55 3,74 3,26 2,91 2,33 2,05 1,75 1,47	5,65 5,13 6,02 4,75 3,84 3,25	3 2 1 1	5,96 4,17 3,54 2,92 2,99 2,33 2,08	3222111	6.82 6.26 5.32 3.53 2.95 2.64 2.34 2.06 1.73 1.17	23,83 21,46 18,30 8,85 7,30 5,95 4,50 3,56 2,98 2,26
50	200 · 150 · 100 · 50 40 30 25 20	9,47 7,75 6,50 3,25 2,66 2,05 1,80 1,47 1,17	4.88 5.65 4.50 3.52 2,61	3 2 2 1 1	4,13 2,95 2,70 2,66 2,37 2,08	3221111	5.65 5.03 4.13 2.95 2.37 2.05 1.80 1.47 1.17	19.83 17.41 14.57 7.30 5.95 4.50 3.56 2.98 2.36
40	160 * 120 * 80 * 40 30 25 20	7,72 6,22 4,43 2,66 2,05 1,76 1,47 1,17	2,76 3,63 3,26 2,36	3 2 2 1	3,52 2,67 2,40 2,34 1,77 1,81	3 3 2 1 1	4,18 3,56 3,25 2,08 1,76 1,49 1,47 1,17	14,26 12,87 11,24 5,95 4,50 3,56 2,98 2,36
30	120 ° 90 ° 80 ° 30 25 20	5,64 4,71 3,25 2,05 1,76 1,47 1,15	2,34 2,10 2,42	2 2 1	2,34 2,10 2,42 2,01 1,49 1,47	3321	2,95 2,67 2,32 1,49 1,47 1,16 0,88	9,84 8,95 7,74 4,50 3,56 2,98 2,36
25	100 * 75 * 50 * 25 20 15	5,53 3,81 2,65 1,47 1,19 1,19	1,79 1,79 2,08	2 2 1	1,88 2,36 1,78 1,49 1,49	3 2 2 1 1	2,33 2,07 1,78 1,19 1,16 0,88	7,99 7,18 6,25 3,56 2,98 2,36
20	80* 60* 40* 20 15	3,82 3,21 2,33 1,16 0,88	1,53 1,77 1,15	2 1 1	1,23 1,49 1,47 1,17	3 2 2 1	1,79 1,79 1,47 0,89 0,89	6,26 5,65 4,73 2,98 2,36
15	60* 45* 30* 15	2,95 2,37 1,72 0,88	1,17 0,88	1	1,19 1,19 1,19	2 2 1	1,19 1,17 0,89 0,89	4,45 3,83 3,01 2,36

Dobladuras difíciles como la representada.

Dobladura difícil

Dobladura fácil

^{**} Para otras relaciones de radio, véase tabla 10.

*** Para otras dimensiones, véase tabla 10.

Los deflectores deben estar colocados como muestra el gráfico 6 página 29, para obtener estas mínimas pérdidas.

3.4 Resultados del cálculo de chapa necesaria para cada parte

	Dime	nsione	es de T	ramos I	Cálculo por norma DITAR				
	Din	ensior	nes		Cuparticia	Lado	Fanasar		ka da
Código		[mm]		Cant.	Superficie	mayor	Espesor	Calibre	kg de
	L	h	b		perimetral [m2]	[mm]	[mm]		chapa
D1A-015	1950	700	700	5	27,3	700	0,48	28	104
D1A-016	3100	700	700	4	34,7	700	0,48	28	132
D1A-019	1675	1000	1000	4	26,8	1000	0,55	26	118
D1A-025	27500	1300	1800	1	170,5	1800	0,85	22	1170
D1A-028	1400	300	350	1	1,8	350	0,48	28	7
D1A-029	4570	300	350	1	5,9	350	0,48	28	23
D1A-030	16880	1300	850	1	72,6	1300	0,55	26	321
D1A-031	3060	300	350	1	4,0	350	0,48	28	15
D1A-033	4350	1150	850	1	17,4	1150	0,55	26	77
D1A-035	3060	350	350	4	17,1	350	0,48	28	65
D1A-037	4400	1000	850	1	16,3	1000	0,55	26	72
D1A-039	4400	1000	700	1	15,0	1000	0,55	26	66
D1A-040	3240	350	350	1	4,5	350	0,48	28	17
D1A-042	11755	450	450	2	42,3	450	0,48	28	161
D1A-044	4385	600	700	1	11,4	700	0,48	28	43
D1A-046	3190	350	400	2	9,6	400	0,48	28	36
D1A-048	5436	600	450	1	11,4	600	0,48	28	43
D1A-050	8590	400	450	1	14,6	450	0,48	28	56
D1A-052	12730	1300	1200	1	63,7	1300	0,55	26	281
D1A-054	11890	600	400	1	23,8	600	0,48	28	91
D1A-056	3800	300	300	2	9,1	300	0,48	28	35
D1A-058	14900	1200	1200	1	71,5	1200	0,55	26	316
D1A-060	2475	600	500	1	5,4	600	0,48	28	21
D1A-062	3000	350	350	2	8,4	350	0,48	28	32
D1A-064	3975	450	500	1	7,6	500	0,48	28	29
D1A-066	3300	450	300	2	9,9	450	0,48	28	38
D1A-068	3880	800	600	1	10,9	800	0,55	26	48
D1A-070	2965	350	350	2	8,3	350	0,48	28	32
D1A-072	4375	550	600	1	10,1	600	0,48	28	38
D1A-074	2965	450	300	2	8,9	450	0,48	28	34
D1A-076	5090	550	300	1	8,7	550	0,48	28	33
D1A-078	3325	550	300	1	5,7	550	0,48	28	22
D1A-080	18480	950	800	1	64,7	950	0,55	26	286
D1A-082	3690	600	550	1	8,5	600	0,48	28	32
D1A-084	3900	600	450	1	8,2	600	0,48	28	31
D1A-086	5130	350	450	1	8,2	450	0,48	28	31
D1A-088	4040	600	400	1	8,1	600	0,48	28	31
D1A-089	4460	400	400	2	14,3	400	0,48	28	54
D1A-091	1500	300	350	5	9,8	350	0,48	28	37
D1A-093	1500	350	350	15	31,5	350	0,48	28	120
D1A-096	1500	450	450	1	2,7	450	0,48	28	10
D1A-100	1500	300	300	3	5,4	300	0,48	28	21
D1A-102	1500	450	300	4	9,0	450	0,48	28	34
D1A-104	1500	550	300	1	2,6	550	0,48	28	10

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

	Dime	ensione	es de T	ramos i	Cálculo por norma DITAR					
		nensior				Lado	_			
Código	2111	[mm]	100	Cant.	Superficie	mayor	Espesor	Calibre	kg de	
Coungo	L	h	Ъ	Guitti	perimetral [m2]	[mm]	[mm]	Guilbie	chapa	
D1A-106	1501	350	450	1	2,4	450	0,48	28	9	
D1A-107	1500	400	400	2	4,8	400	0,48	28	18	
D1A-109	3950	700	700	5	55,3	700	0,48	28	211	
D1A-125	26150	1300	1800	1	162,1	1800	0,85	22	1112	
D1A-127	9600	450	300	1	14,4	450	0,48	28	55	
D1A-129	23745	1050	950	1	95,0	1050	0,55	26	420	
D1A-131	3160	450	300	2	9,5	450	0,48	28	36	
D1A-133	14390	650	450	1	31,7	650	0,48	28	121	
D1A-135	4155	450	450	1	7,5	450	0,48	28	28	
D1A-137	16100	900	750	1	53,1	900	0,55	26	235	
D1A-139	8260	500	750	2	41,3	750	0,55	26	183	
D1A-141	9515	1100	1250	1	44,7	1250	0,55	26	198	
D1A-143	16250	450	350	1	26,0	450	0,48	28	99	
D1A-145	25325	1100	1350	1	124,1	1350	0,55	26	548	
D1A-147	10145	750	700	1	29,4	750	0,55	26	130	
D1A-149	4362	550	550	2	19,2	550	0,48	28	73	
D1A-151	6400	450	450	2	23,0	450	0,48	28	88	
D1A-153	12800	900	900	1	46,1	900	0,55	26	204	
D1A-155	3090	650	650	2	16,1	650	0,48	28	61	
D1A-157	5250	650	500	2	24,2	650	0,48	28	92	
D1A-159	4500	400	500	2	16,2	500	0,48	28	62	
D1A-161	15070	700	700	1	42,2	700	0,48	28	161	
D1A-163	6375	450	450	1	11,5	450	0,48	28	44	
D1A-165	7100	450	300	3	32,0	450	0,48	28	122	
D1A-166	7100	450	300	3	32,0	450	0,48	28	122	
D1A-167	7100	450	450	12	153,4	450	0,48	28	584	
D1A-169	7100	650	450	1	15,6	650	0,48	28	60	
D1A-175	7100	400	500	2	25,6	500	0,48	28	97	
D1A-243	18940	1300	1800	1	117,4	1800	0,85	22	806	
D1A-247	5100	1300	1800	1	31,6	1800	0,85	22	217	
D1F-098	1500	400	450	1	2,6	450	0,48	28	10	
D1F-171	7100	500	750	2	35,5	750	0,55	26	157	
D2A-182	2250	700	700	2	12,6	700	0,48	28	48	
D2A-183	5350	700	700	2	30,0	700	0,48	28	114	
D2A-190	12500	1000	1000	1	50,0	1000	0,55	26	221	
D2A-191	950	1000	1000	1	3,8	1000	0,55	26	17	
D2A-193	3590	350	300	2	9,3	350	0,48	28	36	
D2A-195	5825	900	900	1	21,0	900	0,55	26	93	
D2A-197	6900	400	350	2	20,7	400	0,48	28	79	
D2A-199	6325	700	900	1	20,2	900	0,55	26	89	
D2A-201	2640	700	500	2	12,7	700	0,48	28	48	
D2A-203	1190	300	350	4	6,2	350	0,48	28	24	
D2A-205	8515	400	500	2	30,7	500	0,48	28	117	
D2A-207	1370	400	300	4	7,7	400	0,48	28	29	
D2A-207	1500	350	300	2	3,9	350	0,48	28	15	
D2A-209	1500	400	350	2	4,5	400	0,48	28	17	
D2A-211	1500	300	350	4	7,8	350	0,48	28	30	
D2A-213	1300	300	550	4	7,0	330	U, 1 0	20	30	

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

	Dime	ensione	es de T	ramos l	Rectos	Cálculo por norma DITAR				
Código	Din L	nensior [mm] h	nes b	Cant.	Superficie perimetral [m2]	Lado mayor [mm]	Espesor [mm]	Calibre	kg de chapa	
D2A-215	1500	400	300	4	8,4	400	0,48	28	32	
D2A-216	4250	700	700	2	23,8	700	0,48	28	91	
D2A-217	5350	700	700	2	30,0	700	0,48	28	114	
D2A-219	16650	1000	1000	1	66,6	1000	0,55	26	294	
D2A-221	5780	450	550	1	11,6	550	0,48	28	44	
D2A-223	5530	1000	800	1	19,9	1000	0,55	26	88	
D2A-225	3170	500	450	2	12,0	500	0,48	28	46	
D2A-226	1835	400	400	2	5,9	400	0,48	28	22	
D2A-228	6990	600	600	1	16,8	600	0,48	28	64	
D2A-230	6120	400	400	2	19,6	400	0,48	28	75	
D2A-232	7100	450	550	1	14,2	550	0,48	28	54	
D2A-234	7100	400	300	1	9,9	400	0,48	28	38	
D2A-236	7100	400	400	3	34,1	400	0,48	28	130	
D2A-238	7100	400	400	2	22,7	400	0,48	28	87	
D2A-240	7100	400	400	2	22,7	400	0,48	28	87	
D2A-245	1550	1000	1000	1	6,2	1000	0,55	26	27	
D2A-246	1670	1000	1000	1	6,7	1000	0,55	26	30	
	Total				2845				12933	

		Dimen	siones	Cálculo según norma DITAR						
Código	Dir h	nensio b	nes [m r	m] R	Cant.	Superficie perimetral [m2]	Lado mayor [mm]	Espesor [mm]	Calibre	kg de chapa
D1A-097	400	450	338	788	1	1,5	450	0,48	28	6
D1B-014	700	700	525	1225	14	53,9	700	0,48	28	205
D1B-049	600	450	338	788	1	1,9	600	0,48	28	7
D1B-077	550	300	225	525	1	1,0	550	0,48	28	4
D1B-090	300	350	263	613	5	4,5	350	0,48	28	17
D1B-092	350	350	263	613	7	6,7	350	0,48	28	26
D1B-095	450	450	338	788	7	11,1	450	0,48	28	42
D1B-099	300	300	225	525	3	2,1	300	0,48	28	8
D1B-101	450	300	225	525	6	5,3	450	0,48	28	20
D1B-103	550	300	225	525	1	1,0	550	0,48	28	4
D1B-105	350	450	338	788	1	1,4	450	0,48	28	5
D1B-106	400	400	300	700	2	2,5	400	0,48	28	10
D1B-110	1000	600	450	1050	1	3,8	1000	0,55	26	17
D1B-168	650	450	338	788	1	1,9	650	0,48	28	7
D1B-170	500	750	563	1313	2	7,4	750	0,55	26	33
D1B-172	450	350	263	613	1	1,1	450	0,48	28	4
D1B-174	400	500	375	875	2	3,5	500	0,48	28	13
D1B-244	1300	1800	1350	3150	1	21,9	1800	0,85	22	150
D2B-181	700	700	525	1225	10	38,5	700	0,48	28	147
D2B-186	1000	1000	750	1750	3	23,6	1000	0,55	26	104
D2B-208	350	300	225	525	2	1,5	350	0,48	28	6
D2B-210	450	300	225	525	2	1,8	450	0,48	28	7
D2B-212	350	350	263	613	2	1,9	350	0,48	28	7

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

	Ì	Dimen	siones	de Cui	rvas 90	0	Cálculo según norma DITAR				
	Dir	nensio	nes [m	ım]		Superficie	Lado	Fenerar		ka do	
Código	h	b	r	R	Cant.	perimetral [m2]	mayor [mm]	Espesor [mm]	Calibre	kg de chapa	
D2B-214	400	400	300	700	2	2,5	400	0,48	28	10	
D2B-218	1000	600	450	1050	1	3,8	1000	0,55	26	17	
D2B-231	500	550	413	963	1	2,3	550	0,48	28	9	
D2B-237	350	550	413	963	2	3,9	550	0,48	28	15	
D2B-239	450	400	300	700	3	4,0	450	0,48	28	15	
		Tota	1			216				914	

	Dimer	ısione	es de .	Deriva	ciones .	Simples	Cálculo según norma DITAR				
Código	Dim h	ensio b	nes [1	mm] R	Cant.	Superficie perimetral [m2]	Lado mayor [mm]	Espesor [mm]	Calibre	kg de chapa	
D1C-017	700	700	525	1225	4	7,7	700	0,48	28	15	
D1C-026	1300	850	638	1488	1	5,4	1300	0,55	26	12	
D1C-027	300	350	263	613	3	2,0	350	0,48	28	4	
D1C-034	350	350	263	613	5	3,6	350	0,48	28	7	
D1C-041	350	350	263	613	1	0,7	350	0,48	28	1	
D1C-045	350	400	300	700	2	1,8	400	0,48	28	3	
D1C-053	600	400	300	700	1	1,2	600	0,48	28	2	
D1C-059	600	500	375	875	1	1,6	600	0,48	28	3	
D1C-061	350	350	263	613	2	1,4	350	0,48	28	3	
D1C-067	800	600	450	1050	1	2,5	800	0,55	26	5	
D1C-069	350	350	263	613	2	1,4	350	0,48	28	3	
D1C-073	450	300	225	525	2	1,3	450	0,48	28	3	
D1C-081	600	550	413	963	1	1,9	600	0,48	28	4	
D1C-094	350	350	263	613	6	4,3	350	0,48	28	8	
D1C-126	450	300	225	525	1	0,7	450	0,48	28	1	
D1C-128	1050	950	713	1663	1	5,6	1050	0,55	26	12	
D1C-130	450	300	225	525	2	1,3	450	0,48	28	3	
D1C-132	650	450	338	788	1	1,5	650	0,48	28	3	
D1C-134	450	450	338	788	1	1,2	450	0,48	28	2	
D1C-142	450	350	263	613	1	0,8	450	0,48	28	2	
D1C-146	750	700	525	1225	1	3,0	750	0,55	26	7	
D1C-152	900	900	675	1575	1	4,8	900	0,55	26	11	
D1C-165	450	300	225	525	1	0,7	450	0,48	28	1	
D1C-173	450	450	338	788	6	7,2	450	0,48	28	14	
D2C-192	350	300	225	525	2	1,1	350	0,48	28	2	
D2C-196	400	350	263	613	2	1,5	400	0,48	28	3	
D2C-202	300	350	263	613	4	2,7	350	0,48	28	5	
D2C-224	500	450	338	788	2	2,5	500	0,48	28	5	
D2C-233	400	300	225	525	1	0,6	400	0,48	28	1	
D2C-235	400	400	300	700	2	1,9	400	0,48	28	4	
	Total				74				147		

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

			D	imensi	iones a	le Dei	ivacion	es en l	r				Cálculo según norma DII			
					Dime	nsiones	[mm]					Superficie	Lado	Espasar		ka do
Código	ho	b0	hı	b1	r1	R1	h2	b2	12	R2	Cant.	perimetral	mayor	Espesor	Calibre	kg de
	110	DU	111	UI	11	Kı	112	02	12	KZ	Cant.	[m2]	[mm]	[mm]		chapa
D1D-065	450	500	450	300	225	525	450	300	225	525	1	1,8	500	0,48	28	3
D1D-148	750	700	550	550	413	963	550	550	413	963	1	4,7	750	0,55	26	10
D1D-154	900	900	650	650	488	1138	650	650	488	1138	1	6,6	900	0,55	26	15
D1D-184	700	1000	700	700	525	1225	700	700	525	1225	2	15,4	1000	0,55	26	34
D2D-200	700	900	700	500	375	875	700	500	375	875	1	4,7	900	0,55	26	10
D2D-206	400	500	400	300	225	525	400	300	225	525	2	3,3	500	0,48	28	6
D2D-220	1000	1000	450	550	413	963	1000	800	600	1400	1	4,3	1000	0,55	26	10
					Total	l						41				89

		Dit	mensiones d	e Reduccio.	nes			Cálculo según norma DITAR				
Código	hı	Di b1	mensiones [m Longitud	m] h2	b2	Cant.	Superficie perimetral [m2]	Lado mayor [mm]	Espesor [mm]	Calibre	kg de chapa	
D1F-007	1200	2000	1000	1000	1000	7	36,4	2000	0,85	22	250	
D1F-009	1200	2000	1000	700	700	7	32,2	2000	0,85	22	221	
D1F-018	1000	1000	1100	700	700	4	15,0	1100	0,55	26	66	
D1F-021	1300	1800	200	1000	1800	2	2,4	1800	0,85	22	16	
D1F-032	1300	850	500	1150	850	1	2,1	850	0,55	26	9	
D1F-036	1150	850	500	1000	850	1	1,9	850	0,55	26	9	
D1F-038	1000	850	500	1000	700	1	1,8	850	0,55	26	8	
D1F-043	1000	700	500	600	700	1	1,5	700	0,48	28	6	
D1F-047	600	700	500	600	450	1	1,2	700	0,48	28	4	
D1F-051	1300	1800	1000	1300	1200	1	5,6	1800	0,85	22	38	
D1F-057	1300	1200	500	1200	1200	1	2,5	1200	0,55	26	11	
D1F-063	600	500	500	450	500	1	1,0	500	0,48	28	4	
D1F-071	800	600	500	550	600	1	1,3	600	0,48	28	5	
D1F-075	550	600	500	550	300	1	1,0	600	0,48	28	4	
D1F-079	1200	1200	1000	950	800	1	4,2	1200	0,55	26	18	
D1F-083	600	550	500	600	450	1	1,1	550	0,48	28	4	
D1F-085	600	450	500	350	450	1	0,9	500	0,48	28	4	
D1F-108	1000	1000	500	700	700	5	8,5	1000	0,55	26	38	
D1F-136	1050	950	600	900	750	1	2,2	950	0,55	26	10	
D1F-140	1300	1800	1000	1100	1250	1	5,5	1800	0,85	22	37	
D1F-144	1100	1250	600	1100	1350	1	2,9	1250	0,55	26	13	
D1F-150	550	550	500	450	450	1	1,0	550	0,48	28	4	
D1F-156	650	650	600	650	500	2	2,9	650	0,48	28	11	
D1F-158	650	500	600	400	500	2	2,5	600	0,48	28	9	
D1F-160	1100	1350	1000	700	700	1	3,9	1350	0,55	26	17	
D2F-186	1000	1000	500	700	700	2	3,4	1000	0,55	26	15	
D2F-187	1000	1000	1000	700	1000	2	7,4	1000	0,55	26	33	
D2F-194	1000	1000	600	900	900	1	2,3	1000	0,55	26	10	
D2F-198	900	900	500	700	900	1	1,7	900	0,55	26	8	
D2F-204	700	500	500	400	500	2	2,1	500	0,48	28	8	
D2F-227	1000	800	600	600	600	1	1,8	800	0,55	26	8	
		•	Total		•	•	160				897	

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

PFC1804C AX-Rev.01

Acondicionamiento ambiental de salas de proceso en frigorífico avícola Las Camelias S.A.

