

UNIVERSIDAD TECNOLOGICA NACIONAL Facultad Regional Concepción del Uruguay INGENIERIA ELECTROMECANICA

PROYECTO FINAL DE CARRERA (P F C)

Diseño de grúa para Trenes Argentinos Cargas de Concordia

Proyecto Nº: PFC 1909A Autores: Ledesma, Franco Pezzatti, Santiago

Tutor: Ing. Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. Aníbal de Carli

AÑO 2019

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Contenido

- A Introducción y Situación problemática
- B Objetivos, Alcances y Plan de trabajo
- C Memorias de Calculo
- D Ingeniería Básica
- E Ingeniería de Detalles

F – Anexos

- 1. Normativas de aplicación
- 2. Estándares propios de proyecto
- 3. Definiciones y Glosario
- 4. Referencias bibliográficas y Catálogos
- 5. Planos
- 6. Simulación

G – Resumen ejecutivos y Agradecimientos

UNIVERSIDAD TECNOLOGICA NACIONAL Facultad Regional Concepción del Uruguay INGENIERIA ELECTROMECANICA

PROYECTO FINAL DE CARRERA (P F C)

Diseño de grúa para Trenes Argentinos Cargas de Concordia

Introducción y situación problemática

Proyecto Nº: PFC-1909A Autores: Ledesma, Franco

Pezzatti, Santiago

Tutor: Ing. Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. Aníbal De Carli

AÑO 2019

Índice

1.	Introducción	1
2.	Situación problemática	2
	·	
3.	Marco teórico y estado del arte	3

1. Introducción

Trenes Argentinos Cargas es una empresa pública argentina de transporte ferroviario de cargas.

Fue creada en mayo de 2013 por decreto del gobierno de turno para hacerse cargo de la explotación integral de la red carguera del Ferrocarril General Belgrano de la red ferroviaria argentina, para luego integrarse también la red de cargas de los ferrocarriles General Urquiza, General San Martín, Mitre y un sector del Ferrocarril Sarmiento.

El predio de ferrocarril Belgrano en la ciudad de Concordia en el departamento Concordia, provincia de Entre Ríos, está ubicado sobre la Avenida Robinson, contigua a la Estación Central Urquiza, como se indica en la imagen. En el mismo se realizan las tareas de mantenimiento y puesta en marcha de locomotoras.

Figura 1.1: Ubicación geográfica

2. Situación problemática

Actualmente el procedimiento para realizar las tareas de mantenimiento en las locomotoras, principalmente para el reemplazo de bogies entre otras tareas, presenta las siguientes dificultades:

- 1. **Pérdidas de tiempo para realizar las maniobras de mantenimiento**: Las locomotoras se izan con una grúa ferroviaria TAKRAF, de a un lado a la vez.
- 2. **Peligros Operativos:** Los operarios corren gran peligro, ya que esta grúa actual no fue diseñada para realizar ese tipo de tareas.
- 3. Las tareas son realizadas a la intemperie: Implica que no pueden desarrollarse en días de clima desfavorable.

Figura 2.1 - Grúa Ferroviaria TAKRAF

3. Marco teórico y estado del arte

En Argentina las normas que rigen estos aspectos son las IRAM, las mismas no brindan información de los aspectos constructivos que debe integrar el sistema de izaje, sino que dan información de la seguridad que deben cumplir estos sistemas y sobre las condiciones generales para la operación y calificación del personal. Es por esto que para el cálculo se utilizara la bibliografía nombrada en el apartado correspondiente.

Otro ente regulatorio es ADIFSE "Administración de Infraestructuras Ferroviarias Sociedad del Estado" el cual no especifica nada al respecto en este tipo de equipo y para ello toma como respaldo las normas europeas UNE.

Como se menciona anteriormente existen normativas europeas que tratan de la clasificación de los diferentes equipos y sistemas de elevación, como así también de la importancia de la seguridad y condiciones generales para su operación. También existen normativas norteamericanas para el correcto diseño de perchas de izaje.

Las normas a utilizar en este proyecto son detalladas a continuación:

- UNE 58112-1:1991 "Grúas y aparatos de elevación. Clasificación"
- UNE 14033-3:2011 "Aplicaciones ferroviarias. Máquinas para la construcción y el mantenimiento que se desplazan exclusivamente sobre carriles"
- IRAM 3920 "Seguridad en equipos de izaje. Condiciones generales para la operación y calificación del personal"
- ISO 4301 FEM (Federación Europea de la Manutención) Sección I (cuadernos 2 y 4)
- DIN 15020 "Principio de accionamiento por cable"
- ASTM BTH-1 "Diseño de dispositivos de elevación debajo del gancho"
- ASME-B30.20 "Diseño de dispositivos de elevación debajo del gancho. Norma de seguridad para teleféricos, grúas, torres de perforación, polipastos, ganchos, gatos y eslingas"

UNIVERSIDAD TECNOLOGICA NACIONAL Facultad Regional Concepción del Uruguay INGENIERIA ELECTROMECANICA

PROYECTO FINAL DE CARRERA (P F C)

Diseño de grúa para Trenes Argentinos Cargas de Concordia

Objetivos, alcances y plan de trabajo

Proyecto Nº: PFC-1909A Autores: Ledesma, Franco Pezzatti, Santiago

Tutor: Ing. Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. Aníbal De Carli

AÑO 2019

Índice general

1.	Objetivos	1
	,	
2.	Alcances	1
3.	Impacto	1
٠.		
4	Plan de trabajo	-

1. Objetivos

Los objetivos del PFC son:

- O1. **Diseñar un sistema de elevación para locomotoras de hasta 120 toneladas** para tareas de mantenimiento de **bogies**.
- O2. Reducción de Riesgos Operativos: Mejorar las condiciones de Seguridad y Salud Operativa.
- O3. Reducir los tiempos de mantenimiento.

2. Alcances

- A1. Determinación del tipo de estructura del sistema de elevación.
- A2. Ingeniería de Detalle de la estructura de la grúa.
- A3. Ingeniería de Detalle de la percha de izaje.
- A4. Evaluación de costos.

Por otra parte, no se consideran los siguientes puntos:

- Cálculo d fundaciones del sistema. (Incumbencia: Ingeniería Civil).
- Diseño del sistema de suministro eléctrico.
- Plan de montaje, montaje propiamente dicho y puesta en funcionamiento de la grúa, adjudicación y compra de elementos.
- Plan de mantenimiento de la misma.

3. Impacto

El PFC generará un impacto positivo en el ferrocarril de Concordia tanto para los operarios de la grúa como para los encargados de las tareas de mantenimiento, generando los siguientes beneficios: Productividad

- Mejora en el manejo de la maquinaria a la hora de realizar el mantenimiento.
- Flexibilidad del sistema.

Seguridad

- Disminución de riesgo en la elevación de locomotoras.
- Mejoras en higiene y seguridad laboral.

Económico

 La implementación de este proyecto hace que, en las condiciones actuales del país, el taller de mantenimiento de Concordia pueda ser un punto clave en la región para la realización de dichas tareas. Esto conlleva a que se reduzcan los costos y tiempos de transporte hacia otros talleres existentes fuera de la región para realizar dichas tareas, aumentando así la productividad.

4. Plan de trabajo

- 1. Relevamiento del lugar donde se llevará a cabo la instalación.
- 2. Estudio de la problemática.
- 3. Estudio de normativa vigente.
- 4. Propuesta de Ingeniería Básica.
- 5. Ingeniería de Detalle de la instalación de acuerdo a los alcances

PROYECTO FINAL DE CARRERA (P F C)

Diseño de grúa para Trenes Argentinos Cargas de Concordia

Memorias de Calculo

Proyecto Nº: PFC-1909A Autores: Ledesma, Franco Pezzatti, Santiago

Tutor: Ing. Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. Aníbal De Carli

AÑO 2019

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Contenido

1.	Est	udio	de situación problemática	1
2.	Ant	eced	lentes	2
2	2.1.	Grú	as Pórtico	2
	2.1	.1.	Grúa Pórtico Birriel	3
	2.1	.2.	Grúa Pórtico Monorriel	3
2	2.2.	Grú	a Semipórtico	4
2	2.3.	Grú	as Puente	5
	2.3	.1.	Grúa Puente Birriel	5
	2.3	.2.	Grúa Puente Monorriel	6
3.	Ele	cciór	n del tipo de grúa	7
4.	Din	nensi	ones principales de la grúa puente	7
5.	Det	ermi	nación de los coeficientes de seguridad	8
5	5.1.	Ten	siones estáticas admisibles	8
5	5.2.	Ten	siones admisibles para el acero ASTM A36	9
5	5.3.	Ten	siones admisibles para el acero SAE 1045	9
6.	Dis	eño (del puente grúa	10
6	6.1.	Dis	eño de percha de izaje (PGA-PI)	10
	6.1	.1.	Obtención de los esfuerzos sobre la viga	10
	6.1	.2.	Dimensionamiento de la viga cajón PGA-PI	11
	6.1	.3.	Cálculo de la soldadura de la viga	12
	6.1	.4.	Calculo y selección de pernos PGA-PI-XX	12
	6.1	.5.	Verificación del espesor de la chapa PGA-PI	17
	6.1	.6.	Verificación del diámetro de los pernos PGA-PI-XX	18
	6.1	.7.	Selección de eslingas PGA-PI-ES	19
	6.1	.8.	Cálculo de las tijeras de izaje PGA-PI-08	19
	6.1	.9.	PGA-PI conformada	20
6	5.2.	Sel	ección del grupo de mecanismo para PGA-SI-50	21
6	6.3.	Sel	ección de los componentes del sistema de elevación PGA-SI-50	22
	6.3.1.		Selección de polipasto y carro PGA-SI-50-CI	
	6.3.2.		Selección de la pasteca y disposición del aparejo PGA-SI-50-PA	26
	6.3.3.		Selección del cable PGA-SI-50-CA	
	6.3		Características del sistema seleccionado	
6	6.4.	Sel	ección del grupo de mecanismo para PGA-SI-10	30
6	3.5	Sel	ección de los componentes del sistema de elevación PGA-SI-10	31

6.5.1.	Selección de polipasto y carro PGA-SI-10-CI	31
6.5.2.	Selección de la pasteca y disposición del aparejo PGA-SI-10-PA	34
6.5.3.	Selección del cable PGA-SI-10-CA	36
6.5.4.	Características del sistema seleccionado	36
6.6. Soli	citaciones en la estructura	37
6.6.1.	Solicitaciones principales	37
6.6.2.	Solicitaciones debidas a movimientos verticales PGA-SI-50	38
6.6.3.	Solicitaciones debidas a movimientos horizontales PGA-SI-50	39
6.6.4.	Combinación de solicitaciones PGA-SI-50	41
6.6.5.	Solicitaciones debidas a movimientos verticales PGA-SI-10	42
6.6.6.	Solicitaciones debidas a movimientos horizontales PGA-SI-10	43
6.6.7.	Combinación de solicitaciones PGA-SI-10	45
6.7. Viga	a principal PGA-VP	46
6.7.1.	Cálculo de cargas R ₁ y R ₂ de PGA-SI-50-CI en PGA-VP	46
6.7.2.	Cálculo de cargas R ₁ y R ₂ de PGA-SI-10-CI en PGA-VP	47
6.7.3.	Cálculo de esfuerzos en viga principal PGA-VP	48
6.7.4.	Esfuerzo de corte en viga que solo contiene parte de PGA-SI-50-CI	48
6.7.5.	Momento flector en la viga que solo contiene a PGA-SI-50-CI	52
6.7.6.	Esfuerzo de corte en la viga que contiene ambos carros	55
6.7.7.	Momento flector en la viga que contiene ambos carros	57
6.7.8.	Momento flector debido al propio peso de la viga principal	62
6.7.9.	Esfuerzo de corte debido al propio peso de la viga principal	67
6.7.10.	Momento máximo resultante	67
6.7.11.	Esfuerzo de corte máximo resultante	69
6.7.12.	Verificación por resistencia de la viga principal propuesta	70
6.7.13.	Solicitaciones horizontales de las vigas principales	70
6.7.14.	Comprobación del ala comprimida al pandeo local	72
6.7.15.	Comprobación de flexión en las alas inferiores	73
6.7.16.	Construcción de las vigas principales	79
6.7.17.	Especificaciones viga principal PGA-VP	81
6.8. Viga	a testera PGA-VT	82
6.8.1.	Dimensionado por resistencia	82
6.8.2.	Construcción de las vigas testeras	86
6.8.3.	Sistema de traslación	88
6.8.4.	Verificación al corte de la unión entre la viga testera y la principal	98
6.8.5.	Comprobación del ala comprimida al pandeo local	100

(6.8.6.	Calculo para uniones roscadas	101
(6.8.7.	Sistema de propulsión	104
(3.8.8.	Especificaciones viga testera PGA-VT	108
6.9). Vi	gas carrileras PGC-VC	109
(5.9.1.	Dimensionado por resistencia	109
(5.9.2.	Construcción de las vigas carrileras	113
(6.9.3.	Comprobación del ala comprimida al pandeo local	116
(6.9.4.	Unión entre vigas carrileras	117
(6.9.5.	Especificaciones viga carrilera PGC-VC	118
6.1	0.	Columna de apoyo PGC-CO	119
(5.10.1	. Selección del perfil para los apoyos	121
(5.10.2	. Soportes de unión con viga carrilera	123
6.1	1.	Soldadura de la estructura	124
6.1	2.	Pintura de la estructura	125

1. Estudio de situación problemática

Actualmente el procedimiento para realizar las tareas de mantenimiento en las locomotoras en el taller de Concordia, principalmente para el reemplazo de bogies entre otras tareas, presenta las siguientes dificultades:

- Las locomotoras se izan con una grúa ferroviaria TAKRAF, de a un lado a la vez, esto quiere decir que se cambia uno de los dos bogies y luego la locomotora avanza hacia la mesa giratoria donde regresa de forma invertida y lista para el cambio del segundo bogie. Este método conlleva una elevada perdida tiempo para realizar las maniobras.
- Los operarios corren gran peligro, ya que esta grúa no fue diseñada para realizar ese tipo de tareas.
- Las tareas son realizadas a la intemperie esto implica que no pueden desarrollarse en días de clima desfavorable.

Figura 1.1: Grúa Ferroviaria TAKRAF

2. Antecedentes.

En la actualidad existen diferentes equipos para el izaje de locomotoras, los cuales se clasifican en:

- Grúa Pórtico
 - o Grúa Pórtico Birriel.
 - o Grúa pórtico Monorriel.
- Grúa Semipórtico.
- Grúa Puente
 - Grúa Puente Birriel.
 - Grúa Puente Monorriel.

2.1. Grúas Pórtico

La grúa pórtico es un aparato de elevación compuesto por dos o cuatro postes que elevan

estructura puente por donde circula el mecanismo de elevación.

El movimiento longitudinal se realiza a nivel del suelo a través de unos paquetes de rodadura situados en las partes inferiores de los postes.

El movimiento transversal se lleva a cabo en la viga puente, elevada, sobre unos carriles metálicos dispuestos a tal efecto.

El movimiento vertical se realiza a través del mecanismo de elevación situado en el carro móvil.

La misma está compuesta por:

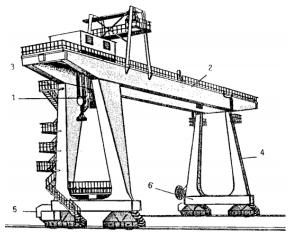


Figura 2.1: Grúa Pórtico y sus componentes

- 1. Mecanismo de elevación
- 2. Viga puente
- 3. Traviesa de cierre
- 4. Poste
- 5. Paquete de rodadura
- 6. Testero

2.1.1. Grúa Pórtico Birriel

La grúa pórtico birriel proporciona una solución económica de elevar y transportar materiales voluminosos. Normalmente, las grúas pórticos birrieles sirven de equipos principales de elevación en almacenamientos abiertos, puertos, muelles, etc. Gracias a las ruedas móviles, la grúa de pórtico birriel puede trabajar en cualquier lugar.

Figura 2.1.1: Grúa Pórtico Birriel

2.1.2. Grúa Pórtico Monorriel

La grúa pórtico monorriel es un tipo especial de grúa pórtico utilizada para elevar cargas pequeñas con un polipasto montado a la viga principal. Al mismo tiempo, dos o cuatro soportes suelen estar fijados al suelo. El mecanismo completo realiza la traslación y elevación de todos objetos. Generalmente, la grúa pórtico monorriel funciona sobre rieles a lo largo de la superficie a cubrir. Además, es adecuada para cargar, descargar y manipular diversos materiales en el mercado del acero, el almacén, el patio de materiales, la estación de carga ferroviaria y o una terminal portuaria en espacios abiertos.

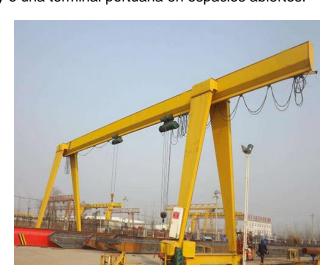


Figura 2.1.2: Grúa Pórtico Monorriel

2.2. Grúa Semipórtico

Como un equipo de elevación al igual que lo ya mencionado, se usa principalmente para objetos y materiales en el aire libre y en talleres. Tiene ambas características de puente grúa y pórtico grúa. Este equipo puede dividirse en grúa semipórtico monorriel y grúa semipórtico birriel según diferentes capacidades de carga.

Además, las grúas semipórticos siempre están equipados con polipastos eléctricos para su trabajo de elevación. El mecanismo de traslación del carro y mecanismo del avance de la grúa trabajan en conjunto para realizar la operación de elevación y movimiento. La misma se compone de varias partes:

- viga de carga
- carro o polipasto
- patas de apoyo
- sistema eléctrico
- carrileras
- ruedas

Sus patas de un lado corren en los rieles del suelo, y por el otro lado, existen testeros que corren a través de los raíles elevados de un muro del taller o fábrica.

Figura 2.2.1: Grúa Semipórtico Birriel

Figura 2.2.2: Grúa Semipórtico Monorriel

2.3. Grúas Puente

El puente grúa es un tipo de aparato de elevación compuesto por una viga simple o doble, biapoyada sobre dos carriles elevados sobre unos postes, dispuestos a tal efecto o componentes de la estructura resistente de la nave o edificación.

El movimiento longitudinal se lleva a cabo mediante la traslación de la viga principal o puente a través de los carriles elevados. La rodadura es, por lo general, por ruedas metálicas sobre carriles también metálicos.

El movimiento transversal se realiza mediante el desplazamiento de un polipasto o carro sobre uno o dos carriles dispuestos sobre la viga principal. Como en el caso anterior la rodadura es para todos los casos de tipo acero-acero.

El movimiento vertical se ejecuta a través del mecanismo de elevación.

El puente grúa se compone de la siguiente manera:

Figura 2.3: Grúa Puente y sus componentes

- 1. Mecanismo de elevación
- 2. Viga principal
- 3. Viga testero
- 4. Camino de rodadura

2.3.1. Grúa Puente Birriel

Las grúas birriel, gracias a los sistemas de cálculos utilizados, tienen el peso ajustado, reduciéndose de esta manera las cargas sobre la estructura, y presentan una mayor estabilidad para el manejo de cargas voluminosas.

Figura 2.3.1: Grúa Puente Birriel

2.3.2. Grúa Puente Monorriel

La estandarización de grúas de configuración mono viga las hace óptimas para conseguir el máximo aprovechamiento de espacios, además de resultar más ligeras. Las mismas son utilizadas para cargas más reducidas.

Figura 2.3.2: Grúa Puente Monorriel

3. Elección del tipo de grúa.

Para el correspondiente proyecto se optó por dos puentes grúa birrieles, ambos de igual carga para dividir a la misma en dos partes iguales y no diseñar un solo puente grúa que sea muy voluminoso.

También por recomendación del autor Antonio Miravete se decidió por la grúa puente y no grúa pórtico o semipórtico. La grúa seleccionada tiene las siguientes ventajas:

- Mejor aprovechamiento de la altura.
- Permite las más altas velocidades de traslación de grúa y orientación de carro, gracias a la rigidez obtenida por tener el chasis de doble viga.
- Movimiento de la carga sin oscilaciones gracias a la traslación sin escalonamientos
- Opción de montaje en el mismo carro de un polipasto auxiliar, además del polipasto de elevación principal, para tareas más ligeras.
- Mayor seguridad debido a los apoyos, en comparación a la grúa pórtico.
- Menor número de obstáculos físicos en el piso del taller.
- Mayor flexibilidad para la cobertura de gancho y el control de la carga.
- Mejor distribución de cargas sobre la estructura.
- Mayor estabilidad de la carga, ideales para cargas voluminosas.

4. Dimensiones principales de la grúa puente.

Estas dimensiones se tomaron en base al espacio físico con el que cuenta el taller ferroviario de Concordia, el cual se detalla en el plano PLA-01. Las mismas son muy importantes ya que con ellas se realiza el dimensionado durante todo el proyecto.

Para el caso de la altura se nos pidió, por parte de la empresa, que tomáramos el doble de la altura de la locomotora más alta (caso más desfavorable), por si se presenta la necesidad de pasar una locomotora por encima de otra que se encuentre en una vía paralela.

Dichas medidas son las siguientes:

- Altura de gancho = 10m
- Ancho= 20m
- Largo= 60m
- Carga máxima= 80tn

5. Determinación de los coeficientes de seguridad.

Previo al inicio de algún cálculo deben hallarse los coeficientes de seguridad que serán útiles en este diseño, para ello se tuvo en cuenta las sugerencias de P. Stiopin: "Resistencia de los materiales" (año1.976). Siguiendo la siguiente expresión:

$$\sigma_{adm} = \frac{\sigma_f}{n}$$

Donde:

 σ_{adm} es la tensión admisible del material. σ_f es la tensión de fluencia del material. n es el coeficiente de seguridad.

A su vez, n esta compuesta por:

$$n = n_1 \cdot n_2 \cdot n_3$$

Donde:

 n_1 es el coeficiente que considera el error posible al determinar las cargas. n_2 es el coeficiente que tiene en cuenta la heterogeneidad del material. n_3 es el coeficiente que tiene en cuenta el grado de responsabilidad de la pieza.

Para nuestro cálculo se consideró:

$$n = 1,3 \cdot 1,5 \cdot 1,5$$

 $n = 2,535$

5.1. Tensiones estáticas admisibles

Para la obtención de las tensiones estáticas admisibles, se tuvo en cuenta las sugerencias del autor G. Niemann: "Tratado teórico práctico de Elementos de Máquinas Cálculo, diseño y construcción" (año 1.973). El mismo da las siguientes relaciones de tensiones:

Tensiones normales: el coeficiente de seguridad aplica valores de 1,1 – 1,8 de la tensión de fluencia del material, por lo que se adopta 1,6.

$$\sigma_{adm} = \frac{\sigma_f}{1.6}$$

Tensiones de corte: en este caso, su valor es de 0,55 veces la tensión normal admisible.

$$\tau_{adm} = 0.55 \cdot \sigma_{adm}$$

Tensión de aplastamiento: será 2 veces la tensión normal admisible.

$$\sigma_{apl} = 2 \cdot \sigma_{adm}$$

5.2. Tensiones admisibles para el acero ASTM A36

Las chapas normalizadas que se utilizaran para hacer las vigas en este proyecto son fabricadas con este acero, cuya tensión de fluencia es $\sigma_f = 2500 \ kg/cm^2$, dato obtenido por catálogo de Sidersa S.A. Por tanto, sus tensiones admisibles son:

$$\sigma_{admA36} = \frac{2500 \frac{kg}{cm^2}}{1,6 * 2,535} \rightarrow \sigma_{admA36} = 616,4 \frac{kg}{cm^2}$$

$$\tau_{admA36} = 0,55 \cdot 616,4 \frac{kg}{cm^2} \rightarrow \tau_{admA36} = 339 \frac{kg}{cm^2}$$

$$\sigma_{aplA36} = 2 \cdot 616,4 \frac{kg}{cm^2} \rightarrow \sigma_{aplA36} = 678 \frac{kg}{cm^2}$$

5.3. Tensiones admisibles para el acero SAE 1045

Los pernos que se van a calcular en este proyecto son fabricados con este acero, cuya tensión de fluencia es $\sigma_f = 3900 \ kg/cm^2$, dato obtenido por catálogo de Sidersa S.A. Por tanto, sus tensiones admisibles son:

$$\sigma_{adm1045} = \frac{3900 \frac{kg}{cm^2}}{1,6 * 2,535} \rightarrow \sigma_{adm1045} = 961,54 \frac{kg}{cm^2}$$

$$\tau_{adm1045} = 0,55 \cdot 961,54 \frac{kg}{cm^2} \rightarrow \tau_{adm1045} = 528,85 \frac{kg}{cm^2}$$

$$\sigma_{apl1045} = 2 \cdot 961,54 \frac{kg}{cm^2} \rightarrow \sigma_{apl1045} = 1923,08 \frac{kg}{cm^2}$$

Como ya se calculó anteriormente las tensiones admisibles verifican de acuerdo al Decreto Nacional 351/79 de la Ley 19587 de Higiene y Seguridad en el Trabajo, la cual detalla en el Artículo 118 que "los elementos de las grúas se construirán y montarán con los coeficientes de seguridad siguientes, para su carga máxima admisible":

- Tres, para ganchos empleados en los aparatos accionados a mano.
- Cuatro, para ganchos en los accionados a fuerza motriz.
- Cinco, para aquellos que se empleen en el izado o transporte de materiales peligrosos.
- Cuatro, para las partes estructurales.
- Seis, para los cables izadores.

6. Diseño del puente grúa.

Antes de iniciar los calculo cabe destacar que la carga de trabajo es de 80tn pero se optó por una carga de 90tn para que los elementos que componen el izaje no estén siempre trabajando a máxima carga lo que conlleva a que trabajen más aliviados y así prolongar los tiempos de mantenimiento como así también la vida útil del mismo.

Como se dijo en el apartado 2, al ser dos puentes grúas gemelos, se calcularán y diseñarán los distintos componentes que conforman a dicha grúa una sola vez.

6.1. Diseño de percha de izaje (PGA-PI)

Para la percha se diseña una viga cajón y se obtienen los esfuerzos sobre la misma.

6.1.1. Obtención de los esfuerzos sobre la viga

Se la considero una viga simplemente apoyada:

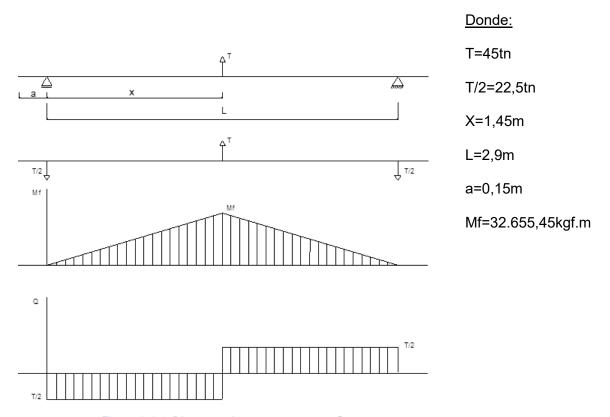


Figura 6.1.1: Diagrama de corte y momento flector

Aplicando la expresión de la Ley de Navier obtenemos el momento resistente mínimo necesario a partir del cual diseñaremos nuestra viga cajón.

Como:

$$\sigma_{admA36} = \frac{M_f}{W_{nes}} \rightarrow W_{nes} = \frac{M_f}{\sigma_{admA36}}$$

$$W_{nes} = \frac{M_f}{\sigma_{admA36}} = \frac{3265545 \ kgf. cm}{616.4 \frac{kg}{cm^2}} \rightarrow W_{nes} = 5301 cm^3$$

6.1.2. Dimensionamiento de la viga cajón PGA-PI

Quedando la viga propuesta de la siguiente forma:

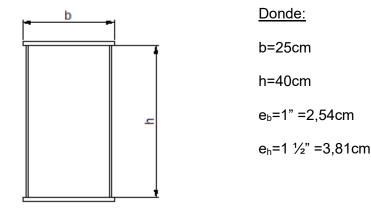


Figura 6.1.2: Esquema viga principal

Con estos datos propuestos, se calculan las propiedades resistentes para comprobar que verifique con el momento resistente calculado en el apartado anterior:

$$A = 2 \cdot (20cm \cdot 3,81cm) + 2 \cdot (40cm \cdot 2,54cm) = 132,7cm^{2}$$

$$I_{x} = \frac{b \cdot h^{3}}{12} = 2 \cdot \left(\frac{2,54cm \cdot (40cm)^{3}}{12}\right) + 2 \cdot \left(\frac{25cm \cdot (3,81cm)^{3}}{12} + 25cm \cdot 3,81cm \cdot (21,9cm)^{2}\right)$$

$$I_{x} = 118689,48cm^{4}$$

$$W_{x} = \frac{I_{x}}{v} = \frac{118689,48cm^{4}}{21.9cm} \rightarrow W_{x} = 5419,61cm^{3}$$

Por lo tanto, verifica nuestra viga cajón ya que el momento resistente obtenido es superior.

6.1.3. Cálculo de la soldadura de la viga

En este apartado se calcula la soldadura de la unión de las chapas que conforman a la viga cajón como se vio anteriormente. Para este cálculo se tuvo como consideración las sugerencias del autor G. Niemann.

Tensión de soldadura:

$$\rho = \frac{P}{a \cdot L_n} \le \rho_{adm}$$

<u>Donde:</u> L_n : es la longitud de soldadura y equivale a $L-2 \cdot a$ (como en nuestro caso la soldadura es ininterrumpida nos queda $L_n = L$ en nuestro caso 3,2m).

a: es el espesor de cordón de soldadura.

 ρ_{adm} : es la tensión de soldadura admisible y equivale a $\rho_{adm} = V \cdot V_2 \cdot \sigma_{adm}$ (para carga estática).

P: es la carga y en nuestro caso equivale a 45tn.

$$\rho_{adm} = V \cdot V_2 \cdot \sigma_{adm}$$

 $\rho_{adm} = V \cdot V_2 \cdot \sigma_{adm}$ Hallo $V y V_2$ por tabla 7.7:

V = 0.65 (para cualquier solicitación)

 $V_2 = 1$ (para soldadura fuerte)

$$\rho_{adm} = V \cdot V_2 \cdot \sigma_{adm} = 0,65 \cdot 1 \cdot 616,4 \frac{kg}{cm^2} \rightarrow \rho_{adm} = 400,7 \frac{kg}{cm^2}$$

Para nuestro caso se emplea la unión en ángulo unilateral. Como espesor estándar a de soldadura proponemos, según el autor:

$$a = 0.7 \cdot e$$

Donde e es el espesor de la chapa mas delgada (del alma = 2,54cm), quedando:

$$a = 0.7 \cdot 2.54cm \rightarrow a = 1.778cm$$

$$L_n \ge \frac{P}{\rho_{adm} \cdot a} = \frac{45000kg}{400.7 \frac{kg}{cm^2} \cdot 1,778cm} \to \underline{L_n \ge 63,16cm}$$

Por lo tanto, verifica ya que la soldadura propuesta será ininterrumpida a lo largo de los 3,2m de la longitud de viga cajón de la percha.

6.1.4. Calculo y selección de pernos PGA-PI-XX

Los pernos de la percha están divididos en distintos tipos, debido a su función. Los mismos serán calculados siguiendo las sugerencias del autor G. Niemann.

$$d=2,17\cdot \sqrt[3]{rac{M_f}{\sigma_{adm}}}$$
 $rac{ ext{Donde:}}{d: ext{ es el diámetro del perno}}$ $M_f: ext{ es el momento flector que sufre el perno}$

 σ_{adm} : es la tensión normal admisible del acero SAE 1045 obtenido anteriormente.

Pernos que conectan las eslingas de izaje con la percha. Los mismos fueron propuestos de 30.0568 cm. Se calculará una vez por ser pernos mellizos.

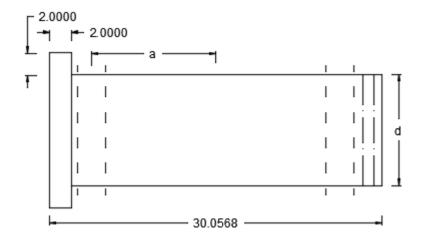


Figura 6.1.4-04: Esquema de perno laterales

$$M_f = P \cdot \frac{a}{2}$$

Donde:

P: es la carga aplicada en el centro del perno (al ser dos pernos de este tipo se divide la carga de la percha en dos). a: distancia al centro de la pared de chapa PGA-PI-01 al centro del perno.

$$M_f = P \cdot \frac{a}{2} = 22.500 kg \cdot \frac{11,23 cm}{2}$$

 $M_f = 126.337,5 kg \cdot cm$

$$d = 2,17 \cdot \sqrt[3]{\frac{M_f}{\sigma_{adm1045}}} = 2,17 \cdot \sqrt[3]{\frac{126.337,5kg \cdot cm}{961,54 \frac{kg}{cm^2}}}$$

$$d = 11cm$$

Perno donde serán sujetadas las tijeras de izaje al cuerpo de la percha. Los mismos fueron propuestos de 40.2 cm de largo.

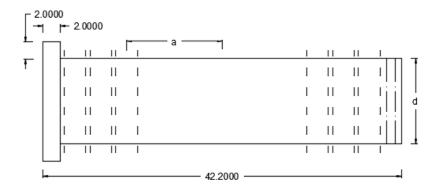


Figura 6.1.4-05: Esquema de perno central

$$M_f = P \cdot \frac{a}{2}$$

Donde:

P: carga aplicada en el centro del perno (al ser un solo perno de este tipo por percha, la carga será la carga de percha). a: distancia al centro de la pared de chapa PGA-PI-01 al centro del perno.

$$M_f = P \cdot \frac{a}{2} = 45.000 kg \cdot \frac{11,23 cm}{2}$$

$$M_f = 252.675 kg \cdot cm$$

$$d = 2,17 \cdot \sqrt[3]{\frac{M_f}{\sigma_{adm1045}}} = 2,17 \cdot \sqrt[3]{\frac{252.675kg \cdot cm}{961,54 \frac{kg}{cm^2}}}$$

$$d = 14cm$$

Perno que permite conectar la tijera interior con el gancho de izaje. El mismo fue propuesto de 36.12 cm de largo.

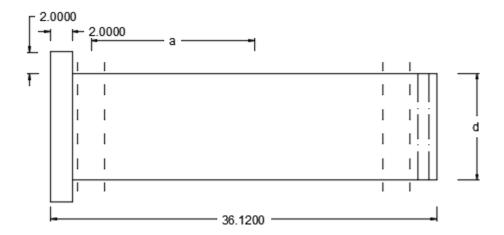


Figura 6.1.4-06: Esquema de perno-gancho interior

$$M_f = P \cdot \frac{a}{2}$$

Donde:

P: es la carga aplicada en el centro del perno (al ser dos pernos de este tipo se divide la carga de la percha en dos). a: distancia al centro de la pared de chapa PGA-PI-01 al centro del perno.

$$M_f = P \cdot \frac{a}{2} = 22.500kg \cdot \frac{15,29cm}{2}$$

$$M_f = 172.012,5kg \cdot cm$$

$$d = 2,17 \cdot \sqrt[3]{\frac{M_f}{\sigma_{adm1045}}} = 2,17 \cdot \sqrt[3]{\frac{172.012,5kg \cdot cm}{961,54 \frac{kg}{cm^2}}}$$

Perno que permite conectar la tijera exterior con el gancho de izaje. El mismo fue propuesto de 42.2 cm de largo.