4. Glosario

- IySP: Introducción y situación problemática
- OAyPT: Objetivos, alcances y plan de trabajos
- IB: Ingeniería básica
- ID: Ingeniería de detalles
- MC: Memorias de cálculos
- PL: Planos
- AX: Anexos
- TyE: Trozado y empaque
- EyC: Eviscerado y chillers
- AE: Aire exterior
- FCS: Factor de calor sensible
- FOB: Free On Board
- SENASA: Servicio Nacional de Sanidad y Calidad Agroalimentaria
- ENARGAS: Ente Nacional Regulador del Gas
- AEA: Asociación Electrotécnica Argentina
- IRAM: Instituto de Racionalización Argentina de Materiales
- PRS: Planta de Regulación Secundaria (Gas natural)
- TP: Tablero Principal (Eléctrico)
- TS: Tablero Seccional (Eléctrico)

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

5. Bibliografía

- Carrier Company Co., (1980), *Manual de Aire Acondicionado*, Barcelona, España, Editorial Marcombo S.A.
- Cervantes López, Eduardo, (2017), *Procesamiento de Aves: Gerencia Productiva*, Barcelona, España, Ediciones Científicas Beta.
- Salvador Escoda, *Manual Práctico de Ventilación*, Recuperado de: http://www.salvadorescoda.com/tecnico/VE/tec-ve.htm
- Cengel, Yunus A.; Boiles, Michel A., (2009), *Termodinámica*, Sexta edición, México,
 Mc Graw-Hill/Interamericana Editores S.A.
- Munters Corporation, (2002), *The Dehumidification Handbook*.
- Pita, Edward G., (2005), Acondicionamiento de Aire Principios y Sistemas, 2da. Ed.,
 D.F., México, Editorial CECSA.
- Dossat, Roy J., (1963), Principios de Refrigeración, México, Compañía Editorial Continental.
- Owen, Mark S. (Ed.), (2017), *Ashrae Handbook Fundamentals*, Estados Unidos, Jayne E. Jackson Publishing Services.
- Jones, W.P., (2005), *Air Conditioning Engineering*, 5ta. Ed., Great Britain, Butterworth Heinemann.
- Isover, Manual de Conceptos Técnicos Climaver, Argentina.
- Schneider Electric, Manual y Catálogo del Electricista, Argentina.
- Genrod, *Guía de Gestión Térmica*, Argentina.

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

6. Características técnicas de fabricantes

Las hojas de datos de los elementos seleccionados, catálogos, etc. se adjuntan en el siguiente orden:

- UTA por rotor desecante.
- Difusores y rejillas para aire acondicionado.
- Tubos para conducción de GN.
- Bridas y espárragos.
- Manómetros para GN.
- Válvulas esféricas de tres cuerpos para GN.
- Reguladores de presión para GN.
- Sensores de temperatura y humedad relativa.
- Actuadores modulantes para dámpers.
- Dámpers para aire.
- Conductor para instrumentación.
- Conductores para potencia y protección.
- Interruptor seccionador para TP.
- Interruptor termomagnético para TP.
- Interruptor diferencial para TP y TS de TyE.
- Interruptor termomagnético para TS de TyE.
- Interruptor seccionador para TS de TyE y EyC.
- Interruptor diferencial para TS de EyC.
- Interruptor termomagnético para TS de EyC.
- Gabinete de chapa para TS de TyE.
- Gabinete de chapa para TS de EyC.
- Bandejas portacables y accesorios.
- Costos de mano de obra eléctrica (Electro instalador)

Elaboró: KNOLL, Andrés – LAZBAL, Rubén

Revisó: GP-30/10/2019

DETALLES DEL PROYECTO

Proyecto: PROYECTO UTN Cliente: RUBEN LAZBAL Fecha: 31/05/2019

Referencia: CON AIRE TRATADO Cantidad: 1

Modelo: DFLEX2900G G0G0 0000 0000 SFSF 000 R00 N05AG170

Altitud: 0 m / Conexión eléctrica: 400V ±5% /III+N/50Hz

ESPECIFICACIÓN

Serie DFLEX, deshumidificador de aire por rotor desecante de silicagel de gran rendimiento, con larga vida útil y bajo consumo energético.

CARACTERÍSTICAS PRINCIPALES

- Estructura formada por esquinas de aluminio, perfiles de acero y paneles de tipo sandwich.
- Estructura soportada sobre bancada UPN según UNE 36-525-72. Bancada provista de medios para facilitar la elevación del equipo. Si se suministra en módulos, cada módulo está preparado para un sencillo montaje en obra y cada uno dispone de anclajes para elevación.
- Paneles de tipo sándwich montados en la estructura fabricados con chapa interior y exterior en acero galvanizado. La chapa exterior además según RAL 7035. Ensamblados entre sí y a la estructura con juntas de neopreno para mejorar el sellado. Se incluyen los huecos de registro para fácil mantenimiento e inspección. Resistencia a la corrosión C3 según ISO 12944. Opción en acero inoxidable. Paneles con aislamiento térmico mediante lana de vidrio de 50mm de espesor.
- Compuerta de regulación manual del caudal de entrada de aire de proceso fabricada en aluminio. Tomas de presión diferencial para regulación manual de caudal de aire exacto. Comprobación adicional al variador de frecuencia.
- Filtro de aire de proceso tipo V, fabricado en fibra sintética clase G4 según (EN 779: 2012).
- Rotor desecante de gel de sílice de alto rendimiento. Material inerte, resistente al fuego, higiénico, con comportamiento estable térmica y químicamente para evitar la delicuescencia. Incluye juntas perimetrales y radiales. Sistema de giro del rotor desecante mediante moto-reductor, correa y sistema de corrección de la tensión para el arrastre perimetral.
- Módulo de recuperación de calor de aluminio recubierto con epoxi integrado en la salida de aire húmedo. Incluye sistema de drenaje de aqua condensada.
- Ventilador de proceso: Ventilador centrífugo de simple aspiración de tipo Plug-Fan, según directiva europea de Eco-Diseño. Rodete de álabes hacia atrás. Motor de alta eficiencia (IE3). Incluye variador de frecuencia, de tecnología C-Less, THDi < 30%, comunicación por bus MODBUS, BACnet, Apogee y Metasys. Clase de protección IP54. Filtros CEM clase C2. Se incluye sonda de presión para regulación del caudal de aire seco.
- Filtro de aire de reactivación tipo V, fabricado en fibra sintética clase G4 según (EN 779: 2012).

Calentador de reactivación del rotor formado por quemador de gas de tipo lineal compuestos por cuerpos de hierro fundido o aluminio y deflectores de aire en acero inoxidable divergentes. Incluye rampa modular de combustión con:

- Rampa de inyección de gas en fundición especial.
- Electrodo de ignición con conector acodado.
- Sonda de ionización para vigilancia de llama con conector acodado.
- Presostato de seguridad para control circulación aire con tobera.

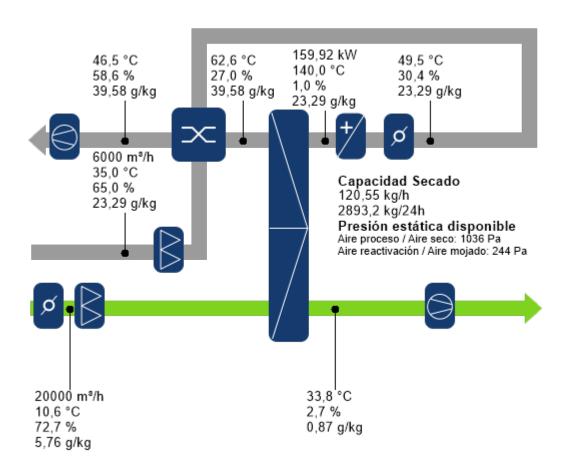
Tren de válvulas de gas, formado por:

- Presostato de seguridad gas mín.
- Presostato de seguridad gas máx.
- Doble electroválvula de seguridad en serie
- Electroválvula piloto
- Servoválvula de regulación de caudal de gas con servomotor modulante mediante señal 0-10 V

DETALLES DEL PROYECTO

Proyecto: PROYECTO UTN Cliente: RUBEN LAZBAL Fecha: 31/05/2019

- Ventilador de reactivación: Ventilador centrífugo de simple aspiración preparado para trabajar con aire hasta 110°C, con rodete de álabes hacia delante, construido en plancha de acero galvanizado pintado en pintura poliéster anticorrosiva, equipado con motor trifásico.
- Panel de control Avanzado mediante controlador con pantalla HMI para supervisión y control en tiempo real de todos los componentes del deshumidificador, preparado para las señales externas e internas requeridas, regulando la humedad de forma proporcional el equipo mediante relés de estado sólido del calefactor eléctrico o mediante válvula de control de fluido en el caso de la reactivación por vapor, gas, agua o aceite térmico. Cuadro eléctrico IP54 con acabado epoxi integrado en el equipo. Se incluye seccionador y magneto-térmicos adecuados para protección de los elementos consumidores, así como todo el cableado interno entre estos y el cuadro. Toda la instalación eléctrica según los reglamentos EU-CE sobre seguridad e instalaciones eléctricas, así como de compatibilidad electromagnética. Completa monitorización de estados para fácil mantenimiento: incluye interruptor manual / auto, tarjeta libre de potencial para señalización remota de los estados de tensión, marcha (habilita encendido remoto) y fallo (incluyendo parada del rotor). Apagado inteligente en reactivación eléctrica para disipación del calor. Voltaje de maniobra en 24V. Opción de comunicación Profibus DP disponible.



Proyecto: PROYECTO UTN Cliente: RUBEN LAZBAL Fecha: 31/05/2019

Modelo: DFLEX2900G G0G0 0000 0000 SFSF 000 R00 N05AG170

Altitud: 0 m / Conexión eléctrica: 400V ±5% /III+N/50Hz

ESQUEMA DE OPERACIÓN (DESHUMIDIFICACIÓN)

Proyecto: **PROYECTO UTN** Cliente: **RUBEN LAZBAL**

Fecha: **31/05/2019**

Modelo: DFLEX2900G G0G0 0000 0000 SFSF 000 R00 N05AG170

Altitud: 0 m / Conexión eléctrica: 400V ±5% /III+N/50Hz

AIRE PROCESO / AIRE SECO

DETALLES DEL PROYECTO

Proyecto: **PROYECTO UTN** Cliente: **RUBEN LAZBAL** Fecha: **31/05/2019**

Modelo: DFLEX2900G G0G0 0000 0000 SFSF 000 R00 N05AG170
Altitud: 0 m / Conexión eléctrica: 400V ±5% /III+N/50Hz

(1) COMPUERTA AIRE PROCESO

Tipo / Actuador	Aluminio / Manual
Caudal de aire	20000 m³/h
Pérdida de carga en aire	28 Pa
Condiciones entrada aire	10,6 °C / 72,7 % / 5,76 g/kg
Compuerta de regulación manual del caudal de entrada de aire de proceso fabricada en aluminio. Tomas de presión diferencial para regulación manual de caudal de aire exacto. Comprobación adicional al variador de frecuencia.	

(2) FILTROS AIRE DE PROCESO

_	
Tipo / Clase (EN 779: 2012)	Filtro plano / G4
Caudal de aire	20000 m³/h
Pérdida de carga en aire (limpio / considerada / sucio):	28 Pa / 200 Pa / 250 Pa
Condiciones entrada aire	10,6 °C / 72,7 % / 5,76 g/kg
Filtro de aire de proceso tipo V, fabricado en fibra sintética clase G4 según (EN 779: 2012).	

Proyecto: **PROYECTO UTN** Cliente: **RUBEN LAZBAL** Fecha: **31/05/2019**

Modelo: **DFLEX2900G G0G0 0000 0000 SFSF 000 R00 N05AG170**Altitud: **0** m / Conexión eléctrica: **400V ±5% /III+N/50Hz**

(3) UNIDAD BÁSICA

(3) ONIDAD BASICA	
Tipo	DFLEX-2900
Caudal aire proceso	20000 m³/h
Pérdida carga en aire de proceso	215 Pa
Condiciones aire proceso	10,6 °C / 72,7 % / 5,76 g/kg
Condiciones aire seco	33,8 °C / 2,7 % / 0,87 g/kg
Caudal aire reactivación	6000 m³/h
Pérdida carga en aire de reactivación	254 Pa
Condiciones aire reactivación	140,0 °C / 1,0 % / 23,29 g/kg
Condiciones aire mojado	62,6 °C / 27,0 % / 39,58 g/kg
Rotor desecante de gel de sílice de alto rendimiento. Material inerte, resistente al fuego, higiénico, con comportamiento estable térmica y químicamente para evitar la delicuescencia. Incluye juntas perimetrales y radiales. Sistema de giro del rotor desecante mediante moto-reductor, correa y sistema de corrección de la tensión para el arrastre perimetral.	

(4) VENTILADOR DE PROCESO

Tipo	(SF) Ventilador Standard
Caudal de aire / Presión estática disponible	20000 m³/h / 1036 Pa
Ventilador centrífugo de simple aspiración de tipo Plug-Fan, según directiva europea de Eco-Diseño. Rodete de álabes hacia atrás. Motor de alta eficiencia (IE3). Incluye variador de frecuencia, de tecnología C-Less, THDi < 30%, comunicación por bus MODBUS, BACnet, Apogee y Metasys. Clase de protección IP54. Filtros CEM clase C2. Se incluye sonda de presión para regulación del caudal de aire seco.	

Proyecto: **PROYECTO UTN** Cliente: **RUBEN LAZBAL** Fecha: **31/05/2019**

Modelo: DFLEX2900G G0G0 0000 0000 SFSF 000 R00 N05AG170	
Altitud: 0 m / Conexión eléctrica: 400V ±5% /III+N/50Hz	

AIRE REACTIVACIÓN / AIRE MOJADO

(5) FILTROS AIRE DE REACTIVACIÓN

Tipo / Clase (EN 779: 2012)	Filtro plano / G4
Caudal de aire	6000 m³/h
Pérdida de carga en aire (limpio / considerada / sucio):	22 Pa / 200 Pa / 250 Pa
Condiciones entrada aire	35,0 °C / 65,0 % / 23,29 g/kg
Filtro de aire de reactivación tipo V, fabricado en fibra sintética clase G4 según (EN 779: 2012).	

(6) RECUPERADOR DE CALOR

(0) RECOFERADOR DE CALOR	
Tipo	DFLEX-2900
Potencia transferida	26,77 kW
Caudal aire reactivación	6000 m³/h
Pérdida carga en aire de reactivación	97 Pa
Condiciones aire reactivación (Entrada)	35,0 °C / 65,0 % / 23,29 g/kg
Condiciones aire reactivación (Salida)	49,5 °C / 30,4 % / 23,29 g/kg
Caudal aire mojado	6000 m³/h
Pérdida carga en aire mojado	84 Pa
Condiciones aire mojado (Entrada)	62,6 °C / 27,0 % / 39,58 g/kg
Condiciones aire mojado (Salida)	46,5 °C / 58,6 % / 39,58 g/kg
Condensación	0,0 l/h
Módulo de recuperación de calor de aluminio recubierto con epoxi integrado en la salida de aire húmedo. Incluye sistema de drenaje de agua condensada.	

(7) COMPUERTA AIRE REACTIVACIÓN

(7) COMINGENTA AINE REACTIVACION	
Tipo / Actuador	Acero galvanizado / Manual
Caudal de aire	6000 m ³ /h
Pérdida de carga en aire	16 Pa
Condiciones entrada aire	49.5 °C / 30.4 % / 23.29 g/kg

DETALLES DEL PROYECTO

Proyecto: **PROYECTO UTN** Cliente: **RUBEN LAZBAL** Fecha: **31/05/2019**

Compuerta de regulación manual del caudal de entrada de aire de reactivación fabricada en acero galvanizado. Tomas de presión diferencial para regulación manual de caudal de aire exacto.

DETALLES DEL PROYECTO

Proyecto: PROYECTO UTN Cliente: RUBEN LAZBAL Fecha: 31/05/2019

Modelo: DFLEX2900G G0G0 0000 0000 SFSF 000 R00 N05AG170
Altitud: 0 m / Conexión eléctrica: 400V ±5% /III+N/50Hz

(8) SISTEMA DE REACTIVACIÓN	
Tipo	Gas directo
Caudal de aire	6000 m³/h
Condiciones entrada aire	49,5 °C / 30,4 % / 23,29 g/kg
Condiciones salida aire	140,0 °C / 1,0 % / 23,29 g/kg
Potencia requerida / Potencia disponible	159,92 kW / 220,00 kW
Consumo de gas	14,4 Nm³/h
Calentador de reactivación del rotor formado por quemador de gas de tipo lineal compuestos por cuerpos de hierro fundido o aluminio y deflectores de aire en acero inoxidable divergentes. Incluye rampa modular de combustión con: Rampa de inyección de gas en fundición especial. Electrodo de ignición con conector acodado. Sonda de ionización para vigilancia de llama con conector acodado. Presostato de seguridad para control circulación aire con tobera.	

Tren de válvulas de gas, formado por:

- Presostato de seguridad gas mín.
- Presostato de seguridad gas máx.
- Doble electroválvula de seguridad en serie
- Electroválvula piloto
- Servoválvula de regulación de caudal de gas con servomotor modulante mediante señal 0-10 V

(9) VENTILADOR DE REACTIVACIÓN

Tipo	(SF) Ventilador Standard
Caudal de aire / Presión estática disponible	6000 m³/h / 244 Pa
Ventilador centrífugo de simple aspiración preparado para trabajar con aire hasta 110°C, con rodete de álabes hacia delante, construido en plancha de acero galvanizado pintado en pintura poliéster anticorrosiva, equipado con motor trifásico.	

DETALLES DEL PROYECTO

Proyecto: **PROYECTO UTN** Cliente: **RUBEN LAZBAL** Fecha: **31/05/2019**

Modelo: **DFLEX2900G G0G0 0000 0000 SFSF 000 R00 N05AG170**Altitud: **0** m / Conexión eléctrica: **400V ±5% /III+N/50Hz**

OPCIONES

Tipo de control	Avanzado (AG17)
Encendido/Apagado manual directamente en el equipo.	Si
Encendido/Apagado remoto del equipo mediante señal digital externa libre de potencial.	Si
Regulación de la capacidad de secado: Automática mediante señal procedente de sensor instalado en retorno o sala	Si
Sensor combinado de humedad relativa 0100% y temperatura (DC 010V) para conducto	Si
Alarma sustitución filtros proceso	No
Alarma sustitución filtros reactivación	No
Control del ventilador de proceso / aire seco. Configurar para mantener constante el:	Caudal de aire
Comunicación con BMS	No

Precio de lista unitario

DESCRIPCIÓN	CANTIDAD	PRECIO POR UNIDAD	TOTAL
DFLEX2900G G0G0 0000 0000 SFSF 000 R00 N05AG170	1	85.039,00 €	85.039,00 €
Sensor combinado de humedad relativa 0100% y temperatura (DC 010V) para conducto	1	458,00 €	458,00€
		PRECIO TOTAL	85.497,00€

1.3. REJAS PARA RETORNO TIPO PERSIANILLA "ESPECIAL" SERIES RRS - RRF - ARRS

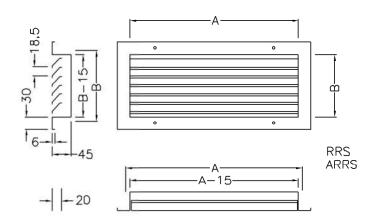
Las rejas de la Serie RR están diseñadas para el retorno y extracción de aire en instalaciones de aire acondicionado, calefacción y ventilación. El montaje de estas rejas se realiza en paredes o falsos techos. Sus aletas a 45º dificultan la captación de polvo y el paso de luz.