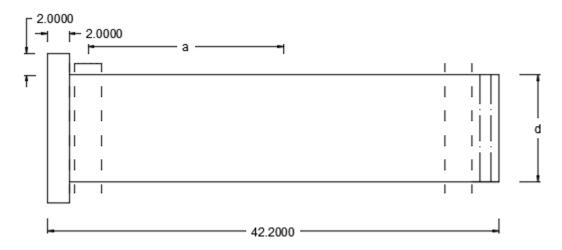


Figura 6.1.4-06: Esquema de perno-gancho exterior

$$M_f = P \cdot \frac{a}{2}$$

Donde:

P: es la carga aplicada en el centro del perno (al ser dos pernos de este tipo se divide la carga de la percha en dos). a: distancia al centro de la pared de chapa PGA-PI-01 al centro del perno.

$$M_f = P \cdot \frac{a}{2} = 22.500 kg \cdot \frac{18.33 cm}{2}$$
 $M_f = 206.212,5 kg \cdot cm$

$$d = 2,17 \cdot \sqrt[3]{\frac{M_f}{\sigma_{adm1045}}} = 2,17 \cdot \sqrt[3]{\frac{206.212,5kg \cdot cm}{961,54 \frac{kg}{cm^2}}}$$

$$d = 13cm$$

6.1.5. Verificación del espesor de la chapa PGA-PI

Ambas se verifican a continuación al corte y al aplastamiento:

 $\tau_{adm} = \frac{P}{A_c}$ Donde: τ_{adm} : tensión de corte admisible ya establecida del acero

ASTM A36

 A_c : área de corte de la chapa.

a: altura (propuesta).e: espesor a corroborar

c. dopodor a dorros

 $\sigma_{apl} = \frac{P}{A_{apl}}$ Donde: σ_{apl} : tensión de aplastamiento admisible ya establecida del

acero ASTM A36. $A_{apl} = \frac{\pi \cdot d}{2} \cdot e$ P: carga aplicada en cada chapa (mitad de carga aplicada por perno PGA-PI-03).

 A_{apl} : área de aplastamiento de la chapa.

d: diámetro del perno PGA-PI-03.

e: espesor a corroborar

Se propuso colocar los pernos PGA-PI-04 a 7cm como altura a la base. Despejando el espesor en ambas ecuaciones nos queda:

Al corte:

$$e = \frac{P}{\tau_{adm} \cdot a \cdot 2} = \frac{11250kg}{339 \frac{kg}{cm^2} \cdot 7cm \cdot 2} \rightarrow e = 2,37cm$$

Al aplastamiento:

$$e = \frac{P}{\sigma_{apl} \cdot \frac{\pi \cdot d}{2}} = \frac{11250kg}{678 \frac{kg}{cm^2} \cdot \frac{\pi \cdot 11cm}{2}} \rightarrow e = 0.96cm$$

Por lo tanto, verifica el espesor de chapa seleccionado de 1 pulgada. Pero en lugar de ubicarlo a 7cm del piso, será a 15cm que de igual manera verifican los cálculos anteriores.

Para el caso del perno PGA-PI-05 se propuso colocarlo a 20 cm como altura a la base. Despejando el espesor en ambas ecuaciones nos queda:

Al corte:

$$e = \frac{P}{\tau_{adm} \cdot a \cdot 2} = \frac{22500kg}{339 \frac{kg}{cm^2} \cdot 20cm \cdot 2} \rightarrow e = 1,66cm$$

Al aplastamiento:

$$e = \frac{P}{\sigma_{apl} \cdot \frac{\pi \cdot d}{2}} = \frac{22500kg}{678 \frac{kg}{cm^2} \cdot \frac{\pi \cdot 14cm}{2}} \rightarrow e = 1,51cm$$

Por lo tanto, verifica el espesor de chapa seleccionado de 1 pulgada.

6.1.6. Verificación del diámetro de los pernos PGA-PI-XX

En este caso la verificación es al corte

$$\tau_{adm} = \frac{P}{A_c}$$

 au_{adm} : tensión de corte admisible ya establecida del acero

SAE 1045.

$$A_c = \frac{\pi \cdot d^2}{4}$$

d: diámetro a corroborar

Para el perno PGA-PI-04:

$$d = \sqrt{\frac{\frac{P}{\pi \cdot \tau_{adm}}}{4}} = \sqrt{\frac{\frac{22500kg}{\pi \cdot 528,85 \frac{kg}{cm^2}}}{4}} \to d = 7,36cm$$

Por lo tanto, verifica nuestro diámetro de 11cm.

Para el perno PGA-PI-05:

$$d = \sqrt{\frac{\frac{P}{\pi \cdot \tau_{adm}}}{4}} = \sqrt{\frac{\frac{45000kg}{\pi \cdot 528,85 \frac{kg}{cm^2}}}{4}} \to d = 10.41cm$$

Por lo tanto, verifica nuestro diámetro de 13cm.

Para el perno PGA-PI-06:

$$d = \sqrt{\frac{\frac{P}{\pi \cdot \tau_{adm}}}{4}} = \sqrt{\frac{\frac{22500kg}{\pi \cdot 528,85 \frac{kg}{cm^2}}}{4}} \to d = 7.36cm$$

Por lo tanto, verifica nuestro diámetro de 13cm.

Para el perno PGA-PI-07:

$$d = \sqrt{\frac{\frac{P}{\pi \cdot \tau_{adm}}}{4}} = \sqrt{\frac{22500kg}{\frac{\pi \cdot 528,85\frac{kg}{cm^2}}{4}}} \to d = 7.36cm$$

Por lo tanto, verifica nuestro diámetro de 13cm.

6.1.7. Selección de eslingas PGA-PI-ES

Se seleccionaron dos eslingas de poliéster redondas sin-fin de la marca Viking, de acuerdo a nuestra capacidad de carga:

		IGO DIÁMETRO APROXIMADO	PESO APROXIMADO	VERTICAL	ENLAZADA	EN "U" A 90°	EN "U" A 60°	EN "U" A 45°
COLOR DE FUNDA	CÓDIGO							
		Pulgadas	LBS/PIE	KG	KG	KG	KG	KG
Violeta	VRS1	0.60	0.30	1,179	953	2,359	2,041	1,633
Verde	VRS2	0.80	0.40	2,404	1,905	4,808	4,128	3,357
Amarilla	VRS3	1.00	0.44	3,810	3,048	7,620	6,577	5,352
Beige	VRS4	1.20	0.60	4,808	3,856	9,616	8,301	6,804
Roja	VRS5	1.30	0.80	5,987	4,808	11,975	10,342	8,437
Naranja	VRS6	1.40	0.90	7,620	6,178	15,241	12,474	10,206
Azul	VRS7	1.55	1.30	9,616	7,711	19,232	16,647	13,562
Naranja	VRS8	1.75	1.55	11,340	9,072	22,680	19,641	16,012
Naranja	VR9	2.13	2.00	14,061	11,249	28,123	24,312	19,867
Naranja	VR10	2.35	2.60	18,144	14,515	36,287	31,389	25,628
Naranja	VR11	3.15	3.40	23,995	19,232	48,081	41,549	33,929
Naranja	VR12	3.95	4.30	29,982	23,986	59,874	51,891	42,365
Naranja	VR13	4.80	5.50	40,823	32,659	81,647	70,670	57,697

Figura 6.1.7: Eslingas

Adoptando una longitud de 4m (13ft), nos da un peso aproximado de 20kg por eslinga.

6.1.8. Cálculo de las tijeras de izaje PGA-PI-08

Estas tijeras cuentan de dos chapas cada una de 1 pulgada de espesor, en la que en uno de sus extremos van solidarias al perno PGA-PI-05 y en el otro extremo cada tijera tiene un perno PGA-PI-06/07 del cual se acopla el gancho de izaje.

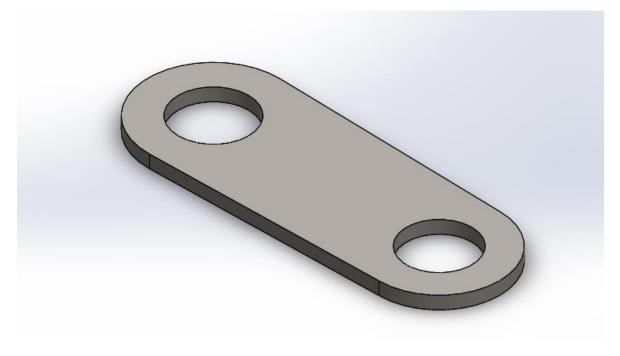


Figura 6.1.8: Esquema tijera

La longitud L se propuso de 70cm para tener facilidad a la hora de colocar el gancho de izaje.

Los cálculos aplicados a esta chapa son los mismos que se vieron para las paredes de la viga cajón, es por ello que se respetaron las dimensiones calculadas anteriormente como el espesor y la distancia hacia los bordes para evitar el corte de la misma.

6.1.9. PGA-PI conformada

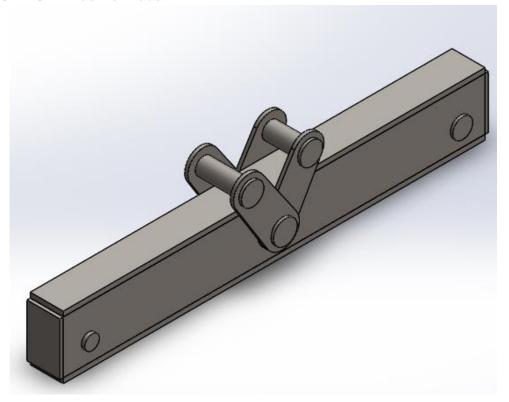


Figura 6.1.9: Percha de Izaje

Posee las siguientes características:

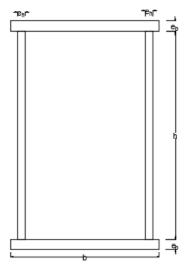


Figura 6.1.9-1: Esquema Percha de izaje

Donde:

h: altura del alma (40cm).

b: ancho del ala (25cm)

c: distancia entre paredes de alma (14,38cm)

e_h: espesor del alma (1 1/2" =3,81cm)

e_b: espesor del ala (1" =2,54cm)

L: longitud de la percha (3,2m)

G: peso propio de la percha (103,5kg/m).

6.2. Selección del grupo de mecanismo para PGA-SI-50

El procedimiento de cálculo se realizará siguiendo el libro "Los transportes en la ingeniería industrias", de Antonio Miravete entre otros, que responden a las normas ISO 4301, FEM sección I cuadernos I y II, y también DIN 15020.

Primero se determinará el grupo al que pertenecerá la grúa según clasificación expresada en las normas FEM sección I y DIN 15020. Dicha clasificación está dada en función del estado de carga (frecuencia de elevación de la carga máxima) y de la vida en horas de funcionamiento del equipo.

Para el cálculo de las horas de funcionamiento se consideraron 4,5 horas de uso por día, 20 días de trabajo al mes, 12 meses al año y se considera un lapso de 10 años de vida útil recomendado por los fabricantes de polipastos. Luego de ese tiempo se deberá realizar un mantenimiento íntegro del equipo.

$$T = 4.5 \frac{hs}{dia} * 20 \frac{dias}{mes} * 12 \frac{meses}{años} * 10años$$
$$T = 10800 hs$$

Al proponer una carga máxima de 90tn podemos seleccionar un factor K=0.125 a fin de tener un factor de servicio más bajo.

Grupo del mecanismo FEM/DIN 15020 ingresando con T y K obtenemos el grupo de mecanismo.

ESTADO DE CARGA VIDA EN HORAS DE FUNCIONAMIENTO REAL DEL MECANISMO FACTOR K. SERVICIO 800 1600 3200 6300 12500 25000 50000 Frecuencia muy redu-0,125 M3 1 Bm M4 1 Am M5 2 m M6 3 m M7 4 m cida de la carga máxima Frecuencia reducida de M5 2 m 0,250 M3 1 Bm M4 1 Am M6 3 m M7 4 m M8 5 m la carga máxima Frecuencia aproximada 0,500 M3 1 Bm M4 1 Am M5 2 m M6 3 m M7 4 m M8 5 m M8 5 m igual de cargas pequeñas medianas y máximas Frecuencia elevada de 1.000 M4 1 Am M5 2m M6 3 m M7 4 m M8 5 m M8 5 m M8 5 m

T-1. Grupo del mecanismo FEM/DIN 15020

la carga máxima

Figura 6.2: Tabla de Grupo del mecanismo FEM/DIN 15020

Obtenemos finalmente un grupo de trabajo FEM 2 m, DIN M5. Esta clasificación es muy importante ya que se debe tener en cuenta para llevar a cabo la selección de los elementos restantes.

6.3. Selección de los componentes del sistema de elevación PGA-

Como ya se explicó anteriormente en el apartado dos, se contará con dos puentes grúas birrieles gemelos, por lo que el cálculo estructural y selección de componentes se realizará una única vez.

En esta sección se van a seleccionar los diferentes tipos de elementos de suspensión que tienen como finalidad fundamental enclavar la carga a elevar con el apartado de elevación, se eligió la marca STAHL para tal fin.

Los elementos que se seleccionaran en esta sección son: polipasto y carro, cables, pasteca y motores.

6.3.1. Selección de polipasto y carro PGA-SI-50-CI

Partiendo del grupo de trabajo calculado (FEM 2m, DIN M5), entrando al catálogo del fabricante STAHL se puede comprobar dicho grupo. Con nuestro grupo y la capacidad de carga en toneladas (50tn), obtenemos un tipo de disposición de ramales de 6/1 para el modelo AS 7 del fabricante.

			Einstu	fung nach	FEM (ISO)) Clas	ssification to FEM (ISO) Cla	Classification selon FEM (ISO)			
			⊕ ₇				Тур Туре	FEM 9.661 ISO	FEM 9.511 ISO	FEM 9.683 * ISO		
			$\overline{\Phi}$					Seiltrieb Rope drive	Triebwerk Mechanism	Motor Motor		
			[kg]					Mouflage	Mécanisme	Moteur		
2/2-1	2/1 4/2-1	4/1 8/2-1	10/2-1	6/1 ZW 6/2-1	ZW 8/2-1	ZW 10/2-1			d'entraînement			
4/2-1	4/2-1	ZW 4/2-1	10/2-1	ZVV 0/Z-1	ZVV 0/Z-1	ZVV 10/Z-1						
-	-	20000	-	-	-	-	ASR(F) 7050-16 *1	M6	M6	M7		
							ASR(F) 7050-25 *1					
6300	12500	25000	-	40000	-	-	AS(F) 7063-20	M6	M6	M7		
							AS(F) 7063-25					
-	-	25000	-	-	-	-	ASR(F) 7063-12 *1	M5	M6	M7		
							ASR(F) 7063-20 *1					
8000	16000	32000	-	50000	-	-	AS(F) 7080-16	M5	M5	M7		
							AS 7080-20			M5		
							AS /080-25			M4		
							ASF 7080-20	1		M7		
							ASF 7080-25					
-	-	32000	-	-	-	-	ASR(F) 7080-10 *1 ASR(F) 7080-16 *1	M4	M5	M7		

Figura 6.3.1-1: Clasificación de carro según FEM

Selección del polipasto con las características del motor de elevación:

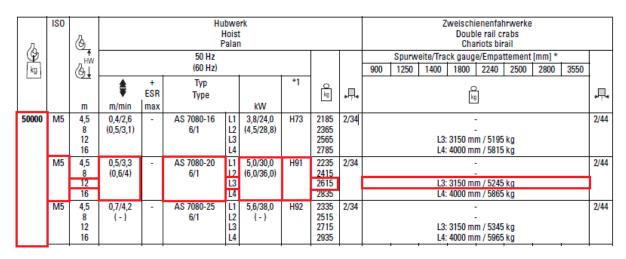


Figura 6.3.1-2: Características principales de carro y polipasto

Las características del sistema seleccionado:

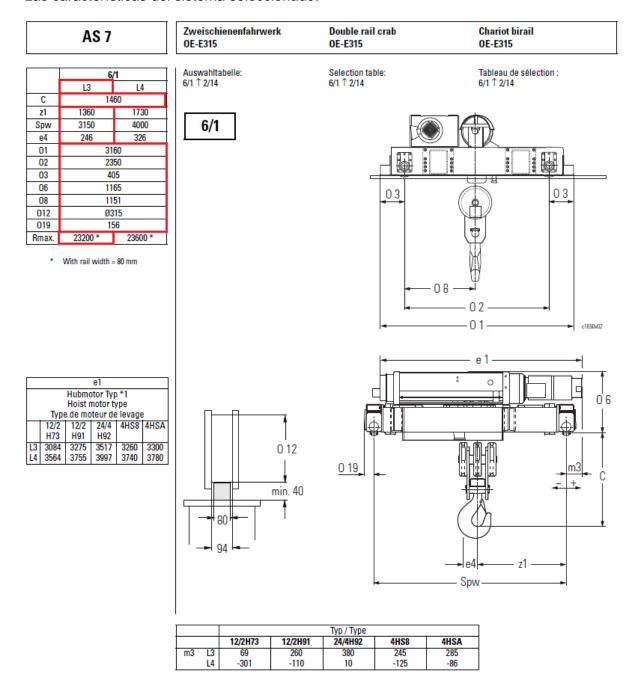


Figura 6.3.1-3: Ficha técnica de polipasto AS7

Luego en la tabla de selección, entramos con nuestra altura de gancho (12m) y seleccionamos el tipo de motor de elevación ME:

Hubmotor Hoist motor Moteur de			Supply	spannung voltage limentation		Netzanschluss- schalter Main isolator	Bestell-Nummer Order number No. de commande	
levage		50 Hz			60 Hz		Interrupteur de	
	220-240 V	380-415 V	500-525 V	208-230 V	360-400 V	440-480 V	secteur	
12/2H72	P3	-63	P1-32	P3-100	P3	-63		
12/2H91	*1	P3-100	P3-63	*1	P3-	·100	P1-32	01 790 17 70 0
4HS7	-	P1	-32		-	P1-32	P3-63	01 790 18 70 0
4HS8		P3	-63			P3-63	P3-100	01 790 19 70 0
4HSA		P3-	100			P3-100		

Figura 6.3.1-4: Motor de elevación

Y el motor de traslación MT para nuestra carga (50tn):

C	C071		euerte Fahrmotoren nenfahrwerke	Frequency co motors for double ra	ontrolled travel	Moteurs de direction avec com- mande par fréquence pour chariots birail
_		(÷)			50/60 Hz
1 12.		ä	7	Ţ	2,525 m/min	440 m/min
) <u>P</u>		۶			Typ/Type	Typ/Type
kg	2/1	4/1	10/2-1	6/1	kW	kW
	4/2-1	8/2-1			20/40% ED/DC/FM	20/40% ED/DC/FM
12500	AS 7063				SA-C 5730384	SA-C 5726384
16000	AS 7080				2,20	2,20
20000	AS 7100					
25000	AS 7125	AS 7063				SA-C 5726484
32000		AS 7080				3,20
40000		AS 7100				
45000			AS 7090		SA-C 5732484	SA-C 6728484
50000		AS 7125			3,20	3,20
40000				AS 7063	2x SA-C 5732384 2,20	2x SA-C 5728384 2,20
50000				AS 7080	·	2x SA-C 5728484
63000				AS 7100		3,20
80000				AS 7125		

Figura 6.3.1-5: Motor de traslación

Podemos determinar a partir del modelo que el código del motor es 384, y la potencia 2.2 kW. En la siguiente tabla se encuentran las características eléctricas del mismo:

	C071 Weitere Fahrmoto						tordaten Further travel motor data							Autres charactéristiques des moteurs de direction			
			380	415V,	50 Hz/	44048	OV, 60 H	łz									
Kennziffer Code No.	Typ Type	U	1	f1						U2		f2		f3	Y	f _N	Δ
Chiffre		[\	/]	[Hz]					Ī	[V]		[Hz]		[Hz]		[Hz]	
184 384	4F18 4F38	380	.415	50		U	1/f1 /		M	38041	15	50100		100	50		100
484	4F48	440	.480	60	-		U2/f2	<u> </u>	<u>3</u>)	44048	30	50100		100	60		120
1/	T					711			-	lt					1/		
Kennziffer Code No. Chiffre	Typ Type	Y	Δ	Y	Δ	TN	TA	TH	TB	Jrot	Y	Δ	IK	cos φ N	cos φ K	ED DC FM	R
		[k	W]	[1/r	nin]	[Nm]	[Nm]	[Nm]	[Nm]	[kgm²]	[.	Å]	[A]			[%]	[Ω]
184	4F18	0,38	0,75	1220	2440	2,94	5,1	3,8	5	0,0005	1,1	2,2	2,7	0,73	0,82	60	18,8
384	4F38	1,10	2,20	1370	2740	7,7	17	13	13	0,0032	2,6	5,2	9,5	0,80	0,87	60	5,6
484	4F48	1,60	3,20	1425	2850	10,7	31	34	20	0,0057	4,3	8,6	23	0,71	0,83	60	2,6

Figura 6.3.1-6: Ficha técnica Motor de traslación

6.3.2. Selección de la pasteca y disposición del aparejo PGA-SI-50-PA

Debido a nuestro grupo (FEM M5, DIN 2m) se llegó en la sección anterior que la relación para nuestra carga debe ser 6/1, por lo que la disposición del aparejo quedará de la siguiente manera:

Figura 6.3.2-1: Aparejo 6/1

Por lo que se debe seleccionar una pasteca que cumpla con nuestro grupo de mecanismo, la misma será de gancho doble por la cantidad de carga a elevar y por la percha PGA-PI calculada con tijeras para tal fin. La pasteca seleccionada es del mismo catalogo STAHL y tiene las siguientes características:

Seilzug Wire rope hoist Palan à câble		Hakengeschirr/-flasche Bottom hook block Moufle											
	2/1	2/1 4/1 6/1 2/2-1 4/2-1 8/2-1 ZW 10/2-1 10/2-1 ZW 4/2-1 ZW 6/2-1 ZW											
ASR 7, AS 7	H453-2	H 376-4 H 375-4 H 378-4 H 454-4	H452-6	T 240-2	U 375-4	U 375-8	H 452-8	U 375-10	H 450-10				

Figura 6.3.2-2: Bloque de gancho inferior

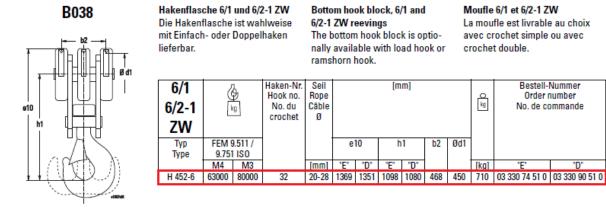


Figura 6.3.2-3: Características de bloque de gancho inferior

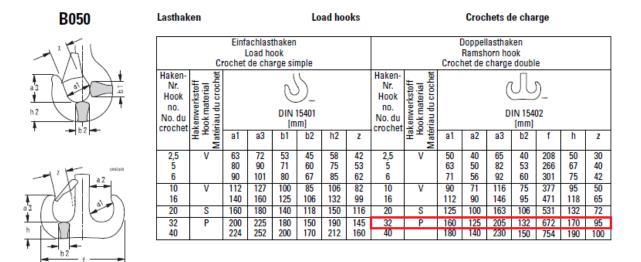


Figura 6.3.2-4: Características de gancho de carga

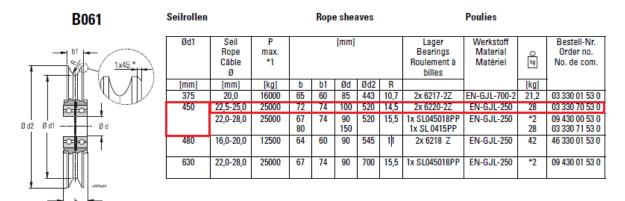


Figura 6.3.2-5: Gravillas de cuerda

6.3.3. Selección del cable PGA-SI-50-CA

Para la determinación del cable, también se seleccionó del mismo catálogo STAHL y el mismo tiene las siguientes características:

C100			Drahtse	ile		Wire ropes Câbles					
Seilzug Hoist Palan	Einscherung Reeving Mouflage	Trommel- länge Drum length Longueur du tambour	Seil Rope Câble Ø	Elastizitäts- modul Elasticity module Module d'élasticité	Seilfestigkeits- klasse Rope strength class Classe de rési- stance du câble R _r	Mindest- seilbruchkraft Minimum rope breaking force Force de rupture mini. du câble F _{min}	Metallischer Querschnitt Metallic cross-section Section métallique	Schlag- richtung Direction of lay Commet- tage	Ober- fläche Surface Surface	Art Type Type	Bestell-Nr. Oder no. No. de commande
			[mm]	[N/mm ²]	[N/mm ²]	[kN]	[mm ²]	*3	*4	*5	
AS 7	2/1 4/1 6/1	1-5	25	1,0x10 ⁵	1870	500,0	327,0	sZ	b	В	330 111 9
	2/2-1 4/2-1 8/2-1 4/2-2	1 - 4 1 - 4	20		1960	315,0	196,0	sZ	b	В	330 012 9
	2/2-1 4/2-1 8/2-1 4/2-2	1-4	20		1960	315,0	196,0	zS	b	В	330 025 9
	2/2-2	1 - 4	20		1960	371,0	206,0	sZ	b	Α	330 116 9
	2/2-2 4/2-2	1 - 4 4	20		1960	371,0	206,0	zS	b	Α	330 119 9
	10/2-1	2 - 4	16		2160	270,0	149,0	zS e7	b	B B	330 106 9 330 101 9
	704/4/0 4		25	-		Auf Anfrons		sZ	b	_	
	ZW 4/2-1 ZW 6/2-1 ZW 8/2-1 ZW 10/2-1	1-4	25 22			Auf Anfrage On request Sur demande		sZ	b	В	Auf Anfrage On request Sur demande
ASR 7	4/1	1 - 4	20		1960	356,0	212,0	sZ	b	В	330 115 9

0400

0011

Figura 6.3.3: Características del cable

^{*1} Inklusive eventueller Totlast. Nutzlast + Totlast =
Tragfähigkeit (Traglast)
*3 Schlagrichtung Seit:
SZ = rechtsgeschlagenes Seil (Seiltrommel mit Linksgewinde, Seilfestpunkt auf der Lagerseite)
ZS = linksgeschlagenes Seil (Seiltrommel mit Rechtsgewinde, Seilfestpunkt auf der Getriebeseite
winde, Seilfestpunkt auf der Getriebeseite
4 vz = verzinktes Drahtseil, b = blankes Drahtseil
*5 A = drehungsarmes Drahtseil

B = Nicht drehungsarmes Drahtseil

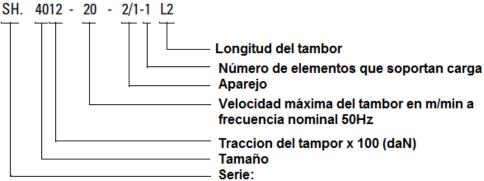
^{*1} Including any dead load. Live load + dead load = working load (lifting capacity)
*3 Direction of lay of rope:

sZ = rope with right-hand lay (rope drum with left-hand thread, rope anchorage on bearing side)

zS = rope with left-hand lay (rope drum with right-hand thread, rope anchorage on gear side)

*4 vz = galvanised wire rope, b = bright metal wire rope

5 A = twist-free wire rope,


B = non-rotation-resistant wire rope

^{*1} Y compris tout poids mort. Charge utile + poids mort = charge d'utilisation (capacité de charge)
*3 Commettage du câble :
\$Z = câble toronné à d'orite (tambour avec pas à gauche, attache du câble côté palier)
\$Z = câble toronné à gauche (tambour avec pas à droite, attache du câble côté réducteur)

*4 vz = câble galwanisé, b = câble clair
*5 A = câble antigiratoire,
B = câble non antigiratoire

6.3.4. Características del sistema seleccionado

Modelo	AS. 7080-20 6/1 L3
Carga máxima	50000 kg
Altura de izaje	12m
Peso de todo el sistema carro y polipasto	7860kg
Velocidad de desplazamiento	2.5/25 m/min (50Hz)
Velocidad de elevación	0,5/3,3 m/min (50Hz)
Peso de pasteca	710kg

SH: Elevación con motor de 2 velocidades ...F: Eleca mediante control de frecencia y control dinámico SFH

...R: Eleva con cargas de trabajo reducidas

Selección del grupo de mecanismo para PGA-SI-10

Se seleccionará más adelante un sistema de izaje de 10tn para tareas de mantenimiento más ligeras y rutinarias.

El procedimiento de cálculo se realizará siguiendo el libro "Los transportes en la ingeniería industrias", de Antonio Miravete entre otros, que responden a las normas ISO 4301, FEM sección I cuadernos I y II, y también DIN 15020.

Primero se determinará el grupo al que pertenecerá la grúa según clasificación expresada en las normas FEM sección I y DIN 15020. Dicha clasificación está dada en función del estado de carga (frecuencia de elevación de la carga máxima) y de la vida en horas de funcionamiento del equipo.

Para el cálculo de las horas de funcionamiento se consideraron 4 horas de uso por día, 20 días de trabajo al mes, 12 meses al año y se considera un lapso de 10 años de vida útil recomendado por los fabricantes de polipastos. Luego de ese tiempo se deberá realizar un mantenimiento íntegro del equipo.

$$T = 5 \frac{hs}{dia} * 20 \frac{dias}{mes} * 12 \frac{meses}{a\tilde{n}os} * 10a\tilde{n}os$$
$$T = 12000 hs$$

Al proponer una carga máxima de 10tn podemos seleccionar un factor K=0.125 a fin de tener un factor de servicio más bajo.

Grupo del mecanismo FEM/DIN 15020 ingresando con T y K obtenemos el grupo de mecanismo.

T-1. Grupo del mecanismo FEM/DIN 15020

ES	TADO DE CARGA		VIDA EN HORAS DE FUNCIONAMIENTO REAL DEL MECANISMO												
FACTOR K.	FACTOR K. SERVICIO		800		1600		3200		00	12500		25000		500	000
0,125	Frecuencia muy redu- cida de la carga máxima					М3	1 Bm	M4	1 Am	M5	2 m	M6	3 m	M7	4 m
0,250	Frecuencia reducida de la carga máxima			МЗ	1 Bm	M4	1 Am	M5	2 m	M6	3 m	M7	4 m	M8	5 m
0,500	Frecuencia aproximada igual de cargas pequeñas, medianas y máximas	МЗ	1 Bm	M4	1 Am	M5	2 m	M6	3 m	M7	4 m	M8	5 m	M8	5 m
1.000	Frecuencia elevada de la carga máxima	M4	1 Am	M5	2m	M6	3 m	M7	4 m	M8	5 m	M8	5 m	M8	5 m

Figura 6.4: Tabla de Grupo de mecanismo según FEM/DIN 15020

Obtenemos finalmente un grupo de trabajo FEM 2 m, DIN M5. Esta clasificación es muy importante ya que se debe tener en cuenta para llevar a cabo la selección de los elementos restantes.

Classification selon FEM (ISO)

6.5. Selección de los componentes del sistema de elevación PGA-SI-10

En este apartado se realizará el mismo procedimiento que el realizado en la sección 5.3., pero con el grupo FEN/DIN obtenido en el apartado 5.4.

6.5.1. Selección de polipasto y carro PGA-SI-10-CI

Einstufung nach FEM (ISO)

Partiendo del grupo de trabajo calculado (FEM 2Am, DIN M5), entrando al catálogo del fabricante STAHL se puede comprobar dicho grupo. Con nuestro grupo y la capacidad de carga en toneladas (10tn), obtenemos un tipo de disposición de ramales de 4/1 para el modelo SH 5 del fabricante.

Classification to FEM (ISO)

FEM 9.661 ISO	FEM 9.511 ISO	FEM 9.683* ISO	Typ Type			Đ <u>.</u>	
Seiltrieb Rope drive	Triebwerk Mechanism	Motor Motor			(₹	
Mouflage	Mécanisme	Moteur			[k	(g)	
_	d'entraîne-			1/1	2/1	4/1	8/2-1
	ment			2/2-1	4/2-1		
M6	M7	M7	SH(F) 5016-20	1600	-	-	-
		l [SH(F) 5016-25	-	3200	6300	Ī
		l [SH(F) 5016-40	Ī			
M5	M6	M7	SH(F) 5020-20	2000	-	-	-
			SH(F) 5020-25	-	4000	8000	†
			SH(F) 5020-40	Ī			
M5	M5	M7	SH(F) 5025-20	2500	5000	10000	-
			SH(F) 5025-32	-	1		
M4	M4	M7	SH(F) 5032-16	3200	-	-	-
			SH(F) 5032-25	-	6300	12500	1

Figura 6.5.1-1: Clasificación según FEM(ISO)

Luego en la tabla de selección, entramos con nuestra carga (10tn) y nuestra altura de gancho (10m) y seleccionamos el tipo de motor de elevación y su velocidad:

Д	ISO	<u>&</u>																		
kg		ر الم			50 Hz (60 Hz)								_	urweite/			_	_	_	\Box
		⊕ ↓	≜	ESR	Тур			*1	٩		Q		1250	1400	1800	2240	2800	3150	4000	_
		m	₩ m/min	max	Туре		kW		kg	*174	kg	≱l _? l4				kg				*74
10000	M4	12 20 40 60	3,3/20 (4/24)	-	SH 6050-40 2/1	L2 L3 L4 L5	5,6/38,0 (6,8/46,0)	H92	1086 1161 1391 1506	1/55		-	1421 - -	1441 1501 -	1476 1536 -	1516 1581 1736	1571 1636 1791 1946	1606 1666 1826 1981	1667 1727 1887 2042	1/70
	M5	6 10 20	0,15 (0,126)	7,5	SHF 5025-20 4/1	12 L3 L4	9,0 (11,0)	4HS5	443 478 548	1/52	733 773 888	1/60	723 - -	733 753 -	776 -	778 798 -	798 818 868			1/67
	M5	6 10 20	0,168 (0,199,6)	12	SHF 5025-32 4/1	L2 L3 L4	15,0 (18,0)	4HS7	478 513 583	1/52	825 871 986	1/60	758 - -	768 788 -	811 -	813 833 -	833 853 903			1/67
	M5	8,5 14	0,15 (0,126)	7,5	SHRF 6025-20 4/1	L2 L3	9,0 (11,0)	4HS5	821 876	1/53	1371 1531	1/62	1266	1286 1331	1321 1366	1366 1411	1416 1461	1451 1496	-	1/69
		28,5 42,5				L4 L5			1066 1131		1781		-	-	-	1546	1576 1806	1611 1841	-	

Figura 6.5.1-2: Características principales de carro y polipasto

Las características del sistema seleccionado:

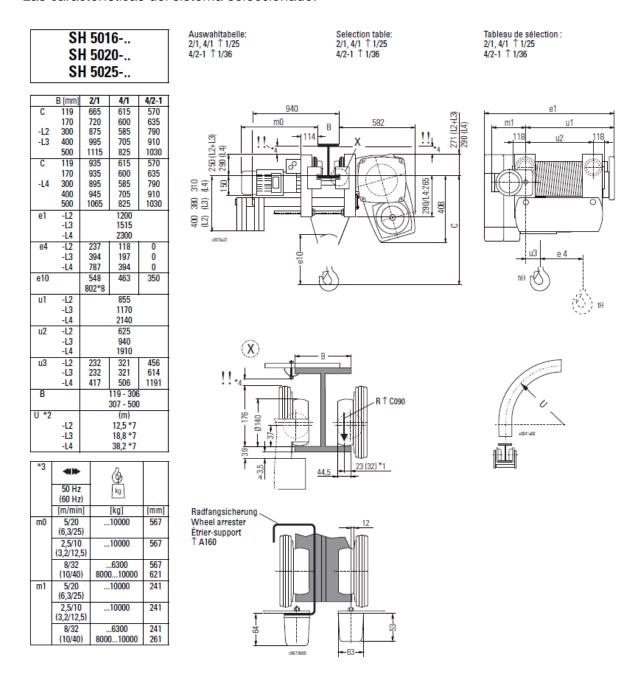


Figura 6.5.1-3: Ficha técnica de SH

Y el motor de traslación del carro:

Frequenzgesteuerte Fahrmotoren	Frequency controlled travel	Moteurs de direction avec com-
für Einschienenfahrwerke	motors	mande par fréquence
	for monorail trolleys	pour chariots monorail

л		⊕.		50/6	0 Hz
((()		Θ		2,525 m/min	440 m/min
kg	1/1 2/2-1	2/1 4/2-1	4/1	Typ/Type kW	Typ/Type kW
5003200	SH 3 SH 4 SH 5	SH 3	SH3	SF 17111184 0,75	SF 17107184 0,75
10004000		SH 4	SH 4008 SH 4010		
50006300			SH 4012 SH 4016		SF 17207384 2,20
16003200	SH 5 - L4			2x SF 17111184 2x 0,75	2x SF 17107184 2x 0,75
32005000		SH 5016 SH 5020 SH 5025 SHR 6025		SF 17211184 0,75	SF 17207184 0,75
630010000		SH 5032	SH 5016 SH 5020 SH 5025		SF 17207384 2,20
12500			SH 5032	SF 17211384 2,20	

Figura 6.5.1-4: Motor de traslación

					J												
	C071	Weitere Fahrmotorda				ordaten		Fu	Further travel motor data					Autres charactéristiques des moteurs de direction			
			380	415V,	50 Hz/	44048	OV, 60 H	łz									
Kennziffer Code No.	Typ Type	U	1	f1						U2		f2		f3	Y	f _N	Δ
Chiffre		[\	/]	[Hz]						[V]		[Hz]		[Hz]	_	[Hz]	_
184	4F18	380	.415	50				1 /		3804	15	50100			50		100
384 484	4F38 4F48	440	.480	60	=		1/f1 U2/f2		M 3-	44048	30	50100		100	60		120
Kennziffer	Тур		P	n	1	TN	TA	TH	ТВ	Jrot		N	I _K	cos φ N	cos φ K	ED	R
Code No. Chiffre	Туре	Y	Δ	Y	Δ]					Y	Δ				DC FM	
		[k\	W]	[1/r	nin]	[Nm]	[Nm]	[Nm]	[Nm]	[kgm²]	[A]	[A]			[%]	[Ω]
184	4F18	0,38	0,75	1220	2440	2,94	5,1	3,8	5	0,0005	1,1	2,2	2,7	0,73	0,82	60	18,8
384	4F38	1,10	2,20	1370	2740	7,7	17	13	13	0,0032	2,6	5,2	9,5	0,80	0,87	60	5,6
484	4F48	1,60	3,20	1425	2850	10,7	31	34	20	0,0057	4,3	8,6	23	0,71	0,83	60	2,6

Figura 6.5.1-5: Ficha técnica de Motor de traslación

6.5.2. Selección de la pasteca y disposición del aparejo PGA-SI-10-PA

Debido a nuestro grupo (FEM M5, DIN 2m) se llegó en la sección anterior que la relación para nuestra carga debe ser 4/1, por lo que la disposición del aparejo quedará de la siguiente manera:

Figura 6.5.2: Aparejo 4/1

Por lo que se debe seleccionar una pasteca de 2 poleas que cumpla con nuestro grupo de mecanismo, la misma será de gancho simple para tareas más ligeras. La pasteca seleccionada es de la misma marca STAHL y tiene las siguientes características:

Hakengeschirre, Hakenflaschen Seilzüge in Standardausführung sind mit Hakengeschirren bzw. Hakenflaschen ausgerüstet, außer bei 2/2-2 und 4/2-2, siehe nachstehende Tabelle.

Bottom hook blocks

Standard wire rope hoists are equipped with bottom hook blocks, except 2/2-2 and 4/2-2, see de moufles, à l'exeption de 2/2-2 following table.

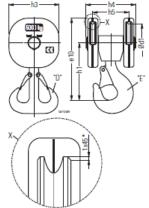
Moufles

Les palans à câble dans exécution standard sont équipés et 4/2-2, voir le tableau suivant.

Seilzug Hakengeschirr/-flasche Wire rope hoist Bottom hook block Palan à câble Moufle											
		1/1	1/1 2/1 4/1 2/2-1 4/2-1 8/2-1 2/2-2 4/								
SH	13	H 122-1	H 125-2	H 125-4	T 100-2	H 100-4	-	H 86-1	H 100-2		
SH	14	H 122-1	H 164-2	H 162-4	T 130-2	H 125-4	-	H 122-1	H 125-2		
SH 5016,	L2, L3	H 130-1	H 225-2	H 226-4	T 141-2	H 162-4	-	H 122-1	H 164-2		
5020, 5025	L4		H 378-2								
SH 5032	L2, L3	H 190-1	H 225-2	H 227-4	T 161-2						
	L4		H 378-2								
SH	R 6	-	H 252-2	H 252-4	-	-	-	-	-		
SH	16	H 200-1	H 375-2	H 375-4	T 181-2	H 227-4	U225-8	H 190-1	H 252-2		

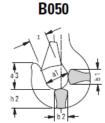
Figura 6.5.2-2: Bloque de gancho inferior

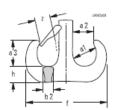
B034


Hakenflasche 4/1 und 4/2-1 Die Hakenflasche ist wahlweise mit Einfach- oder Doppelhaken lieferbar.

Bottom hook block, 4/1 and 4/2-1 reevings

The bottom hook block is optionally available with load hook or ramshorn hook.


Moufle 4/1 et 4/2-1


La moufle est livrable au choix avec crochet simple ou avec crochet double.

	4/1 4/2-1	(hg)	kg No. du Câble crochet Ø									O kg	
	- 71	FEM 9.511 / 9.751			e'	e10 h1 h3 h4 h5 Ød					Ød1		
	Туре	M5 M4		[mm]	"E"	"D"	"E"	"D"					[kg]
	H 100-4 *	2000	08	4-5,5	241	-	172	-	137	159	110	98	10
ı	H 125-4	3200	1,6	6-7	291	-	208	-	166	182	126	125	15
[H 162-4	6300	2,5	7,5-10	348	341	244	238	212	207	149	160	25
	H 226-4	10000	4	11-12,5	468	450	325	307	281	268	201	225	48
Ī	H 227-4	12500	5	11-12,5	498	505	355	362	281	284	217	225	65
	H 252-4	12500 16000	6	12-15	585	580	424	419	Ø320	331	262	250	75
[H 375-4	20000 25000	10	16,5-20	756	745	521	510	Ø468	442	313	375	170
[H 377-4	20000 25000	10	13-16	756	745	521	510	Ø468	442	313	365	170

Figura 6.5.2-3: Características de Bloque de gancho inferior

Lasthak	cen				Lo	ad ho	oks	Crochets de charge								
	C		achlas Load ho de cha	ook							Ramsh	lasthal norn ho charge	ok	e		
Haken- Nr. Hook no. No. du crochet	Hakenwerkstoff Hook material atériau du crochet				15401 Im]			Haken- Nr. Hook no. No. du	kenwerkstoff ook material riau du crochet							
CIUCIIEL	Hal H	a1	a3	b1	b2	h2	2	Crocilet	Hal Hc Maté	a1	a2	a3	b2	f	h	2
025 04 05 08	V	36 40 43 48	41 45 49 54	22 27 29 35	19 22 24 29	24 29 31 37	26 28 29 33	0,25 0,4 0,5 0,8	V	-	-	-	-	-	-	-
1 1,6 2.5 4	V	50 56 63 71	50 64 72 80	38 45 53 63	32 38 45 53	40 48 58 67	35 40 42 49	1 1,6 2,5 4	V	50 56	- 40 45	- 65 73	- 40 48	208 238	50 60	30 33
5 6 10	٧	80 90 112	90 101 127	71 80 100	60 67 85	75 85 106	53 62 82	5 6 10	V	63 71 90	50 56 71	82 92 116	53 60 75	266 301 377	67 75 95	40 42 50

Figura 6.5.2-4: Característica de gancho de carga

Rope sheaves

B061									
1x45									
0 d2 0 d1 0 d									

Seilrollen

Ød1	Seil	Р			[mm]			Lager	Werkstoff		Bestell-Nr.
	Rope	max.						Bearings	Material	٥	Order no.
	Câble	*1						Roulement à	Matériel	kg	No. de com.
	Ø							billes			
[mm]	[mm]	[kg]	b	b1	Ød	Ød2	R	DIN 625		[kg]	
100 *	4,0-5,5	1000	26	21	25	120	3	2x 6005-2RS	EN-GJL-250	1,0	01 430 01 53 0
101	6,0-6,5										01 430 04 53 0
125	6,5-7,0	1600	28	23	30	149	3,7	2x 6006-2Z	EN-GJL-250	1,6	01 430 00 53 0
154	6,0-7,5	3200	32,5	28	45	193	4,0	2x 6009-2Z	EN-GJL-250	2,5	01 430 06 53 0
160	8,0-10,0	3200	32,5	28	45	193	5,6	2x 6009-2Z	EN-GJL-250	2,5	03 330 20 53 0
152	6,0-7,5										01 430 06 53 0
225	12,0-12,5	6300	43	39	50	267	6,8	2x 6210-Z	EN-GJL-250	7	01 430 03 53 0
218	9,0-10,0	5000					5,3				01 430 05 53 0
250	12,0-15,0	8000	50	45	60	300	8,4	2x 6212-2Z	EN-GJL-250	9,7	03 330 40 53 0
365	13,0-16,0	12500	65	60	70	443	8,5	2x 6214-Z	EN-GJL-250	21,2	03 330 69 53 0
375	16,5-20,0	12500	65	60	70	443	11,5	2x 6214-Z	EN-GJL-250	21,2	25 330 00 53 0

Poulies

Figura 6.5.2-5: Característica de gavillas de cuerda

6.5.3. Selección del cable PGA-SI-10-CA

Para la determinación del cable, también se seleccionó del mismo catálogo STAHL y el mismo tiene las siguientes características:

	C100 Drahtseile			Wire ropes			Câbles				
Seilzug Hoist Palan	Einscherung Reeving Mouflage	Trommel- länge Drum length Longueur du tambour	Seil Rope Câble Ø	Elastizitäts- modul Elasticity module Module d'élasticité	Seilfestigkeits- klasse Rope strength class Classe de rési- stance du câble R _r	Mindest- seilbruchkraft Minimum rope breaking force Force de rupture mini. du câble F _{min}	Metallischer Querschnitt Metallic cross-section Section métallique	Schlag- richtung Direction of lay Commet- tage	Ober- fläche Surface Surface	Art Type Type	Bestell-Nr. Oder no. No. de commande
			[mm]	[N/mm ²]	[N/mm ²]	[kN]	[mm ²]	*3	*4	*5	
SH 5016	2/1	2 - 4	10 *1	1,0x10 ⁵	2160	107,0	58,1	sZ	b	В	330 039 9 *1
-	4/1	2 - 4									
SH 5025	1/1	2 - 4			2160	98,6	56,2	sZ	b	Α	330 040 9 *1

Figura 6.5.3: Característica del cable

6.5.4. Características del sistema seleccionado

Modelo	SH(F) 5025-20 4/1 L3
Carga máxima	10000 kg
Altura de izaje	10m
Peso de todo el sistema carro y polipasto	1251kg
Velocidad de desplazamiento	2.5/25 m/min (50Hz)
Velocidad de elevación	0,1/5 m/min (50Hz)
Peso de pasteca	48kg

6.6. Solicitaciones en la estructura

La estructura es el conjunto de elementos que absorben los esfuerzos generados por las distintas solicitaciones y los transmiten a la estructura fija.

Como todo lo calculado anteriormente, se determinarán las solicitaciones existentes en el mecanismo siguiendo el método propuesto por el autor Antonio Miravete, determinado para aparatos de elevación correspondientes a la sección I de la FEM. Los tipos de solicitaciones a tener en cuenta se describen a continuación:

- Solicitaciones principales: son aquellas que se ejercen sobre la estructura del aparato supuesto inmóvil, en el estado de carga más desfavorable.
 Las cuales son las siguientes:
 - Solicitaciones debidas a la carga de servicio, o peso de la carga útil más el peso de los elementos accesorios: gancho, percha, etc.
 - Solicitaciones debidas al peso propio, o peso de todos los elementos que componen la grúa a excepción de la carga de servicio.
- Solicitaciones debidas a movimientos verticales: estas provienen de la manipulación de la carga de servicio, aceleraciones o deceleraciones sobre el movimiento de elevación y choques verticales debido al rodamiento sobre las vías.
- 3. Solicitaciones debidas a movimientos horizontales:
 - Efectos de inercia debidos a aceleraciones o deceleraciones de movimientos de dirección, translación, orientación y recuperación de la flecha.
 - Esfuerzos de la fuerza centrífuga. En general se desprecia este efecto, considerándose sólo para vehículos-grúa.
 - Efectos horizontales transversales provocados por la rodadura.
 - Efectos de choque. Sólo se considera para velocidades de desplazamiento mayores a 42 m/min.
- 4. Solicitaciones debidas a esfuerzos climáticos: son las resultantes de la acción del viento, sobrecarga de nieve y variaciones de la temperatura. Estas solicitaciones no se tendrán en cuenta para nuestro caso debido a que el sistema estará dentro de una nave.

6.6.1. Solicitaciones principales

Se tienen en cuenta todas las calculadas hasta el momento:

Carga de diseño	50000kg
Peso de gancho (PGA-SI-50-PA)	710kg
Peso de gancho (PGA-SI-10-PA)	48kg
Polipasto y carro (PGA-SI-50-CI)	7860kg
Polipasto y carro (PGA-SI-10-CI)	1251kg
Percha de izaje (PGA-PI)	1232kg
Eslingas (PGA-PI-ES)	40,2kg
Peso de la estructura (200kg/m) (*)	8000kg
TOTAL	69141,2kg

(*) Este valor lo estimamos en 200 Kg/m de viga considerando todos los accesorios de construcción para nuestra luz de 20m y como son dos vigas puente, el peso es de 8000kg. Nos basamos en cálculos ya realizados para su estimación.

6.6.2. Solicitaciones debidas a movimientos verticales PGA-SI-50

Se considerarán las solicitaciones debido a la manipulación de la carga de servicio, que es el impacto más importante para la estructura. Las solicitaciones debidas a aceleraciones o deceleraciones son despreciables respecto de ésta.

Según Miravete, estas solicitaciones se tienen en cuenta multiplicando la carga de servicio por un factor denominado "Coeficiente dinámico". Éste está definido por la siguiente expresión:

$$\psi = 1 + \xi \cdot V_L$$

Donde:

ξ: coeficiente experimental, 0,6 para puentes grúa.

 V_L : velocidad de elevación en m/s

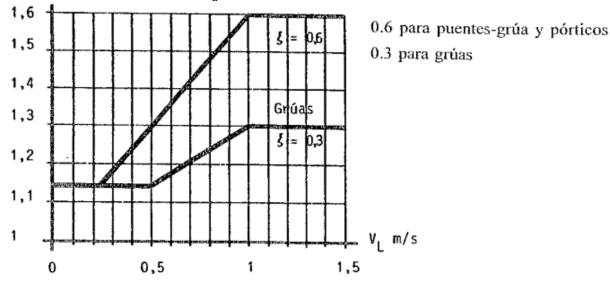


Figura 6.6.2: Representación de los valores de ξ

Para nuestro caso tenemos 2 velocidades de elevación en el carro birriel, por lo tanto, tendremos 2 coeficientes dinámicos distintos y debemos seleccionar el más desfavorable (el mayor de los 2). Reemplazando para cada uno nos queda:

Con
$$V_L = 0.5 \frac{m}{min} = 8.33 \cdot 10^{-3} \frac{m}{s}$$
 da un coeficiente dinámico $\psi = 1.005$

Con
$$V_L = 3.3 \frac{m}{min} = 0.055 \frac{m}{s}$$
 da un coeficiente dinámico $\psi = 1,033$

El caso más desfavorable es el de mayor velocidad y nos da un coef. dinámico de 1,033

6.6.3. Solicitaciones debidas a movimientos horizontales PGA-SI-50

Efectos de inercia debidos a aceleraciones o deceleraciones en movimientos de dirección y traslación

Se calcula el esfuerzo horizontal aplicado en las ruedas motoras paralelamente al riel de rodadura. El valor de la aceleración o desaceleración es función de la velocidad a obtener, el tiempo transcurrido y de las condiciones de funcionamiento del aparato. Para el caso dado, la máxima velocidad a la que se desplazará el carrito polipasto es 25 m/min, lo que sería el caso más desfavorable para calcular las solicitaciones sobre la estructura. Esta velocidad corresponde a 0,42 m/s.

De la siguiente tabla del libro obtenemos los valores de aceleraciones, para el caso de velocidad lenta y media con carrera larga, entrando con la velocidad inmediata superior del carro (0,63m/s):

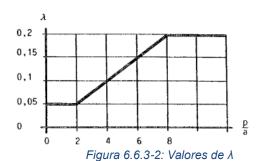
Velocidad	Velocida velocida		Velocida rápida ((b) d media y aplicaciones	(c) Velocidad rápida con fuertes aceleraciones			
a		a carrera	corrient	es)				
obtener	Tiempo de acelerac.	Aceleración	Tiempo de acelerac.	Aceleración	Tiempo de acelerac.	Aceleración		
m/s	's	m/s ²	s	m/s ²	s	m/s ²		
4,00			8,0	0,50	6	0,67		
3,15			7,1	0,44	5,4	0,58		
2,5			6,3	0,39	4,8	0,52		
2	9,1	0,22	5,6	0,35	4,2	0,47		
1,60	8,3	0,19	5,0	0,32	3,7	0,43		
1,00	6,6	0,15	4,0	0,25	3,0	0,33		
0,63	5,2	0,12	3,2	0,19				
0,40	4,1	0,098	2,5	0,16				
0,25	3,2	0,078						
0,16	2,5	0,064						

Figura 6.6.3-1: Valores de aceleraciones

La solicitación horizontal debido a los efectos de inercia se determina:

$$F_{h1} = m_T \cdot a$$
 Donde:

 m_T : es la carga total calculada anteriormente (69141,2kg) a: aceleración ya seleccionada por tabla


Reemplazando queda:

$$F_{h1} = \frac{69141,2ks}{9,81\frac{m}{s^2}} \cdot 0,12\frac{m}{s^2} \rightarrow F_{h1} = 845,76kg$$

Efectos transversales provocados por la rodadura

Cuando dos rodillos circulan por un riel, se debe tener en cuenta el momento formado por las fuerzas horizontales perpendiculares al riel. Las componentes de este momento son obtenidas multiplicando la carga vertical existente por un coeficiente λ . Este coeficiente depende de la relación entre la longitud de la viga p (definida en 20m = 20000mm), y el ancho del carro a, que a partir de la tabla de dimensiones del carro polipasto podemos determinar como 2350mm. Utilizando la siguiente tabla del libro, se obtiene el coeficiente λ :

$$\frac{p}{a} = \frac{20000mm}{2350mm} = 8,51$$
$$\rightarrow \lambda = 0,2$$

Afectando la carga vertical por este coeficiente se determina la segunda solicitación horizontal:

$$F_{h2} = (50000 + 7860 + 710 + 1232 + 40,2)kg \cdot 0,2 \rightarrow F_{h2} = 11968,44kg$$

Solicitación total debido a todos los movimientos horizontales

Es la suma de las dos solicitaciones calculadas anteriormente como combinación de sus efectos:

$$S_h = F_{h1} + F_{h2} = 845,76kg + 11968,44kg \rightarrow S_h = 12814,2kg$$

6.6.4. Combinación de solicitaciones PGA-SI-50

Se consideran todas las solicitaciones combinadas sobre la estructura con la siguiente expresión:

$$S_T = [M \cdot (S_g + \psi \cdot S_L + S_h)] \cdot C_s$$

Donde:

M: es un coeficiente dado por el grupo del aparato en nuestro caso es 1 para M4.

 S_g : solicitación debido al propio peso (9842,2kg).

 S_h : combinación de solicitaciones horizontales (12814,2kg).

 C_s : coeficiente de seguridad (1,5).

 S_L : solicitación debido a la carga de servicio (51982,2kg).

 ψ : coeficiente dinámico (1,033).

Por tabla del libro obtengo el coeficiente M:

Grupo	M3	M4	M5	M6	M7	M8
M	1	1	1	1,06	1,12	1,2

Figura 6.6.4: Valores de M

$$S_a = carro\ y\ polipasto + gancho + percha + eslinga = 9842,2kg$$

$$S_L = carga\ de\ servicio + gancho + percha + eslinga = 51982,2kg$$

Reemplazando en la expresión se obtiene:

$$S_T = 114531,02kg$$

6.6.5. Solicitaciones debidas a movimientos verticales PGA-SI-10

Se considerarán las solicitaciones debido a la manipulación de la carga de servicio, que es el impacto más importante para la estructura. Las solicitaciones debidas a aceleraciones o deceleraciones son despreciables respecto de ésta.

Según Miravete, estas solicitaciones se tienen en cuenta multiplicando la carga de servicio por un factor denominado "Coeficiente dinámico". Éste está definido por la siguiente expresión:

$$\psi = 1 + \xi \cdot V_L$$

Donde:

ξ: coeficiente experimental, 0,6 para puentes grúa.

 V_L : velocidad de elevación en m/s

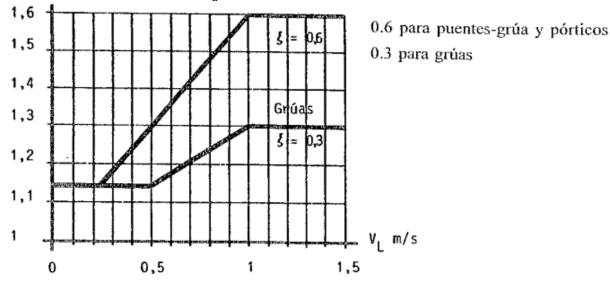


Figura 6.6.5: Representación de los valores de ξ

Para nuestro caso tenemos 2 velocidades de elevación en el carro birriel, por lo tanto, tendremos 2 coeficientes dinámicos distintos y debemos seleccionar el más desfavorable (el mayor de los 2). Reemplazando para cada uno nos queda:

Con
$$V_L = 0.1 \frac{m}{min} = 1.67 \cdot 10^{-3} \frac{m}{s}$$
 da un coeficiente dinámico $\psi = 1.001$

Con
$$V_L = 5 \frac{m}{min} = 0.083 \frac{m}{s}$$
 da un coeficiente dinámico $\psi = 1.05$

El caso más desfavorable es el de mayor velocidad y nos da un coef. dinámico de 1,05

6.6.6. Solicitaciones debidas a movimientos horizontales PGA-SI-10

<u>Efectos de inercia debidos a aceleraciones o deceleraciones en movimientos de dirección y traslación</u>

Se calcula el esfuerzo horizontal aplicado en las ruedas motoras paralelamente al riel de rodadura. El valor de la aceleración o desaceleración es función de la velocidad a obtener, el tiempo transcurrido y de las condiciones de funcionamiento del aparato. Para el caso dado, la máxima velocidad a la que se desplazará el carrito polipasto es 25 m/min, lo que sería el caso más desfavorable para calcular las solicitaciones sobre la estructura. Esta velocidad corresponde a 0,42 m/s.

De la siguiente tabla del libro obtenemos los valores de aceleraciones, para el caso de velocidad media y media (aplicaciones corrientes), entrando con la velocidad inmediata superior del carro (0,63m/s):

Velocidad	Velocida velocida	a) d lenta y d media a carrera		(b) d media y aplicaciones es)	(c) Velocidad rápida con fuertes aceleraciones		
obtener	Tiempo de acelerac.	Aceleración	Tiempo de acelerac.	Aceleración	Tiempo de acelerac.	Aceleración	
m/s	'S	m/s ²	s	m/s ²	s	m/s ²	
4,00			8,0	0,50	6	0,67	
3,15			7,1	0,44	5,4	0,58	
2,5			6,3	0,39	4,8	0,52	
2	9,1	0,22	5,6	0,35	4,2	0,47	
1,60	8,3	0,19	5,0	0,32	3,7	0,43	
1,00	6,6	0,15	4,0	0,25	3,0	0,33	
0,63	5,2	0,12	3,2	0,19			
0,40	4,1	0,098	2,5	0,16			
0,25	3,2	0,078					
0,16	2,5	0.064					

Figura 6.6.6-1: Valores de aceleraciones

La solicitación horizontal debido a los efectos de inercia se determina:

$$F_{h1} = m_T \cdot a$$
 Donde:
 m_T : es la carga total del sistema más viga (5280kg)
 a : aceleración ya seleccionada por tabla

Reemplazando queda:

$$F_{h1} = \frac{5280ks}{9,81\frac{m}{s^2}} \cdot 0,19\frac{m}{s^2} \rightarrow F_{h1} = 102,3kg$$

Efectos transversales provocados por la rodadura

Cuando dos rodillos circulan por un riel, se debe tener en cuenta el momento formado por las fuerzas horizontales perpendiculares al riel. Las componentes de este momento son obtenidas multiplicando la carga vertical existente por un coeficiente λ . Este coeficiente depende de la relación entre la longitud de la viga p (definida en 20m = 20000mm), y el ancho del carro a, que a partir de la tabla de dimensiones del carro polipasto podemos determinar como 940mm. Utilizando la siguiente tabla del libro, se obtiene el coeficiente λ :

$$\frac{p}{a} = \frac{20000mm}{940mm} = 21,28$$
$$\rightarrow \lambda = 0,2$$

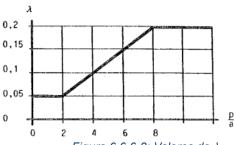


Figura 6.6.6-2: Valores de λ

Afectando la carga vertical por este coeficiente se determina la segunda solicitación horizontal:

$$F_{h2} = (10000 + 1251 + 48)kg \cdot 0.2 \rightarrow F_{h2} = 2260kg$$

Solicitación total debido a todos los movimientos horizontales

Es la suma de las dos solicitaciones calculadas anteriormente como combinación de sus efectos:

$$S_h = F_{h1} + F_{h2} = 102,3kg + 2260kg \rightarrow S_h = 2362,3kg$$

6.6.7. Combinación de solicitaciones PGA-SI-10

Se consideran todas las solicitaciones combinadas sobre la estructura con la siguiente expresión:

$$S_T = [M \cdot (S_g + \psi \cdot S_L + S_h)] \cdot C_s$$

Donde:

M: es un coeficiente dado por el grupo del aparato en nuestro caso es 1 para M4.

 S_q : solicitación debido al propio peso (1300kg).

 S_h : combinación de solicitaciones horizontales (2362,3kg).

 C_s : coeficiente de seguridad (1,5).

 S_L : solicitación debido a la carga de servicio (10048kg).

 ψ : coeficiente dinámico (1,05).

Por tabla del libro obtengo el coeficiente M:

Grupo	М3	M4	M5	M6	M7	M8
M	1	1	1	1,06	1,12	1,2

Figura 6.6.7: Valores de M

$$S_a = carro\ y\ polipasto + gancho = 1300kg$$

$$S_L = carga\ de\ servicio + gancho = 10048kg$$

Reemplazando en la expresión se obtiene:

$$S_T = 21319,05kg$$

6.7. Viga principal PGA-VP

Consideramos que la viga principal de longitud "L" se encuentra simplemente apoyada en sus extremos y que a lo largo de la misma se desplazan los carros. Cada uno de estos ejerce dos fuerzas R₁ y R₂ sobre la viga, estando dichas fuerzas separadas una distancia "b" correspondiente a la separación entre las ruedas de cada carro.

Una de las dos fuerzas R₁ y R₂ es mayor, y para el caso del carro PGA-SI-50-CI se halla la menor de las dos para poder colocar el carro PGA-SI-10-CI sobre la viga que soporte la menor fuerza. Esto se hace para no sobredimensionar ambas vigas principales.

A continuación, se calculan las dos fuerzas mencionadas anteriormente para cada carro.

6.7.1. Cálculo de cargas R₁ y R₂ de PGA-SI-50-CI en PGA-VP

Para este cálculo se tuvo en cuenta la sugerencia del fabricante STAHL del mismo carro:

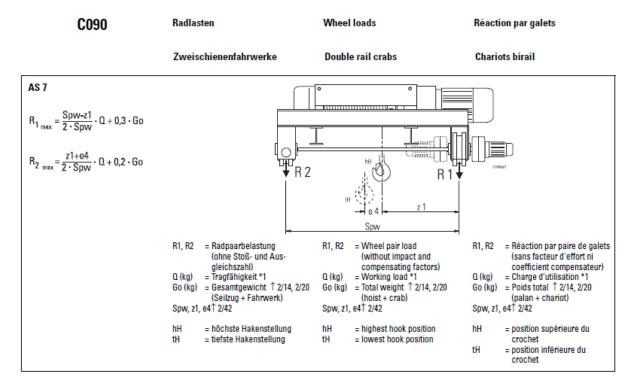


Figura 6.7.1: Carga por rueda

Datos de nuestro carro:

Reemplazando en las ecuaciones:

Spw=3150mm Z₁=1360mm Q=50000kg Go=polipasto + carro + gancho=8570kg e₄=246mm

 $R_{1max} = 16777,35kg$ $R_{2max} = 14602,9kg$

6.7.2. Cálculo de cargas R₁ y R₂ de PGA-SI-10-CI en PGA-VP

Al igual que el anterior, se siguió la sugerencia del fabricante STAHL:

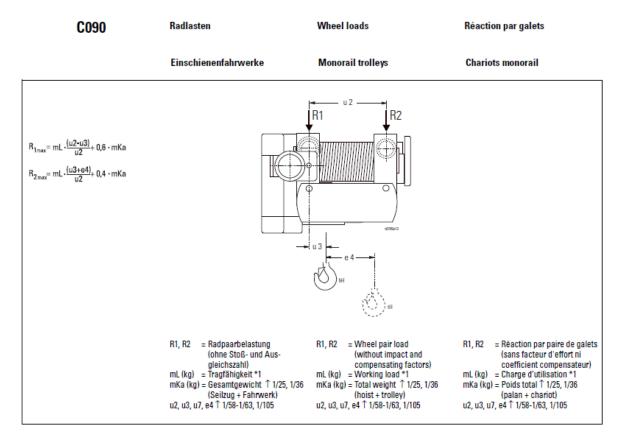


Figura 6.7.2: Carga por rueda

Datos de nuestro carro:

mL=10000kg u_2 =940mm u_3 =321mm mKa=polipasto + carro + gancho=1299kg e_4 =197mm

Reemplazando en las ecuaciones:

$$R_{1max} = 7365kg$$

$$R_{2max} = 6031kg$$

$$R_{1propiopeso} = 779,4kg$$

$$R_{2propiopeso} = 519,6kg$$

6.7.3. Cálculo de esfuerzos en viga principal PGA-VP

Se sigue el procedimiento de cálculo para estructuras propuesto por Dubbel en su "Manual del Constructor de Máquinas". Se considera a la viga principal de longitud L=20 m simplemente apoyada en sus extremos (los apoyos corresponden a las vigas testeras que serán dimensionadas posteriormente).

Para el cálculo se consideró más apropiado que el carro PGA-SI-10-CI vaya colgado en la viga en la que PGA-SI-50-CI tiene las cargas más bajas por par de ruedas (14602,9kg)

Se deben analizar dos condiciones distintas de carga:

- 1. Cuando el carro se encuentra en el extremo de la viga (se produce el esfuerzo cortante máximo).
- Cuando el carro se encuentra en el centro de la viga (se produce el momento flector máximo).

6.7.4. Esfuerzo de corte en viga que solo contiene parte de PGA-SI-50-CI

En este cálculo se tendrá en cuenta las cargas de las ruedas de valor R_{1max} = 16777,35kg por lo que la llamaremos R_{11max} y R_{12max} a la carga en cada rueda, ambas con el mismo valor R_{1max} .

6.7.4.1. Esfuerzo de corte en el apoyo izquierdo

La reacción del apoyo R_A para una posición cualquiera del carro a una distancia x del apoyo izquierdo es:

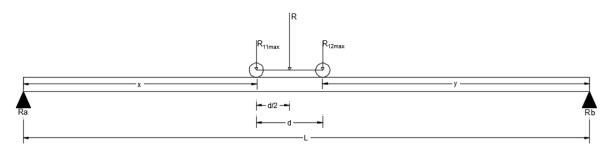
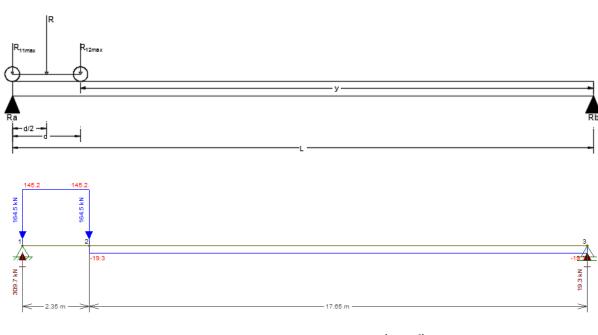
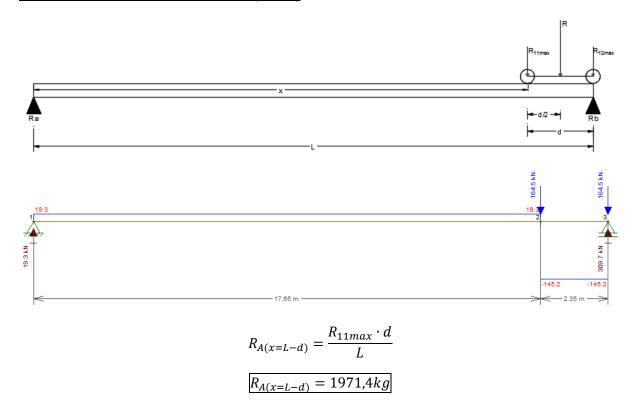



Figura 6.7.4.1: Esquema de carro en viga

$$R_{A} \cdot L - R_{11max} \cdot (L - x) - R_{12max} \cdot (L - x - d) = 0$$

$$R_{A} = \frac{R_{11max} \cdot (L - x) + R_{12max} \cdot (L - x - d)}{L}$$


Con el carro en el extremo izquierdo (x=0):

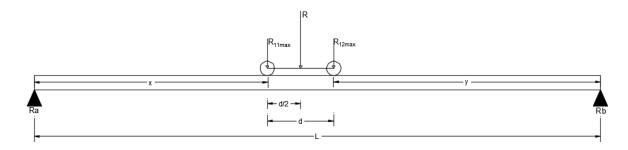
$$R_{A(x=0)} = \frac{R_{11max} \cdot L + R_{12max} \cdot (L-d)}{L}$$

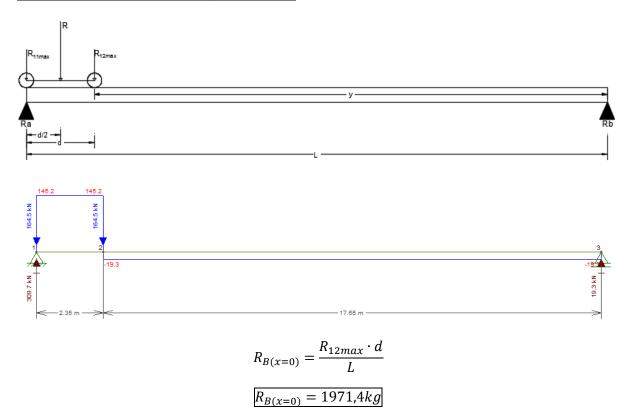
$$R_{A(x=0)} = 31584,6kg$$
 Valor máximo

Con el carro en el extremo derecho (x=L-d)

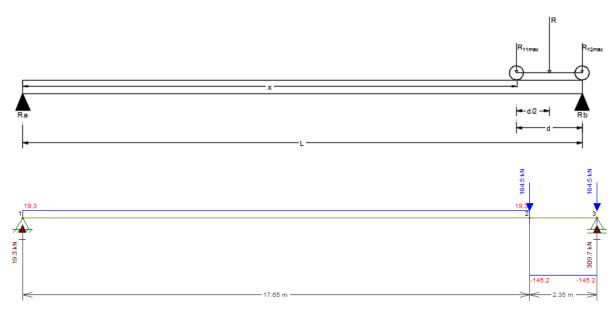
6.7.4.2. Esfuerzo de corte en apoyo derecho

La reacción del apoyo R_B para una posición cualquiera del carro a una distancia x del apoyo derecho es:




Figura 6.7.4.2: Esquema de carro en viga

$$\sum M_A = 0$$


$$R_B \cdot L - R_{11max} \cdot x - R_{12max} \cdot (x+d) = 0$$

$$R_B = \frac{R_{11max} \cdot x + R_{12max} \cdot (x+d)}{L}$$

Con el carro en el extremo izquierdo (x=0):

Con el carro en el extremo derecho (x=L-d)

$$R_{B(x=L-d)} = \frac{R_{11max} \cdot (L-d) + R_{12max} \cdot L}{L}$$

$$R_{B(x=L-d)} = 31584,6kg$$
 Valor máximo

6.7.5. Momento flector en la viga que solo contiene a PGA-SI-50-CI

En este cálculo se tendrá en cuenta las cargas de las ruedas de valor R_{1max} = 16777,35kg por lo que la llamaremos R_{11max} y R_{12max} a la carga en cada rueda, ambas con el mismo valor R_{1max} .