■ LÍNEA CHAPA DE ACERO

DENOMINACIÓN

RRS Rejas de retorno tipo persianilla con

aletas fijas con 45º de deflección


RRF Rejas de retorno tipo persianilla con

> aletas fijas con 45º de deflección y frente rebatible para acceso a filtro

(filtro no provisto)

TERMINACIÓN

Estándar Esmalte epoxi horneado blanco Opción Esmalte epoxi horneado aluminio

■ LÍNEA ALUMINIO

DENOMINACIÓN

ARRS Rejas de retorno tipo persianilla con aletas fijas

con 45º de deflección

TERMINACIÓN

Anodizado natural Estándar

Opción Esmalte epoxi horneado blanco

■ ACCESORIOS

R 100% De regulación posterior de aletas

simples

RRS-R/RRF-R/ARRS-R

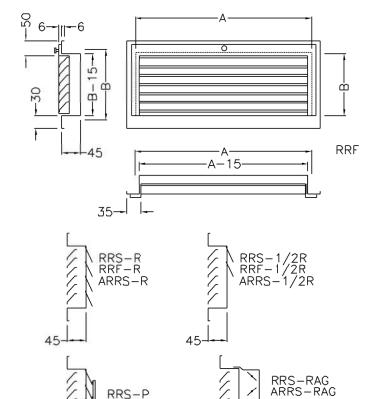
1/2R 50% De regulación posterior de aletas

simples

RRS-1/2R / RRF-1/2R / ARRS-1/2R

P Regulación posterior de aletas simples

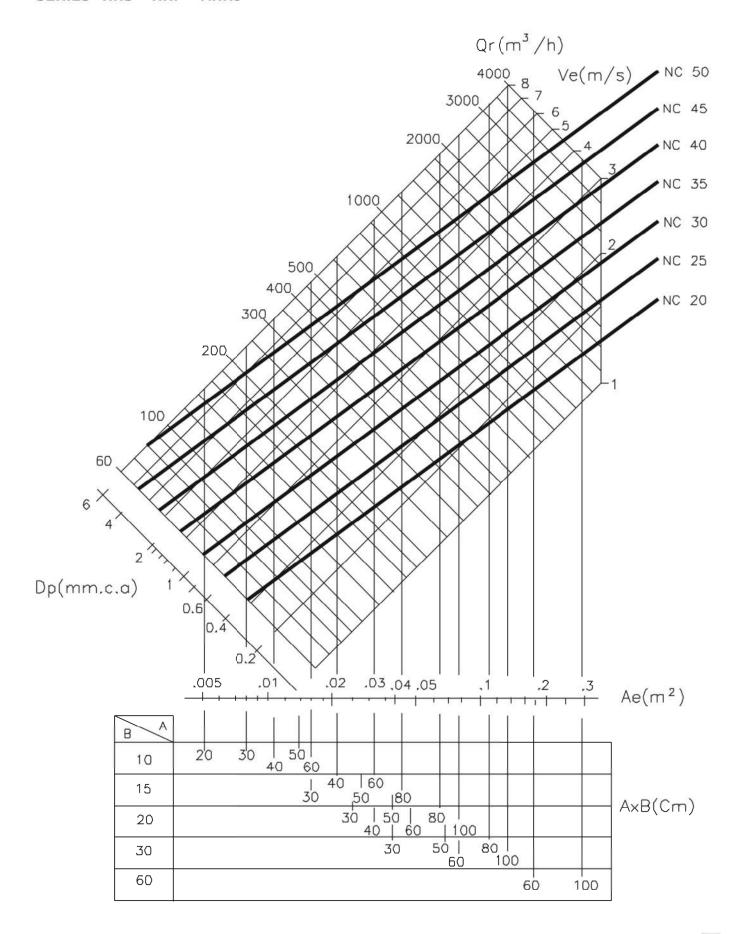
con comando a palanca frontal


RRS-P

RAG Regulación posterior de aletas opuestas

> con comando frontal mediante acople con llave Alem construido en aluminio

extruido


RRS-RAG / ARRS-RAG

Las rejas se deberán solicitar especificando las medidas A x B (cm), en ese orden. Las cotas se encuentran expresadas en mm.

■ SELECCIÓN DE REJAS PARA RETORNO SERIES RRS - RRF - ARRS

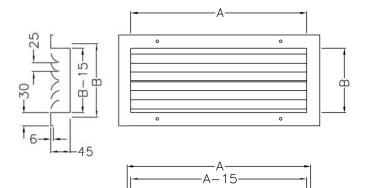
*MetalRegister / induterm

2.6. DIFUSORES PARA IMPULSIÓN DE ALETAS CURVAS DE 1V, 2V, 3V Y 4 VÍAS SERIES ADS21 - ADS22 - ADS23 - ADS24

Los difusores de la Serie ADS están diseñadas para la inyección de aire en instalaciones de aire acondicionado, calefacción y ventilación. El montaje de estas rejas se realiza en paredes o falsos techos.

Sus aletas curvas orientables permiten una buena distribución de aire desde paredes a gran altura y techos.

■ LÍNEA ALUMINIO


DENOMINACIÓN

Rejas de impulsión de aletas curvas de 1 vía ADS21 ADS22 Rejas de impulsión de aletas curvas de 2 vías ADS23 Rejas de impulsión de aletas curvas de 3 vías ADS24 Rejas de impulsión de aletas curvas de 4 vías

TERMINACIÓN

Estándar Anodizado natural

Opción Esmalte epoxi horneado blanco

ACCESORIOS

R Regulación posterior de aletas simples

> ADS21-R / ADS22-R ADS23-R / ADS24-R

RAG Regulación posterior de aletas opuestas

> con comando frontal mediante acople con llave Alem construido en aluminio extruido

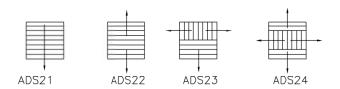
y chapa BWG

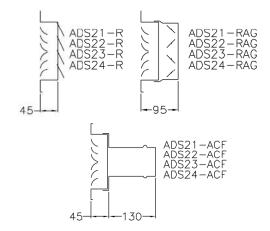
ADS21-RAG / ADS22-RAG ADS23-RAG / ADS24-RAG

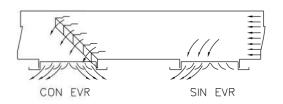
ACF Adaptador de cuello circular para Acople

> de conductos flexibles. Construído en chapa galvanizada. Opción por dámper de

regulación.

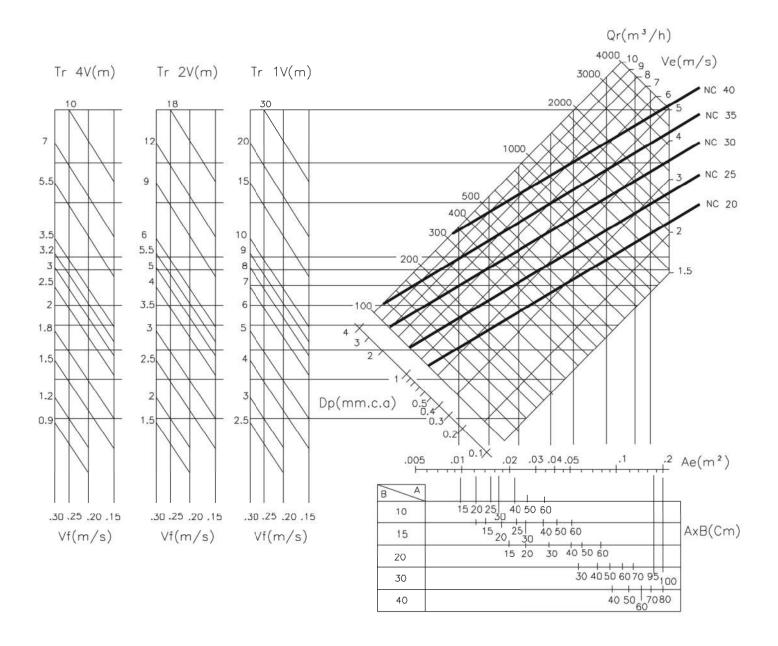

ADS21-ACF / ADS22-ACF ADS23-ACF / ADS24-ACF


Pescador de volumen de aire con regulación **EVR**


> de inclinación construido en chapa de acero DD y terminación esmalte epoxi horneado

negro

ADS21-EVR / ADS22-EVR ADS23-EVR / ADS24-EVR



Las rejas se deberán solicitar especificando las medidas AXB (cm), en ese orden. Las cotas se encuentran expresadas en mm.

■ SELECCIÓN DE DIFUSORES PARA IMPULSIÓN DE ALETAS CURVAS SERIES ADS21 - ADS22 - ADS23 - ADS24

5.2. REJAS PARA TOMA DE AIRE EXTERIOR SERIE TAE

Las rejas de la Serie TAE están diseñadas para la toma de aire de renovación en instalaciones de aire acondicionado, calefacción y ventilación. El montaje de estas rejas se realiza en paredes, atornillándolas al marco del conducto de aire o amurándolas a la pared.

■ LÍNEA CHAPA DE ACERO

DENOMINACIÓN

TAE-F Rejas para toma de aire exterior tipo

> persianilla con aletas fijas con 45º de deflección y protección antipájaro de malla fina de alambre galvanizado.

TAE-M Rejas para toma de aire exterior con

> aletas regulables y protección antipájaro de malla fina de alambre galvanizado.

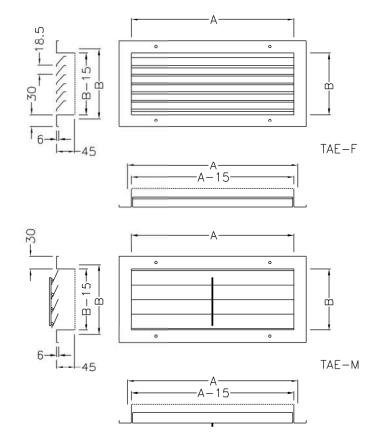
TERMINACIÓN

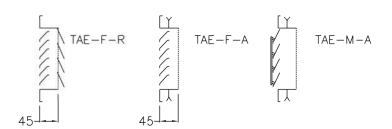
Estándar Esmalte epoxi horneado blanco

Opción Galvanizado natural

■ ACCESORIOS

100% De regulación posterior de R


aletas simples TAE-F-R


A Marco para amurar

TAE-F-A / TAE-M-A

■ SELECCIÓN

El concepto de selección es similar al utilizado para las rejas de retorno serie RRS, utilizar sus curvas.

Las rejas se deberán solicitar especificando las medidas A x B (cm), en ese orden. Las cotas se encuentran expresadas en mm.

Tubos de Acero para Conducción

Los tubos para conducción Tenaris son utilizados para agua domiciliaria, aire u otros fluidos; redes contra incendios en edificios, naves industriales o comerciales y redes de aire acondicionado y de calefacción.

Normas Utilizadas

Conducción de fluidos

IRAM - IAS U-500 - 2502 Tubos negros o galvanizados: frenteados, biselados, roscados y cuplados. ASTM A53 Tubos negros o

galvanizados: frenteados, biselados, roscados y cuplados. Otras: BS 1387 / NBR 5580; UNIT 134; etc.

Revestimientos

NAG 108 (92)

Bicapa: Grupo G, Subgrupo G1 / G1R Tricapa: Grupo G, Subgrupo G4 / G4R CAN/CSA Z245.21-02 Sistema B1

Otras: DIN 30670 y bajo especificación del cliente.

IRAM-IAS U 500 - 2502 - NEGROS Y GALVANIZADOS

DIÁM. NOM.	DIÁM. EXT.	ESPESOR	TUBO NEC	GRO	TUBOS
(pulg)	(mm)	(mm)	(kg/m)		POR PAQUETE
			Con Cupla	Sin Cupla	
1/2	21.30	2.30	1.090	1.080	169
3/4	26.90	2.30	1.400	1.390	127
1	33.70	2.90	2.220	2.200	91
1 1/4	42.40	2.90	2.850	2.820	61
1 1/2	48.30	2.90	3.280	3.240	61
2	60.30	3.20	4.560	4.490	37
2 1/2	76.10	3.20	5.850	5.730	37
3	88.90	3.60	7.720	7.550	37
4	114.30	4.00	11.100	10.800	19

REVESTIMIENTOS - NORMA

	NAG ⁻	108 (92) GRUPO G - SL	CAN/CSA Z245.21-02	NAG 251	
	G1	G1R	G4 / G4R	SISTEMA B1	FBE
	Bicapa	Bicapa	Tricapa	Tricapa	Epoxi
Base primer epoxi (m)			50	120	300 mín.
Adhesivo blando tipo mastic (m) Mín.	300	300			
Adhesivo duro (copolímeros) (m) Mín.			300	> 100	
Polietileno de alta densidad (m) Mín.	1100	1500	1450/2150	850/1000*	
Rango de temperatura de trabajo (°C)	30/40	30/40	60/90	60/90	50
Rango de presión (kg/cm²)	< 10	10 < p < 60	> 60	> 60	> 1.5
Resistencia dieléctrica (kV/mm)	25	25	25	15	2
Resistividad del terreno máximo (Ohm x cm)	R > 2000	1000 < R < 2000	< 1000	< 1000	< 1000

^{*}DN < 100 / 100 ≥ DN ≤ 250

ASTM A53 GRADOS A Y B, SCHEDULE 40 Y 80, CAÑO NEGRO Y GALVANIZADO

DIÁM. NOM.	DIAM. EXT.	SCH 40 ESPESOR	SCH 40 - NEGRO BISELADO	SCH 80 ESPESOR	SCH 80 - NEGRO BISELADO	Tubos Por Paquete
(pulg)	(mm)	(mm)	(kg/m)	(mm)	(kg/m)	
1/2	21.30	2.77	1.270			169
3/4	26.70	2.87	1.690	3.73	2.198	127
1	33.40	3.38	2.500	4.55	3.291	91
1 1/4	42.20	3.56	3.390	4.85	4.467	61
1 1/2	48.30	3.68	4.050	5.08	5.582	61
2	60.30	3.91	5.440	5.54	7.309	37
2 1/2	73.00	5.16	8.630	7.01	11.914	37
3	88.90	5.49	11.290	7.62	15.408	37
4	114.30	6.02	16.070	8.56	22.188	19
5	141.30	6.55	21.770			7
6	168.30	7.11	28.260			7

www.tenaris.com.ar Versión 04 - Diciembre 2007

Tabla de bridas y espárragos ASME B16.5 y bridas BS	1560

		Pressu	ıre Class 1	50lb			Pressi	ıre Class 3	00lb			Pressu	ıre Class 6	00lb	
Nom		Flange	No of		Bolt		Flange	No of		Bolt		Flange	No of		Bolt
Bore	Ri ng No	OD	Bolts	Bolt Dia	PCD	Ri ng No	OD	Bolts	Bolt Dia	PCD	Ri ng No	OD	Bolts	Bolt Dia	PCD
1/2"		3.1/2"	4	1/2"	2.3/8"	R11	3.3/4"	4	1/2"	2.5/8"	R11	3.3/4"	4	3.3/4"	2.5/8"
3/4"		3.7/8"	4	1/2"	2.3/4"	R13	4.5/8"	4	5/8"	3.1/4"	R13	4.5/8"	4	4.5/8"	3.1/4"
1"	R15	4.1/4"	4	1/2"	3.1/8"	R16	4.7/8"	4	5/8"	3.1/2"	R16	4.7/8"	4	4.7/8"	3.1/2"
1.1/4"	R17	4.5/8"	4	1/2"	3.1/2"	R18	5.1/4"	4	5/8"	3.7/8"	R18	5.1/4"	4	5.1/4"	3.7/8"
1.1/2"	R19	5"	4	1/2"	3.7/8"	R20	6.1/8"	4	3/4"	4.1/2"	R20	6.1/8"	4	6.1/8"	4.1/2"
2"	R22	6"	4	5/8"	4.3/4"	R23	6.1/2"	8	5/8"	5"	R23	6.1/2"	8	6.1/2"	5"
2.1/2"	R25	7"	4	5/8"	5.1/2"	R26	7.1/2"	8	3/4"	5.7/8"	R26	7.1/2"	8	7.1/2"	5.7/8"
3"	R29	7.1/2"	4	5/8"	6"	R31	8.1/4"	8	3/4"	6.5/8"	R31	8.1/4"	8	8.1/4"	6.5/8"
3.1/2"	R33	8.1/2"	8	5/8"	7"	R34	9"	8	3/4"	7.1/4"	R34	9"	8	7/8"	7.1/4"
4"	R36	9"	8	5/8"	7.1/2"	R37	10"	8	3/4"	7.7/8"	R37	10.3/4"	8	7/8"	8.1/2"
5"	R40	10"	8	3/4"	8.1/2"	R41	11"	8	3/4"	9.1/4"	R41	13"	8	1"	10.1/2"
6"	R43	11"	8	3/4"	9.1/2"	R45	12.1/2"	12	3/4"	10.5/8"	R45	14"	12	1"	11.1/2"
8"	R48	13.1/2"	8	3/4"	11.3/4"	R49	15"	12	7/8"	13"	R49	16.1/2"	12	1.1/8"	13.3/4"
10"	R52	16"	8	7/8"	14.1/4"	R53	17.1/2"	16	1"	15.1/4"	R53	20"	16	1.1/4"	17"
12"	R56	19"	12	7/8"	17"	R57	20.1/2"	16	1.1/8"	17.3/4"	R57	22"	20	1.1/4"	19.1/4"
14"	R59	21"	12	1"	18.3/4"	R61	23"	20	1.1/8"	20.1/4"	R61	23.3/4"	20	1.3/8"	20.3/4"
16"	R64	23.1/2"	16	1"	21.1/4"	R65	25.1/2"	20	1.1/4"	22.1/2"	R65	27"	20	1.1/2"	23.3/4"
18"	R68	25"	16	1.1/8"	22.3/4"	R69	28"	24	1.1/4"	24.3/4"	R69	29.1/4"	20	1.5/8"	25.3/4"
20"	R72	27.1/2"	20	1.1/8"	25"	R73	30.1/2"	24	1.1/4"	27"	R73	32"	24	1.5/8"	28.1/2"
24"	R76	32"	20	1.1/4"	29.1/2"	R77	36"	24	1.1/2"	32"	R77	37"	24	1.7/8"	33"

		Press	ure Class 9	00lb			Pressu	re Class 1	500lb			Pressu	re Class 2	500lb	
Nom		Flange	No of		Bolt		Flange	No of		Bolt		Flange	No of		Bolt
Bore	Ri ng No	OD	Bolts	Bolt Dia	PCD	Ri ng No	OD	Bolts	Bolt Dia	PCD	Ri ng No	OD	Bolts	Bolt Dia	PCD
1/2"	R12	4.3/4"	4	3/4"	3.1/4"	R12	4.3/4"	4	3/4"	3.1/4"	R13	5.1/4"	4	3/4"	3.1/2"
3/4"	R14	5.1/8"	4	3/4"	3.1/2"	R14	5.1/8"	4	3/4"	3.1/2"	R16	5.1/2"	4	3/4"	3.3/4"
1"	R16	5.7/8"	4	7/8"	4"	R16	5.7/8"	4	7/8"	4"	R18	6.1/4"	4	7/8"	4.1/4"
1.1/4"	R18	6.1/4"	4	7/8"	4.3/8"	R18	6.1/4"	4	7/8"	4.3/8"	R21	7.1/4"	4	1"	5.1/8"
1.1/2"	R20	7"	4	1"	4.7/8"	R20	7"	4	1"	4.7/8"	R23	8"	4	1.1/8"	5.3/4"
2"	R24	8.1/2"	8	7/8"	6.1/2"	R24	8.1/2"	8	7/8"	6.1/2"	R26	9.1/4"	8	1"	6.3/4"
2.1/2"	R27	9.5/8"	8	1"	7.1/2"	R27	9.5/8"	8	1"	7.1/2"	R28	10.1/2"	8	1.1/8"	7.3/4"
3"	R31	9.1/2"	8	7/8"	7.1/2"	R35	10.1/2"	8	1.1/8"	8"	R32	12"	8	1.1/4"	9"
4"	R37	11.1/2"	8	1.1/8"	9.1/4"	R39	12.1/4"	8	1.1/4"	9.1/2"	R38	14"	8	1.1/2"	10.3/4"
5"	R41	13.3/4"	8	1.1/4"	11"	R44	14.3/4"	8	1.1/2"	11.1/2"	R42	16.1/2"	8	1.3/4"	12.3/4"
6"	R45	15"	12	1.1/8"	12.1/2"	R46	15.1/2"	12	1.3/8"	12.1/2"	R47	19"	8	2"	14.1/2"
8"	R49	18.1/2"	12	1.3/8"	15.1/2"	R50	19"	12	1.5/8"	15.1/2"	R51	21.3/4"	12"	2"	17.1/4"
10"	R53	21.1/2"	16	1.3/8"	18.1/2"	R54	23"	12	1.7/8"	19"	R55	26.1/2"	12"	2.1/2"	21.1/4"
12"	R57	24"	20	1.3/8"	21"	R58	26.1/2"	16	2"	22.1/2"	R60	30"	12"	2.3/4"	24.3/8"
14"	R62	25.1/4"	20	1.1/2"	22"	R63	29.1/2"	16	2.1/4"	25"	n/a	n/a	n/a	n/a	n/a
16"	R66	27.3/4"	20	1.5/8"	24.1/4"	R67	32.1/2"	16	2.1/2"	27.3/4"	n/a	n/a	n/a	n/a	n/a
18"	R70	31"	20	1.7/8"	27"	R71	36"	16	2.3/4"	30.1/2"	n/a	n/a	n/a	n/a	n/a
20"	R74	33.3/4"	20	2"	29.1/2"	R75	38.3/4"	16	3"	32.3/4"	n/a	n/a	n/a	n/a	n/a
24"	R78	41"	20	2.1/2"	35.1/2"	R79	46"	16	3.1/2"	39"	n/a	n/a	n/a	n/a	n/a

Torque para espárragos

	30,00	00psi	45,00	00psi	60,00	00psi
	Torque	Load	Torque	Load	Torque	Load
Bolt Dia	Ft/lbs	lbs	Ft/lbs	lbs	Ft/lbs	lbs
1/4"	4	810	6	1215	8	1620
5/16"	8	1350	12	2025	16	2700
3/8"	12	2040	18	3060	24	4080
7/16"	20	2790	30	4185	40	5580
1/2"	30	3780	45	5670	60	7560
9/16"	45	4860	68	7290	90	9720
5/8"	60	6060	90	9090	120	12120
3/4"	100	9060	150	13590	200	18120
7/8"	160	12570	240	18855	320	25140
1"	245	16530	368	24795	490	33060
1.1/8"	355	21840	533	32760	710	43680
1.1/4"	500	27870	750	41805	1000	55740
1.3/8"	680	34650	1020	51975	1360	69300
1.1/2"	800	42150	1200	63225	1600	84300
1.5/8"	1100	50400	1650	75600	2200	100800
1.3/4"	1500	59400	2250	89100	3000	118800
1.7/8"	2000	69120	3000	103680	4000	138240
2"	2200	79560	3300	119340	4400	159120
2.1/4"	3180	102690	4770	154035	6360	205380
2.1/2"	4400	128760	6600	193140	8800	257520
2.3/4"	5920	157770	8880	236655	11840	315540
3"	7720	189720	11580	284580	15440	379440
3.1/4"	10000	224700	15000	337050	20000	449400
3.1/2"	12500	262500	18750	393750	25000	525000
3.3/4"	15400	303300	23150	454950	30900	606600

Notas	
Carga en libras sobre los espárragos cuando el torq señalado sea aplicado	ue arriba
La cuerda del perno la tuerca y la superficie deben antes de apriete	estar lubricados
Es muy recomendado que el equipo de apriete hidráu en pernos de 1 1/8" hacia arriba	l ico sea usado
Controlar el apriete del perno es muy recomendado p el riesgo de fugas en el ensamblado	ara minimizar
En el ensamblado lo que fuga es la brida y no el em	paque.

Válvula esférica marca Esferomatic. Cuerpo en tres partes, de diseño desmontable.

Características:

Flujo bidireccional. Máxima capacidad de caudal. Baja perdida de carga. Operación de cierre rápida, ¼ de vuelta. Vástago inexpulsable. Cuerpo de diseño desmontable-basculante, para brindar un fácil mantenimiento. Larga vida útil. Indicador visual de posición (palanca). Posibilidad de automatizar.

Especificaciones Técnicas y Normas

Construcción:

ASME B16.34, API 607 Antifuego, BS 5351, ASME B1.20.1(NPT), BS EN 10226-1(BSPT), ASME B16.11(SW), NACE MR0175, ISO 17292

- Pruebas: API 598
- Marcaciones: MSS SP-25

Clasificación de presión/temperatura:

ASME B16.34 (1500 / 2000 WOG (psi))

Dispositivo antiestático:

Conforme BS 5351 (modelo Antifuego)

Servicios:

Aplicación en una amplia gama de líquidos, gases, vapores, incluyendo Aplicaciones en servicio de vapor, industria química, petroquímica, derivados de petróleo, productos con sólidos en suspensión, gas e industrias de alimentos que necesitan de una válvula de alto desempeño, confiabilidad y máxima seguridad. Propósito general.

Diseño de asientos elásticos que permiten absorber cambios de temperatura, producir acción auto-limpiante, minimizar el desgaste y bajar el torque de operación por su diseño especial al equilibrar las presiones de entrada y cavidad de la esfera. Asientos opcionales de PTFE, PEEK®, amplían el rango y prestación de trabajo de estas válvulas.

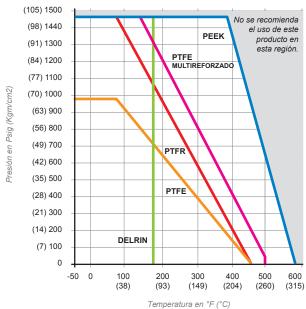
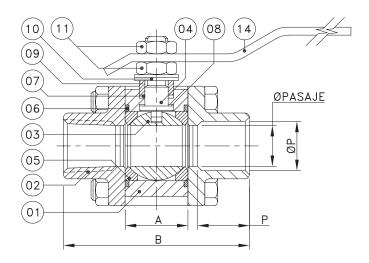


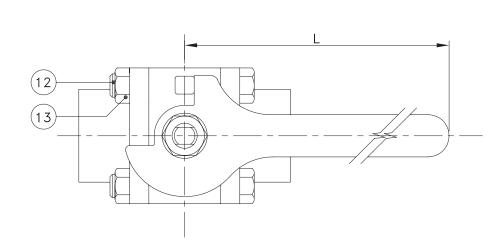
Gráfico Presión-Temperatura / Comportamiento de los asientos

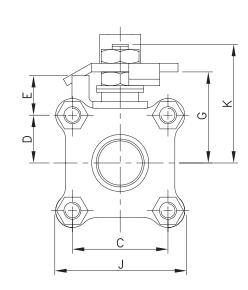
	Sellos Sellos								
Diámetro		Modelo	Material del cuerpo	Asiento	Junta cuerpo	Empaquetadura superior	Empaquetadura inferior	pvst a 20°c	
1/4" a 2"	PR	Estandar	Acero al		PTFE PTFE		PTFE Reforzado		
1/2" a 1 1/2"	PT	Estandar	Carbono			PTFE Reforzado		1500 psi	
1/4" a 2"	PR	Estandar		–				(103 bar)	
1/4" a 1 1/2"	PT	Estandar	Acero inoxidable						
2" PT	FI	Estandar						1000 psi (69 bar)	
1/2" a 2"	PR	Antifuego	Acero al	Delrin®	Grafito + Buna	Grafito	Grafito	2000 psi	
1/2" a 1 1/2"	PT	Antifuego	Carbono	Delrin®	Grafito + Buna	Grafito	Grafito	(138 bar)	

Conexión							
Tipo	Norma						
NPT	ASME B1.20.1						
BSPT	BS EN 10226-1						
SW	ASME B16.11						

Como especificar una válvula Tripartida								
Material del Cuerpo	Presión de Trabajo (Psi)	Pasaje	Esfera	Vástago	Asientos	Diámetro	Conexión	
AR: Roscada (STD) ARF: Roscada (Antifuego) AS: p/Soldar (STD)(SW) Acero al Carbono ASTM A105 IR: Roscada (STD) IS: p/Soldar (STD)(SW) Acero Inoxidable ASTM A351 CF8M	1000 1500 2000	PR: Paso Normal (Reducido)(*) PT: Paso Total	I: ASTM A479 Gr 316 (1)	ASTM A479 Gr. 316	R: PTFE Reforzado K: PTFE Multi-reforzado D: Delrin®	1/4" 3/8" 1/2" 3/4" 1" 1 1/4" 1 1/2" 2"	NPT BSPT SW	




Pos.	Cant.	Descripción	Material
01	1	Cuerpo	ASTM A105 / ASTM A479 Gr 316
02	2	Тара	ASTM A105 / ASTM A479 Gr 316
03	1	Esfera	ASTM A351 CF8M
04	1	Vástago	ASTM A479 Gr 316
*05	2	Asiento	Ver tabla sellos
*06	1	Junta del cuerpo	Ver Tabla sellos
*07	1	Junta del Prensa	Ver Tabla sellos
*08	1	Junta del Prensa	Ver Tabla sellos
09	1	Separador	AISI 316
*10	2	Arandela Belleville	SAE 1070/80 (Zincado)
11	2	Tuerca	SAE 1038 (Zincado)
12	4	Tornillos	SAE 1038 (Zincado)
13	4	Tuerca	SAE 1038 (Zincado)
14	1	Palanca	ASTM A105 (Pintado)(Zincado)


^{*} Kit de mantenimiento

Dimensiones

Cuerpo unitario, extremos roscados

Diámetro		Dimensiones (mm)							Peso	Característica de Caudal					
PR	Α	В	С	D	E	G	L	J	K	Prof. P(SW)	Ø P(SW)	Ø Pasaje	Kg	Kv (m3/h)	Cv (gpm)
1/4"	21,0	65,3	31,8	15,9	11,0	26,9	130,0	45,0	40,7	11,0	14,0	11,1	0,52	6,20	7,20
1/2"	21,0	65,3	31,8	15,9	11,0	26,9	130,0	45,0	40,7	11,0	21,7	11,1	0,52	6,20	7,20
3/4"	25,0	71,0	38,1	19,0	10,3	29,3	130,0	51,0	42,6	14,0	27,0	14,2	0,71	11,0	12,7
1"	31,6	93,7	44,5	22,2	16,9	39,1	146,0	61,0	55,6	18,0	34,0	20,6	1,34	22,0	25,4
1 1/4"	42,0	106,0	50,8	25,4	18,5	43,9	146,0	67,0	60,3	18,0	43,0	25,4	2,08	42,7	49,0
1 1/2"	49,0	115,0	57,2	28,6	23,8	52,4	177,8	76,0	73,0	18,0	49,0	31,8	3,06	75,0	86,0
2"	57,0	126,0	66,7	33,3	23,9	57,2	177,8	86,0	77,7	21,0	61,0	38,1	3,90	107,0	124,0

Diámetro		Dimensiones (mm)							Peso Caracterísi Cauda						
PT	Α	В	С	D	E	G	L	J	K	Prof. P(SW)	Ø P(SW)	Ø Pasaje	Kg	Kv (m3/h)	Cv (gpm)
1/2"	25,0	71,0	38,1	19,0	10,3	29,3	130,0	51,0	42,6	11,0	21,7	14,2	0,71	27,0	32,0
3/4"	31,6	93,7	44,5	22,2	16,9	39,1	146,0	61,0	55,6	14,0	27,0	20,6	1,34	45,0	54,0
1"	42,0	106,0	50,8	25,4	18,5	43,9	146,0	67,0	60,3	18,0	34,0	25,4	2,08	87,5	105,0
1 1/4"	49,0	115,0	57,2	28,6	23,8	52,4	177,8	76,0	73,0	18,0	43,0	31,8	3,06	179,0	215,0
1 1/2"	57,0	126,0	66,7	33,3	23,9	57,2	177,8	86,0	77,7	18,0	49,0	38,1	3,90	229,0	275,0
2"	72,5	145,6	80,0	40,0	23,9	84,5	260,0	115,5	103,7	21,0	61,0	50,8	8,00	383,0	460,0

LEQA

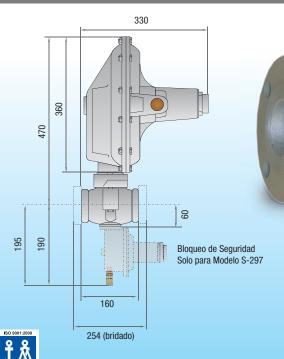
Los reguladores de presión S-292 y S-297, pertenecen a la serie de reguladores S-200, ampliamente utilizada en instalaciones comerciales e industriales, donde la presión de entrada es de hasta 10 bar, y otorga una presión regulada entre 20 mbar y 500 mbar.

Si bien son reguladores de acción directa, poseen un sistema compensado interno para estabilizar el obturador y lograr capacidades mucho mayores que los similares de su línea llegando a reemplazar incluso reguladores pilotados. Su conexión a la cañería se efectua por medio de roscas Ø 2" a la entrada y a la salida (opcional conexión a bridas).

La posición de instalación es indistinta, pudiendo girarse la caja diafragma 360° respecto al cuerpo.

El modelo S-297 posee protección contra excesos en la presión de salida regulada, por medio de su sistema de bloqueo reseteable manualmente.

DATOS TECNICOS


Conexiones: Roscado 2" BSP ó Bridado S-150 -20°C a 60°C Temperatura de operación: Peso aproximado: 12,7 Kg

MATERIALES

ISO 9001

CUERPO PRINCIPAL: Fundición Nodular INTERNOS: DIAFRAGMA y OBTURADOR: Acrilo Nitrilo

DIMENSIONES GENERALES en mm.

Reguladores de Presión

LEQA

EQAS-292 Sin Bloqueo de Seguridad

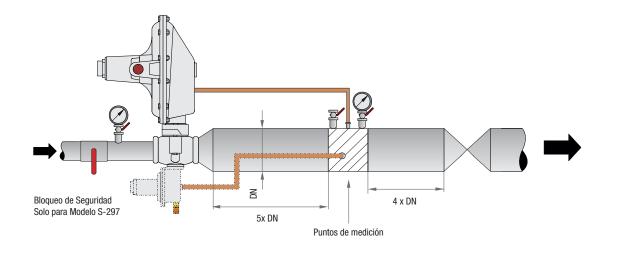
EQAS-297
Con Bloqueo de Seguridad

TABLAS DE CAPACIDADES PARA GAS NATURAL

Capacidades en Nm³/hora (Densidad 0,6 - Sensibilidad 10%)								
Presión de Entrada	Presión Regulada (bar)							
(bar)	0,02	0,04	0,08	0,16	0,4			
0,07	50	-	-	-	-			
0,14	85	80	80	-	-			
0,16	120	110	100	-	-			
0,35	225	190	180	120	-			
0,5	300	220	210	160	120			
0,7	400	300	280	200	160			
1	450	400	400	250	200			
2	600	580	580	580	320			
2,5	700	700	700	700	380			
3	900	900	900	900	450			
4	1100	1100	1100	1100	700			
5	1400	1400	1400	1400	800			
6	1650	1650	1650	1650	900			
7	2000	2000	2000	2000	1000			
8	2300	2300	2300	2300	1100			
9	2600	2600	2600	2600	1200			
10	3000	3000	3000	3000	1400			

Para obtener las capacidades con otros gases, multiplicar el valor de la tabla por el factor K.

GAS	DENSIDAD	FACTOR K
Butano	2	0.55
GLP	1.5	0.63
Anhídrico Carbónico	1.5	0.63
Oxigeno	1.1	0.74
Aire	1	0.77
Nitrógeno	0.97	0.79
Acetileno	0.9	0.82
Amoníaco	0.59	1.02
Hidrógeno	0.07	3


PUESTA EN MARCHA INICIAL Mod. S-292

- 1- Cerrar la válvula de bloqueo aguas abajo y abrir la válvula de venteo a la atmósfera ubicada aguas arriba de esta (si existe).
- 2- Abrir muy lentamente la válvula de bloqueo aguas arriba del regulador, permitiendo que un pequeño flujo de gas pase a través de la válvula, hasta que la cañería aguas abajo se llene de gas.
- 3- Controlar que la presión regulada haya alcanzado su valor de seteo. Luego cerrar la válvula de venteo.

PUESTA EN MARCHA INICIAL Mod. S-297 O en caso de activación de la válvula de seguridad.

- 1- Cerrar la válvula de bloqueo aguas abajo y abrir la válvula de venteo a la atmósfera ubicada aguas arriba de esta (si existe).
- 2- Abrir la válvula de bloqueo aguas arriba del regulador.
- 3- Cerrar el manómetro que se encuentra aguas abajo del regulador ya que al tirar del reset puede haber un pequeño aumento en la presión.
- 4- Desenroscar el RESET.
- 5- Suavemente tirar del mismo permitiendo que un pequeño flujo de gas pase a través de la válvula, hasta que la cañería aguas abajo se llene de gas.
- 6- Tirar del RESET durante unos segundos hasta que se arme (esto solo será posible cuando la presión de regulación esté dentro de los parámetros establecidos) y luego cerrar la válvula de venteo.
- 7- Abrir el manómetro aguas abajo y controlar que la presión regulada haya alcanzado su valor de seteo. Luego cerrar la válvula de venteo.
- 8- Enroscar el RESET. Por favor asegurarse que esté completamente enroscado porque de otra forma la válvula de bloqueo puede activarse.

ESQUEMA DE INSTALACION

EQA S.A.I.C.

26 de abril 3836 - ITUZAINGO (1714) - Pcia. de Buenos Aires Tel. (54 11) 4481-9950 y rotativas / Fax.(54 11) 4481-9288 e-mail: eqa@eqa.com.ar - web site: www.eqa.com.ar **DISTRIBUIDOR** I DISTRIBUTOR

Duct Sensor Humidity / Temperature

Active sensor (0...10 V) for measuring the relative or absolute humidity and temperature in duct applications. Instead of the humidity signal, the enthalpy or the dewpoint can be selected as an output signal. IP65 / NEMA 4X rated enclosure.

Type Overview

Туре	Output signal active humidity	Output signal active temperature
22DTH-51M	DC 05 V, DC 010 V	DC 05 V, DC 010 V

Technical Data					
Electrical Data	Power supply DC	1524 V, ±10%, 0.4 W			
	Power supply AC	24 V, , ±10%, 0.8 VA			
	Electrical connection	Removable spring loaded terminal block max. 2.5 mm ²			
	Cable entry	Cable gland with strain relief Ø68 mm (1/2" NPT conduit adapter included)			
Functional Data	Sensor Technology	polymer capacitive sensor with stainless steel wire mesh			
	Multirange	4 measuring ranges selectable			
	Output signal active note	output DC 05/10 V with jumper adjustable voltage output: min. 10 $k\Omega$ load			
	Application	air			

Technical data sheet	22DTH-51M					
Measuring values	temperature relative humidity dew point enthalpy absolute humidity					
Measuring range humidity	0100% r.H. non-condensing					
Measuring range temperature						
	Active sensor: range selectable Attention: max. measuring temperature is restricted by max. fluid temperature (see Safety data) Setting range [°C] range [°F] Factory setting					
	S0 -4060°C -40160°F S1 050°C 40140°F S2 -1535°C 0100°F S3 -2080°C 0200°F					
Measuring range absolute humidity	adjustable at the transducer: 050 g/m³ (default setting) 080 g/m³					
Measuring range enthalpy	085 kJ/kg					
Measuring range dew point	adjustable at the transducer: 40140°F [050°C] (default setting) 0200°F [-2080°C]					
Accuracy humidity	±2% between 1090% r.H. @ 70°F [21°C]					
Accuracy temperature active	±0.9°F @ 77°F [±0.5°C @ 25°C]					
Cable gland	PA6, black					
Housing	cover: lexan, orange base: lexan, orange seal: 0467 NBR70, black UV resistant					
Ambient humidity	max. 95% r.H., non-condensing					
Medium humidity	short-term condensation permitted					
Ambient temperature	-30120°F [-3550°C]					
Fluid temperature	-30120°F [-3550°C]					
Operating condition air flow	max. 40 ft/s [12 m/s]					
Protection class IEC/EN	III safety extra-low voltage (selv)					
Protection class UL	UL Class 2 Supply					
EU Conformity	CE Marking					
Certification IEC/EN	IEC/EN 60730-1					
Certification UL	cULus acc. to UL60730-1A/-2-9/-2-13, CAN/ CSA E60730-1:02/-2-9					
Degree of protection IEC/EN	IP65					

NEMA 4X

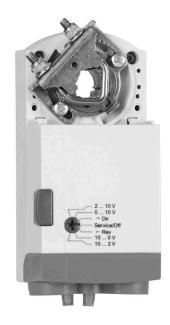
ISO 9001

Measuring Data

Materials

Safety Data

Degree of protection NEMA/UL


Quality Standard

Honeywell

N05, N10 SERIES

NON-SPRING RETURN DIRECT-COUPLED DAMPER ACTUATORS FOR MODULATING AND FLOATING CONTROL

PRODUCT DATA

GENERAL

This non-spring return direct-coupled damper actuator provides modulating and floating/2-position control for:

- · air dampers,
- VAV units,
- · air handlers,
- · ventilation flaps,
- · louvers, and
- reliable control for air damper applications with up to 10 sq ft / 44 lb-in. (5 Nm) and 20 sq ft / 88 lb-in. (10 Nm) (seal-less damper blades; air friction-dependent).

FEATURES

- · Declutch for manual adjustment
- · Adjustable mechanical end limits
- · Removable access cover for direct wiring
- Mountable in any orientation
- Function selection switch for selecting modulating or floating/2-position control

SPECIFICATIONS

Supply voltage 24 Vac/dc -15%/+20%, 50/60 Hz

Nominal voltage 24 Vac/dc, 50/60 Hz

All values stated hereinafter apply to operation under nominal voltage conditions.

Power consumption

MN7505 5 VA / 2 W MN7510 5 VA / 2 W

Control signal

Modulating (0)2...10 Vdc Floating/2-Position 24 Vac/dc

Ambient limits

Ambient operating limits

Ambient storage limits

Ambient storage limits

Ambient storage limits

-5...+140 °F (20...+60 °C)

-22...+176 °F (-30...+80 °C)

5...95%, non-condensing

Safety

Protection standard IP54

Protection class II as per EN 60730-1

Overvoltage category II

Lifetime

Full strokes 60000 Repositions 1.5 million

Mounting

Round damper shaft 3/8 in...5/8 in.

Square damper shaft 1/4 in...1/2 in.; 45° steps

Shaft length min. 1-5/8 in.

End switches (when included)

Rating Class II Triggering points 5° / 85°

Torque rating 44 lb-in. (5Nm) / 88 lb-in. (10Nm)

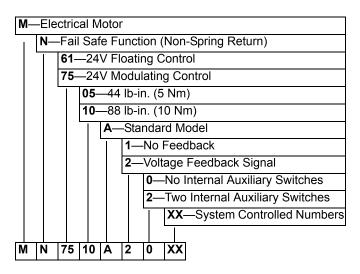
Runtime for 90°

mod. (dc / 50/60 Hz ac) 90 sec floating (dc / 60 Hz ac) 90 sec floating (50 Hz ac) 110 sec Rotation stroke $95^{\circ} \pm 3^{\circ}$

Dimensions see "Dimensions" on page 8

Weight (without cables) 1.0 lbs.