6.7.5.1. Momento flector debido a R_{11max}

Para la posición del carro a una distancia x del apoyo de la izquierda, el momento flector debido a la carga R_{11max} es:

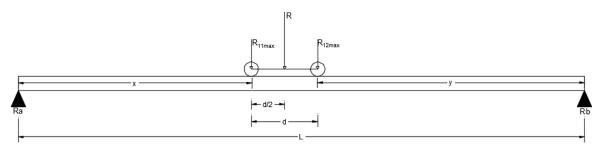


Figura 6.7.5.1: Esquema de carro en viga

$$\sum_{M_B = 0} M_B = 0$$

$$M_{R_{11max}} = R_A \cdot x = \frac{R_{11max} \cdot (L - x) + R_{12max} \cdot (L - x - d)}{L} \cdot x$$

Agrupando $R_{11max}+R_{12max}=R$, reemplazando $d_1=\frac{R_{12max}\cdot d}{(R_{11max}+R_{12max})}$ el momento nos queda:

$$M_{R_{11max}} = R \cdot \left(\frac{-x^2 + x \cdot L - d_1 \cdot x}{L}\right)$$

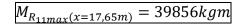
Posición del carro para la cual el momento es máximo:

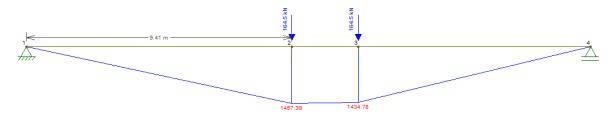
$$\frac{dM_{R_{11max}}}{dx} = 0 = R \cdot \left(\frac{-2 \cdot x + L - d_1}{L}\right)$$

$$x_{M_{R_{11max}}} = \frac{L - d_1}{2} = \frac{(20000 - 1175)mm}{2} \rightarrow x_{M_{R_{11max}}} = 9412,5mm = 9,4125m$$

Momento máximo:

$$M_{R_{11max}} = 33556kg \cdot \left(\frac{-(9,4125m)^2 + 9,4125m \cdot 20m - 1,175m \cdot 9,4125m}{20m} \right)$$


$$M_{R_{11max}} = 148645kgm$$


Cuando el carro se encuentra a la izquierda (x=0,405m):

$$M_{R_{11max}(x=0,405m)} = 12379kgm$$

Cuando el carro se encuentra en la derecha (x=L-d=17,245m):

$$M_{R_{11max}(x=17,65m)} = 33556kg \cdot \left(\frac{-(17,245m)^2 + 17,245m \cdot 20m - 1,175m \cdot 17,245m}{20m} \right)$$

6.7.5.2. Momento flector debido a R_{12max}

Para la posición del carro a una distancia y del apoyo de la izquierda, el momento flector debido a la carga R_{12max} es:

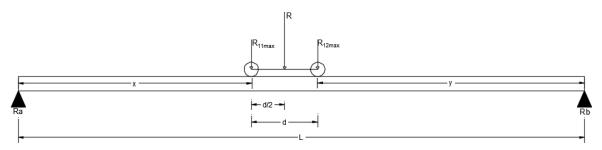


Figura 6.7.5.2: Esquema de carro en viga

$$\sum_{M_A=0} M_A=0$$

$$M_{R_{12max}}=R_B\cdot y=\frac{R_{11max}\cdot (L-y-d)+R_{12max}\cdot (L-y)}{L}\cdot y$$

Agrupando $R_{11max}+R_{12max}=R$, reemplazando $d_1=\frac{R_{12max}\cdot d}{(R_{11max}+R_{12max})}$ el momento nos queda:

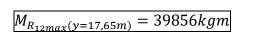
$$M_{R_{12max}} = R \cdot \left(\frac{-y^2 + y \cdot L - d_1 \cdot y}{L}\right)$$

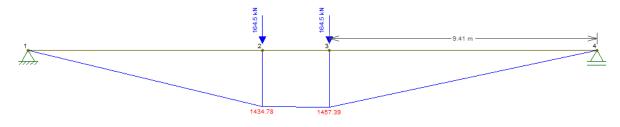
Posición del carro para la cual el momento es máximo:

$$\frac{dM_{R_{12max}}}{dy} = 0 = R \cdot \left(\frac{-2 \cdot y + L - d_1}{L}\right)$$

$$y_{M_{R_{12max}}} = \frac{L - d_1}{2} = \frac{(20000 - 1175)mm}{2} \rightarrow \boxed{y_{M_{R_{12max}}} = 9412,5mm = 9,4125m}$$

Momento máximo:


$$\begin{split} M_{R_{12max}} = 33556kg \cdot \left(\frac{-(9{,}4125m)^2 + 9{,}4125m \cdot 20m - 1{,}175m \cdot 9{,}4125m}{20m} \right) \\ \hline M_{R_{12max}} = 148645kgm \end{split}$$


Cuando el carro se encuentra a la derecha (y=0,405m):

$$M_{R_{12max}(y=0,405m)} = 12379kgm$$

Cuando el carro se encuentra en la izquierda (y=L-d=17,245m):

$$M_{R_{12max}(y=17,65m)} = 33556kg \cdot \left(\frac{-(17,245m)^2 + 17,245m \cdot 20m - 1,175m \cdot 17,245m}{20m} \right)$$

6.7.6. Esfuerzo de corte en la viga que contiene ambos carros

En este cálculo se tendrá en cuenta las cargas de las ruedas del carro PGA-SI-50-CI de valor R_{2max} = 14602,9kg por lo que la llamaremos R_{21max} y R_{22max} a la carga en cada rueda, ambas con el mismo valor R_{2max} . Además, contara con el peso propio por par de ruedas del carro PGA-SI-10-CI, las mismas valen P_1 =779kg y P_2 =519,6kg.

6.7.6.1. Esfuerzo de corte en el apoyo izquierdo para ambos carros

La reacción del apoyo R_A para una posición cualquiera del carro PGA-SI-50-CI a una distancia x_s del apoyo izquierdo y una posición cualquiera del carro PGA-SI-10-CI a una distancia x_i del mismo apoyo es:

$$R_{A} \cdot L - R_{21max} \cdot (L - x_{s}) - R_{22max} \cdot (L - x_{s} - d_{50}) - P_{1} \cdot (L - x_{i}) - P_{2} \cdot (L - x_{i} - d_{10})$$

$$= 0$$

$$R_{A} = \frac{R_{21max} \cdot (L - x_{s}) + R_{22max} \cdot (L - x_{s} - d_{50}) + P_{1} \cdot (L - x_{i}) + P_{2} \cdot (L - x_{i} - d_{10})}{L}$$

Con los dos carros en el extremo izquierdo (x_s=x_i=0):

$$R_{A(x_s=x_i=0)} = \frac{R_{21max} \cdot L + R_{22max} \cdot (L - d_{50}) + P_1 \cdot L + P_2 \cdot (L - d_{10})}{L}$$

$$R_{A(x_s=x_i=0)} = 28764,54kg$$

Con los dos carros en el extremo derecho (x_s=L-d₅₀; x_i= L-d₁₀)

$$R_{A(x_s=L-d_{50};x_i=L-d_{10})} = \frac{R_{21max} \cdot d_{50} + P_1 \cdot d_{10}}{L}$$

$$R_{A(x_s=L-d_{50};x_i=L-d_{10})} = 1752,47kg$$

6.7.6.2. Esfuerzo de corte en el apoyo derecho para ambos carros

La reacción del apoyo R_B para una posición cualquiera del carro PGA-SI-50-CI a una distancia x_s del apoyo izquierdo y una posición cualquiera del carro PGA-SI-10-CI a una distancia x_i del mismo apoyo es:

$$R_B \cdot L - R_{21max} \cdot (L - x_s - d_{50}) - R_{22max} \cdot (L - x_s) - P_1 \cdot (L - x_i - d_{10}) - P_2 \cdot (L - x_i)$$
= 0

$$R_B = \frac{R_{21max} \cdot (L - x_s - d_{50}) - R_{22max} \cdot (L - x_s) - P_1 \cdot (L - x_i - d_{10}) - P_2 \cdot (L - x_i)}{L}$$

Con los dos carros en el extremo derecho (x_s=x_i=0):

$$R_{B(x_s=x_i=0)} = \frac{R_{21max} \cdot (L - d_{50}) + R_{22max} \cdot L + P_1 \cdot (L - d_{10}) + P_2 \cdot L}{L}$$

$$R_{B(x_s=x_i=0)} = 28764,54kg$$

Con los dos carros en el extremo izquierdo (x_s=L-d₅₀; x_i= L-d₁₀)

$$R_{B(x_s=L-d_{50};x_i=L-d_{10})} = \frac{R_{22max} \cdot d_{50} + P_2 \cdot d_{10}}{L}$$

$$R_{B(x_s=L-d_{50};x_i=L-d_{10})} = 1752,47kg$$

6.7.7. Momento flector en la viga que contiene ambos carros

En este cálculo se tendrá en cuenta las cargas de las ruedas del carro PGA-SI-50-CI de valor $R_{2\text{max}}$ = 14602,9kg por lo que la llamaremos $R_{21\text{max}}$ y $R_{22\text{max}}$ a la carga en cada rueda, ambas con el mismo valor $R_{2\text{max}}$. Además, contara con el peso propio por par de ruedas del carro PGA-SI-10-CI, las mismas valen P_1 =779kg y P_2 =519,6kg. Este último no se contara con carga ya que a la hora de estar en funcionamiento el carro de 50tn, el de 10tn solo contara como peso de la estructura.

6.7.7.1. Momento flector debido a R_{21max}

Para la posición del carro a una distancia x_s del apoyo de la izquierda, el momento flector debido a la carga R_{21max} es:

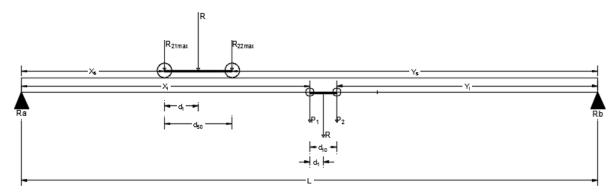


Figura 6.7.7.1: Esquema de carros en viga

$$\sum M_B = 0$$

$$M_{R_{21max}} = R_A \cdot x_s = \frac{R_{21max} \cdot (L - x_s) + R_{22max} \cdot (L - x_s - d_{50})}{L} \cdot x_s$$

Agrupando $R_{21max}+R_{22max}=R$, reemplazando $d_1=\frac{R_{22max}\cdot d_{50}}{(R_{21max}+R_{22max})}$ el momento nos queda:

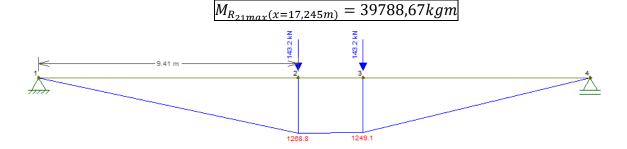
$$M_{R_{21max}} = R \cdot \left(\frac{-x_s^2 + x_s \cdot L - d_1 \cdot x_s}{L}\right)$$

Posición del carro para la cual el momento es máximo:

$$\frac{dM_{R_{21max}}}{dx} = 0 = R \cdot \left(\frac{-2 \cdot x_s + L - d_1}{L}\right)$$

$$x_{M_{R_{21max}}} = \frac{L - d_1}{2} = \frac{(20000 - 1175)mm}{2} \rightarrow \underbrace{x_{M_{R_{21max}}} = 9412,5mm = 9,4125m}$$

Momento máximo:


$$\begin{split} M_{R_{21max}} &= 29205,8kg \cdot \left(\frac{-(9,4125m)^2 + 9,4125m \cdot 20m - 1,175m \cdot 9,4125m}{20m} \right) \\ &\boxed{M_{R_{21max}} = 129374,62kgm} \end{split}$$

Cuando el carro se encuentra a la izquierda (x_s=0,405m):

$$M_{R_{21max}(x=0,405m)} = 29205,8kg \cdot \left(\frac{-(0,405m)^2 + 0,405m \cdot 20m - 1,175m \cdot 0,405m}{20m}\right)$$

$$M_{R_{21max}(x=0,405m)} = 10894kgm$$

Cuando el carro se encuentra en la derecha (x_s=L-d=17,245m):

$$M_{R_{21max}(x=17,65m)} = 29205,8kg \cdot \left(\frac{-(17,245m)^2 + 17,245m \cdot 20m - 1,175m \cdot 17,245m}{20m} \right)$$

6.7.7.2. Momento flector debido a R_{22max}

Para la posición del carro a una distancia y_s del apoyo de la derecha, el momento flector debido a la carga R_{22max} es:

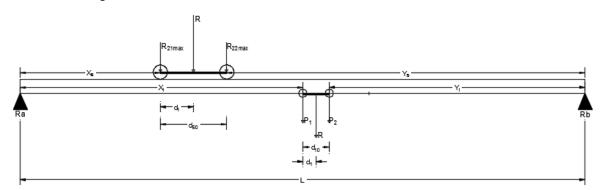


Figura 6.7.7.2: Esquema de carros en viga

$$\sum M_B = 0$$

$$M_{R_{22max}} = R_B \cdot y_s = \frac{R_{22max} \cdot (L - y_s) + R_{21max} \cdot (L - y_s - d_{50})}{L} \cdot x_s$$

Agrupando $R_{21max}+R_{22max}=R$, reemplazando $d_1=\frac{R_{21max}\cdot d_{50}}{(R_{21max}+R_{22max})}$ el momento nos queda:

$$M_{R_{22max}} = R \cdot \left(\frac{-y_s^2 + y_s \cdot L - d_1 \cdot y_s}{L}\right)$$

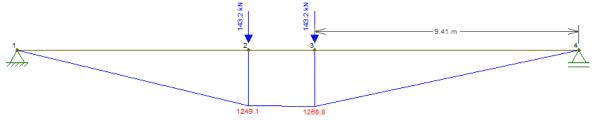
Posición del carro para la cual el momento es máximo:

$$\frac{dM_{R_{22max}}}{dx} = 0 = R \cdot \left(\frac{-2 \cdot y_s + L - d_1}{L}\right)$$

$$y_{M_{R_{22max}}} = \frac{L - d_1}{2} = \frac{(20000 - 1175)mm}{2} \rightarrow \boxed{y_{M_{R_{22max}}} = 9412,5mm = 9,4125m}$$

Momento máximo:

$$\begin{split} M_{R_{22max}} &= 29205,8kg \cdot \left(\frac{-(9,4125m)^2 + 9,4125m \cdot 20m - 1,175m \cdot 9,4125m}{20m} \right) \\ &\boxed{M_{R_{22max}} = 129374,62kgm} \end{split}$$


Cuando el carro se encuentra a la derecha (y_s=0,405m):

$$M_{R_{22max}(y=0,405m)} = 29205,8kg \cdot \left(\frac{-(0,405m)^2 + 0,405m \cdot 20m - 1,175m \cdot 0,405m}{20m}\right)$$

$$M_{R_{22max}(y=0,405m)} = 10894kgm$$

Cuando el carro se encuentra en la izquierda (v_s=L-d=17,245m):

$$M_{R_{22max}(y=17,65m)} = 29205,8kg \cdot \left(\frac{-(17,245m)^2 + 17,245m \cdot 20m - 1,175m \cdot 17,245m}{20m}\right)$$

$$M_{R_{22max}(y=17,245m)} = 39788,67kgm$$

6.7.7.3. Momento flector debido a P₁

Para la posición del carro a una distancia x_i del apoyo de la izquierda, el momento flector debido a la carga P_1 es:

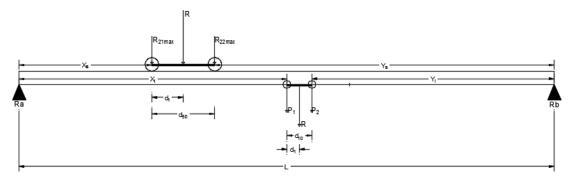


Figura 6.7.7.3: Esquema de carros en viga

$$\sum_{i} M_{B} = 0$$

$$M_{P_{1}} = R_{A} \cdot x_{i} = \frac{P_{1} \cdot (L - x_{i}) + P_{2} \cdot (L - x_{i} - d_{10})}{L} \cdot x_{i}$$

Agrupando $P_1 + P_2 = P$, reemplazando $d_1 = \frac{P_1 \cdot d_{10}}{(P_1 + P_2)}$ el momento nos queda:

$$M_{P_1} = P \cdot \left(\frac{-x_i^2 + x_i \cdot L - d_1 \cdot x_i}{L}\right)$$

Posición del carro para la cual el momento es máximo:

$$\frac{dM_{P_1}}{dx} = 0 = P \cdot \left(\frac{-2 \cdot x_i + L - d_1}{L}\right)$$

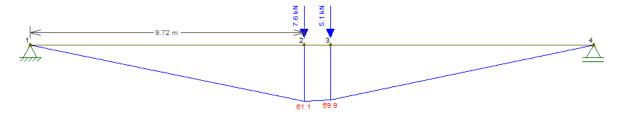
$$x_{M_{P_1}} = \frac{L - d_1}{2} = \frac{(20000 - 564)mm}{2} \rightarrow x_{M_{P_1}} = 9718mm = 9,718m$$

Momento máximo:

$$M_{P_1 max} = 1299 kg \cdot \left(\frac{-(9,718m)^2 + 9,718m \cdot 20m - 0,564m \cdot 9,718m}{20m} \right)$$

$$M_{P_1 max} = 6133,85 kgm$$

Cuando el carro se encuentra a la izquierda (xi=0,345m):


$$M_{P_1(x=0,345m)} = 1299kg \cdot \left(\frac{-(0,345m)^2 + 0,345m \cdot 20m - 0,564m \cdot 0,345m}{20m}\right)$$

$$M_{P_1(x=0,345m)} = 427,8kgm$$

Cuando el carro se encuentra en la derecha (x_i=L-d=18,83m):

$$M_{P_1(x=18,83m)} = 1299kg \cdot \left(\frac{-(18,83m)^2 + 18,83m \cdot 20m - 0,564m \cdot 18,83m}{20m} \right)$$

$$M_{P_1(x=18,83m)} = 741,14kgm$$

6.7.7.4. Momento flector debido a P₂

Para la posición del carro a una distancia y_i del apoyo de la derecha, el momento flector debido a la carga P₂ es:

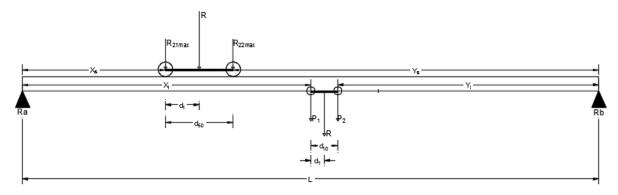


Figura 6.7.7.4: Esquema de carros en viga

$$\sum_{M_A = 0} M_A = 0$$

$$M_{P_2} = R_B \cdot y_i = \frac{P_2 \cdot (L - y_i) + P_1 \cdot (L - y_i - d_{10})}{L} \cdot y_i$$

Agrupando $P_1 + P_2 = P$, reemplazando $d_1 = \frac{P_2 \cdot d_{10}}{(P_1 + P_2)}$ el momento nos queda:

$$M_{P_2} = P \cdot \left(\frac{-y_i^2 + y_i \cdot L - d_1 \cdot y_i}{L}\right)$$

Posición del carro para la cual el momento es máximo:

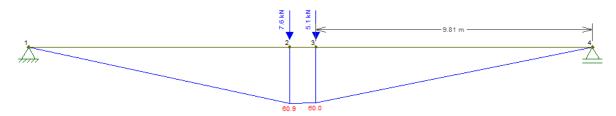
$$\frac{dM_{P_2}}{dy} = 0 = P \cdot \left(\frac{-2 \cdot y_i + L - d_1}{L}\right)$$

$$y_{M_{P_2}} = \frac{L - d_1}{2} = \frac{(20000 - 376)mm}{2} \rightarrow y_{M_{P_1}} = 9812mm = 9,812m$$

Momento máximo:

$$\begin{split} M_{P_2max} &= 1299kg \cdot \left(\frac{-(9,812m)^2 + 9,812m \cdot 20m - 0,376m \cdot 9,812m}{20m} \right) \\ &\boxed{M_{P_2max} = 6253,1kgm} \end{split}$$

Cuando el carro se encuentra a la derecha (y=0,345m):


$$M_{P_2(y=0,345m)} = 1299kg \cdot \left(\frac{-(0,345m)^2 + 0,345m \cdot 20m - 0,376m \cdot 0,345m}{20m}\right)$$

$$M_{P_2(y=0,345m)} = 432kgm$$

Cuando el carro se encuentra en la izquierda (y_i=L-d=18,83m):

$$M_{P_2(y=18,83m)} = 1299 kg \cdot \left(\frac{-(18,83m)^2 + 18,83m \cdot 20m - 0,376m \cdot 18,83m}{20m} \right)$$

$$M_{P_1(y=18,83m)} = 971,1kgm$$

6.7.8. Momento flector debido al propio peso de la viga principal

Para calcular esta solicitación se debe conocer el peso por metro de la viga principal, por lo que se preseleccionará una viga para obtener un peso aproximado para el cálculo. El criterio a utilizar es que su momento de inercia sea mayor que el momento de inercia requerido para soportar las cargas $I > I_{nec}$.

Según Dubbel, el momento de inercia necesario es:

$$I_{nec} = \frac{P}{48 \cdot E \cdot \delta_{adm}} \cdot (L - d) \cdot [L^2 + (L + d)^2]$$

Donde:

E: es el módulo de elasticidad del acero (2,1x106 kg/cm²).

P: es la carga por rueda (16777,35kg para la viga más cargada).

L: luz de la viga principal (20m).

d: distancia entre ruedas de la misma viga (2,35m).

 δ_{adm} : flecha máxima admisible para cargas móviles.

El autor recomienda que la flecha máxima debe ser:

$$\delta_{adm} = \frac{L}{1000} \rightarrow \delta_{adm} = \frac{2000cm}{1000} = 2cm$$

Por lo tanto, el momento de inercia necesario es:

$$I_{nec} = \frac{16777,35kg}{48 \cdot 2,1 \cdot 10^6 \cdot 2cm} \cdot (2000cm - 235cm) \cdot [(2000cm)^2 + (2000cm + 235cm)^2]$$

$$I_{nec} = 1321263,925cm^4$$

6.7.8.1. Viga propuesta

Muchas de las medidas de la viga propuesta y destallada más adelante, fueron limitadas por características físicas de los carros y otras sugeridas por el autor Dubbel como la altura de la misma:

$$h = \frac{1}{15} \cdot L \div \frac{1}{12} \cdot L \rightarrow h = 133,33 \div 166,67 \ (cm)$$

Se toma una altura de h=165cm, quedando formada de la siguiente manera:

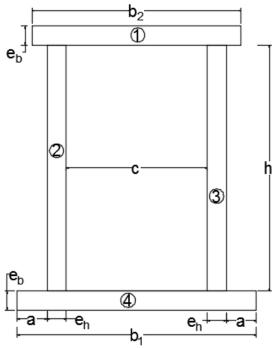


Figura 6.7.8.1: Esquema viga principal

Donde:

 I_x : es el momento de inercia de x.

 I_{ν} : es el momento de inercia de y.

h: altura de las paredes de la viga (165cm).

 b_1 : base inferior de la viga (40cm).

 b_2 : base superior de la viga (32cm).

 e_h : espesor de las paredes de la viga (2,54cm).

 e_h : espesor de la base de la viga (3,175cm).

c: distancia interior entre las paredes (24,92cm).

 W_x : modulo resistente respecto a x.

 W_{v} : modulo resistente respecto a y.

 \bar{y} : distancia vertical al centro de masa (83,673cm).

 \bar{x} : distancia horizontal al centro de masa (20cm).

a: ala de la base inferior (5cm)

Figura	Área A[cm²]	\overline{x} [cm]	\overline{y} [cm]	$\overline{x} \cdot A^2$ [cm ³]	$\overline{y} \cdot A^2 [cm^3]$
1	101,6	20	169,7625	2032	17247,87
2	419,1	6,27	85,675	2627,757	35906,3925
3	419,1	33,73	85,675	14136,243	35906,3925
4	127	20	1,5875	2540	201,6125
TOTAL	1066,8			21336	89262,2675

$$\bar{x} = \frac{21336cm^3}{1066.8cm^2} = 20cm$$

$$\bar{y} = \frac{89262,2675cm^3}{1066,8cm^2} = 83,675cm$$

La misma tiene las siguientes propiedades resistentes:

$$\begin{split} I_{x} &= 2 \cdot \left(\frac{e_{h} \cdot h^{3}}{12} + e_{h} \cdot h \cdot (\bar{y} - \bar{y}_{2})^{2} \right) + \left(\frac{b_{1} \cdot e_{b}^{3}}{12} + b_{1} \cdot e_{b} \cdot (\bar{y} - \bar{y}_{4})^{2} \right) \\ &+ \left(\frac{b_{2} \cdot e_{b}^{3}}{12} + b_{2} \cdot e_{b} \cdot (\bar{y} - \bar{y}_{1})^{2} \right) \\ I_{y} &= \left(\frac{e_{b} \cdot b_{1}^{3}}{12} + e_{b} \cdot b_{1} \cdot (\bar{x} - \bar{x}_{4})^{2} \right) + \left(\frac{e_{b} \cdot b_{2}^{3}}{12} + e_{b} \cdot b_{2} \cdot (\bar{x} - \bar{x}_{1})^{2} \right) \\ &+ \left(\frac{h \cdot e_{h}^{3}}{12} + h \cdot e_{h} \cdot (\bar{x} - \bar{x}_{2})^{2} \right) + \left(\frac{h \cdot e_{h}^{3}}{12} + h \cdot e_{h} \cdot (\bar{x} - \bar{x}_{3})^{2} \right) \\ W_{x} &= \frac{I_{x}}{\bar{y}} \end{split}$$

$$W_{y} = \frac{I_{y}}{\bar{x}}$$

Reemplazando:

$$I_x = 3513945,97cm^4$$

$$I_y = 184065,296cm^4$$

$$W_x = 41995.2cm^3$$

$$W_y = 9203,265cm^3$$

Por lo tanto, el momento de inercia de la viga propuesta verifica ya que $I_x > I_{nec}$.

6.7.8.2. Peso propio de la viga

Para ello se halla el área de viga y se lo multiplica al peso específico del acero $(\rho=0.0078 \text{kg/cm}^3)$:

$$A = 2 \cdot (h \cdot e_h) + (b_1 \cdot e_b) + (b_2 \cdot e_b)$$

$$A = 2 \cdot (165cm \cdot 2,54cm) + (40cm \cdot 3,175cm) + (32cm \cdot 3,175cm)$$

$$A = 1066,8cm^2$$

Por lo tanto, el peso de la viga es:

$$G = \rho \cdot A = 0,0078 \frac{kg}{cm^3} \cdot 1066,8cm^2$$
$$G = 8,32 \frac{kg}{cm} = 832 \frac{kg}{m}$$

Riel guía RG de la viga principal y sus características

El libro "Los transportes en la ingeniería industrial" recomienda un perfil de tipo Llantón que se emplea en carros de puente grúa se selecciona para su fabricación un perfil de 80x40 mm con 25.1 daN/m (25kg/m) de peso ya que son las dimensiones que requieren las ruedas del carro.

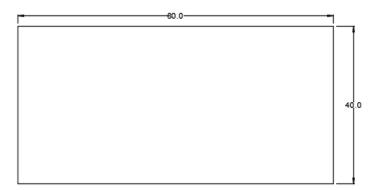


Figura 6.7.8.3-1: Corte riel traslación de carro 50t

Por lo tanto, el peso propio de la viga más el de los carriles queda:

$$G_T = 832 \frac{kg}{m} + 25 \frac{k}{m}$$

$$G_T = 857 \frac{kg}{m}$$

Los mismos se colocarán en el centro de la viga principal, de la siguiente manera:

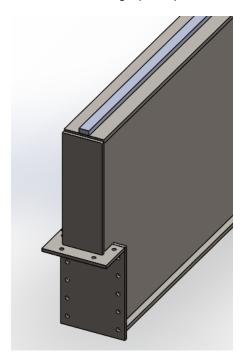
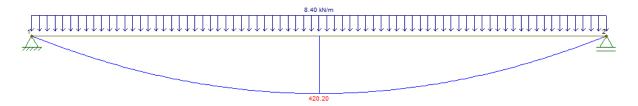
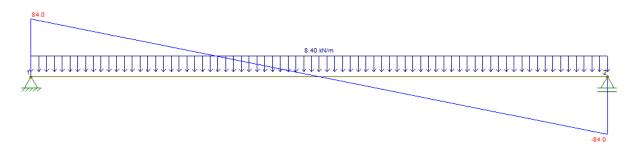



Figura 6.7.8.3-1: Representación viga principal

6.7.8.4. Momento flector máximo debido al propio peso de la viga principal

Este momento se calcula con el peso calculado anteriormente de la siguiente manera:

$$M_{fgmax} = \frac{G_T \cdot L^2}{8} = \frac{857 \frac{kg}{m} \cdot (20m)^2}{8}$$
$$M_{fgmax} = 42850 kg \cdot m$$



6.7.9. Esfuerzo de corte debido al propio peso de la viga principal

Este esfuerzo se calcula con el peso propio total calculado anteriormente:

$$Q_{gmax} = \frac{G_T \cdot L}{2} = \frac{857 \frac{kg}{m} \cdot 20m}{2}$$

$$Q_{gmax} = 8570kg$$

6.7.10. Momento máximo resultante

Se obtiene con la expresión del manual Dubbel (basado en las normas DIN 120):

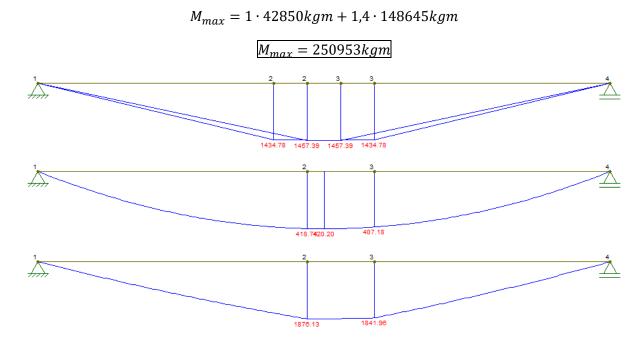
$$M_{max} = \varphi \cdot M_{fgmax} + \psi \cdot M_{imax}$$

Donde:

 φ : es un fator de choque, determinado por la velocidad de traslación del puente grúa.

 ψ : es un coef. de compensación que depende del grupo de grúas.

 M_{fgmax} : momento flector máximo debido al propio peso. M_{imax} : momento flector máximo debido a las cargas.


Para el momento flector máximo debido a las cargas se considera la viga que contiene solamente el carro PGA-SI-50-CI, que el momento máximo en esta viga es mayor y por lo tanto, es el caso más desfavorable, como los momentos ejercidos por las cargas son iguales se toma un único valor a utilizar ($M_{R_{12max}} = M_{R_{11max}} = 148645 kgm$).

El momento flector máximo debido al propio peso, es $M_{fgmax} = 42850 kgm$.

Según la tabla de la página 668 del Tomo II del Manual Dubbel, el valor del factor de choque ϕ vale 1 hasta una velocidad de traslación de 1 m/s, por lo que para nuestro caso (25m/min) caso ϕ =1.

En cuanto al coeficiente de compensación, se determina inicialmente de la página 663 del Tomo II del Manual Dubbel de acuerdo a la carga a elevar y al tiempo de funcionamiento, la clase de grúa, y posteriormente en la página 668 se determina el valor del coeficiente para la clase de grúa correspondiente; en nuestro caso nos da un grupo II y se obtiene un valor de coef. de compensación de ψ =1,4.

Reemplazando en la ecuación nos queda:

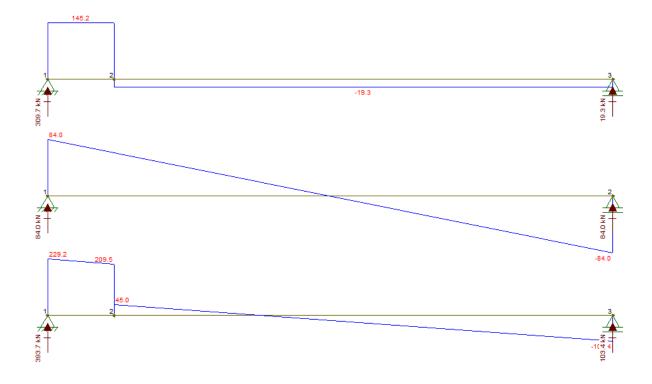
6.7.11. Esfuerzo de corte máximo resultante

Combinando los esfuerzos ya calculados, la resultante se obtiene:

$$Q_{max} = Q_{gmax} + R_{Amax}$$

Donde:

 Q_{qmax} : esfuerzo de corte máximo debido al propio


peso(8570kg).

 R_{Amax} : esfuerzo de corte máximo en uno de los apoyos. Se considera la viga que contiene el carro PGA-SI-50-CI, ya que es el mayor y por lo tanto más desfavorable(31584,6kg).

Reemplazando en la ecuación queda:

$$Q_{max} = 8570kg + 31584,6kg$$

$$Q_{max} = 40154,6kg$$

6.7.12. Verificación por resistencia de la viga principal propuesta

Se verificará la viga propuesta seleccionada por la resistencia del material ya que por flecha máxima ya fue verificado en la sección 6.7.8.1. Aplicando la expresión de la ley de Navier:

$$\sigma_{adm} = \frac{M_{max}}{W_{nec}}$$

$$W_{nec} = \frac{M_{max}}{\sigma_{adm}}$$

$$\begin{split} \sigma_{adm} &= \frac{M_{max}}{W_{nec}} & \frac{\text{Donde:}}{\sigma_{adm}} : \text{ es la tensión admisible para el acero de la viga. Determinado} \\ W_{nec} &= \frac{M_{max}}{\sigma_{adm}} & \frac{\text{Donde:}}{\sigma_{adm}: \text{ es la tensión admisible para el acero de la viga. Determinado}}{\sigma_{adm} \circ \sigma_{adm} \circ \sigma_{adm}: \text{ es el momento máximo resultante (250953kgm).} \end{split}$$

 W_{nec} : es el módulo resistente de la viga

Reemplazando obtenemos el módulo resistente necesario de la viga:

$$W_{nec} = \frac{250953 \cdot 100 kgcm}{616.4 \frac{kg}{cm^2}} \rightarrow \overline{W_{nec} = 40712,7cm^3}$$

Por lo tanto, el módulo resistente de la viga propuesta verifica ya que $W_x > W_{nec}$.

6.7.13. Solicitaciones horizontales de las vigas principales

Las vigas principales sufren una flexión adicional en sentido horizontal por la inercia de las masas en movimiento. Esta flexión alcanza su valor máximo cuando el carro cargado es frenado súbitamente, la aceleración negativa del puente debe ser igual a la del carrito. En la posición más desfavorable el carro completamente cargado produce una solicitación debido a la inercia de masas antes descripta igual a:

$$P_H = N \cdot \mu = \frac{m+Q}{2} \cdot \mu$$

 $P_H = N \cdot \mu = \frac{m+Q}{2} \cdot \mu$ Donde: N: representa la fuerza total normal a la viga. u: es el coeficiente de rozamiento (equivalente a 0.2). m: es la carga total del carro (peso propio y carga de servicio, en nuestro caso sería R_{11max}+R_{12max}).

Q: es el peso de la viga principal.

Reemplazando en la ecuación se obtiene:

$$P_{H} = \frac{m+Q}{2} \cdot \mu = \frac{(2 \cdot 16777,35kg) + \left(857 \frac{kg}{m} \cdot 20m\right)}{2} \cdot 0,2$$

$$\boxed{P_{H} = 5069,47kg}$$

Se considera que esta solicitación se reparte de manera uniforme en las dos ruedas del carro PGA-SI-50-CI, transmitiéndose por medio de las mismas a la viga principal. De esta forma, el momento flector generado por el par de ruedas será:

$$M_{Hmax} = \frac{P_H}{2 \cdot L} \cdot \left(L - \frac{O2}{2}\right)^2$$

Recordando que O2 es la distancia entre ruedas del carro sobre una misma viga y equivale a 2350mm. Reemplazando nos queda:

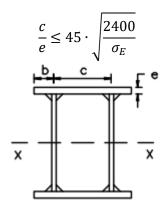
$$M_{Hmax} = \frac{5069,47kg}{2 \cdot 20m} \cdot \left(20m - \frac{2,35m}{2}\right)^{2}$$

$$M_{Hmax} = 44913,05kgm$$

Con este momento se determina el módulo resistente necesario en Y a partir de la ley de Navier:

$$\sigma_{adm} = \frac{M_{Hmax}}{W_{ynec}} \rightarrow W_{ynec} = \frac{M_{Hmax}}{\sigma_{adm}}$$

$$W_{ynec} = \frac{44913,05 \cdot 100 \ kgcm}{616,4 \frac{kg}{cm^2}} \rightarrow \boxed{W_{ynec} = 7286,35cm^3}$$


Por lo tanto, el módulo resistente de la viga propuesta verifica ya que $W_y > W_{ynec}$.

6.7.14. Comprobación del ala comprimida al pandeo local

Según V. Cudós Samblancat, en su libro "Calculo de estructuras de acero", tenemos que: Además de las consideraciones establecidas para el cálculo de la estructura dadas previamente, debemos también comprobar que el ala superior comprimida no sufre abollamiento por efecto de las compresiones del carro en los carriles.

En los perfiles laminados esto no ocurre, pero en las vigas de placas muy delgadas esto sí puede suceder.

El criterio más utilizado es el que expresa que la condición para que en una pared no se produzca la ruina por abollamiento antes que por pandeo general. Es el siguiente:

Donde:

c: ancho entre alma (23,65cm+2,54cm=26,19cm).

e: espesor del ala superior (3,175cm).

 σ_E : limite elástico del acero.

 $(\sigma_{EA36} = 2530 \text{kg/cm}^2)$.

Si no se satisfacen los mínimos indicados en dichas tablas, se procederá a aumentar el espesor del ala de la viga, o a la colocación de rigidizadores.

Reemplazando se obtiene:

$$\frac{26,19cm}{3,175cm} \le 45 \cdot \sqrt{\frac{2400}{2530 \frac{kg}{cm^2}}}$$

$$8,25 \le 43,83 \rightarrow Verifica$$

Como vemos, no es necesaria la colocación de rigidizadores en el alma.

6.7.15. Comprobación de flexión en las alas inferiores

Según la norma CMAA-74 "Crane Manufacturers Association of America", cada carga de la rueda se considera como una fuerza concentrada (P) aplicada en el centro de contacto de la rueda con el ala (Figura 3.3.2.6-4, pág. 18). Las tensiones locales de flexión en el lateral (x) y longitudinal (y) en los puntos críticos, se calculan a partir de las siguientes fórmulas:

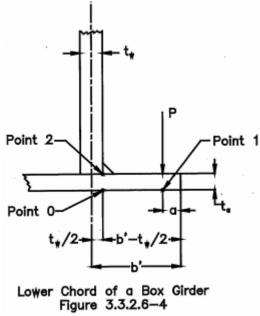


Figura 6.7.15-1: Esquema ala inferior

Parte inferior de la brida en la transición de la brida a la banda (Point 0):

$$\sigma_{X0} = C_{X0} \cdot \frac{P}{(t_a)^2}$$
 $\sigma_{Y0} = C_{Y0} \cdot \frac{P}{(t_a)^2}$

Parte inferior de la brida directamente debajo del punto de contacto de la rueda (Point 1):

$$\sigma_{X1} = C_{X1} \cdot \frac{P}{(t_a)^2}$$
 $\sigma_{Y1} = C_{Y1} \cdot \frac{P}{(t_a)^2}$

Parte superior de la brida en la transición de la brida a la banda (Point 2):

$$\sigma_{X2} = -\sigma_{X0}$$
 $\sigma_{Y2} = -\sigma_{Y0}$

Luego para perfiles con alas de sección paralela (figura 3.3.2.6-4, pág.18), se tiene las siguientes relaciones:

$$C_{X_0} = -2,110 + 1,977 * \lambda + 0,0076 * e^{6,53*\lambda}$$

$$C_{X_1} = 10,108 - 7,408 * \lambda - 10,108 * e^{-1,364*\lambda}$$

$$C_{Y_0} = 0,050 - 0,58 * \lambda + 0,148 * e^{3,015*\lambda}$$

$$C_{Y_1} = 2,230 - 1,49 * \lambda + 1,390 * e^{-18,33*\lambda}$$

Además, para otros tipos de (figura 3.3.2.6-4, pág. 18)

$$\lambda = \frac{a}{b' - \frac{t_w}{2}}$$

Donde:

b': distancia desde la línea central de la banda hasta el borde de la brida (en pulgadas).

P: carga por rueda incluyendo el factor HLF (en libras).

 t_a : espesor del ala en el punto de aplicación de la carga (en pulgadas). t_w : espesor del alma (en pulgadas).

a: distancia que existe entre el borde del ala y el punto de aplicación de la fuerza *P* (en pulgadas).

e: base neperiana = 2,71828...

Para el cálculo de la carga "P", se tiene en cuenta la mayor reacción ejercida por las ruedas sobre la viga calculado en la sección 6.7.2. ($R_{1max} = 7365kg$ par de ruedas, es decir se considera $R_{11} = \frac{R_{1max}}{2} = 3682,5kg$).

$$P = (1 + HLF) \cdot R_{11}$$

 $\begin{array}{c} \underline{\text{Donde:}} \\ P = (1 + HLF) \cdot R_{11} \\ HLF = 0,005 \cdot v_i \end{array}$ $\begin{array}{c} \underline{\text{Donde:}} \\ \text{HLF: es el factor que se le aplica del movimiento de la carga al ser elevada.} \end{array}$

 v_i : velocidad de izaje. (5m/min)

Reemplazando nos queda:

$$HLF = 0.005 \cdot 5 \frac{m}{min} \cdot \frac{1ft}{0.3098} = 0.08 \rightarrow se \ adopta \ por \ norma \ HLF = 0.15$$

$$P = (1 + 0.15) \cdot \left(3682.5kg \cdot 2.2046 \frac{lbf}{kg}\right) \rightarrow P = 9336.21lbf$$

Los datos necesarios para el cálculo de las fórmulas son:

$$t_{w} = 1in$$
 $I_{x} = 84423in^{4}$
 $t_{a} = 1,25in$ $W_{x} = 2562,7in^{3}$
 $a = 0,9in$ $I_{y} = 4422,2in^{4}$
 $b' = 2,47in$ $W_{y} = 561,62in^{3}$
 $A = 165,35in^{2}$ $\sigma_{fA36} = 35,56ksi$
 $L = 787,4in$

Posteriormente, se procede con el cálculo de las tensiones establecidas en la primera parte de esta sección:

$$\lambda = \frac{0.9in}{2.47in - \frac{1in}{2}} \rightarrow \lambda = 0.46$$

$$C_{X_0} = -2.110 + 1.977 * 0.46 + 0.0076 * e^{6.53*0.46} = -1.047$$

$$C_{X_1} = 10.108 - 7.408 * 0.46 - 10.108 * e^{-1.364*0.46} = 1.3$$

$$C_{Y_0} = 0.050 - 0.58 * 0.46 + 0.148 * e^{3.015*0.46} = 0.38$$

$$C_{Y_1} = 2.230 - 1.49 * 0.46 + 1.390 * e^{-18.33*0.46} = 1.54$$

$$\sigma_{X_0} = -1.047 \cdot \frac{9336.21lbf}{(1.25in)^2} = -6256 \frac{lbf}{in^2}$$

$$\sigma_{X_1} = 1.3 \cdot \frac{9336.21lbf}{(1.25in)^2} = 7767.7 \frac{lbf}{in^2}$$

$$\sigma_{X_2} = -\sigma_{X_0} = 6256 \frac{lbf}{in^2}$$

$$\sigma_{Y0} = 0.38 \cdot \frac{9336.21 lbf}{(1.25 in)^2} = 2270.6 \frac{lbf}{in^2}$$

$$\sigma_{Y1} = 1.54 \cdot \frac{9336.21 lbf}{(1.25 in)^2} = 9201.8 \frac{lbf}{in^2}$$

$$\sigma_{Y2} = -\sigma_{Y0} = -2270.6 \frac{lbf}{in^2}$$

Consideraciones a tener en cuenta:

- Las tensiones localizadas, debido al efecto de flexión local impuesto por las cargas de las ruedas calculadas en los puntos "0" y "1" (ver Figure 3.3.2.6-3 & 4), deben ser combinadas con las tensiones según al "Caso 2" de carga especificado anteriormente.
- Para el cálculo de las tensiones combinadas, las tensiones locales de flexión críticas en el lateral (x) y longitudinal (y), deben ser disminuidas al 75%.
- El esfuerzo combinado por las tensiones octaédricas (criterio de Von Mises o del agotamiento del material), no debe superar a lo estipulado en la norma (Table 3.4-1).

TABLE 3.4-1									
LOAD COMBINATION	ALLOWABLE COMPRESSION STRESS*	ALLOWABLE TENSION STRESS	ALLOWABLE SHEAR STRESS*	ALLOWABLE BEARING STRESS					
	σ _{CALL}	σ _{TALL}	TALL	σ _{BrgALL}					
Case 1	0.60σ _{ур}	0,60თ _{ур}	0.36თ _{აр}	0.80σ _{yp}					
Case 2	0.66σ _{ур}	0.66σ _{να}	0.40σ _{ур}	- 0.90σ _{ур}					
Case 3	0.75σ _{ур}	0.75σ _{ур}	0.45σ _{yp}	1.00σ _{ур}					

Figura 6.7.15-2: Estrés permitido

Donde σ_{yp} quiere decir Yield Point (Punto de fluencia). Y lo que nos dice la norma es que se debe cumplir que $\sigma_T \leq 0.66 \cdot \sigma_{yp}$. Para el cálculo de la tensión de Von Mises (σ_T) para un estado biaxial de tensiones, se debe aplicar la siguiente fórmula:

$$\sigma_T = \sqrt{(\sigma_x)^2 + (\sigma_y)^2 - \sigma_x \cdot \sigma_y + 3 \cdot (\tau_{xy})^2} \le \sigma_{tall}$$

Seguidamente, se desarrolla el cómputo de las distintas tensiones involucradas. Aplicando el Caso 2 de carga, se tiene una carga total que vale:

$$P_{T2} = DL \cdot (DLB_B) + TL \cdot (DLF_T) + LL \cdot (1 + HLF) + (TL + LL) \cdot (IFD + WLO + SK)$$

Estas nomenclaturas dadas por las normas equivalen a los siguientes valores del proyecto:

DL: es el peso propio de la viga principal PGA-VP (857kg/m=37787lbf)

DLB_R: es la velocidad de traslación del carro PGA-SI-10-CI (25m/min=82ft/min)

TL: peso del polipasto más el carro (1251kg=2758lbf).

 DLF_T : es la velocidad de izaje (5m/min=16,4ft/min).

LL: peso de los accesorios más la carga de izaje del carro PGA-SI-10-CI (10055kg=22169lbf).

IFD: es el coeficiente de rozamiento (0,051)

WLO: carga adicional debida al viento, no es considerada.

SK: esfuerzo horizontal perpendicular a los rieles de rodadura, no es considerada.

Estas últimas, no se consideran ya que el puente grúa va a estar ubicado dentro de una nave.

$$DLB_B = 1.1 \le 1.05 + \frac{82 ft/min}{2000} \le 1.2 \rightarrow 1.1$$

$$DLF_T = 1.1 \le 1.05 + \frac{16.4 \ ft/min}{2000} \le 1.2 \rightarrow 1.1$$

Reemplazando estos valores en la ecuación se obtiene:

$$P_{T2} = 37787 \cdot 1,1 + 2758 \cdot 1,1 + 22169 \cdot (1 + 0,15) + (2758 + 22169) \cdot 0,051$$

$$P_{T2} = 71365lbf$$

Luego, se calculan los pares producidos por cada una de las cargas verticales, teniendo en cuenta el caso más desfavorable:

$$\begin{split} M_{DL} &= M_{fgmax} = 42850 kgm \cdot 2,2046 \frac{lbf}{kg} \cdot 39,37 \frac{in}{m} = 3719170 lbf \cdot in \\ M_{LL} &= M_{P_2 \max{(c/carga)}} \rightarrow valor \ hallado \ para \ las \ reacciones \ del \ carro \ R_{1max} + R_{2max} \\ M_{P_2 \max{(c/carga)}} &= (7365 + 6031) kg \cdot \left(\frac{-(9,812m)^2 + 9,812m \cdot 20m - 0,376m \cdot 9,812m}{20m} \right) \\ &\rightarrow M_{LL} = M_{P2max} = 64485,22 kgm \cdot 2,2046 \frac{lbf}{kg} \cdot 39,37 \frac{in}{m} = 5597001,25 lbf \cdot in \\ M_{TL} &= \frac{TL \cdot L}{4} = \frac{2758 lbf \cdot 787,4 in}{4} = 542912 lbf \cdot in \\ M_{V} &= \sum_{i=1}^{n} M_i = M_{DL} + M_{LL} + M_{TL} = 9859083,25 lbf \cdot in \end{split}$$

La combinación de pares debido a cargas horizontales se determina de la siguiente forma:

$$M_H = IDF \cdot M_V = 0.051 \cdot 9859083,25lbf \cdot in = 502813,25lbf \cdot in$$

También se deben calcular las tensiones presentes en la viga principal:

$$\begin{split} \sigma_V &= \frac{(1 + HLF) \cdot M_{LL} + (DLF_T) \cdot M_{TL} + (DLB_B) \cdot M_{DL}}{W_X} \\ \sigma_V &= \frac{(1 + 0.15) \cdot 5597001.25lbf \cdot in + 1.1 \cdot 542912lbf \cdot in + 1.1 \cdot 3719170lbf \cdot in}{2562.7in^3} \\ \hline \\ \sigma_V &= 4341.1 \frac{lbf}{in^2} \\ \\ \sigma_H &= \frac{M_H}{W_V} = \frac{502813.25lbf \cdot in}{561.62in^3} \end{split}$$

$$\sigma_{H} = 895,3 \frac{lbf}{in^{2}}$$

$$\tau_{medio} = \frac{(1 + HLF) \cdot LL + (DLF_{T}) \cdot TL + (DLB_{B}) \cdot DL}{2 \cdot A}$$

$$\tau_{medio} = \frac{(1 + 0,15) \cdot 22169lbf + 1,1 \cdot 2758lbf + 1,1 \cdot 37787lbf}{2 \cdot 165,35in^{2}}$$

$$\tau_{medio} = 212 \frac{lbf}{in^{2}}$$

A continuación, se sigue con la determinación de las tensiones en los puntos "0" y "1". Este es un caso típico de flexión oblicua, por lo que aplicando Ley de Navier se tiene:

$$\sigma_0 = \sigma_V + M_H \cdot \frac{t_w}{\frac{2}{l_y}} = 4341.1 \frac{lbf}{in^2} + (502813,25lbf \cdot in) \cdot \frac{\frac{1in}{2}}{4422,2in^4}$$

$$\sigma_0 = 4397,95 \frac{lbf}{in^2}$$

$$\sigma_1 = \sigma_V + M_H \cdot \frac{b' - a}{l_y} = 4341.1 \frac{lbf}{in^2} + (502813,25lbf \cdot in) \cdot \frac{2,47in - 0,9in}{4422,2in^4}$$

$$\sigma_1 = 4519,61 \frac{lbf}{in^2}$$

Posteriormente, se obtienen las tensiones de Von Mises de los puntos "0" y "1", para realizar las verificaciones antes mencionadas:

Punto "0":

$$\sigma_{x} = 0.75 \cdot \sigma_{x0} = 0.75 \cdot -6256 \frac{lbf}{in^{2}} \rightarrow \sigma_{x} = -4692 \frac{lbf}{in^{2}}$$

$$\sigma_{y} = \sigma_{0} + 0.75 \cdot \sigma_{y0} = 4397.95 \frac{lbf}{in^{2}} + 0.75 \cdot 2270.6 \frac{lbf}{in^{2}} \rightarrow \sigma_{y} = 6101 \frac{lbf}{in^{2}}$$

$$\sigma_{t0} = \sqrt{(\sigma_{x})^{2} + (\sigma_{y})^{2} - \sigma_{x} \cdot \sigma_{y} + 3 \cdot (\tau_{medio})^{2}}$$

$$\sigma_{t0} = \sqrt{\left(-4692 \frac{lbf}{in^{2}}\right)^{2} + \left(6101 \frac{lbf}{in^{2}}\right)^{2} - \left(-4692 \frac{lbf}{in^{2}} \cdot 6101 \frac{lbf}{in^{2}} + 3 \cdot \left(212 \frac{lbf}{in^{2}}\right)^{2}}$$

$$\sigma_{t0} = 9366.33 \frac{lbf}{in^{2}}$$

Punto "1":

$$\sigma_{x} = 0.75 \cdot \sigma_{X1} = 0.75 \cdot 7767.7 \frac{lbf}{in^{2}} \rightarrow \sigma_{x} = 5825.8 \frac{lbf}{in^{2}}$$

$$\sigma_{y} = \sigma_{1} + 0.75 \cdot \sigma_{Y1} = 4519.61 \frac{lbf}{in^{2}} + 0.75 \cdot 9201.8 \frac{lbf}{in^{2}} \rightarrow \sigma_{y} = 11421 \frac{lbf}{in^{2}}$$

$$\sigma_{t1} = \sqrt{(\sigma_{x})^{2} + (\sigma_{y})^{2} - \sigma_{x} \cdot \sigma_{y} + 3 \cdot (\tau_{medio})^{2}}$$

$$\sigma_{t1} = \sqrt{\left(5825.8 \frac{lbf}{in^{2}}\right)^{2} + \left(11421 \frac{lbf}{in^{2}}\right)^{2} - (5825.8 \frac{lbf}{in^{2}} \cdot 11421 \frac{lbf}{in^{2}} + 3 \cdot \left(212 \frac{lbf}{in^{2}}\right)^{2}}$$

$$\sigma_{t1} = 9884.73 \frac{lbf}{in^{2}}$$

Finalmente, se comparan los valores de tensión calculados con la tensión admisible que impone la norma en su desarrollo. Recordando que el $\sigma_{fA36} = 2500 \frac{kg}{cm^2}$:

$$\begin{split} \sigma_{tall} &= 2500 \; \frac{kg}{cm^2} \cdot 2,2046 \frac{lbf}{kg} \cdot 6,4516 \frac{cm^2}{in^2} \quad \to \quad \boxed{\sigma_{tall} = 35558 \frac{lbf}{in^2}} \\ \sigma_{adm} &= 0,66 \cdot \sigma_{tall} = 0,66 \cdot 35558 \frac{lbf}{in^2} \quad \to \quad \boxed{\sigma_{adm} = 23468,3 \frac{lbf}{in^2}} \end{split}$$

Como este $\sigma_{adm} > \sigma_{t0}$ y también $\sigma_{adm} > \sigma_{t1}$. La viga verifica a la flexión local que se ejerce en sus alas.

6.7.16. Construcción de las vigas principales

En esta sección se va a calcular la soldadura con la que se unirán las 4 chapas que conforman a la viga principal.

El cálculo se hará por el método enunciado en el *"Tratado teórico práctico de elementos de máquinas", G. Niemann;* el cual refiere a las normas DIN 1050 y 4100 (estructuras) y DIN120 (construcción de grúas). El autor propone, en pág. 170, ciertos tipos de soldadura:

Designación Símbolos de soldadura		Unilateral Soldadura en	Bilateral ungulo, plana	Soldadura a t	Soldadura en X, esquinada	
		2	Δ	4		. 4
	Espesor de cordón	а	2 α	e	8	2 a
R	epresentación del cordón					
10 D	Tracción-compresión	0,22	0,3	0,45	0,6	0,35
onuciente.	Flexión	0,11	0,6	0,55	0,75	0,7
Oct.	Esfuerzo cortante	0,22	0,3	0,37	0,5	0,35

Figura 6.7.16: Uniones esquinadas

Para nuestro caso se emplea la unión en ángulo unilateral. Como espesor estándar a de soldadura proponemos, según el autor:

$$a = 0.7 \cdot e$$

Donde e es el espesor de la chapa mas delgada (del alma = 2,54cm), quedando:

$$a = 0.7 \cdot 2.54cm \rightarrow a = 1.778cm$$

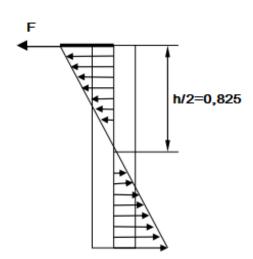
Luego calculamos la tensión admisible en la soldadura. Niemann la estima con la siguiente fórmula:

$$\rho_{adm} = v \cdot v_2 \cdot \sigma_{adm}$$

Los valores de los coeficientes complementarios v y v_2 consideran, el primero, el tipo de soldadura y el esfuerzo al que se encuentra sometida y el segundo la calidad de la soldadura. El coeficiente v se obtiene de la Tabla 7.7, a base de valores experimentales resultando 0,65. El coeficiente v_2 se considera unitario, debido que la calidad de los electrodos usados hoy en día supera ampliamente a los que fueron utilizados para confeccionar la tabla (soldadura fuerte).

Como se calculó en la sección 5.2 la tensión admisible para el acero ASTM A36 es σ_{admA36} =616,4kg/cm².

Reemplazando estos valores en la ecuación se obtiene la tensión admisible en la soldadura:


$$\rho_{adm} = 0,65 \cdot 1 \cdot 616,4 \frac{kg}{cm^2}$$

$$\rho_{adm} = 400,66 \frac{kg}{cm^2}$$

Ahora se calcula la sección necesaria de cordón:

$$A_n = \frac{F}{\rho_{adm}}$$

Para calcular la fuerza actuante en el cordón debemos considerar el momento flector máximo (Mfmáx= 250953kgm) y la distancia de acción (h/2):

$$F = \frac{Mf_{max}}{\frac{h}{2}} = \frac{250953kgm}{\frac{1,65m}{2}} \to F = 304185,45kg$$

Entonces la sección del cordón será:

$$A_n = \frac{304185,45kg}{400,66\frac{kg}{cm^2}} \rightarrow A_n = 759,21cm^2$$

Ahora se calcula la longitud del cordón l_n de la siguiente manera:

$$A_n = l_n \cdot a \rightarrow l_n = \frac{A_n}{a} = \frac{759,21cm^2}{1,778cm}$$

$$l_n = 427cm = 4,27m$$

Por lo tanto, verifica ya que la soldadura propuesta será ininterrumpida a lo largo de los 20m de luz de viga.

6.7.17. Especificaciones viga principal PGA-VP

Datos técnicos de la viga principal definitiva:

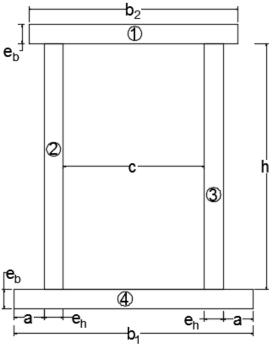


Figura 6.7.17: Esquema viga principal

Donde:

- h: altura de las paredes de la viga (165cm).
- b_1 : base inferior de la viga (40cm).
- b_2 : base superior de la viga (32cm).
- e_h : espesor de las paredes de la viga (2,54cm).
- e_b : espesor de la base de la viga (3,175cm).
- *c*: distancia interior entre las paredes (24,92cm).
- \overline{y} : distancia vertical al centro de masa (83,673cm).
- \bar{x} : distancia horizontal al centro de masa (20cm).
- a: ala de la base inferior (5cm).
- G: peso propio de la viga (832kg/m).

Viga testera PGA-VT 6.8.

Las vigas testeras son las encargadas de apoyar los extremos de las vigas principales y a su vez estas se encuentran soportadas sobre dos ruedas. Para el diseño de las vigas testeras se debe tener en cuenta algunos factores que influyen en las dimensiones de la misma.

6.8.1. Dimensionado por resistencia

Para la construcción se decide dimensionar una viga cajón. El material utilizado es el mismo que el mismo que se usó en las secciones anteriores ASTM A36 con una tensión admisible modificada por coeficientes de seguridad de 616,4 kg/cm²

La longitud mínima de las vigas testeras por norma CMAA-70 debe ser $L_R = \frac{L}{7}$ donde L es la luz de la viga principal (20m).

$$L_R = \frac{L}{7} = \frac{20m}{7} = 2,86m$$

Tomamos en consideración las dimensiones físicas de las vigas principales y el espacio ocupado por las ruedas seleccionadas más adelante en esta sección, y adoptamos 5m de longitud entre los ejes de las ruedas.

6.8.1.1. Determinación de modulo resistente necesario

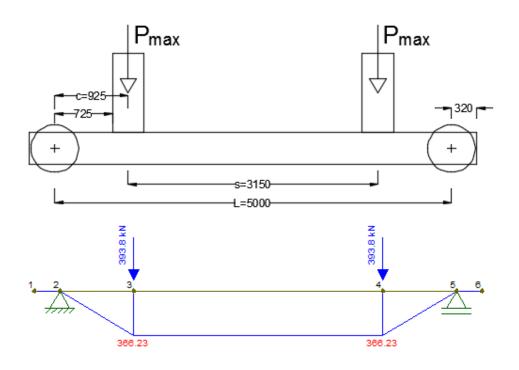


Figura 6.8.1.1: Esquema viga Testera y diagrama de momento flector

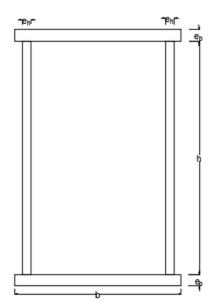
El momento flector máximo ejercido sobre la viga testera es:

$$\begin{split} M_{fmax} = P_{max} \cdot c = P_{max} \cdot \frac{L_R - s}{2} & \frac{\text{Donde:}}{P_{max}} : \text{esfuerzo de corte máximo en las vigas principales} \\ & \text{ya calculado (40154,6kg para el caso más desfavorable).} \\ & s: \text{distancia entre carriles del carro PGA-SI-50-CI} \\ & (3,15\text{m}). \\ & L_R: \text{distancia entre ejes de ruedas (5m).} \\ & c: \text{distancia entre el centro de la rueda y el centro del apoyo de la viga principal (0,925\text{m}).} \end{split}$$

Reemplazando en la ecuación:

$$M_{fmax} = P_{max} \cdot \frac{L_R - s}{2} = 40154,6kg \cdot \frac{5m - 3,15m}{2}$$

$$M_{fmax} = 37143kgm$$


Entonces el módulo resistente necesario que deberá tener la viga será:

$$\sigma_{admA36} = \frac{M_{fmax}}{W_{nec}} \rightarrow W_{nec} = \frac{M_{fmax}}{\sigma_{admA36}} = \frac{37143 \cdot 100 kgcm}{616,4 \frac{kg}{cm^2}}$$

$$\overline{W_{nec} = 6025,8cm^3}$$

6.8.1.2. Selección de las dimensiones de la viga

Se propuso las siguientes medidas que posteriormente serán verificadas:

Figura 6.8.1.2: Esquema viga testera Cálculo de las propiedades:

Donde:

h: altura del alma (72cm).

b: ancho del ala (37cm)

c: distancia entre paredes de alma (30cm)

eh: espesor del alma (3/4" =1,905cm)

e_b: espesor del ala (1" =2,54cm)

L: longitud de la viga testera (5,64m)

$$\begin{split} \overline{A = 415,3cm^2} \\ I_y &= 2 \cdot \frac{2,54cm \cdot (37cm)^3}{12} + 2 \cdot \left[\frac{72cm \cdot (1,905cm)^3}{12} + 72cm \cdot 1,905cm \cdot \left(\frac{37cm}{2} \right)^2 \right] \\ \overline{I_y = 115412cm^4} \\ W_y &= \frac{I_y}{x} = \frac{115412cm^4}{\frac{37cm}{2}} \\ \overline{W_y = 6238cm^3} \\ I_x &= 2 \cdot \frac{1,905cm \cdot (72cm)^3}{12} + 2 \cdot \left[\frac{37cm \cdot (2,54cm)^3}{12} + 37cm \cdot 2,54cm \cdot \left(\frac{72cm + 2,54cm}{2} \right)^2 \right] \\ \overline{I_x = 382493cm^4} \\ W_x &= \frac{I_x}{y} = \frac{382493cm^4}{\frac{72cm + 2,54cm}{2}} \\ \overline{W_x = 10263cm^3} \end{split}$$

 $A = 2 \cdot (72cm \cdot 1,905cm) + 2 \cdot (37cm \cdot 1,905cm)$

6.8.1.3. Solicitaciones horizontales

Las vigas principales sufren además una flexión adicional en sentido horizontal por la inercia de las masas en movimiento. Ésta alcanza su valor máximo cuando los rodillos de la grúa que están trabajando son frenados súbitamente; la grúa resbala un trecho y la aceleración negativa del puente de la grúa que resbala debe ser igual a la del carrito con carga.

En la posición más desfavorable, el carro completamente cargado produce una solicitación P_H debido a la inercia de las masas:

$$P_H = N \cdot \mu = \frac{(R+Q)}{2} \cdot \mu$$
 Donde:
 R : es la carga a elevar (50000kg).
 Q : el peso de las vigas principales (857kg/m para 2x20m de luz).
 μ : coeficiente de rozamiento (0,2).

Reemplazando en la ecuación:

$$P_{H} = \frac{(50000kg + 857\frac{kg}{m} \cdot 2 \cdot 20m)}{2} \cdot 0,2$$

$$P_{H} = 8428kg$$

Las fuerzas resultantes de la inercia consideramos que se reparte aproximadamente de manera uniforme sobre las cuatro ruedas del carrito que la transmiten a las vigas principales por medio de sus pestañas.

El momento horizontal de flexión se calcula por la formula vista para el momento máximo, en la cual el valor de la carga toma el valor PH/4.

$$M_H = \frac{\frac{P_H}{4}}{2 \cdot L} \cdot (L - b_1)^2 \qquad \begin{array}{l} \text{Donde:} \\ L: \text{luz de viga principal (20m).} \\ b_1: \text{ mitad de la distancia entre las ruedas del carro PGA-SI-50-CI de una misma viga principal (2,35/2 m)} \end{array}$$

$$M_{H} = \frac{\frac{8428kg}{4}}{2 \cdot 20m} \cdot (20m - \frac{2,35m}{2})^{2}$$

$$M_{H} = 18667kgm$$

Lo que nos determina un módulo resistente necesario W_{Ynec}:

$$\sigma_{admA36} = \frac{M_H}{W_{ynec}} \rightarrow W_{ynec} = \frac{M_H}{\sigma_{admA36}} = \frac{18667 \cdot 100 kgcm}{616.4 \frac{kg}{cm^2}}$$

$$\overline{W_{ynec} = 3028.4cm^3}$$

Por lo tanto, la viga dimensionada verifica a las solicitudes horizontales ya que $W_y > W_{ynec}$.

6.8.2. Construcción de las vigas testeras

En esta sección se va a calcular la soldadura con la que se unirán las 4 chapas que conforman a la viga principal.

El cálculo se hará por el método enunciado en el *"Tratado teórico práctico de elementos de máquinas", G. Niemann;* el cual refiere a las normas DIN 1050 y 4100 (estructuras) y DIN120 (construcción de grúas). El autor propone, en pág. 170, ciertos tipos de soldadura:

Designación		Unilateral Soldadura en	Bilateral úngulo, plana	Soldadura a t	Soldadura en X, esquinada		
	Simbolos de soldadura	2	Δ	4		. 4	
	Espesor de cordón	а	2 α	e	s *	2 a	
R	epresentación del cordón		-		" -	"	
0 0	Tracción-compresión	0,22	0,3	0,45	0,6	0,35	
oenciente.	Flexión	0,11	0,6	0,55	0,75	0,7	
Oct.	Esfuerzo cortante	0,22	0,3	0,37	0,5	0,35	

Figura 6.8.2: Uniones esquinadas

Para nuestro caso se emplea la unión en ángulo unilateral. Como espesor estándar a de soldadura proponemos, según el autor:

$$a = 0.7 \cdot e$$

Donde e es el espesor de la chapa mas delgada (del alma = 1,905cm), quedando:

$$a = 0.7 \cdot 1.905cm \rightarrow a = 1.33cm$$

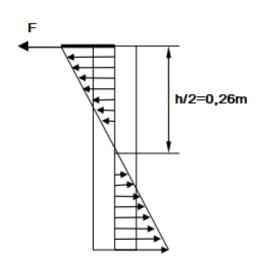
Luego calculamos la tensión admisible en la soldadura. Niemann la estima con la siguiente fórmula:

$$\rho_{adm} = v \cdot v_2 \cdot \sigma_{adm}$$

Los valores de los coeficientes complementarios v y v_2 consideran, el primero, el tipo de soldadura y el esfuerzo al que se encuentra sometida y el segundo la calidad de la soldadura. El coeficiente v se obtiene de la Tabla 7.7, a base de valores experimentales resultando 0,65. El coeficiente v_2 se considera unitario, debido que la calidad de los electrodos usados hoy en día supera ampliamente a los que fueron utilizados para confeccionar la tabla (soldadura fuerte).

Como se calculó en la sección 5.2 la tensión admisible para el acero ASTM A36 es σ_{admA36} =616,4kg/cm².

Reemplazando estos valores en la ecuación se obtiene la tensión admisible en la soldadura:


$$\rho_{adm} = 0,65 \cdot 1 \cdot 616,4 \frac{kg}{cm^2}$$

$$\rho_{adm} = 400,66 \frac{kg}{cm^2}$$

Ahora se calcula la sección necesaria de cordón:

$$A_n = \frac{F}{\rho_{adm}}$$

Para calcular la fuerza actuante en el cordón debemos considerar el momento flector máximo (Mf_{máx}= 37143kgm) y la distancia de acción (h/2):

$$F = \frac{Mf_{max}}{\frac{h}{2}} = \frac{37143kgm}{\frac{0,72m}{2}} \to F = 103175kg$$

Entonces la sección del cordón será:

$$A_n = \frac{103175kg}{400,66\frac{kg}{cm^2}} \rightarrow A_n = 257,5cm^2$$

Ahora se calcula la longitud del cordón l_n de la siguiente manera:

$$A_n = l_n \cdot a \rightarrow l_n = \frac{A_n}{a} = \frac{257,5cm^2}{1,33cm}$$

$$l_n = 193,6cm = 1,94m$$

Por lo tanto, verifica ya que la soldadura propuesta será ininterrumpida a lo largo de los 5,64m de la logitud de viga testera.