Noise rating 35 dB(A) max. at 1 m



63-2633

PRODUCT IDENTIFICATION SYSTEM

BASIC FEATURES

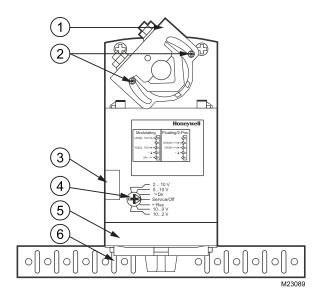


Fig. 1. Setting units and control elements

Legend for Fig. 1:

- 1) Universal shaft adapter
- 2) Mechanical end limits (manually adjustable)
- 3) Declutch button
- 4) Function selection switch
- 5) Removable access cover
- 6) Anti-rotation bracket

Contents of Package

The delivery package includes the actuator, parts 1 through 6 (see Fig. 1), plus two cable grommets and a spare cable grommet.

RUN MODES

The function selection switch (see Fig. 2) can be used to place the actuator into any one of two different modes:

- · Service/Off;
- the floating/2-position run mode ("Dir" for CCW-closing dampers or "Rev" for CW-closing dampers); and
- · the modulating run mode.

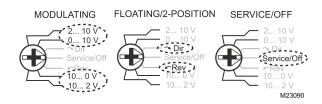


Fig. 2. Function selection switch

Power-Off Behavior

If power is removed, the shaft adapter remains in position.

Service/Off

If the function selection switch is set to the "Service/Off" position, then all rotary movement is cancelled, and all control signals are ignored, thus allowing the actuator to be manually operated safely.

Floating/2-Position Run Mode

Without Feedback Signal

If, however, the function selection switch has been set to one of the two floating/2-position control settings - but the actuator has not been wired for a feedback signal (see Fig. 12 and Fig. 13) - then as soon as operating power is applied, the shaft adapter will run according to the control signals applied.

With Feedback Signal

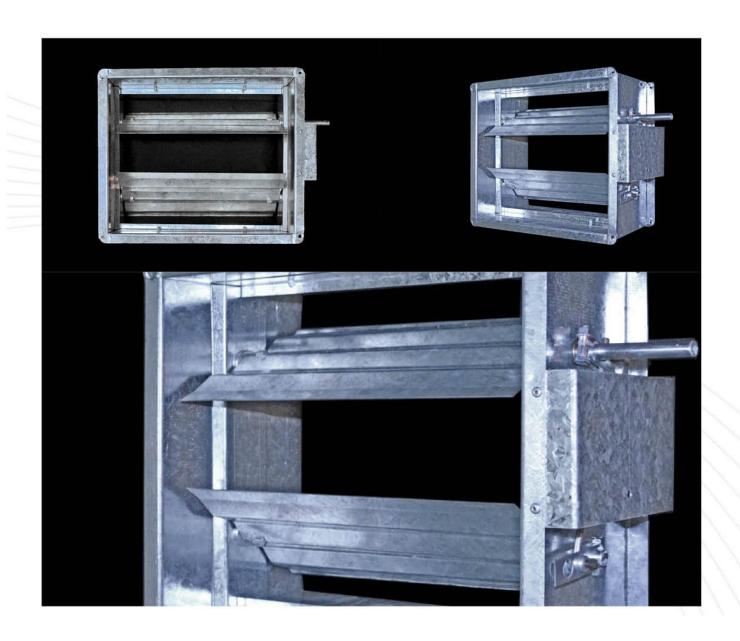
If the function selection switch has been set to one of the two floating/2-position control settings - and if the actuator has been wired for a feedback signal (see Fig. 12 and Fig. 13) - then as soon as operating power is applied, the shaft adapter will likewise run first completely counterclockwise and then completely clockwise (see also section "Adaption"), after which it will run according to the control signals applied.

Modulating Run Mode

If the function selection switch has been set to one of the four modulating control settings - and if the actuator is wired correspondingly (see Fig. 10) - then as soon as operating power is applied, the shaft adapter will run first completely counterclockwise and then completely clockwise (see also section "Adaption"), after which it will run according to the control signals applied.

Persianas aleta opuesta

Reguladores de caudal de aire constante, serie PAO, de sección rectangular para impulsión o retorno de aire.


Garantizando un caudal de aire constante independientemente de las variaciones de presión que sufra el sistema.

Aporta el caudal requerido con una elevada exactitud, fácilmente ajustable a otros volúmenes de aire en obra. Compuerta de chapa de acero galvanizado, montada sobre bujes de bronce y transmisión de varilla de acero inoxidable.

Accesorios: selector manual o base para motorizar

Consultar medidas especiales

Tabla de medidas al final de la sección.

Medidas Persiana Aleta Opuesta y Sobrepresión

TABLA	DE MEDID	AS EN CE	NTIMETRO	os.								
15X15												
20X15	20X20											
25X15	25X20	25X25										
30X15	30X20	30X25	30X30									
35X15	35X20	35X25	35X30	35X35								
40X15	40X20	40X25	40X30	40X35	40X40							
45X15	45X20	45X25	45X30	45X35	45X40	45X45						
50X15	50X20	50X25	50X30	50X35	50X40	50X45	50X50					
60X15	60X20	60X25	60X30	60X35	60X40	60X45	60X50	60X60				
70X15	70X20	70X25	70X30	70X35	70X40	70X45	70X50	70X60	70x70			
80X15	80X20	80X25	80X30	80X35	80X40	80X45	80X50	80X60	80x70	80x80		
90X15	90X20	90X25	90X30	90X35	90X40	90X45	90X50	90X60	90x70	90x80	90x90	
100X15	100X20	100X25	100X30	100X35	100X40	100X45	100X50	100X60	100x70	100x80	100x90	100x100
110X15	110X20	110X25	110X30	110X35	110X40	110X45	110X50	110X60	110x70	110x80	110x90	110x100
120x15	120x20	120x25	120x30	120x35	120X40	120X45	120X50	120X60	120x70	120x80	120x90	120x100

MA COPERCOM® Comando

Multipolar blindado - PVC - Nylon/PVC - 600 Volt - 90°C ICEA S-73-532

Aplicaciones

Equipos de control, señalización, medición, protección y comandos eléctricos de instalaciones industriales. Apto para instalaciones aéreas en bandeja, enterrados en ductos o directamente enterrados.

Características

Temperatura máxima: 90°C de servicio, 160°C de cortocircuito.

Tensión nominal: 600 Volt CA. Norma constructiva: ICEA S 73-532.

Norma de fuego: ICEA T 30-520 No propagación del incendio.

Código NEC: Art. 310 - Art. 501 áreas clasificadas Cl1 Div.2 y Cl2 Div.2.

Norma de conductores: ASTM B 174.

Descripción

Conductor: Cobre electrolítico recocido en formación flexible.

Aislación: PVC/Nylon.

Identificación: Método 3 tabla E-2, color negro con letras blancas o amarillas. Blindaje: Cinta de aluminio-poliéster aplicada helicoidalmente con cobertura 100% y solape del 25%. En contacto con la cara de aluminio de la cinta se dispone un

drenaje conformado por una cuerda de cobre estañado de 7 hilos. Cubierta: PVC negro, resistente a la luz solar y aceite mineral.

Atributos Destacados

Flexibles

Marcación Secuencial

No propagacion de incendio

Protección interferencias ele ctromagnéticas

Resistente a la luz solar

Resistente al aceite mineral

Opcionales

Armadura: Corona helicoidal de alambres de acero cincado o doble fleje helicoidal de acero cincado.

Alternativas

Conductor: Bajo pedido los cables pueden ser suministrados con cuerdas semirígidas en clase B ASTM B 8.

Identificación: Método 3 tabla E-1 con otros colores bases, Método 1 tabla E-1, Método 1 tabla E-2.

MA COPERCOM®

Multipolar 600 Volt (PVC -Nylon) blindado

MA COPERCOM®

Comando

Multipolar blindado - PVC - Nylon/PVC - 600 Volt - 90°C ICEA S-73-532

Instalación

Montaje: Radio mínimo de curvatura igual a 7 x diámetro exterior del cable para cables sin armar y de 12 x diámetro exterior del cable para cables armados.

Tracción máxima: 5daN/mm² aplicados sobre los conductores de cobre. En cables armados con alambres sepuede usar 10daN/mm² aplicados sobre los alambres de la armadura.

Temperatura de montaje: Igual o mayor a 5ºC.

Armadura de alambres de acero cincado

Características eléctricas

Calibre AWG Resistencia		Intensidad admisible en aire a 40°C (*)								
	eléctrica a 90°C en CA. Ohm/km	2x Amper	4x Amper	7x Amper	10x Amper	19x Amper	30x Amper	37x Amper	48x Amper	
16	17,5	22	17,5	15	11	11	10	9	7,5	
14	11,0	32	25,5	22	16	16	14	13	11	
12	6,9	36	29	25,5	18	18	16	15	13	
10	4,3	50	40	35	25	25	22,5	20	17,5	

^(*) Según tabla 310.15 y tabla 310.17 del NEC 2008.

Baja Tensión

0,6 / 1,1 kV

VV-K / VV-R

Instalaciones Fijas

SINTENAX VALIO

NORMAS DE REFERENCIA

DESCRIPCION

CONDUCTOR

Metal: Cobre electrolítico ó aluminio grado eléctrico según IRAM NM 280.

Forma: redonda flexible o compacta y sectorial, según corresponda.

Flexibilidad:

- Conductores de cobre :

Unipolares: Cuerdas flexibles Clase 5 hasta 240 mm² e inclusive y cuerdas compactas Clase 2 para secciones super iores. A pedido las cuerdas Clase 5 pueden reemplazarse por cuerdas Clase 2 (compactas o no según corresponda).

Multipolares: Cuerdas flexible Clase 5 hasta 35 mm² v Clase 2 para secciones superiores, siendo circulares compactas hasta 50 mm² y sectoriales para secciones nominales superiores.

- Conductores de aluminio :

Unipolares: Cuerdas circulares Clase 2, normales o compactas según corresponda.

Multipolares: Cuerdas circulares Clase 2 normales o compactas según corresponda hasta 50mm ² y sectoriales para secciones nominales superiores.

Temperatura máxima en el conductor: 70º C en servicio continuo, 160º C en cortocircuito.

0.6/1,1 kV

Norma de Fabricación

Tensión nominal

de servicio

Temperatura Cuerdas flexi- No propagables hasta 35 mm²

ción de la Ilama

No propagación del incendio

Resistencia a agentes químicos

Sello IRAM

Sello de Seguridad Eléctrica

Marcación secuencial de longitud

CONDICIONES DE EMPLEO

En bandeias

Directamente

enterrado

Enterrado en canaletas

Enterrado en cañerías

Sintenax Valio

Características técnicas- Cables con conductores de cobre

	Sección nominal	Diámetro del con- ductor	Espesor nominal de aisla- ción	Espesor nominal de envol- tura	Diámetro exterior aprox.	Masa aprox.	Resistencia eléctrica máx. a 70°C y 50 Hz.	Reactancia a 50 Hz.
	mm²	mm	mm mm			kg/km	ohm/km	ohm/km
Tr		s de color marr						
	1,5	1,5	0,8	1,8	10	152	15,9	0,108
,	2,5	2 0,	8	1,8	11	195	9,55	0,09995
,	4	2,5	1,0	1,8	13	280	5,92	0,0991
	6	3	1,0	1,8	15	356	3,95	0,0901
	10	3,9	1,0	1,8	17	509	2,29	0,0860
	16	5,0	1,0	1,8	20	786	1,45	0,0813
	25	7,1	1,2	1,8	26	1270	0,933	0,0780
	35	8,3	1,2	1,8	28,5	1630	0,663	0,0760
	50	8,1	1,4	1,8	30	2075	0,464	0,0777
	70	10,9	1,4	2,0	30	2365	0,321	0,0736
•	95	12,7	1,6	2,1	33	3208	0,232	0,0733
	120	14,2	1,6	2,2	36	3910	0,184	0,0729
,	150	15,9	1,8	2,4	40	4806	0,150	0,0720
	185	17,7	2,0	2,5	44	5956	0,121	0,0720
	240	20,1	2,2	2,7	49	7729	0,0911	0,0716
·	300	22,5	2,4	2,9	54	9636	0,0730	0,0714
T	etrapolares (al	mas de color m	arrón, negro,	rojo y azul clar	0)			
	1,5	1,5	0,8	1,8	11	180	15,9	0,108
	2,5	2 0,	8	1,8	12	233	9,55	0,0995
,	4	2,5	1,0	1,8	15	337	5,92	0,0991
	6	3	1,0	1,8	16	433	3,95	0,0901
•	10	3,9	1,0	1,8	18	627	2,29	0,0860
	16	5,0	1,0	1,8	22	992	1,45	0,0813
	25/16	.=	1,2/1,0	1,8	27	1430	0,933	0,0780
	35/16	: -	1,2/1,0	1,8	29	1780	0,663	0,0760
	50/25		1,4/1,2	1,9	31	2355	0,464	0,0777
	70/35	-	1,4/1,2	2,0	31	2742	0,321	0,0736
	95/50		1,6/1,4	2,2	35	3736	0,232	0,0733
	120/70	: .	1,6/1,4	2,3	39	4643	0,184	0,0729
	150/70	:=	1,8/1,4	2,4	42	5546	0,150	0,0720
	185/95	<u> </u>	2,0/1,6	2,6	47	6969	0,121	0,0720
	240/120	<u>.</u>	2,2/1,6	2,8	53	8973	0,0911	0,0716
	300/150	.=	2,4/1,8	3,0	59	11154	0,0730	0,0714
	300/130		2, 1, 1,0	5,0	- 33	11131	0,0750	0,0711

Sintenax Valio

Datos Eléctricos

Sección nominal	Método B1 y B2 Caño Embutido en pared Caño a la vista		Méto Bandeja no pe fondo		Método E Bandeja perforada	
			900	8000	<u></u>	
mm²	(1)	(2)	(3)	(4)	(5)	(6)
1,5	14	13	17	15	19	16
2,5	20	17	23	21	26	22
4	26	23	31	28	35	30
6	33	30	40	36	44	37
10	45	40	55	50	61	52
16	60	54	74	66	82	70
25	78	70	97	84	104	88
35	97	86	120	104	129	110
50	-	103	146	125	157	133
70	-	130	185	160	202	170
95	-	156	224	194	245	207
120	=	179	260	225	285	240
150		(299	260	330	278
185	·	.=	341	297	378	317
240	.	-	401	350	447	374
300	-	· -	461	403	516	432

- (1) Un cable bipolar.
- (2) Un cable tripolar o tetrapolar
- (3) Un cable bipolar o dos cables unipolares
- (4) Un cable tripolar o tetrapolar o tres cables unipolares
- (5) Un cable bipolar
- (6) Un cable tripolar o tetrapolar

Baja Tensión

450 / 750 V

H07V-K

Instalaciones Fijas

SUPERASTIC FLEX

NORMAS DE REFERENCIA

IRAM NM 247-3

DESCRIPCION

CONDUCTOR

Metal: Cobre electrolítico recocido.

Flexibilidad: clase 5; según IRAM NM-280 e IEC 60228.

Temperatura máxima en el conductor: 70º C en servicio

continuo, 160º C en cortocircuito.

AISLANTE

PVC ecológico, en colores marrón, blanco, negro, rojo, celeste, y verde/amarillo.

Marcación:

PRYSMIAN SUPERASTIC FLEX - Industria Argentina — 450/750V — Sección (mm²) - IRAM NM 247 02-05 BWF-B - Sello IRAM - RIN 288391/8.

IRAM NM 24 7-3 (ex 2183), NBR NM 247- 3 (ex6148); IEC 60227-3 u otras bajo pedido.

Ensayos de fuego:

No propagación de la llama: IRAM NM IEC 60332-1.

No propagación del incendio: IRAM NM IEC 603 32-3-23; NBR 6812 Cat. BWF; IEEE 383.

Certificaciones

Todos los cables de Prysmian están elaborados con Siste ma de Garantía de Calidad bajo normas ISO 9001 - 2 000 certificadas por la UCIEE

CARACTERISTICAS

Cables para instalaciones de iluminación y distribución de energía en el interior de edificios civiles e in dustriales, en circuitos primarios, secundarios y derivaciones, instalados en tableros, en conductos situados sobre superficies o empotrados, o en sistem as cerrados análogos.

Norma de

Tensión nominal

Temperatura de servicio

Cuerdas flexibles

No propagación de la llama

No propagación del incendio

Extradeslizante

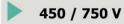
PVC ecológico

Sello IRAM

Sello de Seguridad Eléctrica

CONDICIONES DE EMPLEO

Cañería embutida



Cañería a la vista

Cableado de tableros

IRAM NM 247-3

	Caracte	eristicas técnic	as							
	Sección nominal	Diámetro máx. de alam- bres del con- ductor	Espesor de aislación nominal	Diámetro exterior aprox.	Masa aprox.		de corriente n cañerías (3)	Caída de tensión (4)	Resistencia Eléctrica máxima a 20°C y c.c.	
						(1)	(2)			
	mm ²	mm	mm	mm	kg/km	A	A	V/A km	ohm/km	
	0,75	0,21	0,6	2,3	11	9	8	50	26	
- 17	1,0	0,21	0,6	2,5	15	11,5	10,5	37	19,5	
	1,5	0,26	0,7	3,0	20	15	13	26	13,3	
.99	2,5	0,26	0,8	3,6	31	21	18	15	7,98	
	4	0,31	0,8	4,1	45	28	25	10	4,95	20
	6	0,31	0,8	4,7	63	36	32	6,5	3,30	
	10	0,41	1,0	6,0	107	50	44	3,8	1,91	
	16	0,41	1,0	7,0	167	66	59	2,4	1,21	
	25	0,41	1,2	9,6	268	88	77	1,54	0,78	
	35	0,41	1,2	10,8	361	109	96	1,20	0,554	21
	50	0,41	1,4	12,8	511	131	117	0,83	0,386	
- 37.	70	0,51	1,4	14,6	698	167	149	0,61	0,272	
- 17	95	0,51	1,6	16,8	899	202	180	0,48	0,206	
	120	0,51	1,6	19,7	1175	234	208	0,39	0,161	

- (1) 2 conductores cargados + PE en cañerías embutidas en mampostería, temperatura ambiente 40º C.
- (2) 3 conductores cargados + PE en cañerías embutidas en mampostería, temperatura ambiente 40º C.
- (3) Para Instalaciones en aire (no contempladas en el Regl. de Instalaciones en Inmuebles de la AEA) considerar los valores (1) y (2)
- (4) Cables en contacto en corriente alterna monofásica 50 Hz., cos ϕ = 0,8.