6.8.3. Sistema de traslación

El diseño consiste en preseleccionar un carril longitudinal y calcular el diámetro de la rueda, en función del carril preseleccionado y la carga sobre la misma. Con ese diámetro seleccionamos la rueda más próxima en un catálogo comercial. Luego, la rueda seleccionada del catálogo será compatible con otro riel, el cual se deberá volver a seleccionar.

6.8.3.1. Preselección del carril

Para seleccionar un carril sobre el cual se desplazarán las ruedas de las vigas testeras, adoptaremos un carril conformado. Del catálogo de la empresa ArcelorMittal, seleccionamos carriles tipo "Burbach" A100:

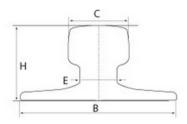


Figura 6.8.3.1-1: Características del riel

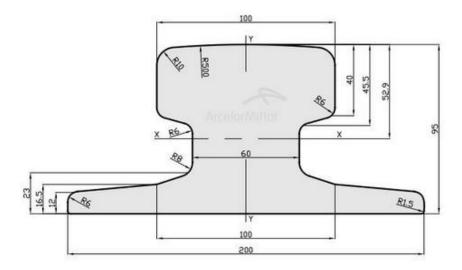


Figura 6.8.3.1-2: detalles técnicos del riel

Las longitudes de carril para grúa estándar van de los 6 a los 24 metros.

6.8.3.2. Selección de ruedas RU

Por recomendación del fabricante Miguel Abad "Traslaciones y conjuntos rodantes", el cálculo de las ruedas propulsoras está basado en la norma DIN 15070. El diámetro de la rueda portadora será:

$$D_n = \frac{R_m}{P_{lim} \cdot b \cdot C_1 \cdot C_2} \qquad \frac{\text{Donde:}}{R_m: \text{ reacción media sobre la rueda (N).}} \\ R_{max}: \text{ máxima reacción con carga nominal}$$

$$R_m = \frac{2 \cdot R_{max} + R_{min}}{3}$$
 (40154,6kg=393,78kN).
 R_{min} : reacción en la rue

 R_{min} : reacción en la rueda sin carga y con la maquina detenida.

 P_{lim} : presión límite del material utilizado (N/mm²).

b: ancho efectivo del riel (mm).

 C_1 : coeficiente que depende de la clase de mecanismo.

 C_2 : coeficiente en función de la velocidad de rotación de la rueda.

Cálculo de la reacción en la rueda sin carga y con la maquina detenida:

El peso del carro PGA-SI-50-CI con todos sus accesorios del sistema de izaje:

$$P = 7860kg + 710kg = 8570kg$$

Obteniendo las reacciones por ruedas del carro debida al propio peso:

$$R_{1max} = 0.3 \cdot P = 2571kg \rightarrow Se \ toma \ esta \ reaccion \ como \ mas \ des favorable$$

$$R_{2max} = 0.2 \cdot P = 1714kg$$

La reacción en el apoyo A de la viga principal sobre la testera es:

$$R_{Amax} = \frac{2571kg \cdot 20m + 2571kg \cdot (20m - 2,35m)}{20m} \rightarrow R_{Amax} = 4840kg$$

Quedando la reacción en la rueda sin carga y con la maguina detenida:

$$R_{min} = R_{Amax} + P = 4840kg + 8570kg$$

 $R_{min} = 13410kg = 131,51kN$

Cálculo de la reacción media:

La reacción media depende, del número de ruedas afectado al mecanismo. Luego de establecer la Rmáx como la máxima reacción sobre la rueda con carga nominal, y Rmín como la reacción en la rueda sin carga y con la máquina detenida, Rm surge de la siguiente fórmula:

$$R_m = \frac{2 \cdot R_{max} + R_{min}}{3} = \frac{2 \cdot 393780N + 131510N}{3}$$

$$R_m = 306357N$$

Cálculo de la presión límite del material utilizado:

La presión límite depende de la tensión de rotura del acero utilizado y su relación con el grado de acero del riel, según se desprende del análisis de la tabla 1.

Tabla 1							
Tensiór	n de Rotura	P lím					
Riel	Rueda	F IIII					
N/mm²	N/ mm²	N/ mm²					
	≤ 330	2,80					
500	410	3,60					
590	490	4,50					
	590	5,60					
≥690	≥ 740	7,00					

Ancho efectivo del riel:

Depende del tipo de riel utilizado. Para el riel propuesto (tipo Burbach):

 $b = L - 2 \cdot r$ Donde:

L: ancho total del riel.

r: radio de extremo del riel.

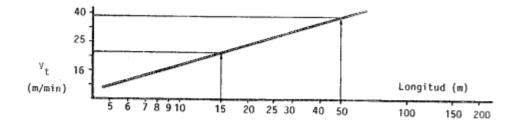
Tabla 2				
Ri	el (Símbol	0)	_	L-2r
STD	NUEVO	VIEJO	r	L-2r
mm	mm mm		mm	mm
	A 45	KS 22	4	37
	A 55	KS 32	5	45
DIN 536	A 65	KS 43	6	53
P1	A 75	KS 56	8	59
	A 100	KS 75	10	80
	A 120	KS 101	10	100
DIN 536	F 100		5	90
P2	F 120		5	110

Coeficiente C₁ (depende de la clase de mecanismo):

El valor del coeficiente C₁ depende del grupo de mecanismo DIN, el cual está determinado por el tipo de servicio, las condiciones de esfuerzos y el tiempo de operación máximo por día. Tabla 3:

Tabla 3								
Tiempo de								
Grupo DIN	Desde %	incluido %	C ₂					
M 3	0	16	1,25					
M 4	16	25	1,12					
M 5	25	40	1,00					
M 6	40	63	0,90					
M 7	63	100	0,80					

Coeficiente C₂ (en función de la velocidad de rotación de la rueda)


Como no se conoce la velocidad de rotación de la rueda el fabricante propone utilizar un C₂=1 y luego se recalcula.

Cálculo del diámetro de la rueda:

Reemplazando todos estos valores obtenidos en la ecuación:

$$D_n = \frac{R_m}{P_{lim} \cdot b \cdot C_1 \cdot C_2} = \frac{306557N}{7 \frac{N}{mm^2} \cdot 80mm \cdot 1 \cdot 1} \rightarrow D_n = 547,42mm$$

Entrando a la tabla 5 del fabricante con este diámetro calculado junto con la velocidad de traslación del puente (40m/min obtenido del autor Miravete), se elige el diámetro inmediato superior:

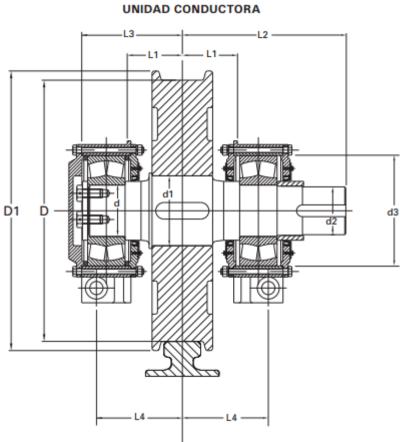
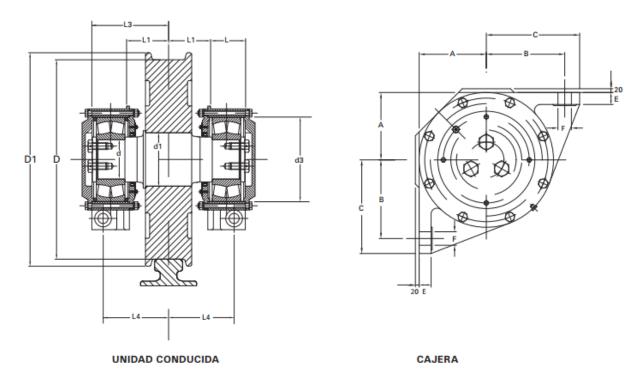

Gráfica 11.3. Velocidad de traslación de la grúa.

Tabla 5		Coeficiente C ² Real													
Diámetro de la Rueda (mm)		Velocidad Lineal (m / min)													
	10.0	12.5	16.0	20.0	25.0	31.5	40	50	63	80	100	125	160	200	250
200	1.09	1.06	1.03	1.00	0.97	0.94	0.91	0.87	0.82	0.77	0.72	0.66			
250	1.11	1.09	1.06	1.03	1.00	0.97	0.94	0.91	0.87	0.82	0.77	0.72	0.66		
315	1.13	1.11	1.09	1.06	1.03	1.00	0.97	0.94	0.91	0.87	0.82	0.77	0.72	0.66	
400	1.14	1.13	1.11	1.09	1.06	1.03	1.00	0.97	0.94	0.91	0.87	0.82	0.77	0.72	0.66
500	1.15	1.14	1.13	1.11	1.09	1.06	1.03	1.00	0.97	0.94	0.91	0.87	0.82	0.77	0.72
630	1.17	1.15	1.14	1.13	1.11	1.09	1.06	1.03	1.00	0.97	0.94	0.91	0.87	0.82	0.77
710		1.16	1.14	1.13	1.12	1.10	1.07	1.04	1.02	0.99	0.96	0.92	0.89	0.84	0.79
800		1.17	1.15	1.14	1.13	1.11	1.09	1.06	1.03	1.00	0.97	0.94	0.91	0.87	0.82
900			1.16	1.14	1.13	1.12	1.10	1.07	1.04	1.02	0.99	0.96	0.92	089	0.84
1000			1.17	1.15	1.14	1.13	1.11	1.09	1.06	1.03	1.00	0.97	0.94	0.91	0.87
1120				1.16	1.14	1.13	1.	1.10	1.07	1.04	1.02	0.99	0.96	0.92	0.89
1250				1.17	1.15	1.14	1.13	1.11	1.09	1.06	1.03	1.00	0.97	0.94	0.91

Se obtuvo un Dn630mm y un C₂=1,06. Con este nuevo coef. se recalcula el diámetro de la rueda:


$$D_{nfinal} = \frac{547,42mm}{1,06} = 516,43mm$$

Por lo tanto, se selecciona la rueda: MA1 630H-A100

Nº SERIE	D (mm) h11	RIEL	RODAMIENTO	CARGA ADM (N)	D1 (mm)	d (mm) k6	d1 (mm) k6	d2 (mm) k6	d3 (mm) k6
MA1 250	250	A45	22312CW33	80.000	300	60	100	55	130
MA1 315	315	A55	22314CW33	150.000	365	70	110	65	150
MA1 400	400	A75	22318CW33	180.000	450	90	130	85	190
MA1 500 S	500	A75	22320CW33	250.000	550	100	140	90	215
MA1 500 H	500	A100	22324CW33	300.000	550	120	170	90	260
MA1 630 S	630	A75	22322CW33	280.000	680	110	150	95	240
MA1 630 H	630	A100	22326CW33	400.000	680	130	180	110	280
MA1 710 S	710	A100	22328CW33	500.000	760	140	190	130	300
MA1 710 H	710	A120	22330CW33	590.000	760	150	200	140	320
MA1 800	800	A120	22332CW33	680.000	850	160	210	150	340

Figura 6.8.3.2-1: Esquema de rueda conductora y cajeras

N° SERIE	A (mm)	B (mm)	C (mm)	E (mm)	F (mm)	L1 (mm)	L2 (mm)	L3 mm)	L4 (mm)
MA1 250	85	110	135	20	22	90	300	155	130
MA1 315	95	120	145	22	25	100	380	170	140
MA1 400	125	150	185	25	28	115	400	205	170
MA1 500 S	135	160	195	30	33	120	450	212	117
MA1 500 H	160	185	220	30	33	150	450	254	219
MA1 630 S	150	175	210	30	33	120	390	224	189
MA1 630 H	170	200	240	30	33	150	530	264	224
MA1 710 S	180	210	250	30	33	150	445	274	234
MA1 710 H	190	220	260	30	33	150	500	282	242
MA1 800	200	230	270	30	33	150	550	290	250

Figura 6.8.3.2-2: Esquema de rueda conducida y cajeras

Por lo tanto, el carril preseleccionado del catálogo de la empresa ArcelorMittal, tipo "Burbach" A100 es el correcto ya que verifica con la rueda calculada y seleccionada.

6.8.3.3. Fijación de los rieles

Se seleccionan fijadores de la marca Gantrail para nuestro modelo de riel tipo "Burbach" A100, por recomendación del fabricante y cuestiones físicas de la viga carrilera se eligieron clips de base soldada:

El clip es soldado al soporte del riel y no requiere acceso por debajo. Además, tiene un mecanismo de autoajuste.

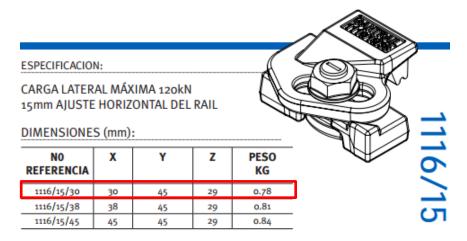


Figura 6.8.3.3: Características del fijador

Figura 6.8.3.3-2: Detalles de armado

DETALLE DE SOLDADURA

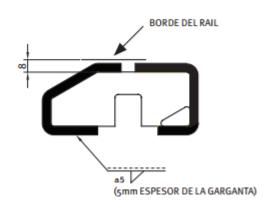


Figura 6.8.3.3-3: Detalles de soldadura

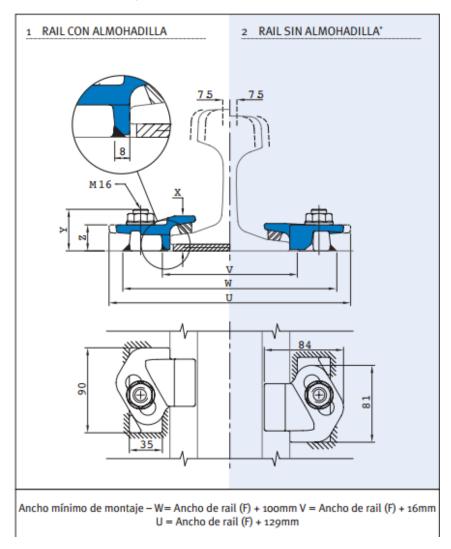


Figura 6.8.3.3-4: Detalle de fijación

PFC-1909A MC-Rev.01

1116/15

Fijación de base soldada Gantrail

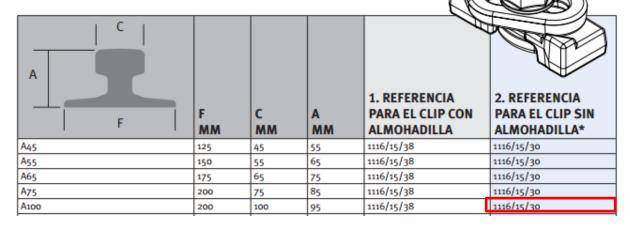


Figura 6.8.3.3-5: Fijación de base soldada

6.8.4. Verificación al corte de la unión entre la viga testera y la principal

En esta sección se calculará la altura mínima del alma de la viga testera en los apoyos de las ruedas y a su vez la altura mínima del alma de la viga principal que irá apoyada sobre la viga testera.

$$\tau_{admA36} = \frac{F}{A}$$

Donde:

 $\overline{ au_{admA36}}$: tensión de corte admisible para el acero ASTM A36 (339kg/cm²).

F: esfuerzo de corte máximo (40155kg). *A*: área de corte que debemos hallar (cm²).

Reemplazando y despejando el área nos queda:

$$A = \frac{40155kg}{339\frac{kg}{cm^2}} \rightarrow \boxed{A = 118.5cm^2}$$

Esta área de corte es para ambas vigas, ya que tienen el mismo material y ambas están sometidas al mismo esfuerzo. Además, este valor es considerando las dos almas en cada viga. Por lo que el área de corte por chapa será:

$$A_c = \frac{A}{2} = \frac{118,5cm^2}{2} \rightarrow A_c = \frac{59,23cm^2}{2}$$

6.8.4.1. Corte en viga principal

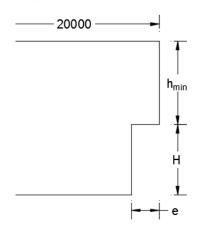


Figura 6.8.4.1: Corte en extremos de VP

Por alma entonces, debemos tener una altura mínima en la sección reducida de:

$$A_c = b \cdot h_{min} \quad \rightarrow \quad h_{min} = \frac{A_c}{b}$$

$$h_{min} = \frac{59,23cm^2}{2,54cm} = 23,32cm$$

Por lo tanto, verifica ya que la reducción que se le hará a la viga principal es de 74,54cm (H, altura del alma de la viga testera más el espesor de la chapa superior).

6.8.4.2. Corte en viga testera

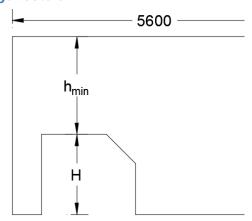
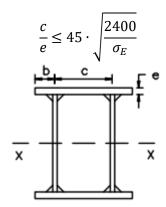


Figura 6.8.4.2: Corte para acople de cajeras

Por alma entonces, debemos tener una altura mínima en la sección reducida de:

$$A_c = b \cdot h_{min} \rightarrow h_{min} = \frac{A_c}{b}$$

$$h_{min} = \frac{59,23cm^2}{1,905cm} = 31,1cm$$


Por lo tanto, verifica ya que la reducción que se le hará a la viga testera es de 41cm (altura de la cajera de la rueda seleccionada anteriormente) de los 72cm que posee dicha viga testera.

6.8.5. Comprobación del ala comprimida al pandeo local

Al igual que en la sección 6.7.14 para la viga principal, se calcula para la viga testera:

Según V. Cudós Samblancat, en su libro "Calculo de estructuras de acero", tenemos que: Además de las consideraciones establecidas para el cálculo de la estructura dadas previamente, debemos también comprobar que el ala superior comprimida no sufre abollamiento por efecto de las compresiones del carro en los carriles.

En los perfiles laminados esto no ocurre, pero en las vigas de placas muy delgadas esto sí puede suceder. El criterio más utilizado es el que expresa que la condición para que en una pared no se produzca la ruina por abollamiento antes que por pandeo general. Es el siguiente:

Donde:

c: ancho entre almas (30cm+1,905cm=31,905cm). e: espesor del ala superior (2,54cm). σ_E : limite elástico del acero. (σ_{EA36} =2530kg/cm²).

Si no se satisfacen los mínimos indicados en dichas tablas, se procederá a aumentar el espesor del ala de la viga, o a la colocación de rigidizadores.

Reemplazando se obtiene:

$$\frac{31,905cm}{2,54cm} \le 45 \cdot \sqrt{\frac{2400}{2530 \frac{kg}{cm^2}}}$$

$$12,56 \le 43,83 \rightarrow Verifica$$

Como vemos, no es necesaria la colocación de rigidizadores en el alma.

6.8.6. Calculo para uniones roscadas

En la sección 6.8.3. se seleccionaron las ruedas para las vigas testeras, las mismas dieron como dato un diámetro F=33mm para la unión entre cajeras y

6.8.6.1. Unión roscada entre la viga testera y la cajera de la rueda

En la sección 6.8.3. se seleccionaron las ruedas para las vigas testeras, las mismas dieron como dato un diámetro F=33mm para la unión entre cajeras y la viga testera. Con 4 orificios para bulones por rueda.

Por lo tanto, se seleccionaron bulones, tuercas y arandelas para el diámetro dado del catálogo de la Distribuidora Central Rosario SRL:

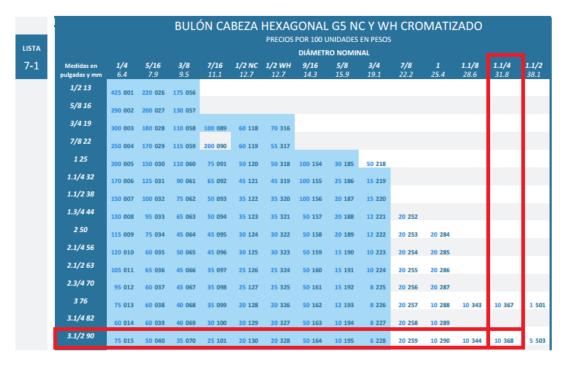


Figura 6.8.6.1-1: Características del bulón

Figura 6.8.6.2: Características de la tuerca

DISTRIBUIDORA CENTRAL ROSARIO SRL
VALPARAÍSO 563-S2002MYA ROSARIO-PCIA. SANTA FE-ARGENTINA
Tel: (0341) 4398001/4304100 Fax: (0341) 4392653/0810-888-5566
Mail: ventas@dcrsrl.com.ar Web: www.dcrsrl.com.ar

LISTA ARANDELAS GROWER

PRECIOS POR 1000 UNIDADES EN PESOS

30-	1/2		
		PULGADA (30-1)
CÓDIGO	MEDIDA	ENVASE	PRECIO
301501	1/8	5000	
301502	5/32	5000	
301503	3/16	5000	
301504	7/32	1000	
301505	1/4	2000	
301506	5/16	1000	
301507	3/8	1000	
301508	7/16	1000	
301509	1/2	1000	
301510	9/16	500	
301511	5/8	500	
301512	3/4	250	
301513	7/8	250	
301514	1	100	
301515	1./8	50	
301516	1.1/4	50	
301517	1.3/8	25	
301518	1.1/2	25	
301519	1.3/4	25	
501515	2.57 .		

Figura 6.8.6.1-3: Características de arandela grower

6.8.6.2. Unión roscada entre viga principal y viga testera

Para este caso, como no tenemos como dato la cantidad de bulones que lleva, se deben calcular al corte según Niemann, seleccionando los mismos bulones que se seleccionaron anteriormente:

$$\tau = \frac{Q}{A \cdot z} \le \tau_{adm}$$

Q: esfuerzo de corte máximo (40155kg).

$$A = \frac{\pi \cdot D^2}{4}$$

 $\tau = \frac{Q}{A \cdot z} \leq \tau_{adm} \qquad \begin{array}{l} Q \text{: esfuerzo de corte máximo (40)} \\ A \text{: área del bulón (en cm}^2\text{).} \\ D \text{: diámetro del bulón (3,18cm).} \\ Z \text{: numero de bulones.} \\ \tau_{adm} \text{: tensión de corte admisible} \end{array}$ au_{adm} : tensión de corte admisible del bulón (SAE G5). Es equivalente al 1045 ya calculado en la sección 5.3. (528,85kg/cm²).

Reemplazando en las ecuaciones anteriores se obtiene:

$$A = \frac{\pi \cdot (3,18cm)^2}{4} = 7,94cm^2$$

$$z = \frac{Q}{A \cdot \tau_{adm}} = \frac{40155 kg}{7,94 cm^2 \cdot 528,85 \frac{kg}{cm^2}} \rightarrow z = 10 \text{ bulones}$$

Por lo tanto, se optó por colocar 5 bulones a cada lado de la viga principal.

6.8.7. Sistema de propulsión

Cálculo del motorreductor de traslación MT 6.8.7.1.

Según Miravete, la potencia necesaria para la traslación de un puente grúa se calcula como la potencia a régimen permanente y de aceleración. La expresión a continuación nos permite calcular el resultado a régimen permanente:

$$P = \frac{(G_1 + G_2) \cdot W \cdot V_{tras}}{4.5 \cdot 10^6 \cdot \eta}$$

 $P = \frac{(G_1 + G_2) \cdot W \cdot V_{tras}}{4.5 \cdot 10^6 \cdot \eta} \qquad \frac{\text{Donde:}}{G_1: \text{ es el peso de la carga muerta a trasladar, en (daN).}}$ Sumando cada viga principal, cada viga testera y ambos carros nos da 45959,55daN.

> G_2 : es el peso de la carga a elevar (carga útil + peso de elementos suplementarios en daN). Nos espera 50257,3daN. W: es un coeficiente que equivale a 7 para rodamientos. V_{tras} : velocidad de traslación sacada de tabla anteriormente (40m/min).

 η : es el rendimiento del conjunto motor-transmisión. Adoptamos 0,8.

Reemplazando estos valores en la ecuación obtenemos la potencia de traslación a régimen permanente en HP:

$$P = \frac{(45959,55daN + 50257,3daN) \cdot 7 \cdot 40 \frac{m}{min}}{4,5 \cdot 10^{6} \cdot 0,8}$$

$$P = 7,48 \text{ HP} \approx 8 \text{HP} \rightarrow 4 \text{HP por testera}$$

Para considerar la potencia requerida para vencer la inercia, tomamos como potencia total necesaria 8 HP.

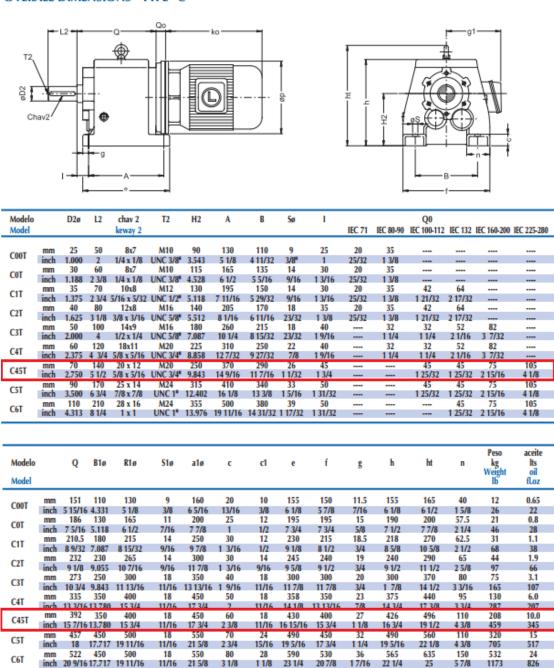
Debido a que utilizaremos un motor por cada viga testera para propulsar el puente grúa longitudinalmente, debemos dividir la potencia total obtenida en dos, por lo que se utilizarán dos motores de 4 HP cada uno. Además, se debe considerar la utilización de un sistema electrónico de arranque suave y control de velocidad. Es importante que ambos motores estén alimentados por el mismo sistema de comando para que se muevan de forma simultánea.

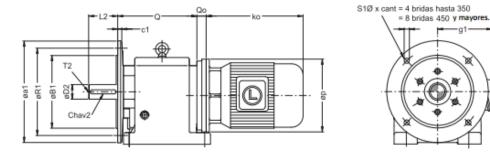
Cálculo de la velocidad de giro:

$$\omega = \frac{V_{tras}}{\frac{D}{2} \cdot 2\pi \frac{rad}{rev}} = \frac{40 \frac{m}{min}}{\frac{0.63m}{2} \cdot 2\pi \frac{rad}{rev}} \rightarrow \qquad \omega = 20.21 rpm \approx 20.20 rpm$$

6.8.7.2. Selección del motorreductor MT

Se eligió un motorreductor de marca LENTAX, de la línea coaxial que satisface nuestros requerimientos. Ingresando con la potencia de 4HP y la velocidad de salida de 20,20rpm obtenemos un motorreductor cuyo modelo es C45T3.