Coeficientes de corrección de la corriente admisible:

- Para dos circuitos en una misma cañería multiplicar por 0,80
- Para tres circuitos en una misma cañería multiplicar por 0,70
- Para temperatura ambiente de 30 º C multiplicar por 1.15
- Para temperatura ambiente de 20 º C multiplicar por 1.29

Cajas de 100 metros

Rollos de 100 metros

Bobinas con longitud variable

1.25					
		Acondicio	namientos	1	
Sección nominal mm²	Cajas 100 metros	Cajas 30 metros	Rollos 100 metros	Bobinas (longitud fija)	Bobinas (por metro)
0,75	X	z n			
1,0	x			900 m	
1,5	х	x		800 m	
2,5	х	X		500 m	
4	x	×		400 m	
6	х			300 m	
10			Х		
16			Х		
25			Х		
35 - 120					Х

Ficha técnica del producto 31107 Características

Interruptor Manual Ins250 4X250A-Fa

Principal

Principal		no ha sido diseñada como reemplazo, ni se debe utilizar para determinar la idoneidad o la confabilidad de estos productos para aplicaciones especificas de usuarios
Distancia	Compacto	abilid
Tipo de producto o componente	Interruptor seccionador	
Nombre del producto	Compact INS	0 <u>a</u>
Número de polos	4P	
Tipo de red	CA CC	r la idor
Frecuencia asignada de empleo	50/60 Hz	mina
Intensidad asignada de empleo (Ie)	AC-22A: 250 A CA 50/60 Hz 220/240 V AC-22A: 250 A CA 50/60 Hz 380/415 V AC-22A: 250 A CA 50/60 Hz 440/480 V AC-22A: 250 A CA 50/60 Hz 480 V NEMA AC-22A: 250 A CA 50/60 Hz 500/525 V AC-22A: 250 A CA 50/60 Hz 660/690 V AC-23A: 250 A CA 50/60 Hz 220/240 V AC-23A: 250 A CA 50/60 Hz 380/415 V AC-23A: 250 A CA 50/60 Hz 440/480 V AC-23A: 250 A CA 50/60 Hz 440/480 V AC-23A: 250 A CA 50/60 Hz 480 V NEMA AC-23A: 250 A CA 50/60 Hz 660/690 V AC-23A: 250 A CC 125 V 2 polos en serie DC-22A: 250 A CC 250 V 4 polos en serie DC-23A: 250 A CC 250 V 4 polos en serie DC-23A: 250 A CC 250 V 4 polos en serie	ido diseñada como reemplazo, ni se debe utilizar para dete
Tensión asignada de aislamiento	750 V CA 50/60 Hz	o ha s
[Ith] Intensidad térmica convencional	250 A a 60 °C	
[lcm] Poder de dierre de cortocircuito	30 kA interruptor seccionador solo 690 V CA a 50/60 Hz 330 kA con interruptor automático protección ascendente 690 V CA a 50/60 Hz	go de responsabilidad: Esta documentación
Tensión asignada de empleo	250 V CC 690 V CA 50/60 Hz	
Idoneidad para el seccionamiento	Sí	dad: E
Indicación de contacto positivo	Sí	sabili
Ruptura visible	No	nods
Grado de contaminación	3	o

Complementario

Tipo de control	Mando rotativo
Color empuñadura	Negro
Modo de montaje	Fijo
Soporte de montaje	Perfil Placa
Conexión superior	Panel
Conexión inferior	Panel
Potencia máxima	AC-23: 132 kW a 380/415 V CA 50/60 Hz AC-23: 150 kW a 440 V CA 50/60 Hz AC-23: 150 kW a 480 V CA 50/60 Hz (NEMA) AC-23: 160 kW a 500/525 V CA 50/60 Hz AC-23: 210 kW a 660/690 V CA 50/60 Hz AC-23: 75 kW a 220/240 V CA 50/60 Hz AC-23: 75 kW a 230 V CA 50/60 Hz
Servicio nominal	Ininterrumpido
[lcw] Intensidad de corta curación admisible	1,8 kA durante 30 s conforme a IEC 60947-3 2,2 kA durante 20 s conforme a IEC 60947-3 4,9 kA durante 3 s conforme a IEC 60947-3 8,5 kA durante 1 s conforme a IEC 60947-3
Endurancia mecánica	15000 ciclos
Endurancia eléctrica	AC-22A: 1500 ciclos 440 V CA 50/60 Hz AC-22A: 1500 ciclos 500 V CA 50/60 Hz AC-22A: 1500 ciclos 690 V CA 50/60 Hz AC-23A: 1500 ciclos 440 V CA 50/60 Hz AC-23A: 1500 ciclos 500 V CA 50/60 Hz AC-23A: 1500 ciclos 500 V CA 50/60 Hz AC-23A: 1500 ciclos 690 V CA 50/60 Hz DC-22A: 1500 ciclos 250 V CC 4 polos en serie DC-23A: 1500 ciclos 250 V CC 4 polos en serie
Paso interpolar	35 mm
Alto	136 mm
Ancho	140 mm
Profundidad	96 mm
Peso del producto	2,2 kg

Entorno

EHIOHIO	
Normas	IEC 60947-3 IEC 60947-1
Certificados de producto	KEMA-KEUR CCC
Grado de protección IP	IP40 conforme a IEC 60529
Grado de protección IK	IK07 conforme a EN 50102
Temperatura ambiente de funcionamiento	-2570 °C
Temperatura ambiente de almacenamiento	-5085 °C

Sostenibilidad de la oferta

Estado de oferta sostenible	Producto verde premium
Reglamento REACh	Declaración de REACh
Directiva RoHS UE	Under investigation
Sin mercurio	Sí
Información sobre exenciones de RoHS	Sí
Normativa de RoHS China	Declaración RoHS China Producto fuera del ámbito de RoHS China. Declaración informativa de sustancias
Comunicación ambiental	Perfil ambiental del producto
Perfil de circularidad	No se necesitan operaciones de reciclaje específicas

Ficha técnica del producto LV525323 Características

Int. Aut. Cvs250B 25Ka Tmd250 4P4D

Principal	Easypact CVS100 250 Disyuntor CVS250B Distribución 4P 4R Izquierda Sin 250 A a 40 °C B CA 40 kA Icu a 220/240 V CA 50/60 Hz conforme a IEC 60947-2 25 kA Icu a 380/415 V CA 50/60 Hz conforme a IEC 60947-2 20 kA Icu a 440 V CA 50/60 Hz conforme a IEC 60947-2 A TM-D Térmico-magnético 250 A a 40 °C Prot. contra sobrec. (térmica) Prot.contra cortoc. (magnét.)
Rango de producto	Easypact CVS100 250
Tipo de producto o componente	Disyuntor
Modelo de dispositivo	CVS250B
Aplicación del dispositivo	Distribución
Número de polos	4P
Descripción polos protegidos	4R
Posición de polo de neutro	Izquierda
Earth leakage protection (Vigi add on)	Sin
Corriente nominal	250 A a 40 °C
Tipo de poder de corte	В
Tipo de red	CA
[Icu] Breaking capacity	40 kA lcu a 220/240 V CA 50/60 Hz conforme a IEC 60947-2 25 kA lcu a 380/415 V CA 50/60 Hz conforme a IEC 60947-2 20 kA lcu a 440 V CA 50/60 Hz conforme a IEC 60947-2
Categoría de empleo	A
Unidad de control	TM-D
Tipo de unidad de control	Térmico-magnético
Corriente derearme	250 A a 40 °C
Tipo de protección	Prot. contra sobrec. (térmica) Prot.contra cortoc. (magnét.)
Complementario	

Complementario

Frecuencia asignada de empleo	50/60 Hz	DO
Tipo de control	Palanca de conmutación	
Modo de montaje	Fijo	
Soporte de montaje	Placa posterior	des
Conexión superior	Panel	
Conexión inferior	Panel	<u> </u>
Conexiones - terminales	Conexión de tornillo	

[Uimp] Tensión asignada de resistencia a los choques	8 kV conforme a EN/IEC 60947-2
Rango de ajustes de protección térmica	175250 A
[lcs] poder de corte en servicio	15 kA a 440 V CA 50/60 Hz conforme a IEC 60947-2 25 kA a 380/415 V CA 50/60 Hz conforme a IEC 60947-2 40 kA a 220/240 V CA 50/60 Hz conforme a IEC 60947-2
Endurancia mecánica	20000 ciclos
Endurancia eléctrica	10000 ciclos 415 V In conforme a IEC 60947-2
Paso interpolar	35 mm
Indicación de contacto positivo	Sí
Ajuste protección de neutro	1 x lr (4R)
Tipo de rearme	Regulable 'or' no regulable
Precisión de rearme ±20%	0,71 x ln
Tipo ajuste temporizac. larga	Fijo
Tipo de ajuste de rearme insta	Fijo
Li no regulable	2500 A
Alto	161 mm
Ancho	140 mm
Profundidad	86 mm
Peso del producto	2,6 kg

Entorno

Littoriio	
Tipo de protección desc. eléct.	Clase II
Normas	IEC 60947-2 EN 60947-2
Certificados de producto	GOST IEC
Grado de protección IP	IP40
Grado de contaminación	3 conforme a IEC 60664-1
Temperatura ambiente de funcionamiento	-2570 °C
Temperatura ambiente de almacenamiento	-5085 °C

Sostenibilidad de la oferta

Declaración de REACh Sí Under investigation
Under investigation
<u> </u>
Sí
Sí
Declaración RoHS China Producto fuera del ámbito de RoHS China. Declaración informativa de sustancias
Perfil ambiental del producto
Información de fin de vida útil
En el mercado de la Unión Europea, el producto debe desecharse de acuerdo con un sistema de recolección de residuos específico y nunca terminar en un contenedor de basura.

Garantía contractual

Periodo de garantía	18 Meses

Ficha técnica del producto LV431536 Características

Bloque Vigi Mh P/ Nsx250 4P

Principal

Principal		diselada como reemulazo, ui se debe utilizar para determina la ignore/dad o la contrabilidad de estos moducios para aplicaciones especificas de usuainos
Principal		
Rango de producto	Easypact CVS100 250 NSX100250	est de la companya de
Distancia	Compacto	
Tipo de producto o componente	Vigi add-on	
Aplicación del dispositivo	Alambrado	
Rango de compatibilidad	Compact NSX disyuntor EasyPact CVS disyuntor	
Número de polos	4P	<u> </u>
Corriente nominal	250 A	
Nombre del módulo adicional de	MH	
Prot. c. fuga a tier.(tabular)	Clase A	e de la companya de l
Residual earth-leakage sensitity adjustment type	5 valores ajustables	
[ldn] residual earth-leakage sensitive adjustment	0,0310 A	debe uffi
Tipo de temporización	5 ajustes regulables	
Retardo intencionado	0 ms 310 ms 60 ms 150 ms	mo reemplazo
Complementario		diseñada O

Complementario

Complementario		O
Tipo de red	CA	opis
Frecuencia asignada de empleo	50/60 Hz	no ha
Tensión asignada de empleo	200440 V CA 50/60 Hz conforme a IEC 60947-2	ción
Protección de fugas a tierra	Con	
Maximum breaking time	800 ms	
Categoría de sobretensión	Clase II	sta

Entorno

		≍
Tipo de protección desc. eléct.	Clase II	esbc
Normas	IEC 60947-2	der
		0

Ficha técnica del producto LV525322 Características

Int. Aut. Cvs250B 25Ka Tmd200 4P4D

Principal

Rango de producto	Easypact CVS100 250
Tipo de producto o componente	Disyuntor
Modelo de dispositivo	CVS250B
Aplicación del dispositivo	Distribución
Número de polos	4P
Descripción polos protegidos	4R
Posición de polo de neutro	Izquierda
Earth leakage protection (Vigi add on)	Sin
Corriente nominal	250 A a 40 °C
Tipo de poder de corte	В
Tipo de red	CA
[Icu] Breaking capacity	40 kA Icu a 220/240 V CA 50/60 Hz conforme a IEC 60947-2 25 kA Icu a 380/415 V CA 50/60 Hz conforme a IEC 60947-2 20 kA Icu a 440 V CA 50/60 Hz conforme a IEC 60947-2
Categoría de empleo	A
Unidad de control	TM-D
Tipo de unidad de control	Térmico-magnético
Corriente derearme	200 A a 40 °C
Tipo de protección	Prot.contra cortoc. (magnét.) Prot. contra sobrec. (térmica)

Complementario

Frecuencia asignada de empleo	50/60 Hz	- I
Tipo de control	Palanca de conmutación	
Modo de montaje	Fijo	
Soporte de montaje	Placa posterior	
Conexión superior	Panel	
Conexión inferior	Panel	<u>a</u>
Conexiones - terminales	Conexión de tornillo	

[Uimp] Tensión asignada de resistencia a los choques	8 kV conforme a EN/IEC 60947-2
Rango de ajustes de protección térmica	140200 A
[lcs] poder de corte en servicio	15 kA a 440 V CA 50/60 Hz conforme a IEC 60947-2 25 kA a 380/415 V CA 50/60 Hz conforme a IEC 60947-2 40 kA a 220/240 V CA 50/60 Hz conforme a IEC 60947-2
Endurancia mecánica	20000 ciclos
Endurancia eléctrica	10000 ciclos 415 V In conforme a IEC 60947-2
Paso interpolar	35 mm
Indicación de contacto positivo	Sí
Ajuste protección de neutro	1 x lr (4R)
Tipo de rearme	Regulable 'or' no regulable
Precisión de rearme ±20%	0,71 x ln
Tipo ajuste temporizac. larga	Fijo
Tipo de ajuste de rearme insta	Fijo
Li no regulable	2000 A
Alto	161 mm
Ancho	140 mm
Profundidad	86 mm
Peso del producto	2,6 kg

Entorno

Littoriio	
Tipo de protección desc. eléct.	Clase II
Normas	IEC 60947-2 EN 60947-2
Certificados de producto	GOST IEC
Grado de protección IP	IP40
Grado de contaminación	3 conforme a IEC 60664-1
Temperatura ambiente de funcionamiento	-2570 °C
Temperatura ambiente de almacenamiento	-5085 °C

Sostenibilidad de la oferta

Declaración de REACh
Sí
Under investigation
Sí
Sí
Declaración RoHS China Producto fuera del ámbito de RoHS China. Declaración informativa de sustancias
Perfil ambiental del producto
Información de fin de vida útil
En el mercado de la Unión Europea, el producto debe desecharse de acuerdo con un sistema de recolección de residuos específico y nunca terminar en un contenedor de basura.

Garantía contractual

Periodo de garantía	18 Meses

Ficha técnica del producto Características

28901

Interruptor Manual Ins40 4X40A-Fa

Principal

Distancia	Compacto	
Nombre del producto	Compact INS	
Tipo de producto o componente	Interruptor seccionador	
Número de polos	4P	
Tipo de red	CC CA	:
Frecuencia asignada de empleo	50/60 Hz	
Intensidad asignada de empleo (Ie)	AC-22A: 40 A CA 50/60 Hz 220/240 V AC-22A: 40 A CA 50/60 Hz 380/415 V AC-22A: 40 A CA 50/60 Hz 440/480 V AC-22A: 40 A CA 50/60 Hz 500 V AC-23A: 32 A CA 50/60 Hz 500 V AC-23A: 40 A CA 50/60 Hz 220/240 V AC-23A: 40 A CA 50/60 Hz 220/240 V AC-23A: 40 A CA 50/60 Hz 380/415 V AC-23A: 40 A CA 50/60 Hz 440/480 V DC-22A: 40 A CC 125 V 2 polos en serie DC-23A: 40 A CC 250 V 4 polos en serie DC-23A: 40 A CC 250 V 4 polos en serie	
Tensión asignada de aislamiento	690 V CA 50/60 Hz	
[Uimp] Tensión asignada de resistencia a los choques	8 kV	
[Ith] Intensidad térmica convencional	40 A a 60 °C	
[lcm] Poder de dierre de cortocircuito	15 kA interruptor seccionador solo 500 V CA a 50/60 Hz 75 kA con interruptor automático protección ascendente 500 V CA a 50/60 Hz	
Tensión asignada de empleo	500 V CA 50/60 Hz 250 V CC	
Idoneidad para el seccionamiento	Sí	
Indicación de contacto positivo	Sí	
Ruptura visible	No	
Grado de contaminación	3	

Life is On Schneider

Complementario

o o mpromornamo	
Tipo de control	Empuñadura
Color empuñadura	Negro
Modo de montaje	Fijo
Soporte de montaje	Carril DIN Placa
Conexión superior	Panel
Conexión inferior	Panel
Sección de cable	1,550 mm²
Potencia máxima	AC-23: 11 kW a 220/240 V CA 50/60 Hz AC-23: 18,5 kW a 500/525 V CA 50/60 Hz AC-23: 20 kW a 380/415 V CA 50/60 Hz AC-23: 22 kW a 440 V CA 50/60 Hz
Servicio nominal	Ininterrumpido
Clase de servicio intermitente	Clase 120 - 60 %
Dimensiones de envolventes par	190 mm x 115 mm x 55 mm
[lcw] Intensidad de corta curación admisible	0,067 kA durante 20 s conforme a IEC 60947-3 1,73 kA durante 3 s conforme a IEC 60947-3 3 kA durante 1 s conforme a IEC 60947-3 5,5 kA durante 30 s conforme a IEC 60947-3
Endurancia mecánica	20000 ciclos
Endurancia eléctrica	AC-22A: 1500 ciclos 220/240 V CA 50/60 Hz AC-22A: 1500 ciclos 380/415 V CA 50/60 Hz AC-22A: 1500 ciclos 440 V CA 50/60 Hz AC-22A: 1500 ciclos 500 V CA 50/60 Hz AC-22A: 1500 ciclos 500 V CA 50/60 Hz AC-23A: 1500 ciclos 220/240 V CA 50/60 Hz AC-23A: 1500 ciclos 380/415 V CA 50/60 Hz AC-23A: 1500 ciclos 440 V CA 50/60 Hz AC-23A: 1500 ciclos 500 V CA 50/60 Hz AC-23A: 1500 ciclos 500 V CA 50/60 Hz DC-22A: 1500 ciclos 250 V CC 4 polos en serie DC-23A: 1500 ciclos 250 V CC 4 polos en serie
Paso interpolar	18 mm
Alto	85 mm
Ancho	90 mm
Profundidad	62,5 mm
Peso del producto	0,6 kg

Entorno

LIIIOIIIO	
Normas	IEC 60947-3 IEC 60947-1
Certificados de producto	CCC KEMA-KEUR
Grado de protección IP	IP40 conforme a IEC 60529
Grado de protección IK	IK07 conforme a EN 50102
Temperatura ambiente de funcionamiento	-2570 °C
Temperatura ambiente de almacenamiento	-5085 °C

Sostenibilidad de la oferta

Estado de oferta sostenible	Producto verde premium
Reglamento REACh	Declaración de REACh
Conforme con REACh sin SVHC	Sí
Directiva RoHS UE	Conforme Declaración RoHS UE
Sin metales pesados tóxicos	Sí
Sin mercurio	Sí

Ficha técnica del producto A9R11480 Características

Interruptor Diferencial iID - Tetrapolar - 80A -30mA

Principal

Schreiber III		la idoneidad o la comiabilidad de estos productos para aplicaciones especificas de usuarios
Principal	A-C-O	oc
Distancia	Acti 9	
Nombre del producto	Acti 9 iID	Φ 0
Tipo de producto o componente	Disyuntor de corriente residual (RCCB)	d da da
Modelo de dispositivo	IID	abjii(
Número de polos	4P	500
Posición de polo de neutro	Izquierda	
Corriente nominal	80 A	nei Ga
Tipo de red	CA	
Sensibilidad a la fuga a tierra	30 mA	n H
Retraso tiempo protec. pérdida a tierra	Instantáneo	
Prot. c. fuga a tier.(tabular)	Tipo AC	Dara de
Complementario		debe utilizar para determinar
Uhicación dianocitiva ciatama	Calida	

Complementario

Ubicación dispositivo sistema	Salida
Frecuencia asignada de empleo	50/60 Hz
Tensión asignada de empleo	380415 V CA 50/60 Hz
Tecnologia de disparo corriente residual	380415 V CA 50/60 Hz Independiente tensión
Capacidad de cierre y corte nominal	Idm 1500 A Im 1500 A 10 kA
Rated conditional short-circuit current	10 kA
Tensión asignada de aislamiento	
[Uimp] Tensión asignada de resistencia a los choques	500 V CA 50/60 Hz 6 kV Sí Palanca de conmutación
Indicación de contacto positivo	Sí
Tipo de control	Palanca de conmutación
Modo de montaje	Clip-on
Soporte de montaje	Carril DIN 8 91 mm
Pasos de 9 mm	8
Alto	91 mm
Ancho	72 mm
Profundidad	72 mm 73,5 mm

Ficha técnica del producto A9N18372 Características

Int. Termomagnetico C120N 4X80A Curva C

Principal

1 Till Olpai		,
Rango de producto	Dardo Plus	\
Distancia	Acti 9	<u>_</u>
Nombre del producto	C120	<u></u>
Tipo de producto o componente	Disyuntor en miniatura	
Modelo de dispositivo	C120N	
Aplicación del dispositivo	Distribución	<u> </u>
Número de polos	4P	
Número de polos protegidos	4	<u>a</u>
Corriente nominal	80 A a 30 °C	200
Tipo de red	CA	#
Tipo de unidad de control	Térmico-magnético	<u>a</u>
Código de curva de disparo ins	С	9
Poder de corte	10000 A Icn a 230400 V CA 50/60 Hz conforme a EN / IEC 60898-1 6 kA Icu a 440 V CA 50/60 Hz conforme a EN/IEC 60947-2 20 kA Icu a 220240 V CA 50/60 Hz conforme a EN/IEC 60947-2 10 kA Icu a 380415 V CA 50/60 Hz conforme a EN/IEC 60947-2 10 kA Icu a <= 500 V CC conforme a EN/IEC 60947-2	a como reemplazo
Idoneidad para el seccionamiento	Sí conforme a IEC 60947-2	, c

Complementario

Frecuencia asignada de empleo	50/60 Hz	
Tensión asignada de empleo	380415 V CA 50/60 Hz <= 500 V CC 220240 V CA 50/60 Hz 440 V CA 50/60 Hz 230400 V CA 50/60 Hz	
Límite de enlace magnético	510 x ln	
[lcs] poder de corte en servicio	7500 A 75 % conforme a EN / IEC 60898-1 - 230400 V CA 50/60 Hz 4,5 kA 75 % conforme a EN/IEC 60947-2 - 440 V CA 50/60 Hz 7,5 kA 75 % conforme a EN/IEC 60947-2 - 380415 V CA 50/60 Hz 15 kA 75 % conforme a EN/IEC 60947-2 - 220240 V CA 50/60 Hz 10 kA 100 % conforme a EN/IEC 60947-2 - <= 500 V CC	

Clase de limitación	3 conforme a EN/IEC 60947-2
Tensión asignada de aislamiento	500 V CA 50/60 Hz conforme a EN/IEC 60947-2
[Uimp] Tensión asignada de resistencia a los choques	6 kV conforme a EN/IEC 60947-2
Indicación de contacto positivo	Sí
Tipo de control	Palanca de conmutación
Señalizaciones frontales	Indicación encendido/apagado
Modo de montaje	Clip-on
Soporte de montaje	Perfil DIN simétrico de 35 mm
Compatibilidad de juego de bar	SÍ
Pasos de 9 mm	12
Alto	81 mm
Ancho	108 mm
Profundidad	73 mm
Peso del producto	0,82 kg
Color	Blanco
Endurancia mecánica	20000 ciclos
Endurancia eléctrica	5000 ciclos conforme a IEC 60947-2
Conexiones - terminales	Terminales de tipo túnel150 mm² rígido Terminales de tipo túnel1,535 mm² flexible
Longitud de pelado de cable	15 mm
Par de apriete	3,5 N.m
Protección de fugas a tierra	Bloque independiente

Entorno

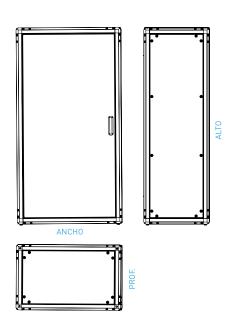
Normas	EN / IEC 60898-1 EN/IEC 60947-2
Certificados de producto	EAC
Grado de protección IP	IP20 conforme a IEC 60529
Grado de contaminación	3 conforme a IEC 60947-2
Categoría de sobretensión	IV
Tropicalización	2 conforme a IEC 60068-1
Humedad relativa	95 % a 55 °C
Altitud máxima de funcionamiento	2000 m
Temperatura ambiente de funcionamiento	-2570 °C
Temperatura ambiente de almacenamiento	-4085 °C

Sostenibilidad de la oferta

Estado de oferta sostenible	Producto verde premium
Reglamento REACh	Declaración de REACh
Conforme con REACh sin SVHC	Sí
Directiva RoHS UE	Under investigation
Sin metales pesados tóxicos	Sí
Sin mercurio	Sí
Información sobre exenciones de RoHS	Sí
Normativa de RoHS China	Declaración RoHS China Declaración proactiva de RoHS China (fuera del alcance legal de RoHS China)
Comunicación ambiental	Perfil ambiental del producto
Perfil de circularidad	No se necesitan operaciones de reciclaje específicas
RAEE	En el mercado de la Unión Europea, el producto debe desecharse de acuerdo con un sistema de recolección de residuos específico y nunca terminar en un contenedor de basura.

Gabinetes modulares

LÍNEA F50M



Tipos de composición:

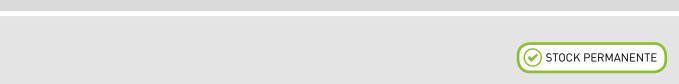
- **A Abierto:** Solamente tiene la estructura y la puerta, no trae laterales ni bandeja de montaje.
- **B Bandeja:** Gabinete compuesto por la estructura junto a la puerta y la bandeja de montaje, sin laterales.
- **C Completo:** Gabinete compuesto por la estructura junto a la puerta, bandeja de montaje, laterales y techo.

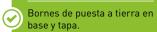
Codificación:

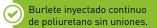
F50M -	XXX	XXXX	XXX	-В
Código	Ancho	Alto	Prof.	Compos.

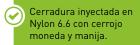
"C" - Completo: estructura, bandeja y laterales. "B" - Bandeja: estructura con bandeja de montaje.

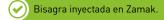
"A" - Abierto: solo estructura, sin bandeja.

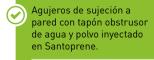

Alt	to:	C	В	A	Al	to:	С	В		Al	to:	С	В	A
1200)mm	C	Ь	A	1500)mm	C	ь .	A	1800)mm	C	В	^
Ancho	Prof.	Código	Código	Código	Ancho	Prof.	Código	Código	Código	Ancho	Prof.	Código	Código	Código
	300	3012030C	3012030B	3012030A		300	3015030C	3015030B	3015030A		300	3018030C	3018030B	3018030A
	400	3012040C	3012040B	3012040A		400	3015040C	3015040B	3015040A		400	3018040C	3018040B	3018040A
300	500	3012050C	3012050B	3012050A	300	500	3015050C	3015050B	3015050A	300	500	3018050C	3018050B	3018050A
	600	3012060C	3012060B	3012060A		600	3015060C	3015060B	3015060A		600	3018060C	3018060B	3018060A
	800	3012080C	3012080B	3012080A		800	3015080C	3015080B	3015080A		800	3018080C	3018080B	3018080A
	1000	30120100C	30120100B	30120100A		1000	30150100C	30150100B	30150100A		1000	30180100C	30180100B	30180100A
	300	4012030C	4012030B	4012030A		300	4015030C	4015030B	4015030A		300	4018030C	4018030B	4018030A
	400	4012040C	4012040B	4012040A		400	4015040C	4015040B	4015040A		400	4018040C	4018040B	4018040A
400	500	4012050C	4012050B	4012050A	400	500	4015050C	4015050B	4015050A	400	500	4018050C	4018050B	4018050A
	600	4012060C	4012060B	4012060A		600	4015060C	4015060B	4015060A		600	4018060C	4018060B	4018060A
	800	4012080C	4012080B	4012080A		800	4015080C	4015080B	4015080A		800	4018080C	4018080B	4018080A
	1000	40120100C	40120100B	40120100A		1000	40150100C	40150100B	40150100A		1000	40180100C	40180100B	40180100A
	300	5012030C	5012030B	5012030A		300	5015030C	5015030B	5015030A		300	5018030C	5018030B	5018030A
	400	5012040C	5012040B	5012040A		400	5015040C	5015040B	5015040A		400	5018040C	5018040B	5018040A
500	500	5012050C	5012050B	5012050A	500	500	5015050C	5015050B	5015050A	500	500	5018050C	5018050B	5018050A
	600	5012060C	5012060B	5012060A		600	5015060C	5015060B	5015060A		600	5018060C	5018060B	5018060A
	800	5012080C	5012080B	5012080A		800	5015080C	5015080B	5015080A		800	5018080C	5018080B	5018080A
	1000	50120100C	50120100B	50120100A		1000	50150100C	50150100B	50150100A		1000	50180100C	50180100B	50180100A
	300	6012030C	6012030B	6012030A		300	6015030C	6015030B	6015030A		300	6018030C	6018030B	6018030A
	400	6012040C	6012040B	6012040A		400	6015040C	6015040B	6015040A		400	6018040C	6018040B	6018040A
600	500	6012050C	6012050B	6012050A	600	500	6015050C	6015050B	6015050A	600	500	6018050C	6018050B	6018050A
	600	6012060C	6012060B	6012060A		600	6015060C	6015060B	6015060A		600	6018060C	6018060B	6018060A
	800	6012080C	6012080B	6012080A		800	6015080C	6015080B	6015080A		800	6018080C	6018080B	6018080A
	1000	60120100C	60120100B	60120100A		1000	60150100C	60150100B	60150100A		1000	60180100C	60180100B	60180100A
	300	7012030C	7012030B	7012030A		300	7015030C	7015030B	7015030A		300	7018030C	7018030B	7018030A
	400	7012040C	7012040B	7012040A		400	7015040C	7015040B	7015040A		400	7018040C	7018040B	7018040A
700	500	7012050C	7012050B	7012050A	700	500	7015050C	7015050B	7015050A	700	500	7018050C	7018050B	7018050A
	600	7012060C	7012060B	7012060A		600	7015060C	7015060B	7015060A		600	7018060C	7018060B	7018060A
	800	7012080C	7012080B	7012080A		800	7015080C	7015080B	7015080A		800	7018080C	7018080B	7018080A
	1000	70120100C	70120100B	70120100A		1000	70150100C	70150100B	70150100A		1000	70180100C	70180100B	70180100A
	300	8012030C	8012030B	8012030A		300	8015030C	8015030B	8015030A		300	8018030C	8018030B	8018030A
	400	8012040C	8012040B	8012040A		400	8015040C	8015040B	8015040A		400	8018040C	8018040B	8018040A
800	500	8012050C	8012050B	8012050A	800	500	8015050C	8015050B	8015050A	800	500	8018050C	8018050B	8018050A
	600	8012060C	8012060B	8012060A		600	8015060C	8015060B	8015060A		600	8018060C	8018060B	8018060A
	800	8012080C	8012080B	8012080A		800	8015080C	8015080B	8015080A		800	8018080C	8018080B	8018080A
	1000	80120100C	80120100B	80120100A		1000	80150100C	80150100B	80150100A		1000	80180100C	80180100B	80180100A
	300	9012030C	9012030B	9012030A		300	9015030C	9015030B	9015030A		300	9018030C	9018030B	9018030A
	400	9012040C	9012040B	9012040A		400	9015040C	9015040B	9015040A		400	9018040C	9018040B	9018040A
900	500	9012050C	9012050B	9012050A	900	500	9015050C	9015050B	9015050A	900	500	9018050C	9018050B	9018050A
	600	9012060C	9012060B	9012060A		600	9015060C	9015060B	9015060A		600	9018060C	9018060B	9018060A
	800	9012080C	9012080B	9012080A		800	9015080C	9015080B	9015080A		800	9018080C	9018080B	9018080A
	1000	90120100C	90120100B	90120100A		1000	90150100C	90150100B	90150100A		1000	90180100C	90180100B	90180100A
	300	10012030C	10012030B	10012030A		300	10015030C	10015030B	10015030A		300	10018030C	10018030B	10018030A
	400	10012040C	10012040B	10012040A		400	10015040C	10015040B	10015040A		400	10018040C	10018040B	10018040A
1000	500	10012050C	10012050B	10012050A	1000	500	10015050C	10015050B	10015050A	1000	500	10018050C	10018050B	10018050A
	600	10012060C	10012060B	10012060A		600	10015060C	10015060B	10015060A		600	10018060C	10018060B	10018060A
	800	10012080C	10012080B	10012080A		800	10015080C	10015080B	10015080A		800	10018080C	10018080B	10018080A
	1000	100120100C	100120100B	100120100A		1000	100150100C	100150100B	100150100A		1000	100180100C	100180100B	100180100A
	300	12012030C	12012030B	12012030A		300	12015030C	12015030B	12015030A		300	12018030C	12018030B	12018030A
	400	12012040C	12012040B	12012040A		400	12015040C	12015040B	12015040A		400	12018040C	12018040B	12018040A
1200	500	12012050C	12012050B	12012050A	1200	500	12015050C	12015050B	12015050A	1200	500	12018050C	12018050B	12018050A
1200	600	12012060C	12012060B	12012060A	1200	600	12015060C	12015060B	12015060A	1200	600	12018060C	12018060B	12018060A
	800	12012080C	12012080B	12012080A		800	12015080C	12015080B	12015080A		800	12018080C	12018080B	12018080A
	1000	120120100C	120120100B	120120100A		1000	120150100C	120150100B	120150100A		1000	120180100C	120180100B	120180100A

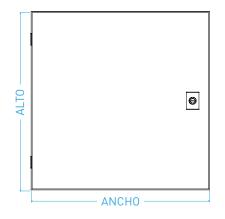

Línea GE - Gabinetes estancos IP65











- Los gabinetes de la LINEA GE están fabricados bajo los requerimientos de la norma IEC 62 208:2011 y con sello de conformidad otorgado por IRAM.
- La base y la puerta están construidas en chapa de acero al carbono, con un tratamiento previo a pintura de desengrasado, fosfatizado y pavonado. Luego se aplica pintura termo-convertible con base poliéster y terminación texturada RAL 7032.
- Bandeja construida en chapa galvanizada.

Código	Descripción	Ancho	Alto	Prof.
0400	GAB. EST. 150x200x120	150	200	120
0424	GAB. EST. 200x200x120	200	200	120
0401	GAB. EST. 200x250x120	200	250	120
0425	GAB. EST. 200x300x120	200	300	120
0426	GAB. EST. 200x450x120	200	450	120
0402	GAB. EST. 250x300x120	250	300	120
0403	GAB. EST. 300x300x120	300	300	120
0404	GAB. EST. 300x400x120	300	400	120
0427	GAB. EST. 300x450x120	300	450	120
0428	GAB. EST. 300x600x120	300	600	120
0405	GAB. EST. 400x500x120	400	500	120
0406	GAB. EST. 450x450x120	450	450	120
0407	GAB. EST. 450x600x120	450	600	120
0429	GAB. EST. 450x750x120	450	750	120
0430	GAB. EST. 600x600x120	600	600	120
0431	GAB. EST. 600x750x120	600	750	120
0432	GAB. EST. 600x900x120	200	900	120
0433	GAB. EST. 200x200x160	200	200	160
0408	GAB. EST. 200x250x160	200	250	160
0434	GAB. EST. 200x300x160	200	300	160
0435	GAB. EST. 200x450x160	200	450	160
0436	GAB. EST. 250x300x160	250	300	160
0409	GAB. EST. 300x300x160	300	300	160
0410	GAB. EST. 300x400x160	300	400	160
0437	GAB. EST. 300x450x160	300	450	160
0438	GAB. EST. 300x600x160	300	600	160
0411	GAB. EST. 400x500x160	400	500	160
0413	GAB. EST. 450x450x160	450	450	160
0412	GAB. EST. 450x600x160	450	600	160
0414	GAB. EST. 450x750x160	450	750	160
0415	GAB. EST. 600x600x160	600	600	160
0439	GAB. EST. 600x750x160	600	750	160
0440	GAB. EST. 600x900x160	600	900	160
0441	GAB. EST. 600x1050x160	600	1050	160
0459	GAB. EST. 600x1200x160	600	1200	160
0442	GAB. EST. 750x750x160	750	750	160
0449	GAB. EST. 750x900x160	750	900	160

Código	Descripción	Ancho	Alto	Prof.
0450	GAB. EST. 750x1050x160	750	1050	160
0451	GAB. EST. 750x1200x160	750	1200	160
0463	GAB. EST. 300x300x210	300	300	210
0464	GAB. EST. 300x400x210	300	400	210
0465	GAB. EST. 300x450x210	300	450	210
0467	GAB. EST. 300x600x210	300	600	210
0468	GAB. EST. 400x500x210	400	500	210
0469	GAB. EST. 450x450x210	450	450	210
0480	GAB. EST. 450x600x210	450	600	210
0488	GAB. EST. 450x750x210	450	750	210
0481	GAB. EST. 600x600x210	600	600	210
0482	GAB. EST. 600x750x210	600	750	210
0483	GAB. EST. 600x900x210	600	900	210
0455	GAB. EST. 600x1050x210	600	1050	210
0484	GAB. EST. 600x1200x210	600	1200	210
0458	GAB. EST. 750x750x210	750	750	210
0466	GAB. EST. 750x900x210	750	900	210
0456	GAB. EST. 750x1050x210	750	1050	210
0457	GAB. EST. 750x1200x210	750	1200	210
0490	GAB. EST. 300x300x260	300	300	260
0491	GAB. EST. 300x400x260	300	400	260
0443	GAB. EST. 300x450x260	300	450	260
0444	GAB. EST. 300x600x260	300	600	260
0418	GAB. EST. 400x500x260	400	500	260
0423	GAB. EST. 450x450x260	450	450	260
0419	GAB. EST. 450x600x260	450	600	260
0421	GAB. EST. 450x750x260	450	750	260
0422	GAB. EST. 600x600x260	600	600	260
0445	GAB. EST. 600x750x260	600	750	260
0446	GAB. EST. 600x900x260	600	900	260
0492	GAB. EST. 600x1050x260	600	1050	260
0462	GAB. EST. 600x1200x260	600	1200	260
0493	GAB. EST. 750x750x260	750	750	260
0494	GAB. EST. 750x900x260	750	900	260
0495	GAB. EST. 750x1050x260	750	1050	260
0496	GAB. EST. 750x1200x260	750	1200	260

• También disponibles en otros colores bajo pedido. Consultar con nuestra área de Desarrollos especiales.

CÓDIGO Ref.Code	ANCHO Width	MEDIDAS NOMINAL Measurement in mm ALA Height	ESPESOR Thickness	LONGITUD Length
TRPS-050-22-Z	50	50	0.71	3000
TRPS-100-22-Z	100	50	0.71	3000
TRPS-150-22-Z	150	50	0.71	3000
TRPS-200-22-Z	200	50	0.71	3000
TRPS-300-22-Z	300	50	0.71	3000
TRPS-450-20-Z	450	50	0.89	3000
TRPS-600-20-Z	600	50	0.89	3000

Curvas

/ Elbows

CURVA PLANA a 9	AND THE RESERVE OF THE PARTY OF	en mm	
CÓDIGO Ref.Code	ANCHO Width	ALA Height	ESPESOR Thickness
CPS-050-90-Z	50	50	0.71
CPS-100-90-Z	100	50	0.71
CPS-150-90-Z	150	50	0.71
CPS-200-90-Z	200	50	0.71
CPS-300-90-Z	300	50	0.71
CPS-450-90-Z	450	50	0.89
CPS-600-90-Z	600	50	0.89

CURVA PLANA a 45° / Elbow 45°

7	MEDIDAS NOMINALES en mm Measurement in mm					
CÓDIGO Fiel Code	ANCHO Width	ALA Height	ESPESOR Thickness			
CPS-050-45-Z	50	50	0.71			
CPS-100-45-Z	100	50	0.71			
CPS-150-45-Z	150	50	0.71			
CPS-200-45-Z	200	50	0.71			
CPS-300-45-Z	300	50	0.71			
CPS-450-45-Z	450	50	0.89			
CPS-600-45-Z	600	50	0.89			

CURVA VERTICAL ASCENDENTE / Vertical Inside Filhou

	MEDIDAS NOMINALES en mm Measurement in mm					
CÓDIGO Rel.Code	ANCHO Width	ALA Height	ESPESOR Thickness			
CUPS-050-A-Z	50	50	0.71			
CUPS-100-A-Z	100	50	0.71			
CUPS-150-A-Z	150	50	0.71			
CUPS-200-A-Z	200	50	0.71			
CUPS-300-A-Z	300	50	0.71			
CUPS-450-A-Z	450	50	0.89			
CUPS-600-A-Z	600	50	0.89			

CURVA VERTICAL DESCENDENTE / Vertical Outside Flhow

	MEDIDAS NOMINALES en mm Measurement in mm						
CÓDIGO Ref.Code	ANCHO Width	ALA Height	ESPESOR Thickness				
CUPS-050-D-Z	50	50	0.71				
CUPS-100-D-Z	100	50	0.71				
CUPS-150-D-Z	150	50	0.71				
CUPS-200-D-Z	200	50	0.71				
CUPS-300-D-Z	300	50	0.71				
CUPS-450-D-Z	450	50	0.89				
CUPS-600-D-Z	600	50	0.89				

ESLABÓN UNIVERSAL PARA CURVA ARTICULADA

/ Universal Link for Adjustable Vertical Bend

	MEDIDAS NOMINALES en mm Measurement in mm				
CODIGO Ref.Code	ANCHO Width	ALA Height	ESPESOR Thickness		
EPS-050-Z	50	50	0.71		
EPS-100-Z	100	50	0.71		
EPS-150-Z	150	50	0.71		
EPS-200-Z	200	50	0.71		
EPS-300-Z	300	50	0.71		
EPS-450-Z	450	50	0.89		
EPS-600-Z	600	50	0.89		

^{*} Ver figura 3 en Aplicaciones destacadas. / See figure 3 in featured applications

^{*} Imagen a modo ilustrativa. / Image for illustrative purposes only

Costos de mano de obra eléctrica

▶ El presente cuadro tarifario es referencial y actualizado por la Asociación de Instaladores Electricistas y Afines de Salta (AIEAS), la Asociación de Instaladores Eléctricos de Jujuy (AIEJ), la Asociación de Instaladores y Afines Electricistas de Santiago del Estero (AIEASE), la Asociación de Instaladores Electricistas y Afines de Catamarca (AIEACAT) y por la AIET. Invitamos a los colegas a realizar un uso apropiado de la misma.