6,8 209,40 C45HR 4,00 1,20 3971 1420 4220 1688 258 pag 58 pag 74-76 7,3 193,84 C45HR 4,00 1,30 3676 1420 4220 1688 258 pag 58 pag 74-76 5,6 171,80 C45T3 4,00 /6 1,00 3258 955 4220 1688 263 pag 57 pag 76 6,6 143,90 C45T3 4,00 /6 1,40 2327 955 4220 1688 263 pag 57 pag 76 7,8 122,70 C45T3 4,00 /6 1,55 2154 955 4220 1688 263 pag 57 pag 76 8,4 113,60 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 9,0 106,10 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 8,3 171,80 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 9,9 143,90 C45T3 4,00 1,55 3258 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,85 1758 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 20,2 70,17 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 9,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76		encia rada	Velocidad Salida aprox.	Relación	MOD	ELO	Factor de Seguridad	Momento Util	Velocidad Entrada aprox.	Carga Radial adm.	Carga Axial adm.	Peso aprox.	Medidas	Repuestos
11,8 80,76 CST3 4,00 /6 3,50 2314 955 7070 2828 375 pag 57 pag 76 8,0 183,54 CST3 4,00 2,30 3536 1420 7070 2828 350 pag 57 pag 76 10,0 143,39 CST3 4,00 3,15 2572 1420 7070 2828 350 pag 57 pag 76 11,0 133,49 CST3 4,00 3,15 2572 1420 7070 2828 350 pag 57 pag 76 12,0 115,92 CST3 4,00 3,65 2233 1420 7070 2828 350 pag 57 pag 76 6,8 209,40 C45HR 4,00 1,05 4580 1420 4220 1688 258 pag 58 pag 74-76 6,8 209,40 C45HR 4,00 1,30 3676 1420 4220 1688 258 pag 58 pag 74-76 7,3 193,84 C45HR 4,00 1,30 3676 1420 4220 1688 258 pag 58 pag 74-76 6,6 143,90 C45T3 4,00 /6 1,00 3258 955 4220 1688 263 pag 57 pag 76 7,8 122,70 C45T3 4,00 /6 1,40 2327 955 4220 1688 263 pag 57 pag 76 8,4 113,60 C45T3 4,00 /6 1,55 2012 955 4220 1688 263 pag 57 pag 76 9,0 106,10 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 11,6 122,70 C45T3 4,00 1,85 2729 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,55 2154 955 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,55 2154 955 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,55 2154 955 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,55 2154 955 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,55 2154 955 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,55 2154 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,55 2154 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,55 2154 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,55 2154 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,55 2154 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 20,2 70,17 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 20,0 157,29 C4T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 20,0 157,29 C4T3 4,00 1,05 2854 1420 4220 1688 238 pag 57 pag 76 20,0 157,29 C4T3 4,00 1,05 2854 1420 4220 1688 238 pag 57 pag 76 20,0 157,29 C4T3 4,00 1,05 2854 1420 4220 1688 238 pag 57 pag 76 20,0 157,29 C4T3 4,00 1,05 2854 1420 4220 1688 238 pag 57 pag 76 20,0 157,29 C4T3 4,00 1,05 2854 1420 4220	kW	HP	(RPM)	(i)			(fz)	(Nm)	(RPM)	(kg)	(kg)	(kg)	Página	Página
8,0 183,54 C5T3 4,00 2,30 3536 1420 7070 2828 350 pag 57 pag 76 11,0 133,49 C5T3 4,00 3,15 2572 1420 7070 2828 350 pag 57 pag 76 11,0 133,49 C5T3 4,00 3,65 2233 1420 7070 2828 350 pag 57 pag 76 12,0 115,92 C5T3 4,00 3,65 2233 1420 7070 2828 350 pag 57 pag 76 6,6 209,40 C45HR 4,00 1,05 4580 1420 4220 1688 258 pag 58 pag 74-76 6,8 209,40 C45HR 4,00 1,20 3971 1420 4220 1688 258 pag 58 pag 74-76 6,8 209,40 C45HR 4,00 1,30 3676 1420 4220 1688 258 pag 58 pag 74-76 6,6 143,90 C45T3 4,00 /6 1,00 3258 955 4220 1688 263 pag 57 pag 76 7,8 122,70 C45T3 4,00 /6 1,20 2729 955 4220 1688 263 pag 57 pag 76 8,4 113,60 C45T3 4,00 /6 1,55 2154 955 4220 1688 263 pag 57 pag 76 9,0 106,10 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 11,6 122,70 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,5 3 92,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,5 3 92,70 C45T3 4,00 2,55 1758 1420 4220 1688 238 pag 57 pag 76 11,5 3 1,8 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 11,5 3 1,8 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 11,5 3 92,70 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 11,5 3 92,70 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 11,5 3 92,70 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 11,5 3 92,70 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 11,5 3 92,70 C45T3 4,00 3,75 1331 1420 4220 1688 238 pa			11,0	86,66	C5T3	4,00 /	6 3,25	2483	955	7070	2828	375	pag 57	pag 76
10,0 143,39 C5T3 4,00 2,95 2763 1420 7070 2828 350 pag 57 pag 76 11,0 133,49 C5T3 4,00 3,15 2572 1420 7070 2828 350 pag 57 pag 76 12,0 115,92 C5T3 4,00 3,65 2233 1420 7070 2828 350 pag 57 pag 76 6,6 24573 4,00 1,20 3971 1420 4220 1688 258 pag 58 pag 74-76 6,8 209,40 C45HR 4,00 1,30 3676 1420 4220 1688 258 pag 58 pag 74-76 6,6 143,90 C45T3 4,00 /6 1,20 3257 955 4220 1688 263 pag 57 pag 76 6,6 143,90 C45T3 4,00 /6 1,40 2327 955 4220 1688 263 pag 57 pag 76 7,8 122,70 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 9,0 106,10 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 143,90 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 11,6 122,70 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 11,6 122,70 C45T3 4,00 /6 1,65 2012 955 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 /6 1,65 2012 955 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 11,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 12,5 12,5 12,5 12,5 12,5 12,5 12,5 12,5			11,8	80,76	C5T3	4,00 /	6 3,50	2314	955	7070	2828	375	pag 57	pag 76
11,0 133,49 C5T3 4,00 3,15 2572 1420 7070 2828 350 pag 57 pag 76 12,0 115,92 C5T3 4,00 3,65 2233 1420 7070 2828 350 pag 57 pag 76 5,9 241,50 C45HR 4,00 1,05 4580 1420 4220 1688 258 pag 58 pag 74-76 6,8 209,40 C45HR 4,00 1,30 3676 1420 4220 1688 258 pag 58 pag 74-76 7,3 193,84 C45HR 4,00 1,30 3676 1420 4220 1688 258 pag 58 pag 74-76 6,6 143,90 C45T3 4,00 /6 1,20 2729 955 4220 1688 263 pag 57 pag 76 7,8 122,70 C45T3 4,00 /6 1,40 2327 955 4220 1688 263 pag 57 pag 76 8,4 113,60 C45T3 4,00 /6 1,55 2154 955 4220 1688 263 pag 57 pag 76 9,0 106,10 C45T3 4,00 /6 1,55 2012 955 4220 1688 263 pag 57 pag 76 11,6 122,70 C45T3 4,00 1,85 2729 1420 4220 1688 263 pag 57 pag 76 11,6 122,70 C45T3 4,00 1,85 2729 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,25 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,25 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,55 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,55 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,55 2154 1420 4220 1688 238 pag 57 pag 76 13,5 39,70 C45T3 4,00 2,55 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,55 1154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,55 1154 1420 4220 1688 238 pag 57 pag 76 13,5 39,70 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 18 1420 4220 1688 238 pag 57 pag 76 18 1420 4220 1688 238 pag 57 pag 76 18 1420 4220 1688 238 pag 57 pag 76 18 1420 4220 1688 238 p			8,0	183,54	C5T3	4,00	2,30	3536	1420	7070	2828	350	pag 57	pag 76
12,0 115,92 C5T3 4,00 3,65 2233 1420 7070 2828 350 pag 57 pag 76 5,9 241,50 C45HR 4,00 1,05 4580 1420 4220 1688 258 pag 58 pag 74-76 6,8 209,40 C45HR 4,00 1,20 3971 1420 4220 1688 258 pag 58 pag 74-76 7,3 193,84 C45HR 4,00 1,30 3676 1420 4220 1688 258 pag 58 pag 74-76 6,6 171,80 C45T3 4,00 /6 1,20 2729 955 4220 1688 263 pag 57 pag 76 7,8 122,70 C45T3 4,00 /6 1,40 2327 955 4220 1688 263 pag 57 pag 76 8,4 113,60 C45T3 4,00 /6 1,55 2154 955 4220 1688 263 pag 57 pag 76 9,0 106,10 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 11,6 122,70 C45T3 4,00 1,85 2729 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,55 2154 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,55 2154 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,55 2154 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,55 2154 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 18,0 12,70 17 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 18,0 12,70 1			10,0	143,39	C5T3	4,00	2,95	2763	1420	7070	2828	350	pag 57	pag 76
5,9 241,50 C45HR 4,00 1,05 4580 1420 4220 1688 258 pag 58 pag 74-76 6,8 209,40 C45HR 4,00 1,20 3971 1420 4220 1688 258 pag 58 pag 74-76 7,3 193,84 C45HR 4,00 1,30 3676 1420 4220 1688 258 pag 58 pag 74-76 6,6 171,80 C45T3 4,00 /6 1,00 3258 955 4220 1688 263 pag 57 pag 76 6,6 143,90 C45T3 4,00 /6 1,20 2729 955 4220 1688 263 pag 57 pag 76 8,4 113,60 C45T3 4,00 /6 1,55 2154 955 4220 1688 263 pag 57 pag 76 9,0 106,10 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 1,6 122,70 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 1,6 122,70 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 1,6 122,70 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 1,6 122,70 C45T3 4,00 2,5 2154 955 4220 1688 238 pag 57 pag 76 1,6 122,70 C45T3 4,00 2,5 2154 955 4220 1688 238 pag 57 pag 76 1,6 122,70 C45T3 4,00 2,5 2154 955 4220 1688 238 pag 57 pag 76 1,6 122,70 C45T3 4,00 2,5 2154 220 1688 238 pag 57 pag 76 1,6 122,70 C45T3 4,00 2,5 2154 220 1688 238 pag 57 pag 76 1,6 122,70 C45T3 4,00 2,5 2154 220 1688 238 pag 57 pag 76 1,6 122,70 C45T3 4,00 2,5 2154 220 1688 238 pag 57 pag 76 1,5 3 92,70 C45T3 4,00 2,5 2154 1420 4220 1688 238 pag 57 pag 76 1,5 3 92,70 C45T3 4,00 2,8 51758 1420 4220 1688 238 pag 57 pag 76 1,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 1,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 1,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 1,7 5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 1,7 5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 1,7 5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 1,7 5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 1,7 5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 1,7 5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 1,7 5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 1,7 5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 1,7 5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 1,7 5 81,18 C45T3 4,00 1,05 2854 14			11,0	133,49	C5T3	4,00	3,15	2572	1420	7070	2828	350	pag 57	pag 76
6,8 209,40 C45HR 4,00 1,20 3971 1420 4220 1688 258 pag 58 pag 74-76 7,3 193,84 C45HR 4,00 1,30 3676 1420 4220 1688 258 pag 58 pag 74-76 5,6 171,80 C45T3 4,00 /6 1,00 3258 955 4220 1688 263 pag 57 pag 76 6,6 143,90 C45T3 4,00 /6 1,40 2327 955 4220 1688 263 pag 57 pag 76 7,8 122,70 C45T3 4,00 /6 1,55 2154 955 4220 1688 263 pag 57 pag 76 8,4 113,60 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 9,0 106,10 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 8,3 171,80 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 9,9 143,90 C45T3 4,00 1,55 3258 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,85 1758 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 20,2 70,17 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 9,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76			12,0	115,92	C5T3	4,00	3,65	2233	1420	7070	2828	350	pag 57	pag 76
7,3 193,84 C45HR 4,00 1,30 3676 1420 4220 1688 258 pag 58 pag 74-76 5,6 171,80 C45T3 4,00 /6 1,00 3258 955 4220 1688 263 pag 57 pag 76 6,6 143,90 C45T3 4,00 /6 1,20 2729 955 4220 1688 263 pag 57 pag 76 7,8 122,70 C45T3 4,00 /6 1,40 2327 955 4220 1688 263 pag 57 pag 76 8,4 113,60 C45T3 4,00 /6 1,55 2154 955 4220 1688 263 pag 57 pag 76 9,0 106,10 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 8,3 171,80 C45T3 4,00 1,55 3258 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 1,85 2729 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,50 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 3030 1420 3000 1200 160 pag 57 pag 76			5,9	241,50	C45HR	4,00	1,05	4580	1420	4220	1688	258	pag 58	pag 74-76
5,6 171,80 C45T3 4,00 /6 1,00 3258 955 4220 1688 263 pag 57 pag 76 6,6 143,90 C45T3 4,00 /6 1,20 2729 955 4220 1688 263 pag 57 pag 76 7,8 122,70 C45T3 4,00 /6 1,55 2154 955 4220 1688 263 pag 57 pag 76 9,0 106,10 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 9,0 143,90 C45T3 4,00 1,65 2012 955 4220 1688 263 pag 57 pag 76 11,6 122,70 C45T3 4,00 1,85 2729 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,35 2154 120 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,50 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,55 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 180 200 1500 160 pag 57 pag 76 180 200 16			6,8	209,40	C45HR	4,00	1,20	3971	1420	4220	1688	258	pag 58	pag 74-76
7,8 122,70 C45T3 4,00 /6 1,40 2327 955 4220 1688 263 pag 57 pag 76 8,4 113,60 C45T3 4,00 /6 1,55 2154 955 4220 1688 263 pag 57 pag 76 9,0 106,10 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 8,3 171,80 C45T3 4,00 1,55 3258 1420 4220 1688 238 pag 57 pag 76 9,9 143,90 C45T3 4,00 1,85 2729 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,50 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,85 1758 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 20,2 70,17 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 9,0 157,29 C4T3 4,00 1,05 3030 1420 3000 1200 160 pag 57 pag 76 9,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76			7,3	193,84	C45HR	4,00	1,30	3676	1420	4220	1688	258	pag 58	pag 74-76
7,8 122,70 C45T3 4,00 /6 1,40 2327 955 4220 1688 263 pag 57 pag 76 8,4 113,60 C45T3 4,00 /6 1,55 2154 955 4220 1688 263 pag 57 pag 76 9,0 106,10 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 8,3 171,80 C45T3 4,00 1,55 3258 1420 4220 1688 238 pag 57 pag 76 9,9 143,90 C45T3 4,00 1,85 2729 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,50 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,85 1758 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 20,2 70,17 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 9,0 157,29 C4T3 4,00 1,05 3030 1420 3000 1200 160 pag 57 pag 76 9,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76	>	_												
7,8 122,70 C45T3 4,00 /6 1,40 2327 955 4220 1688 263 pag 57 pag 76 8,4 113,60 C45T3 4,00 /6 1,55 2154 955 4220 1688 263 pag 57 pag 76 9,0 106,10 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 8,3 171,80 C45T3 4,00 1,55 3258 1420 4220 1688 238 pag 57 pag 76 9,9 143,90 C45T3 4,00 1,85 2729 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,50 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,85 1758 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 20,2 70,17 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 9,0 157,29 C4T3 4,00 1,05 3030 1420 3000 1200 160 pag 57 pag 76 9,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76		#												
8,4 113,60 C45T3 4,00 /6 1,55 2154 955 4220 1688 263 pag 57 pag 76 9,0 106,10 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 8,3 171,80 C45T3 4,00 1,55 3258 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,50 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,85 1758 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,85 1758 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 1,05 3030 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,10 1420 1420 1420 14		_												
9,0 106,10 C45T3 4,00 /6 1,65 2012 955 4220 1688 263 pag 57 pag 76 8,3 171,80 C45T3 4,00 1,55 3258 1420 4220 1688 238 pag 57 pag 76 9,9 143,90 C45T3 4,00 1,85 2729 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,50 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,85 1758 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 20,2 70,17 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 9,0 157,29 C4T3 4,00 1,05 3030 1420 3000 1200 160 pag 57 pag 76 9,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76														
9,9 143,90 C45T3 4,00 1,55 3258 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,50 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,85 1758 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 18,18 18	0	0												
9,9 143,90 C45T3 4,00 1,55 3258 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,50 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,85 1758 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 18,18 18	Q	Q	9,0	106,10	C45T3	4,00 /	6 1,65	2012	955	4220	1688	263	pag 57	pag 76
9,9 143,90 C45T3 4,00 1,85 2729 1420 4220 1688 238 pag 57 pag 76 11,6 122,70 C45T3 4,00 2,15 2327 1420 4220 1688 238 pag 57 pag 76 12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,50 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,85 1758 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 20,2 70,17 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 9,0 157,29 C4T3 4,00 1,05 3030 1420 3000 1200 160 pag 57 pag 76 9,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76	\mathbf{c}	4	8.3	171.80	C45T3	4.00	1.55	3258	1420	4220	1688	238	pag 57	pag 76
12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,50 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,85 1758 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 20,2 70,17 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 17,5 14,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76				143,90	C45T3	4,00		2729	1420	4220	1688	238		
12,5 113,60 C45T3 4,00 2,35 2154 1420 4220 1688 238 pag 57 pag 76 13,4 106,10 C45T3 4,00 2,50 2012 1420 4220 1688 238 pag 57 pag 76 15,3 92,70 C45T3 4,00 2,85 1758 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 20,2 70,17 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 17,5 14,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76 18,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76			11,6	122,70	C45T3	4,00	2,15	2327	1420	4220	1688	238	pag 57	pag 76
15,3 92,70 C45T3 4,00 2,85 1758 1420 4220 1688 238 pag 57 pag 76 17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 20,2 70,17 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 9,0 157,29 C4T3 4,00 1,05 3030 1420 3000 1200 160 pag 57 pag 76 9,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76			12,5	113,60	C45T3	4,00	2,35	2154	1420	4220	1688	238	pag 57	pag 76
17,5 81,18 C45T3 4,00 3,25 1540 1420 4220 1688 238 pag 57 pag 76 20,2 70,17 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 9,0 157,29 C4T3 4,00 1,05 3030 1420 3000 1200 160 pag 57 pag 76 9,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76			13,4	106,10	C45T3	4,00	2,50	2012	1420	4220	1688	238	pag 57	pag 76
20,2 70,17 C45T3 4,00 3,75 1331 1420 4220 1688 238 pag 57 pag 76 9,0 157,29 C4T3 4,00 1,05 3030 1420 3000 1200 160 pag 57 pag 76 9,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76			15,3	92,70	C45T3	4,00	2,85	1758	1420	4220	1688	238	pag 57	pag 76
9,0 157,29 C4T3 4,00 1,05 3030 1420 3000 1200 160 pag 57 pag 76 9,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76			17,5	81,18	C45T3	4,00	3,25	1540	1420	4220	1688	238	pag 57	pag 76
9,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76			20,2	70,17	C45T3	4,00	3,75	1331	1420	4220	1688	238	pag 57	pag 76
9,6 148,13 C4T3 4,00 1,05 2854 1420 3000 1200 160 pag 57 pag 76			0.0	157.20	CATS	4.00	1.05	2020	1470	3000	1200	160	222 E7	non 75
			11,5	123,44	C413	4,00	1,05	2854	1420	3000	1200	160	pag 57 pag 57	pag 76 pag 76


Figura 6.8.7.2-1: Características del motorreductor

Debido a que el motorreductor no funcionará de manera permanente no es necesario realizar las verificaciones de potencia térmica, además como se acoplará directamente al eje de la rueda motriz no se debe verificar esfuerzos radiales ni axiales. En la siguiente imagen se detallan algunas características del motorreductor seleccionado:

TABLA DE MEDIDAS - SERIE "C" OVERALL DIMENSIONS - TYPE "C"

inch 20 9/16 17.717 19 11/16

21 5/8

3 1/8

1 1/8

23 1/4

20 7/8

17/16

22 1/4

826

Figura 6.8.7.2-2: Ficha técnica motorreductor

Preparó: Ledesma, Franco; Pezzatti, Santiago	Revisó: GP 16-01-020	Aprobó: GP 12-02-2020	Página 106 de	l
			126	l

6.8.7.3. Selección del acoplamiento AC

Se eligió la marca Gummi, del tipo elástico para baja rotación. Para esta selección el fabricante recomienda una verificación por torque nominal t_n :

$$t_n = \frac{706,17 \cdot HP \cdot fs}{rpm}$$

Donde:

HP: es la potencia de traslación a régimen permanente calculada anteriormente (4HP).

fs: es el factor de servicio (por catálogo Gummi para cargas medias equivale a 2).

rpm: velocidad de giro calculada anteriormente (20,20rpm).

Reemplazando:

$$t_n = \frac{706,17\cdot 4HP\cdot 2}{20,20rpm}$$

$$t_n = 279,57Nm$$

Como el eje de la rueda seleccionada es de 110mm se selecciona un acoplamiento del modelo BR-110, con un lado cubo normal y del otro cubo integral para que pueda entrar el eje de 60mm del motorreductor. El acoplamiento seleccionado tiene las siguientes características:

Figura 6.8.7.3: Características del acoplamiento

Por lo tanto, se puede apreciar que verifica el torque nominal.

Preparó: Ledesma, Franco; Pezzatti, Santiago	Revisó: GP 16-01-020	Aprobó: GP 12-02-2020	Página 107 de
			126

6.8.8. Especificaciones viga testera PGA-VT

Datos técnicos de la viga testera:

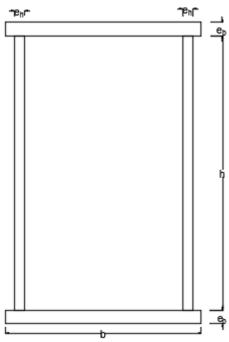


Figura 6.8.6: Esquema de VT

Donde:

h: altura del alma (72cm).

b: ancho del ala (37cm)

c: distancia entre paredes de alma (30cm)

eh: espesor del alma (3/4" =1,905cm)

e_b: espesor del ala (1" =2,54cm)

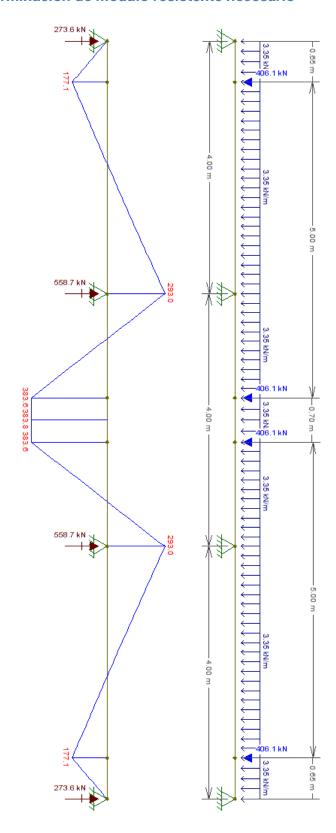
L: longitud de la viga testera (5,64m)

G: peso propio de la viga testera (324kg/m).

6.9. Vigas carrileras PGC-VC

Se calculará una viga cajón como ya se hizo anteriormente, sobre la misma irá sujetado el carril Burbach seleccionado en la sección 6.8.3. el cual hace de guía en la traslación longitudinal del puente y sobre el cual se desplazan las vigas testeras.

La viga carrilera se encuentra apoyada sobre pilares, los cuales estarán ubicados cada 4m quedando un total de 15 pilares a cada lado de la nave (ya que tiene 60m de largo).


Debido a que esta viga tiene que soportar el desplazamiento longitudinal de dos puentes grúa, se considera a continuación el caso más desfavorable para obtener el momento flector máximo y luego poder determinar las dimensiones de dicha viga carrilera.

Se hará una prueba como para las demás vigas se obtuvo por el software Ftool.

6.9.1. Dimensionado por resistencia

Para la construcción se decide dimensionar una viga cajón. El material utilizado es el mismo que el mismo que se usó en las secciones anteriores ASTM A36 con una tensión admisible modificada por coeficientes de seguridad de 616,4 kg/cm².

6.9.1.1. Determinación de modulo resistente necesario

Como se determinó anteriormente el momento flector máximo es 386,6kNm =39422,22kgm. Para una carga por rueda de 406,1kN=41410,67kg (equivalentes al corte máximo transmitido de la viga principal a las testeras, más el peso propio de dicha testera).

Por ley de Navier:

$$\begin{split} \sigma_{adm} &= \frac{M_{fmax}}{W_{nec}} & \frac{\text{Donde:}}{\sigma_{adm}} \text{ tensión admisible del acero ASTM A36 (616,4kg/cm^2).} \\ W_{fmax} &: \text{ momento flector máximo (39422,22kgm).} \\ W_{nec} &= \frac{M_{fmax}}{\sigma_{adm}} & W_{nec} : \text{ modulo resistente necesario (en cm}^3). \end{split}$$

Reemplazando obtengo el módulo resistente necesario:

$$W_{nec} = \frac{39422,22 \cdot 100 kgcm}{616,4 \frac{kg}{cm^2}} \rightarrow W_{nec} = 6396cm$$

6.9.1.2. Selección de las dimensiones de la viga

Se propuso las siguientes medidas que posteriormente serán verificadas:

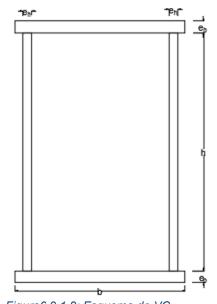


Figura6.9.1.2: Esquema de VC

Donde:

h: altura del alma (60cm).

b: ancho del ala (30cm)

c: distancia entre paredes de alma

(23,19cm)

 e_h : espesor del alma (3/4" =1,905cm)

e_b: espesor del ala (1" =2,54cm)

L: longitud de la viga carrilera (5x12m)

Cálculo de las propiedades:

$$A = 2 \cdot (60cm \cdot 1,905cm) + 2 \cdot (30cm \cdot 1,905cm)$$
$$A = 342.9cm^{2}$$

$$I_{y} = 2 \cdot \frac{2,54cm \cdot (30cm)^{3}}{12} + 2 \cdot \left[\frac{60cm \cdot (1,905cm)^{3}}{12} + 60cm \cdot 1,905cm \cdot \left(\frac{30cm}{2} \right)^{2} \right]$$

$$I_{y} = 62934,13cm^{4}$$

$$W_{y} = \frac{I_{y}}{x} = \frac{62934,13cm^{4}}{\frac{30cm}{2}}$$

$$W_{y} = 4195,6cm^{3}$$

$$I_{x} = 2 \cdot \frac{1,905cm \cdot (60cm)^{3}}{12} + 2 \cdot \left[\frac{30cm \cdot (2,54cm)^{3}}{12} + 30cm \cdot 2,54cm \cdot \left(\frac{60cm + 2,54cm}{2} \right)^{2} \right]$$

$$I_{x} = 217281cm^{4}$$

$$W_{x} = \frac{I_{x}}{y} = \frac{217281cm^{4}}{\frac{60cm + 2,54cm}{2}}$$

$$W_{x} = 6961,3cm^{3}$$

Por lo tanto, la viga dimensionada verifica ya que $W_x > W_{nec}$.

6.9.1.3. Solicitaciones horizontales

Las vigas carrileras sufren además una flexión adicional en sentido horizontal por la inercia de las masas en movimiento. Ésta alcanza su valor máximo cuando las ruedas de la viga testera que están trabajando son frenados súbitamente; la grúa resbala un trecho y la aceleración negativa del puente de la grúa que resbala debe ser igual a la del carrito con carga.

En la posición más desfavorable, el carro completamente cargado produce una solicitación P_H debido a la inercia de las masas:

$$P_H = N \cdot \mu = \frac{(R+Q)}{2} \cdot \mu$$
 Donde:
 R : es la carga a elevar (2x50000kg).
 Q : el peso de las vigas principales y testeras (857kg/m para 4x20m de luz y 324kg/m para 4x5,64m).
 μ : coeficiente de rozamiento (0,2).

Reemplazando en la ecuación:

$$P_{H} = \frac{(2 \cdot 50000kg + 857\frac{kg}{m} \cdot 4 \cdot 20m + 324\frac{kg}{m} \cdot 4 \cdot 5,64m)}{2} \cdot 0,2$$

$$\boxed{P_{H} = 17587kg}$$

Las fuerzas resultantes de la inercia consideramos que se reparte aproximadamente de manera uniforme sobre las cuatro ruedas de las testeras que la transmiten a las vigas carrileras por medio de sus pestañas.

Preparó: Ledesma, Franco; Pezzatti, Santiago	Revisó: GP 16-01-020	Aprobó: GP 12-02-2020	Página 112 de
			126

El momento horizontal de flexión se calcula por la formula vista para el momento máximo, en la cual el valor de la carga toma el valor PH/8.

$$M_H = \frac{\frac{P_H}{8}}{2 \cdot L} \cdot (L - b_1)^2 \qquad \begin{array}{l} \text{Donde:} \\ L: \text{ largo de la viga carrilera (consideramos vigas de 12m).} \\ b_1: \text{ mitad de la distancia entre las ruedas de la viga testera PGA-VT(2,5m)} \end{array}$$

$$M_{H} = \frac{\frac{17487kg}{8}}{2 \cdot 12m} \cdot (12m - 2.5m)^{2}$$

$$M_{H} = 8219.8kgm$$

Lo que nos determina un módulo resistente necesario W_{Ynec}:

$$\sigma_{admA36} = \frac{M_H}{W_{ynec}} \rightarrow W_{ynec} = \frac{M_H}{\sigma_{admA36}} = \frac{8219.8 \cdot 100 kgcm}{616.4 \frac{kg}{cm^2}}$$

$$W_{ynec} = 1333.5 cm^3$$

Por lo tanto, la viga dimensionada verifica a las solicitudes horizontales ya que $W_y > W_{ynec}$.

6.9.2. Construcción de las vigas carrileras

En esta sección se va a calcular la soldadura con la que se unirán las 4 chapas que conforman a la viga carrilera.

El cálculo se hará por el método enunciado en el *"Tratado teórico práctico de elementos de máquinas", G. Niemann;* el cual refiere a las normas DIN 1050 y 4100 (estructuras) y DIN120 (construcción de grúas). El autor propone, en pág. 170, ciertos tipos de soldadura:

	Designación	Unilateral Soldadura en l	Bilateral angulo, plana	Soldadura a te	ope, esquinada	Soldadura en X. esquinada
	Simbolos de soldadura	0	Δ	4		4
	Espesor de cordón	а	2 α	e	8	2 a
R	epresentación del cordón		-			"
C D.	Tracción-compresión	0,22	0,3	0,45	0,6	0,35
oencience	Flexión	0,11	0,6	0,55	0,75	0,7
oer.	Esfuerzo cortante	0,22	0,3	0,37	0,5	0,35

Figura 6.9.2: Uniones esquinadas

Preparó: Ledesma, Franco; Pezzatti, Santiago	Revisó: GP 16-01-020	Aprobó: GP 12-02-2020	Página 113 de
			126

Para nuestro caso se emplea la unión en ángulo unilateral. Como espesor estándar a de soldadura proponemos, según el autor:

$$a = 0.7 \cdot e$$

Donde e es el espesor de la chapa mas delgada (del alma = 1,905cm), quedando:

$$a = 0.7 \cdot 1.905cm \rightarrow a = 1.33cm$$

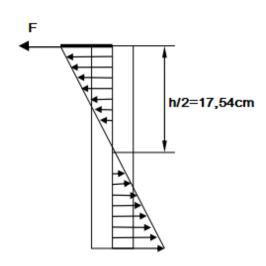
Luego calculamos la tensión admisible en la soldadura. Niemann la estima con la siguiente fórmula:

$$\rho_{adm} = v \cdot v_2 \cdot \sigma_{adm}$$

Los valores de los coeficientes complementarios v y v2 consideran, el primero, el tipo de soldadura y el esfuerzo al que se encuentra sometida y el segundo la calidad de la soldadura. El coeficiente v se obtiene de la Tabla 7.7, a base de valores experimentales resultando 0,65. El coeficiente v2 se considera unitario, debido que la calidad de los electrodos usados hoy en día supera ampliamente a los que fueron utilizados para confeccionar la tabla (soldadura fuerte).

Como se calculó en la sección 5.2 la tensión admisible para el acero ASTM A36 es σ_{admA36} =616,4kg/cm².

Reemplazando estos valores en la ecuación se obtiene la tensión admisible en la soldadura:


$$\rho_{adm} = 0,65 \cdot 1 \cdot 616,4 \frac{kg}{cm^2}$$

$$\rho_{adm} = 400,66 \frac{kg}{cm^2}$$

Ahora se calcula la sección necesaria de cordón:

$$A_n = \frac{F}{\rho_{adm}}$$

Para calcular la fuerza actuante en el cordón debemos considerar el momento flector máximo (Mf_{máx}= 38667kgm) y la distancia de acción (h/2):

$$F = \frac{Mf_{max}}{\frac{h}{2}} = \frac{38667kgm}{0,1754m} \rightarrow F = 220450,4kg$$

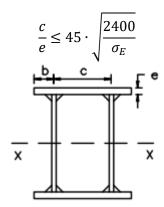
Entonces la sección del cordón será:

$$A_n = \frac{220450,4kg}{400,66\frac{kg}{cm^2}} \rightarrow A_n = 550,22cm^2$$

Ahora se calcula la longitud del cordón l_n de la siguiente manera:

$$A_n = l_n \cdot a \rightarrow l_n = \frac{A_n}{a} = \frac{550,22cm^2}{1,33cm}$$

$$l_n = 413,7cm = 4,14m$$


Por lo tanto, verifica ya que la soldadura propuesta será ininterrumpida a lo largo de los 12m de la logitud de viga carrilera.

6.9.3. Comprobación del ala comprimida al pandeo local

Al igual que en la sección 6.7.14 para la viga principal, se calcula para la viga carrilera:

Según V. Cudós Samblancat, en su libro "Calculo de estructuras de acero", tenemos que: Además de las consideraciones establecidas para el cálculo de la estructura dadas previamente, debemos también comprobar que el ala superior comprimida no sufre abollamiento por efecto de las compresiones de las ruedas testeras sobre la viga carrilera.

En los perfiles laminados esto no ocurre, pero en las vigas de placas muy delgadas esto sí puede suceder. El criterio más utilizado es el que expresa que la condición para que en una pared no se produzca la ruina por abollamiento antes que por pandeo general. Es el siguiente:

Donde:

c: ancho entre almas (23,19cm+1,905cm=25,095cm). e: espesor del ala superior (2,54cm).

 σ_E : limite elástico del acero.

 $(\sigma_{EA36} = 2530 \text{kg/cm}^2)$.

Si no se satisfacen los mínimos indicados en dichas tablas, se procederá a aumentar el espesor del ala de la viga, o a la colocación de rigidizadores.

Reemplazando se obtiene:

$$\frac{25,095cm}{2,54cm} \le 45 \cdot \sqrt{\frac{2400}{2530 \frac{kg}{cm^2}}}$$

$$9,88 \le 43,83 \rightarrow Verifica$$

Como vemos, no es necesaria la colocación de rigidizadores en el alma.

6.9.4. Unión entre vigas carrileras

Para este caso, como no tenemos como dato la cantidad de bulones que lleva, se deben calcular al corte según Niemann, seleccionando los mismos bulones que se seleccionaron anteriormente:

$$au = rac{Q}{A \cdot z} \le au_{adm}$$
 Q : esfuerzo de corte máxim A : área del bulón (en cm²). D : diámetro del bulón (3,18 z : numero de bulones.

Q: esfuerzo de corte máximo (41410,67kg).

D: diámetro del bulón (3,18cm).

$$A = \frac{\pi \cdot D^2}{4}$$

z: numero de bulones.

 au_{adm} : tensión de corte admisible del bulón (SAE G5). Es equivalente al 1045 ya calculado en la sección 5.3. (528,85kg/cm²).

Reemplazando en las ecuaciones anteriores se obtiene:

$$A = \frac{\pi \cdot (3,18cm)^2}{4} = 7,94cm^2$$

$$z = \frac{Q}{A \cdot \tau_{adm}} = \frac{41410,67kg}{7,94cm^2 \cdot 528,85 \frac{kg}{cm^2}} \rightarrow z = 10 \text{ bulones}$$

Por lo tanto, se optó por colocar 5 bulones a cada lado de la unión bridada entre vigas carrileras.

6.9.5. Especificaciones viga carrilera PGC-VC

Datos técnicos de la viga carrilera:

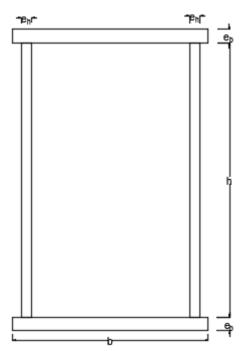
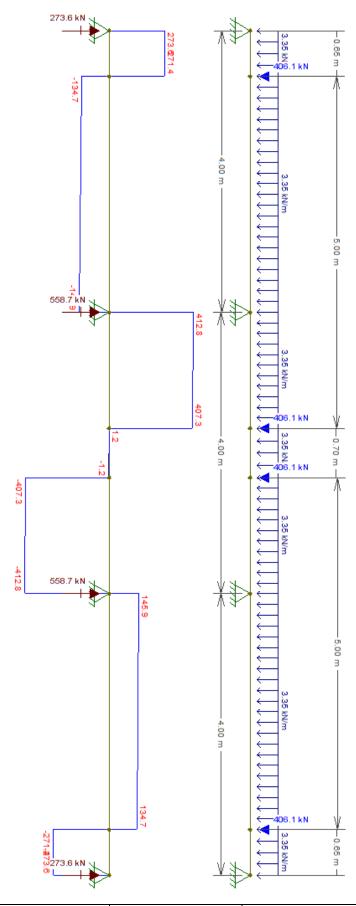


Figura 6.9.5: Esquema VC

Donde:

- h: altura del alma (60cm).
- b: ancho del ala (30cm)
- c: distancia entre paredes de alma (23,19 cm).
- e_h: espesor del alma (3/4" =1,905cm)
- e_b: espesor del ala (1" =2,54cm)
- L: longitud de la viga carrilera (5x12m)
- G: peso propio de la viga testera (267,46kg/m).

6.10. Columna de apoyo PGC-CO


Estas columnas serán los pilares encargados de soportar toda la estructura de la grúa, es por ello que es de vital importancia su presencia y correcto funcionamiento.

Se seleccionará un perfil HEB, sobre el cual descansaran las vigas carrileras antes dimensionadas.

Como se describió en la sección anterior, los apoyos estarán colocados cada 4m unos de otros. Además, cabe recordar que deberán tener una longitud desde el suelo a las vigas carrileras de 10m de altura.

La carga que deben soportar estos apoyos es la carga que se calculó en la sección anterior (41410,67kg), además el peso de los carriles (74,30kg/m) y de las vigas carrileras (267,46kg/m).

Haciendo una simulación de estas cargas por Ftool para sacar cuanta carga deben soportar cada uno de los apoyos para este caso más desfavorable:

Como se puede ver en la imagen la reacción en los apoyos más exigidos es equivalente a 558,7kN=56971,53kg. Esta carga debe ser menor a la carga critica de Euler, siguiendo los criterios y tomando recomendaciones de cálculo del libro "Mecánica de materiales" de los autores Beer-Johnston:

$$P_{cr} = \frac{\pi^2 EI}{L_e^2}$$

 $P_{cr} = \frac{\pi^2 EI}{L_o^2}$ Donde: P_{cr} : carga axial critica o máxima sobre el apoyo, justo antes de que se comience a pandear. Esta carga no debe hacer que el esfuerzo en la columna sea mayor que el límite de proporcionalidad.

E: módulo de elasticidad del material (2100000kg/cm²)

I: momento de inercia mínimo del área transversal de la columna de apoyo.

 L_e : longitud efectiva de la columna de apoyo (en cm).

En nuestro caso se considera la columna de apoyo en un extremo empotrada (en el suelo) y el otro extremo fijo, entonces la longitud efectiva es:

$$L_e = 0.7 \cdot L$$

Y a su vez el esfuerzo critico debe ser mayor a la tensión admisible del material, que en este caso es un acero ASTM A36.

$$\sigma_{cr} = \frac{\pi^2 E}{\left(\frac{L_e}{r}\right)^2} \qquad \frac{\text{Donde:}}{\sigma_{cr}: \text{ esfuerzo critico (en kg/cm}^2).} \\ r: \text{ radio de giro mínimo de la columna de apoyo (en cm).}$$

Calculando el momento de inercia mínimo despejando de la primera ecuación:

$$P_{cr} = \pi^{2} \cdot E \cdot I / L_{e}^{2} \quad \rightarrow \quad I = \frac{P_{cr} \cdot L_{e}^{2}}{\pi^{2} \cdot E} = \frac{56971,53 kg \cdot (0,7 \cdot 1000 cm)^{2}}{\pi^{2} \cdot 2100000 \frac{kg}{cm^{2}}}$$

$$I_{min} = 1347 cm^{4}$$

6.10.1. Selección del perfil para los apoyos

Con el momento de inercia mínimo calculado anteriormente se preselecciona un perfil del catálogo de la empresa SIDERSA SA. El modelo elegido es el perfil HEB y se puede apreciar por tabla del mismo catalogo que a partir de un HEB 200 ya cumple con nuestro momento de inercia mínimo, pero teniendo en consideración que la viga carrilera PGC-VC tiene una base de 30cm, para que pueda tener en contacto toda la columna de apoyo y evitar cargas excéntricas con la viga carrilera se elige un perfil que tenga esta igual medida por lado (30cm), quedando seleccionado así el perfil HEB 300.

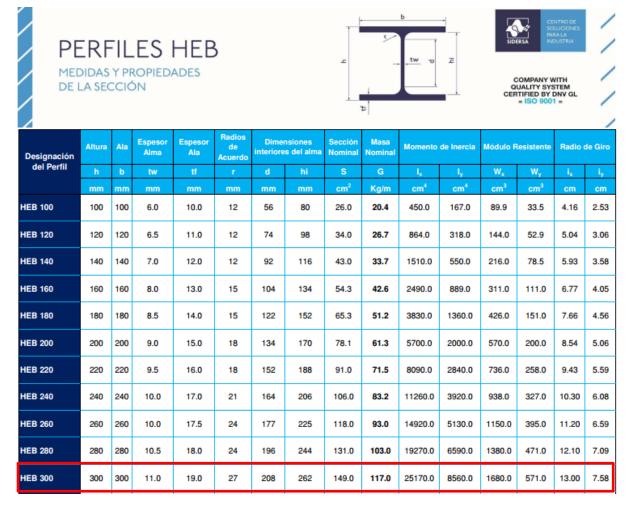


Figura 6.10.1: Características del perfil HEB

Calculando la carga crítica y verificando:

$$P_{cr} = \frac{\pi^2 \cdot E \cdot I}{L^2} = \frac{\pi^2 \cdot 2100000 \frac{kg}{cm^2} \cdot 8560cm^4}{(0.7 \cdot 1000cm)^2}$$

$$P_{cr} = 362073kg$$

Ahora se calcula él es esfuerzo critico:

$$\sigma_{cr} = \frac{\pi^2 \cdot E}{\left(\frac{L_e}{r}\right)^2} = \frac{\pi^2 \cdot 2100000 \frac{kg}{cm^2}}{\left(\frac{0.7 \cdot 1000cm}{7.58cm}\right)^2}$$

$$\sigma_{cr} = 2606.57 \frac{kg}{cm^2}$$

Por lo tanto, el perfil seleccionado verifica ya que $P_{cr} > P$ (56971,53kg) y $\sigma_{cr} > \sigma_{fluenciaA36}$ (2500 kg/cm²).

Preparó: Ledesma, Franco; Pezzatti, Santiago	Revisó: GP 16-01-020	Aprobó: GP 12-02-2020	Página 122 de
,			126

6.10.2. Soportes de unión con viga carrilera

Se utilizará una placa de acero ASTM A36 de 1 ¼ "de espesor, la misma estará soldada en el extremo superior del perfil de apoyo PGC-CO y a su vez contará con orificios para ser abulonada a una placa igual que estará soldada a la viga carrilera PGC-VC.