	la AIET. Invitamos a los colegas a realizar un uso apro	-	io de la litistita.
1.01 1.02	Acometida y tableros Acometida monofásica con sistema doble aislación sin jabalina Acometida trifásica hasta 10 Kw con sistema doble aislación sin jabalina	Precio \$ 4211 \$ 6392	Notas aclaratorias Estos importes corresponden a trabajos de acometidas realizadas de acuerdo a los plano típicos suministrados por la empresa distribuidora de energia de Salta (ver en el link: http://electrico.co/pajap.org.a/findex.php?portion=com_content&view=articke
1.05	Acometida trifásica de 11 a 35 Kw Acometida trifásica de 36 a 50 Kw Acometida trifásica mas de 50 Kw Tendido de acometida subterráneo monofásico (x 10 m)	\$ 8310 \$ 10803 \$ 16204 \$ 5777	=61&ttemid=27 Incluye: zanjeo a 80 cm de profundidad, colocación de cable,ca-
	Zanjeo x metro (25 x 70 cm) tendido de cable y relleno con protecciones mecánicas Puesta a tierra: jabalina + caja de inspección	\$ 514 \$ 1099	ma de arena, protección mecánica, y llenado de zanja. Precio unitario para zanjeo a 80 cm de profundidad. Induye: hincado de jabalina, fijación de caja de inspección, canaleteado de cañería desde tablero a la cañería de inspección y conexión del conductos a jabalina.
2.01	Canalización embutida Cañería PVC rígido y caja de boca (centro, aplique y toma) hasta 50 bocas Cañería PVC rígido y caja de paso y/o distribución, hasta 50 bocas	Precio \$ 648 \$ 648	Notas aclaratorias Para las cajas en losa, éstos ítems incluyen los tramos de cañería que llegan o salen de la caja y la caja propiamente dicha. Para cajas en paredes, comprende el canaleteado de un promedio de 3 m de cañería y la caja rectangular, octogonal o cuadra-
2.04 2.05	Cañería PVC rígido y caja para interruptores (punto o combinación) hasta 50 bocas Cañería PVC rígido y caja de boca (centro, aplique y toma) de 51 a 100 bocas Cañería PVC rígido y caja de paso y/o distribución, de 51 a 100 bocas Cañería PVC rígido y caja para interruptores (punto o combinación) de 51 a 100 bocas	\$ 648 \$ 531 \$ 531 \$ 531	da. Por lo general los tamaños de los tableros son proporcionales a los circuitos de la instalación, y en consecuencia, a la cantidad de caños que acometan al gabinete, por ello el canaleteado y amurado será más complejo y más oneroso cuanto más caños
2.07 2.08	Cañería PVC rígido y colocación de tablero: sumar caños entrantes y salientes del tablero y multiplicar por: Cañería PVC flexible y caja de boca (centro, aplique y toma) hasta 50 bocas Cañería PVC flexible y caja de paso y/o distribución, hasta 50 bocas	\$ 648 \$ 463 \$ 463	acometan. Las cajas de paso ylo derivación tienen tanto trabajo como una boca. Boca definida por la RAFA: "punto de un circuito terminal, donde se conecta el aparato utilizado por medio de tomacorrientes o por medio de conexiones fijas, uniones o bomeras. Considerar que una boca puede ser a la vez: a) una caja de paso o una caja
2.10 2.11 2.12 2.13	Cañería PVC flexible y caja para interruptores (punto o combinación) hasta 50 bocas Cañería PVC flexible y caja de boca (centro, aplique y toma) de 51 a 100 bocas Cañería PVC flexible y caja de paso y/o distribución, de 51 a 100 bocas Cañería PVC flexible y caja para interruptores (punto o combinación) hasta 50 bocas	\$463 \$379 \$379 \$379	de derivación con un único circuito, ó b) una caja de poso con más de un circuito, o una caja de derivación con más de un circuito o una caja de poso y derivación, si están ubicados o una altura no linferior al, 8m. los criterios generales para la consideración de
2.14 2.15	Cañería PVC flexible y colocación de tablero: sumar caños entrantes y salientes del tablero y multiplicar por: Cañería metálica y caja de boca (centro, aplique y toma) hasta 50 bocas Cañería metálica y caja para interruptores (punto o combinación) hasta 50 bocas	\$463 \$783 \$783	la instalación de cajas en inmuebles, están especificadas la RAEA 90364 parte 7 -771 pag. 42 a 44".
	Cañería metálica y caja para interruptores (punto o combinación) hasta 50 bocas Cañería metálica y caja de boca (centro, aplique y toma) de 51 a 100 bocas Cañería metálica y caja de paso y/o distribución, de 51 a 100 bocas	\$ 783 \$ 657 \$ 657 \$ 657	
2.20 2.21 3 3.01	Cañería metálica y caja para interruptores (punto o combinación) de 51 a 100 bocas Cañería metálica + colocación de tablero: sumar caños entrantes y salientes del tablero y multiplicar por: Canalización embutida en Durlock Cañería PVC rígido de boca (centro, aplique, toma, caja de interruptores y de distribución) hasta 50 cajas	\$ 783 Precio \$ 488	Notas aclaratorias Las cañerías en durlock deben rigidizarse correctamente para
4.01	Cañería metálica de boca (centro, aplique, toma, caja de interruptores y de distribución) hasta 50 bocas Canalización exterior Cañería PVC de boca (centro, aplique, toma, caja de interruptores y de distribución) hasta 50 bocas	\$ 595 Precio \$ 488	evitar fallas al momento del cableado. Notas aclaratorias No es recomendable utilizar grampas tipo omega en ambientes húmedos o con polvos en suspensión, para evitar acumulación
4.03 4.04	Cañería PVC de boca (centro, aplique, toma, caja de interruptores y de distribución) de 51 a 100 bocas Cañería metálica de boca (centro, aplique, toma, caja de interruptores y de distribución) hasta 50 bocas Cañería metálica de boca (centro, aplique, toma, caja de interruptores y de distribución) de 51 a 100 bocas Canalización de Cablecanal	\$ 396 \$ 531 \$ 438 Precio	de agua o polvo entre el caño y el muro. Cuando se exija el em- pleo de empalmes con cuplas y conectores roscados incrementar el costo en un 25%. Notas aclaratorias
5.02 5.03	Instalación x metro de cablecanal poliducto PVC Colocación de bocas de tensión exterior Cableado de bocas de tensión x metro	\$ 227 \$ 253 \$ 236	Corresponde a cable canales para servicios de alimentación de 220V, comunicación y red compartidos en el mismo canal separados por tabique.
6.01 6.02	Canalización y cableado con pisoductos / poliductos Instalación de pisoductos x metro Colocación de cajas de piso de tomas y o derivación o curvas verticales o curvas horizontales Colocación de periscopios	\$ 497 \$ 1289 \$ 682	Notas aclaratorias Comprende el armado de canalización con conductos de sección rectangular, con cuplas niveladoras entre tramos, sin relleno de homigón.
6.04	Cableado por cada vía del pisoducto con cables de alimentación y/o de comunicación Instalación de tomas en periscopios Colocación de tomas de TV y teléfono con cableado	\$ 568 \$ 396 \$ 775	
7 7.01	Colocación de tomas de red con cableado Canalización con bandejas portacables y perfil C Instalación x metro a altura h < 4 m, anchos de bandeja hasta 300mm (escalera o perforada)	\$1347 Precio \$354	Notas aclaratorias No incluye el alquiler de andamios, escaleras, elevadores, etc.
7.03	Instalación x metro a altura h < 4 m, anchos de bandeja de 450 y 600 m (escalera o perforada) Instalación x metro a altura h > 4 m, anchos de bandeja hasta 300mm (escalera o perforada) Instalación x metro a altura h > 4 m, anchos de bandeja de 450 y 600 m (escalera o perforada) Instalación x metro a altura h < 4 m con perfil C	\$ 408 \$ 522 \$ 611 \$ 293	
7.06 8 8.01	Instalación x metro a altura h < 4 m con perfil C Cableado en cañerías Cableado de boca (centro, aplique y toma) hasta 50 bocas	\$ 366 Precio \$ 573	Notas aclaratorias El cableado en cañería es independiente de la cantidad de conductores, pues todos deben pasarse a la misma vez en un só-
	Cableado de boca(centro, aplique y toma) de 51 a 100 bocas Recableado (incluye sacar artefactos y llaves y su nueva instalación) Cableado en bandejas portacables	\$ 472 \$ 707 Precio	Londucturels, pues couos devent pasanse a la misma vez en un so- lo acto por lo tanto no diferenciamos entre cableado de bocas de un efecto, de dos o tres, o combinación. La diferencia en el costo está en el importe del elemento interruptor a instalarse en las cajas rectangulares. Notas aclaratorias
9.01 9.02	Cableado de cables subterráneos hasta 4 x 10 mm2 ó 1 x 35mm2 a h < 4 m (x metros) Cableado de cables subterráneos mayores 4 x 10 mm2 ó mayores 1 x 35mm2 h < 4 m (x metros) Cableado de cables subterráneos hasta 4 x 10 mm2 ó 1 x 35mm2 a h > 4 m (x metros) Cableado de cables subterráneos mayores 4 x 10 mm2 ó mayores 1 x 35 mm2 < 4 m (x metros)	\$171 \$265 \$265 \$531	No incluye el alquiler de andamios, escaleras, elevadores, etc.
10.01 10.02	Colocación de interruptores, tomas, etc Instalación de interruptores un efecto y/o pulsadores Instalación de interruptores un efecto combinación	Precio \$168 \$253	Notas aclaratorias Importante: sólo se admite la instalación de "punto más toma" en una caja rectangular en los baños de inmuebles. El toma ira conectado al círcuito de iluminación. Las reglas del buen arte recomiendan colocar el tomacorriente en una caja rectangular,
10.04 10.05	Instalación de tomacorrientes simple Instalación de tomacorrientes dobles Instalación de tomacorrientes cuádruples en cajas 100 x 100 Instalación de interruptores un efecto combinación doble	\$168 \$253 \$447 \$295	recomiendan colocar el tomacorriente en una caja rectangular, en la zona 3 y conectado a un circuito de tomacorrientes.
10.07 10.08	Instalación de interruptores un efecto doble Instalación de interruptores un efecto triple Instalación de regulador de velocidad ventilador o dimmer intensidad	\$211 \$233 \$238	
10.11 1 1	Instalación de Interruptor cuatro vias Instalación de sensores de humo, gases, inundación, etc. en caja rectangular Colocación de artefactos	\$ 238 \$ 447 Precio	Notas aclaratorias
11.02 11.03	Colocación de artefacto tipo (aplique, extractores de baño, campanillas, etc.) Luminaria exterior con columna hasta 3 m Luminaria exterior con brazos hasta 4 m de altura amurado a pared o columna Luminaria exterior de aplicar en muro en intemperie (Ip x 5 ó Ip x 6)	\$ 522 \$ 2434 \$ 1760 \$ 857	Verificar la protección individual de cada artefacto (con fusibles), pues la sección de los conductores del cableado interno del artefacto no están protegidos por los dispositivos instalados en los tableros. Estos interruptores están dimensionados según los conductores instalados en las canalizaciones. Por ejemplo, una luminaria de tubos fluorescentes tiene conductores en su
11.05 11.06 11.07	Spot dicroica y/o halospot con trafo embutido Spot incandescente de aplicar Ventilador de techo (incluye el tendido de conductor para el regulador de velocidad)	\$ 514 \$ 371 \$ 1347	ableado interno de 0,5 mm2, y está conectado a un circuito con protecciones termomagnéticos de 2 x 10A, Es necesario entonces colocar un fusible de por lo menos 1A para evitar recalentamien- to del cableado interno, posible foco de incendio.
11.09 11.10	Armado y colocación de artefacto de tubos 1-3u Plafones embutidos en cielorraso de durlock Luminaria en intemperie amurado a pared Luminaria < 1 m en tierra c/construcción de base de hormigón (no incluye tendido de cable subterráneo)	\$1002 \$590 \$381 \$1286	
11.12 11.13 11.14	Luminaria de piletas de natación y/o fuentes Instalación de artefacto de iluminación con fotocélula individual Instalación de luz de emergencia	\$1571 \$910 \$817	
11.16 12	Sistema autónomo para incorporar a artefacto Armado y colocación de luminarias a > 6 m de altura Colocación de elementos de protección y comando Instalación interruptor termomagnético bipolar en el armado de tablero nuevo	\$1533 \$2089 Precio \$255	Notas aclaratorias
12.02 12.03 12.04	Instalación interruptor diferencial tetrapolar en el armado de tablero nuevo Instalación interruptor termomagnético tetrapolar en el armado de tablero nuevo Instalación interruptor diferencial bipolar en tablero existente	\$ 433 \$ 357 \$ 2215	Incluye la prevención de revisión y reparación de defectos (fugas de corriente).
12.06	Instalación interruptor diferencial tetrapolar en tablero existente Instalación protector de sobretensiones por descargas atmosféricas monofásicos Instalación protector de sobretensiones por descargas atmosféricas trifásicos Instalación protector de sub y sobretensiones monofásicos	\$ 2914 \$ 3662 \$ 5009 \$ 2197	Incluye interruptor termomagnético, protector y barra equipotencial a conectarse si ésta no existiera. Incluye relé monitor de sub-sobre tensión más contactor o bobi-
12.09 12.10	Instalación protector de sub y sobretensiones trifásicos Instalación contactor inversor para control de circuitos esenciales y no esenciales Armado e instalación de tablero de comando de bomba de agua edificio departamentos	\$ 2695 \$ 4523 \$ 4980	na de disparo sobre interruptor termomagnético. Incluye dos contactores formato din con contactos auxiliares para enclavamiento. Incluye el armado de tablero de comando y maniobra del motor
12.12	Armado e instalación de tablero de comando de bomba de agua domiciliaria Instalación de sistema de automatización de bombeo (automáticos de tanque y cisterna) Instalación de sistema de automatización de cartelería	\$3434 \$1465 \$2305	de la bomba de agua con tensiones de comando de 24VCA o me- nor. Incluye el armado de tablero con protecciones, contactor y temporizador ylo fotocontrol.
	Instalación de interruptor de escalera en caja rectangular Instalación de interruptor de escalera en tablero Instilación de pararrayos hasta 5 pisos < 20 m	\$ 879 \$ 1465 \$ 38081	Incluye: instalación de pararrayo, cable de bajada amurada cada 1,5 m, colocación de barra equipotencial, hincado de tres
13.01	Tablero de comando de motores 1 arranque directo 2 arranques directos	Precio \$1920 \$2695	jabalinas y su conexión a barra equipotencial. Notas aclaratorias Estos tableros incluyen los siguientes elementos: gabinete, interruptor de cabecera, bomera de distribución (si es necesario)
13.03 13.04	3 arranques directos 4 arranques directos 5 arranques directos	\$3756 \$5188 \$9584	protección contra corto circuito y sobrecarga (guardamotor o fusibles + relé térmico), contactor, protector por falta de fase, cablecanal ranurado, borneras de entrada y salida, pilotos luminosos, llaves de comando (arranque, selectora manual-automático, etc.) más accesorios.
13.07	Más de 5 arranques con automatismo Tablero de comando de sistema de purificación de agua de pileta + iluminación	\$19951 \$4999	Ídem anterior más módulo lógico programable con sus accesorios Comprende un arranque directo para bomba de filtro y transformador dasel I para il luminación con sus respectivos elementos de protecciones y maniobra.
	Tablero de comando de sistema riego automatizado 4 circuitos (con autómatas programables) Tablero arranque estrella triángulo hasta 10 hp Tablero arranque estrella triángulo hasta 30 hp	\$ 7142 \$ 6325 \$ 9272	Tablero de arranque directo de una bomba más comando de electroválvulas con autómata programable. Incluyen: gabinete, interruptor de cabecera, bornera de distribución, protección contra corto circuito y sobrecarga (guardamotor o fusibles + rele térmico), contactores, protector
13.12	Tablero arranque estrella triángulo hasta 100 hp Tablero de medidores hasta 5 medidores Tablero de medidores hasta 10 medidores	\$ 29653 \$ 12776 \$ 18890	por falta de fase, protector contra sobretensiones transitorias (pararrayos) y accesorios Estos tableros deben confeccionarse según el típico suministrado por la empresa distribuidora de energía de Salta (ver link: http://electrico.copaipo.org.arlindex.php?option=com_con-
14.01	Tablero de medidores hasta 16 medidores Mantenimiento de tableros eléctricos e instalaciones eléctricas Hasta 20 polos Hasta 50 polos	\$ 24819 Precio \$ 1828 \$ 2729	tenteview=articleeid=6lettemid=2t). Notas aclaratorias Revisión y verificación de calibres de conductores, estados de la aislación y torque en los bornes de conexión, limpieza general.
	Hasta 100 polos Arranque directo con contactores Verificación de las condiciones de seguridad para protección de las personas (importe básico)	\$4144 \$1844 \$3515	Verificación de accionamiento de interruptores diferenciales,
14.06 14.07	Medición y verificación de resistencia del sistema puesta a tierra (x jabalina) Verificación de resistencia de aislación de instalaciones	\$ 2666 \$ 3047	tiempo de disparo y ensayo en circuitos terminales con dispositi- vos de prueba. Estas mediciones deben realizarse con instrumentos homologa- dos por institutos o empresas autorizadas y según un protocolo aprobado por el órgano de aplicación.
15.01	Medición de la impedancia del lazo de falla Varios Cargo por diseño de instalación sin planos hasta 10 bocas con computo de materiales Cargo por diseño de instalación sin planos hasta 25 bocas con computo de materiales	\$12303 Precio \$2381 \$3571	Notas aclaratorias Muchas veces encaramos un trabajo sin proyecto de un profesional, o bien, nos solicitan ejecutar la obra eléctrica fuera del proyecto original. En esta situación debemos agregar a nues-
15.03 15.04 15.05	Cargo por diseño de instalación sin planos hasta 50 bocas con computo de materiales Cargo por diseño de instalación sin planos hasta 100 bocas con computo de materiales Cargo por diseño de instalación sin planos hasta 150 bocas con computo de materiales	\$ 5952 \$ 8570 \$ 11903	to trabajo manual, un trabajo intelectual para desarrollar el proyecto según el requerimiento de quien nos contrata. Y por razones logícas, debemos efectuarlo en los tiempos adicionales a los que presupuestamos. En consecuenda debe determinarse su costo.
	Cargo por adquisición de materiales eléctricos para la obra (en porcentaje sobre total de materiales) Sensores de movimiento y/o presencia Empalmes de cables subterráneos	7% \$1190 \$1861	Se calcula en base al importe de materiales gestionados, adoptándose un valor correspondiente al tiempo requerido para realizar dichas gestiones. A realizarse con empalmes certificados con resina u otros tipos.
15.09 15.10	Reparación de luminarias en altura > 4 m Reparación de artefactos de tubos fluorescentes Revisión de fugas de corriente en instalaciones monofásicas mínimo 1 hora	\$1945 \$571 \$1735	Verificación de la aislación de los conductores con megóhmetro.
15.12 15.13 15.14	Revisión de fugas de corriente en instalaciones trifásicos mínimo 1 hora Incremento por hora en revisión de fugas de corriente Conexión de motores monofásicas	\$ 3015 \$ 615 \$ 994	Revisión de empalmes y sus aislaciones. Control de artefactos de iluminación y electrodomésticos, etc.
	Colocación de interruptores para cortinas Conexión de cartelería con interruptores horarios y o fotocélulas Conexión de paneles solares Tablero con automatización de 4 canales (LOGO, ARRAY, ZELIO)	\$1541 \$2215 \$2619 \$12549	Interruptores conmutadores para cambio de giro de motor. Incluye fijación de panel, conexión de baterías e inversores de ten- Incluye el armado del tablero, la programación del autómata
15.19 15.20 15.21	Tablero con automatización de 8 canales (LOGO, ARRAY, ZELIO) Instalación de aire acondicionado Split hasta 3000 frigorías s/instalación eléctrica Instalación de aire acondicionado Split hasta 6000 frigorías s/instalación eléctrica	\$17105 \$4961 \$7442	y la puesta en funcionamiento en el Tugar de instalación.
15.22 15.23 15.24 15.25	Tablero de corrección de factor de potencia monofásico hasta 2 Kvar Tablero de corrección de factor de potencia trifásico directo hasta 10 kvar Tablero de corrección de factor de potencia trifásico directo hasta 20 Kvar Tablero de corrección de factor de potencia trifásico con contactor hasta 10 Kvar	\$1758 \$3515 \$4687 \$4394	Incluye cálculo y determinación de batería de capacitores, gabinete, protecciones y señalización. Incluye cálculo y determinación de batería de capacitores,
15.26 15.27 15.28	Tablero de corrección de factor de potencia trifásico con contactor hasta 20 Kvar Tablero de corrección de factor de potencia automático hasta 50 Kvar 6 pasos Tablero de corrección de factor de potencia automático hasta 100 Kvar 6 pasos	\$ 5566 \$ 14647 \$ 26364	gabinete, protecciones, maniobra con contactor (si es requendo) y temporizador más señalización. Incluye cálculo y determinación de batería de capacitores, gabinete, protecciones, maniobra con contactor (si es requendo) y relé varimétrico más señalización.
16	Tablero de corrección de factor de potencia automático hasta 150 Kvar 6 pasos CORRIENTES DEBILES Colocación de porteros eléctricos unifamiliar (audio solo) Portero de un pulsador en domicilio hasta 20 m	\$ 35152 Precio \$ 2636	Notas aclaratorias
	Portero de un pulsador en domicilio hasta 20 m Portero de un pulsador con dos teléfonos para domicilio hasta 20 m Por elementos adicionales (teléfono, cerradura, repetidos, etc.) Colocación de porteros eléctricos unifamiliar (audio + video)	\$ 2636 \$ 3958 \$ 800 \$ 5019	No incluye canalización, se supone la existencia de la misma. Si no hay canalización, cotizarla por aparte.
16.05 17 17.01	Por elementos adicionales portero c/video (teléfono, cerradura, repetidos, etc.) Portero en edificio (audio sólo) multifamiliar Instalación de frente	\$ 1373 Precio \$ 2341	Notas aclaratorias No incluye canalización, se supone la existencia de la misma. Si no hay canalización, cotizarla por aparte.
17.03 17.04	Cableado por departamento Cableado línea troncal por caja de derivación Colocación de teléfonos Cerradura eléctrica	\$733 \$733 \$505 \$825	
11.03	Centrales telefónicas	Precio	Notas aclaratorias No incluye canalización, se supone la existencia de la misma.
18.01	Central telefónica con 2 internos Central telefónica con 4 internos Central telefónica con 8 internos	\$ 2964 \$ 3950 \$ 4716	Si no hay canalización, cotizarla por aparte.

\$ 615

\$ 6847

\$10948 \$12321

Precio

\$38

\$171

\$ 265

\$168

\$178

\$202

\$ 932

\$966

Notas aclaratorias

No incluye canalización, se supone la existencia de la misma. Si no hay canalización, cotizarla por aparte.

No incluye canalización, se supone la existencia de la misma. Si no hay canalización, cotizarla por aparte.

19.03 Central de 6 a 18 cámaras

20.05 Colocación de derivadores TV

20.06 Colocación de fichas o tomas de red

19.04 Central de CCTV cerrado

19.01 Cableado de cámaras de seguridad por boca

20.04 Colocación de fichas o tomas de teléfono o TV

20.01 Cableado de red, teléfono o TV x metro en cañerías o cablecanal

20.02 Cableado de red, teléfono o TV x metro en bandejas a < 4 m

20.03 Cableado de red, teléfono o TV x metro en bandejas a > 4 m

20.07 Colocación de tomas de TV y teléfono con cableado hasta 20 m

20.08 Colocación de tomas de red con cableado hasta 20 m

19.02 Central hasta 6 cámaras de seguridad