Se verifican los orificios por esfuerzo de corte:

En este caso la verificación es al corte

 $au_{adm} = rac{P}{A_c}$ $rac{ ext{Donde:}}{ au_{adm}}$: tensión de corte admisible ya establecida del acero ASTM A36 (339kg/cm²).

 A_c : área de corte de chapa.

e: espesor de la chapa (1 ½ "=3,175cm).

 d_h : diámetro del bulón propuesto (1 ½ "=3,175cm).

El diámetro del orificio se obtiene despejado de ecuación:

$$d = \frac{P}{\tau_{adm} \cdot e} = \frac{\frac{17587kg}{6}}{339 \frac{kg}{cm^2} \cdot 3,175cm} = 2,72cm$$

Por lo tanto, verifica nuestro diámetro de bulón ya que $d_b > d$. El número 6 se debe a que contará con 6 bulones de 1 $\frac{1}{4}$ ".

Ubicación de los bulones con respecto a los bordes de la chapa, al aplastamiento:

 $\sigma_{apl} = \frac{P}{A_{apl}} \qquad \qquad \frac{\text{Donde:}}{\sigma_{apl}} \cdot \text{tensión aplastamiento ya establecida del acero ASTM} \\ \text{A36 (678kg/cm}^2).$

 A_{apl} : área de aplastamiento de la chapa.

l: distancia del orificio al borde de la chapa.

 d_b : diámetro del bulón (1 ½ "=3,175cm).

La distancia del orificio al borde de la chapa se obtiene despejado de ecuación:

$$l = \frac{P}{\sigma_{apl} \cdot d_b} = \frac{\frac{17587kg}{6}}{678\frac{kg}{cm^2} \cdot 3,175cm} = 1,36cm$$

Por lo tanto, los orificios estarán a 1,4cm del borde de la chapa. Como se puede apreciar en la siguiente imagen:

Preparó: Ledesma, Franco; Pezzatti, Santiago	Revisó: GP 16-01-020	Aprobó: GP 12-02-2020	Página 123 de
			126

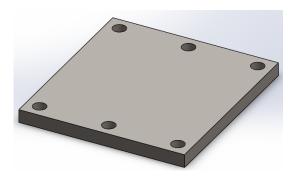


Figura 6.10.2: Esquema soporte

6.11. Soldadura de la estructura

En esta sección se seleccionará el electrodo a utilizar para todas las soldaduras calculadas anteriormente, junto con el procedimiento para lograr dicha soldadura y poder unir las chapas que componen las vigas, como así también los herrajes de unión posteriormente bridados.

El electrodo seleccionado es del fabricante CONARCO el cual es apto para soldar en múltiples posiciones y es el recomendado para la soldadura de aceros al carbono.

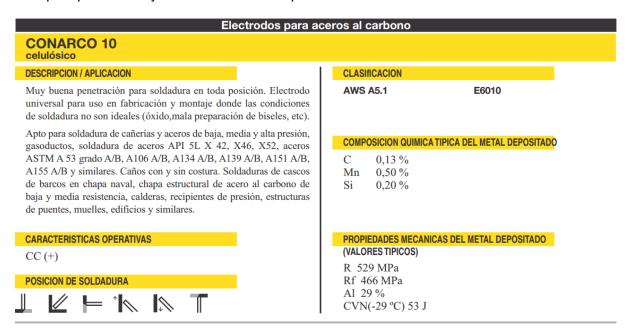


Figura 6.11: Característica de electrodo

El procedimiento adecuado que debe ser indicado al soldador se especifica a continuación:

Para obtener los mejores resultados, se recomienda un arco de longitud mediana que permita controlar mejor la forma y aspecto del cordón.

Para soldar filetes planos y horizontales, se recomienda mantener el electrodo a 45° con cada plancha, oscilándolo en el sentido de avance. El movimiento adelante tiene por objeto obtener una buena penetración y el movimiento hacia atrás controla la socavación y la forma del cordón.

Preparó: Ledesma, Franco; Pezzatti, Santiago	Revisó: GP 16-01-020	Aprobó: GP 12-02-2020	Página 124 de
			126

En la soldadura vertical se recomienda llevar el electrodo en un ángulo de casi 90°, inclinándolo ligeramente en el sentido de avance.

Se debe llevar un movimiento de vaivén, alargando el arco para no depositar metal en el movimiento hacia arriba y luego acortándolo para depositar en el cráter y así controlar las dimensiones del depósito y la socavación.

6.12. Pintura de la estructura

Para lograr una buena protección de la estructura es necesario seguir los siguientes pasos para su pintado basados en la norma SSCP:

<u>Limpieza de superficie:</u> Esto tiene como objetivo eliminar toda impureza que pueda ocasionar fallas permanentes en el sistema de protección con pinturas. Proporcionar una superficie que pueda impregnarse fácilmente, la cual provea una buena adherencia del recubrimiento aplicado.

Para ello es necesario utilizar el método de limpieza con chorro abrasivo grado metal blanco (NACE 1/SSPC – SP5) en el cual, la superficie se define como una superficie con color uniforme gris blanco metálico, ligeramente rugosa y con un conveniente perfil de anclaje para la pintura. La superficie quedara libre de aceite, grasa, suciedad, cascarilla de laminación, herrumbre, productos de corrosión, óxidos, pintura o cualquier otra materia extraña.

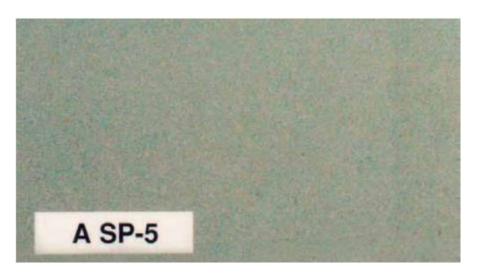


Figura 6.12: Pieza limpia

La superficie limpiada con chorro debe ser tratada o imprimada antes de que se oxide. De otra manera, los beneficios de la limpieza por chorro se perderían. El metal desnudo recientemente expuesto se oxidará rápidamente bajo condiciones de alta humedad, punto de roció o atmosfera corrosiva. Bajo condiciones atmosféricas normales y suaves, la mejor práctica es imprimar o tratar químicamente dentro de las 6 horas después de la limpieza. Bajo ninguna circunstancia debe permitirse que el acero se oxide antes de pintarlo, para ello se debe tener cuidado con el tiempo que trascurre entre la limpieza y la aplicación del imprimante.

Preparó: Ledesma, Franco; Pezzatti, Santiago	Revisó: GP 16-01-020	Aprobó: GP 12-02-2020	Página 125 de
			126

Diseño de Grúa para Trenes Argentinos Cargas de Concordia

<u>Primera capa:</u> Debe ser aplicado un imprimante anticorrosivo o también conocido como base anticorrosiva la cual es aplicada directamente sobre el metal. La misma tiene el propósito principal de inhibir la oxidación del material, y secundariamente el de proporcionar una superficie que ofrezca las condiciones propias para ser pintada con otros acabados.

<u>Segunda capa:</u> Sello epóxico aducto amina – trietilen tetra amina, esta capa tiene la finalidad de proteger a la primera capa de pintura, a su vez ser una barrera contra el ingreso de humedad, proveer cuerpo al recubrimiento frente a golpes o rasguños y proporcionar una buena adherencia para la capa final.

<u>Capa final:</u> Para esta capa se debe aplicar un esmalte de alto brillo como por ejemplo un poliéster hidroxilado de color Amarillo señal. Y en color negro grande y visible la capacidad de elevación de la grúa (6 ton).

PROYECTO FINAL DE CARRERA (P F C)

Diseño de grúa para Trenes Argentinos Cargas de Concordia

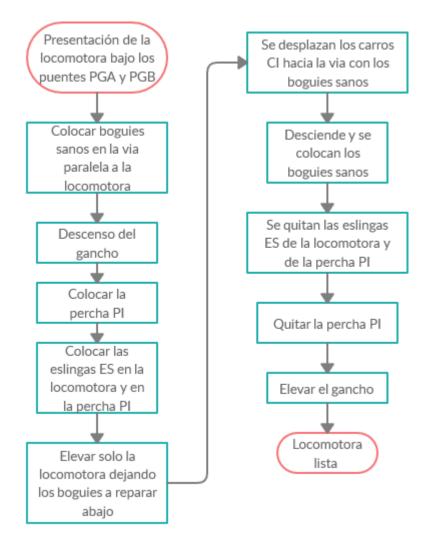
Ingeniería Básica

Proyecto Nº: PFC-1909A Autores: Ledesma, Franco Pezzatti, Santiago

Tutor: Ing. Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. Aníbal De Carli

AÑO 2019

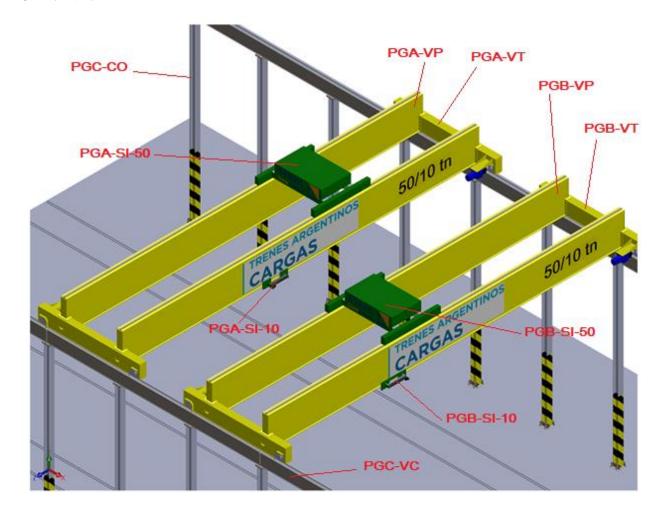

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Índice

١.	Diagram	na de Bloques	1
2.	Puentes	Grúa PGA y PGB	1
		eño de Puente Grúa	
	2.1.1.	Sistema de Izaje SI-50	3
	2.1.2.	Sistema de Izaje SI-10	4
	2.1.3.	Viga Principal VP	4
	2.1.4.	Viga Testera VT	5
	2.1.5.	Viga Carrilera VC	5
	2.1.6.	Columna de Apovo CO	6

1. Diagrama de Bloques

A continuación, se detalla en el diagrama el procedimiento del sistema de izaje propuesto en este proyecto:

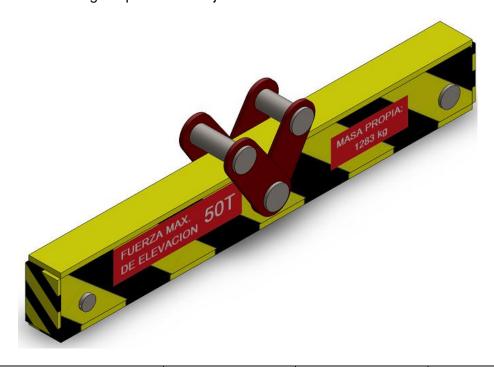


2. Puentes Grúa PGA y PGB

Son los puentes encargados de realizar los trabajos de izaje de las locomotoras o en su defecto de alguna parte de la misma. Ambos puentes son iguales es por eso que en el resto del proyecto solo se habla de PGA ya que el otro es igual.

2.1. Diseño de Puente Grúa

Conformación de todos los componentes de los puentes grúa PGA y PGB, las estructuras de guía y apoyo del sistema (PGC):

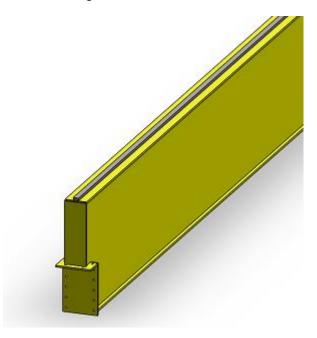

2.1.1. Sistema de Izaje SI-50

Es el equipo encargado de elevar la locomotora para poder realizar el cambio de boguies o en su defecto elevar solo una parte de la misma, como el motor, carcasa u otro componente pero no superar las 50tn. A su vez, cumple con los requerimientos de seguridad e higiene en el izaje de cargas.

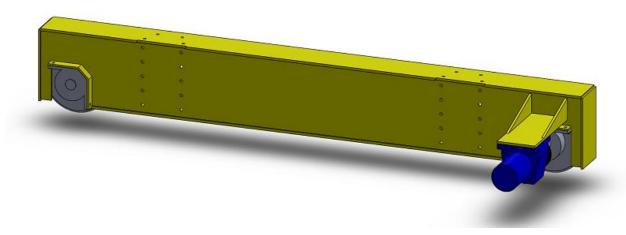
Este sistema fue seleccionado de un fabricante alemán, aunque tiene un distribuidor en Argentina. El mismo cuenta con todos los accesorios: carro, polipasto, motorreductor, cable, pasteca y gancho.

De este gancho se cuelga la percha de izaje PI:

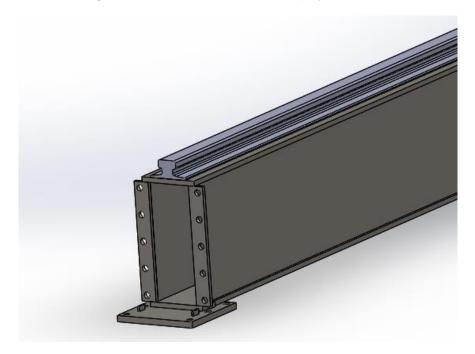
2.1.2. Sistema de Izaje SI-10


Este sistema es utilizado para tareas más ligeras de mantenimiento de hasta 10tn de carga a elevar. Se seleccionó del mismo fabricante que para el SI-50. Así mismo, también cumple con los requerimientos de seguridad e higiene en el izaje de cargas y cuenta con todos los accesorios: carro, polipasto, motorreductor, cable, pasteca y gancho.

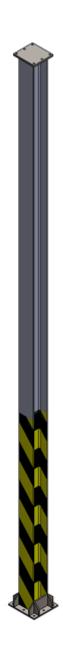
2.1.3. Viga Principal VP


Sobre estas dos vigas principales o vigas puente se desplaza en la parte superior el sistema de izaje SI-50 y a su vez, sobre solo una de ellas se desplaza en la parte inferior el sistema de izaje SI-10.

Las vigas principales se encuentran simplemente apoyadas en sus extremos sobre las vigas testeras VT, transmitiendo toda la carga a estas últimas.


2.1.4. Viga Testera VT

Como se dijo anteriormente, estas vigas soportan la carga transmitida de las vigas principales VP. Las vigas testeras cumplen la función del desplazamiento transversal de la grúa sobre las vigas carrileras VC que, a su vez, transmiten las cargas a esta última por medio de sus ruedas.


2.1.5. Viga Carrilera VC

Estas vigas cuentan con un riel en su parte superior para la rodadura de la viga testera VT y como su nombre lo dice, sirven como carril para el traslado transversal de la grúa a lo largo de la nave. Transmiten la carga recibida a las columnas de apoyo CO.

2.1.6. Columna de Apoyo CO

Son los apoyos encargados de absorber todas las cargas de la grúa y transmitirlas al suelo. En el extremo superior se apoyan las vigas carrileras VC y en el extremo inferior van empotradas al suelo.

PROYECTO FINAL DE CARRERA (P F C)

Diseño de grúa para Trenes Argentinos Cargas de Concordia

Ingeniería de Detalles

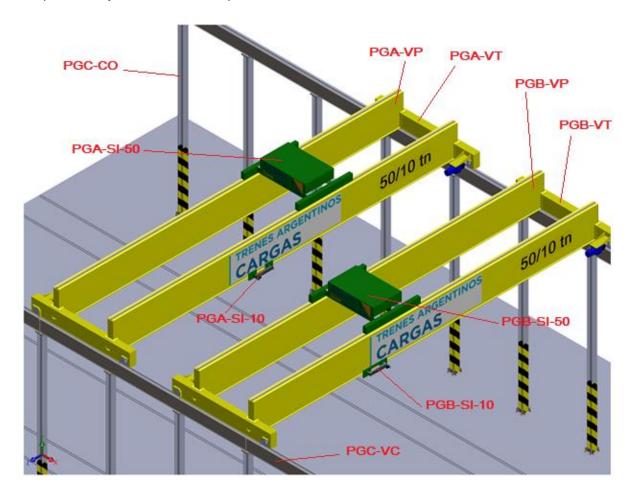
Proyecto Nº: PFC-1909A Autores: Ledesma, Franco Pezzatti, Santiago

Tutor: Ing. Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. Aníbal De Carli

AÑO 2019

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar


Contenido

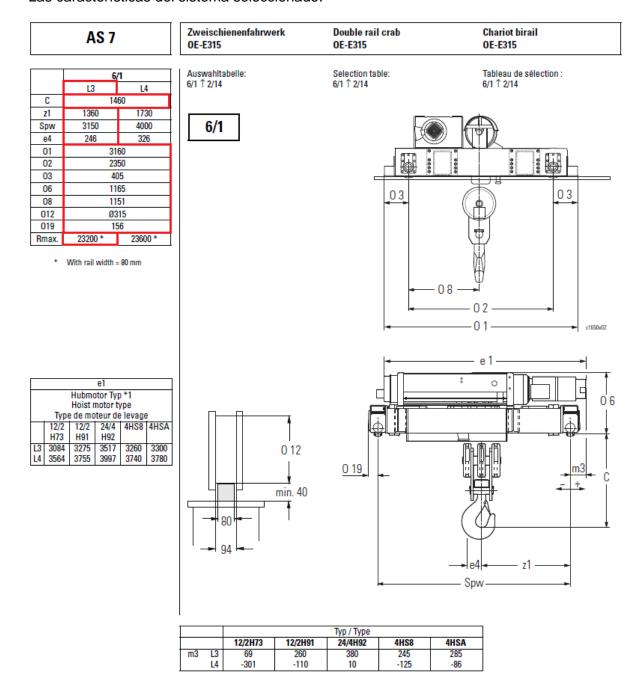
1.	Dis	eño de Puente Grúa PGA	2
2.	Sist	tema de Izaje PGA-SI-50	3
	2.1.	Carro-Polipasto PGA-SI-50-CI y motor de elevación PGA-SI-50-ME	5
	2.2.	Motor de traslación PGA-SI-50-MT	5
	2.3.	Selección de la pasteca PGA-SI-50-PA	6
	2.4.	Selección del cable PGA-SI-50-CA	9
	2.5.	Características del sistema seleccionado	9
	2.6.	Percha de izaje PGA-PI-50	10
	2.6	1. Viga cajón de la percha PI	10
	2.6	2. Pernos laterales 04	11
	2.6	3. Perno central 05	12
	2.6	4. Perno de la tijera interior 06	13
	2.6	5. Perno de la tijera exterior 07	14
	2.6	6. Tijeras de izaje 08	15
	2.7.	Selección de eslingas PGA-PI-ES	16
3.	Sist	tema de Izaje PGA-SI-10	16
	3.1.	Carro-Polipasto PGA-SI-10-CI y motor de elevación PGA-SI-10-ME	18
	3.2.	Motor de traslación PGA-SI-10-MT	19
	3.3.	Selección de la pasteca PGA-SI-10-PA	20
	3.4.	Selección del cable PGA-SI-10-CA	22
	3.5.	Características del sistema seleccionado	22
4.	Vig	a Principal VP	23
	4.1.	Viga cajón de la PGA-VP	24
	4.2.	Riel guía PGA-VP-RG	24
5.	Vig	a Testera VT	25
	5.1.	Viga cajón de la PGA-VT	26
	5.2.	Ruedas de traslación PGA-VT-RU	26
	5.3.	Motorreductor de traslación PGA-VT-MT	
	5.4.	Acoplamiento PGA-VT-AC	
მ.	Vig	a Carrilera VC	32
	6.1.	Viga cajón de la PGC-VC	
	6.2.	Riel guía PGC-VC-RG	33
7.	Col	umna de Apoyo CO	34
3.	Cha	apas para la construcción de las vigas	36

9. Uniones roscadas	
10. Uniones soldadas	
11. Seguridad y riegos inminentes	
Riesgos	
Equipos de seguridad para los operadores del puente	
Requerimientos psicofísicos de los operarios	
Elementos de seguridad del puente grúa	
Preparación y pintura de superficie	
12. Presupuesto	

1. Diseño de Puente Grúa PGA

A continuación, una representación gráfica de la grúa propuesta con sus respectivos componentes y una breve descripción detallada de cada uno de ellos.

2. Sistema de Izaje PGA-SI-50


Es el equipo encargado de elevar la locomotora para poder realizar el cambio de bogies o en su defecto elevar solo una parte de la misma, como el motor, carcasa u otro componente, pero no superar las 50tn, por ejemplo. A su vez, el desarrollo y fabricación de procesos están certificados según DIN ISO 9001.

Este sistema fue seleccionado de un fabricante alemán STAHL de la serie AS-7, aunque tiene dos distribuidores en Argentina, Forvis y Jonach. El mismo cuenta con todos los accesorios: carro, polipasto, motorreductor, cable, pasteca y gancho.

Con el número del grupo de trabajo (M5) y la carga (50tn) se obtiene la disposición de ramales (6/1) y el modelo del sistema de elevación (AS 7080-20):

			Einstuf	ung nach	FEM (ISO)) Clas	ssification to FEM (ISO) Cla	Classification selon FEM (ISO)			
			⊕ _r				Typ Type	FEM 9.661 ISO	FEM 9.511 ISO	FEM 9.683 * ISO		
			Ð					Seiltrieb Rope drive	Triebwerk Mechanism	Motor Motor		
			[kg]					Mouflage	Mécanisme d'entraînement	Moteur		
2/2-1	2/1 4/2-1	4/1 8/2-1 ZW 4/2-1	10/2-1	6/1 ZW 6/2-1	ZW 8/2-1	ZW 10/2-1			u enti amement			
-	-	20000	-	-	-	-	ASR(F) 7050-16 *1 ASR(F) 7050-25 *1	M6	M6	M7		
6300	12500	25000	-	40000	-	-	AS(F) 7063-20 AS(F) 7063-25	M6	M6	M7		
-	-	25000	-	-	-	-	ASR(F) 7063-12 *1 ASR(F) 7063-20 *1	M5	M6	M7		
8000	16000	32000	-	50000	-	-	AS(F) 7080-16	M5	M5	M7		
							AS 7080-20			M5		
							AS /080-25			M4		
							ASF 7080-20 ASF 7080-25			M7		
-	-	32000	-	-	-	-	ASR(F) 7080-10 *1 ASR(F) 7080-16 *1	M4	M5	M7		

Las características del sistema seleccionado:

2.1. Carro-Polipasto PGA-SI-50-CI y motor de elevación PGA-SI-50-ME

Selección del polipasto con el modelo del sistema de elevación y la altura de gancho (12m):

٩	ISO	6			1	bwe loist alar	i					Snurwe		Zweischienenfahrwerke Double rail crabs Chariots birail (e/Track gauge/Empattement [mm] *						
kg		@↓ HW			(60 Hz)						900	1250	1400	1800	2240	2500	2800	3550	†	
		m	♣ m/min	+ ESR max	Typ Type		kW	*1	O kg	₽ ₽•				C kg		•			₽ ₽.4	
50000	M5	4,5 8 12 16	0,4/2,6 (0,5/3,1)	-	AS 7080-16 6/1	L1 L2 L3 L4	3,8/24,0 (4,5/28,8)	H73	2185 2365 2565 2785	2/34				3150 m 4000 m					2/44	
	M5	4,5 8 12 16	0,5/3,3 (0,6/4)	-	AS 7080-20 6/1	L1 12 L3 L4	5,0/30,0 (6,0/36,0)	H91	2235 2415 2615 2835	2/34				3150 m 4000 m					2/44	
	M5	4,5 8 12 16	0,7/4,2 (-)	-	AS 7080-25 6/1	L1 L2 L3 L4	5,6/38,0 (-)	H92	2335 2515 2715 2935	2/34				3150 mi 4000 mi					2/44	

Luego en la tabla de selección, entramos con nuestra altura de gancho (12m) y seleccionamos el tipo de motor de elevación:

Hubmotor			Anschluss	spannung			Netzanschluss-	Bestell-Nummer
Hoist motor			Supply		schalter	Order number		
Moteur de			Tension d'a	limentation			Main isolator	No. de commande
levage		50 Hz			60 Hz		Interrupteur de	
	220-240 V	380-415 V	500-525 V	208-230 V	360-400 V	440-480 V	secteur	
12/2H72	P3	-63	P1-32	P3-100	P3	-63		
12/2H91	*1	P3-100	P3-63	*1	P3-	100	P1-32	01 790 17 70 0
4HS7	-	P1	-32		-	P1-32	P3-63	01 790 18 70 0
4HS8]	P3	-63			P3-63	P3-100	01 790 19 70 0
4HSA		P3-	100			P3-100		

2.2. Motor de traslación PGA-SI-50-MT

Y el motor de traslación para nuestra carga (50tn):

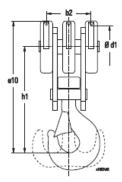
C071

(50/1		euerte ranfmotoren enenfahrwerke	motors for double ra	ail crabs	mande par fréquence pour chariots birail
		6	Đ _p			50/60 Hz
(b)			9		2,525 m/min	440 m/min
(P)					Typ/Type	Typ/Type
kg	2/1 4/2-1	4/1 8/2-1	10/2-1	6/1	kW 20/40% ED/DC/FI	kW M 20/40% ED/DC/FM
12500	AS 7063				SA-C 5730384	SA-C 5726384
16000	AS 7080				2,20	2,20
20000	AS 7100					
25000	AS 7125	AS 7063				SA-C 5726484
32000		AS 7080				3,20
40000		AS 7100				
45000			AS 7090		SA-C 5732484	SA-C 6728484
50000		AS 7125			3,20	3,20
40000				AS 7063	2x SA-C 573238- 2,20	4 2x SA-C 5728384 2,20
50000				AS 7080		2x SA-C 5728484
63000				AS 7100		3,20
80000				AS 7125		

Podemos determinar a partir del modelo que el código del motor es 384, y la potencia 2.2 kW. En la siguiente tabla se encuentran las características eléctricas del mismo:

	C071		Weitere Fahrmoto					Fu	rther tr	avel mot	or data	1		Autres charactéristiques des moteurs de direction				
			380	415 V ,	50 Hz/	44048	OV, 60 I	łz										
Kennziffer	Тур	U	1	f1						U2		f2		f3		f _N		
Code No.	Туре													İ	Y		Δ	
Chiffre		[\	/]	[Hz]					Ī	[V]		[Hz]		[Hz]		[Hz]		
184	4F18	380	.415	50				1 .		3804	15	50100			50		100	
384	4F38			-	-	U	1/f1	-	M					100	-			
484	4F48	440	.480	60			U2/f2		3-))	44048	80	50100)		60		120	
	T					TNI	T4	T		l4				lass N	K			
Kennziffer Code No.	Тур		P	n		TN	TA	TH	TB	Jrot		N	ΙK	cos φ N	cos φ K	ED DC	R	
Chiffre	Туре	Y	Δ	Y	Δ						Y	Δ				FM		
		[k	W]	[1/r	nin]	[Nm]	[Nm]	[Nm]	[Nm]	[kgm²]	[Å]	[A]			[%]	[Ω]	
184	4F18	0,38	0,75	1220	2440	2,94	5,1	3,8	5	0,0005	1,1	2,2	2,7	0,73	0,82	60	18,8	
384	4F38	1,10	2,20	1370	2740	7,7	17	13	13	0,0032	2,6	5,2	9,5	0,80	0,87	60	5,6	
484	4F48	1,60	3,20	1425	2850	10,7	31	34	20	0,0057	4,3	8,6	23	0,71	0,83	60	2,6	

2.3. Selección de la pasteca PGA-SI-50-PA


Debido a nuestro grupo de trabajo cable(M5) se llegó anteriormente que la relación para nuestra carga debe ser 6/1, por lo que la disposición del aparejo quedará de la siguiente manera:

Por lo que se seleccionó una pasteca que cumple con nuestro grupo de mecanismo, la misma será de gancho doble por la cantidad de carga a elevar y por la percha de izaje PI. La pasteca seleccionada tiene las siguientes características:

Seilzug Wire rope hoist Palan à câble		Hakengeschirr/-flasche Bottom hook block Moufle										
	2/1	4/1	6/1	2/2-1	4/2-1	8/2-1	8/2-1 ZW	10/2-1	10/2-1 ZW			
		4/2-1 ZW 6/2-1 ZW										
ASR 7,	H453-2	H 376-4	H452-6	T 240-2	U 375-4	U 375-8	H 452-8	U 375-10	H 450-10			
AS 7		H 375-4										
		H 378-4										
		H 454-4										

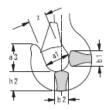
B038

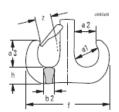
Hakenflasche 6/1 und 6/2-1 ZW Die Hakenflasche ist wahlweise

mit Einfach- oder Doppelhaken lieferbar.

Bottom hook block, 6/1 and 6/2-1 ZW reevings

The bottom hook block is optionally available with load hook or ramshorn hook.


Moufle 6/1 et 6/2-1 ZW


La moufle est livrable au choix avec crochet simple ou avec crochet double.

6	6/1 6/2-1 ZW		9	Haken-Nr. Hook no. No. du crochet	Seil Rope Câble Ø			[m	m]			C kg	Bestell- Order r No. de co	number
	Typ Type	FEM 9.751				e'	e10 h1		hl		Ød1			
L		M4	M3		[mm]	"E"	"D"	"E"	"D"			[kg]	"E"	"D"
	H 452-6	63000	80000	32	20-28	1369	1351	1098	1080	468	450	710	03 330 74 51 0	03 330 90 51 0

Modelo de pasteca	H 452-6
Carga máxima	63000 kg
Peso	710 kg
Diámetro nominal	450 mm
Ancho nominal	468 mm

B050

Lasthaken

Load hooks

Crochets de charge

	Cr	L	oad ho	thaken ook irge sir				Doppellasthaken Ramshorn hook Crochet de charge double								
Haken- Nr. Hook no. No. du crochet	Hakenwerkstoff Hook material atériau du crochet			DIN 1	15401 m]			Haken- Nr. Hook no. No. du crochet	enwerkstoff ok material au du croch			(D	IN 154 [mm])_ 02		
Crocnet	Ha H Maté	a1	a3	b1	b2	h2	Z	Crocnet	Ha H Maté	a1	a2	a3	b2	f	h	Z
2,5 5 6	V	63 80 90	72 90 101	53 71 80	45 60 67	58 75 85	42 53 62	2,5 5 6	V	50 63 71	40 50 56	65 82 92	40 53 60	208 266 301	50 67 75	30 40 42
10 16	V	112 140	127 160	100 125	85 106	106 132	82 99	10 16	V	90 112	71 90	116 146	75 95	377 471	95 118	50 65
20	S	160	180	140	118	150	116	20	S	125	100	163	106	531	132	72
32 40	Р	200 224	225 252	180 200	150 170	190 212	145 160	32 40	P	160 180	125 140	205 230	132 150	672 754	170 190	95 100

Modelo del gancho de cuerno	DIN 15402 N°32
Peso	197 kg
Diámetro nominal	160 mm
Ancho	672 mm
Espesor en la zona de contacto	170 mm

B061	Seilrollen			Rope sheaves					Poulies				
b1 1x45 *	Ød1	Seil Rope Câble Ø	P max. *1	[mm]					Lager Bearings Roulement à billes	Werkstoff Material Matériel	C) kg	Bestell-Nr. Order no. No. de com.	
	[mm]	[mm]	[kg]	b	b1	Ød	Ød2	R			[kg]		
	375	20,0	16000	65	60	85	443	10,7	2x 6217-2Z	EN-GJL-700-2	21,2	03 330 01 53 0	
	450	22,5-25,0	25000	72	74	100	520	14,5	2x 6220-2Z	EN-GJL-250	28	03 330 70 53 0	
Ø d2 Ø d1 Ø d		22,0-28,0	25000	67	74	90	520	15,5	1x SL045018PP	EN-GJL-250	*2	09 430 00 53 0	
8 d2 8 d1 2 d				80		150			1x SL 0415PP		28	03 330 71 53 0	
	480	16,0-20,0	12500	64	60	90	545	1 1	2x 6218 Z	EN-GJL-250	42	46 330 01 53 0	
4903140	630	22,0-28,0	25000	67	74	90	700	15,5	1x SL045018PP	EN-GJL-250	*2	09 430 01 53 0	
ь ь													

Modelo de polea de retorno	H 452-6
Carga máxima de la polea	25000 kg
Peso de la polea	28 kg
Diámetro nominal de la polea	450 mm
Ancho de la polea	72 mm

Selección del cable PGA-SI-50-CA 2.4.

Para la determinación del cable, se ingresa con la disposición del aparejo y el mismo tiene las siguientes características del cable de acero:

C100	Drahtseile	Wire ropes	Câbles

Seilzug Hoist	Einscherung Reeving	Trommel-	Seil	Elastizitäts- modul	Seilfestigkeits- klasse	Mindest- seilbruchkraft	Metallischer	Schlag-	Ober- fläche	Art	Bestell-Nr. Oder no.
Palan	Mouflage	länge Drum langth	Rope Câble	Elasticity	Rope strength	Minimum rope	Querschnitt Metallic	richtung Direction	Surface	Type	No. de
Palali	woullage	Drum length Longueur du	Ø	module	class	breaking force	cross-section	of lav	Surface	Type	commande
		tambour	U	Module	Classe de rési-	Force de rupture	Section	Commet-	Surrace		commande
		tallibour		d'élasticité	stance du câble	mini. du câble	métallique	tage			
				u clasticite	R _r	F _{min}	inclanique	tugo			
			[mm]	[N/mm ²]	[N/mm ²]	[kN]	[mm²]	*3	*4	*5	
407	0/1	1.5									200 111 0
AS 7	2/1	1-5	25	1,0x10 ⁵	1870	500,0	327,0	sZ	b	В	330 111 9
	4/1 6/1										
	2/2-1	1-4	20		1960	315.0	196,0	sZ	b	В	330 012 9
	4/2-1	1-4	20		1300	313,0	130,0	32			330 012 3
	8/2-1	1-4									
	4/2-2	1-3									
	2/2-1	1-4	20		1960	315,0	196,0	7S	b	В	330 025 9
	4/2-1	1-4	20		1300	313,0	130,0	20			300 023 3
	8/2-1	1-4									
	4/2-2	1-3									
	2/2-2	1-4	20	1	1960	371.0	206.0	sZ	b	Α	330 116 9
	4/2-2	Δ.			1000	0,1,0	200,0			- * *	000 110 0
	2/2-2	1-4	20	1	1960	371,0	206.0	zS	b	Α	330 119 9
	4/2-2	4				2,2			_		
	10/2-1	2 - 4	16	1	2160	270.0	149.0	zS	b	В	330 106 9
	,						, .	sZ	b	В	330 101 9
	ZW 4/2-1	1 - 4	25	1		Auf Anfrage	ı	sZ	b	В	Auf Anfrage
	ZW 6/2-1		22			On request					On request
	ZW 8/2-1					Sur demande					Sur demande
	ZW 10/2-1										
ASR 7	4/1	1 - 4	20		1960	356,0	212,0	sZ	b	В	330 115 9

Cable de alambre tipo B	Resistente a la rotación, antigiratorio
Resistencia del cable	1870 N/mm ²
Fuerza mínima de rotura	500 kN
Diámetro del cable	25 mm
Sección metálica	327 mm ²
Dirección de colocación del cable	sZ (con tendido a la derecha)

2.5. Características del sistema seleccionado

Modelo	AS. 7080-20 6/1 L3						
Carga máxima	50000 kg						
Altura de izaje	12m						
Peso de todo el sistema carro y polipasto	7860kg						
Velocidad de desplazamiento	2.5/25 m/min (50Hz)						
Velocidad de elevación	0,5/3,3 m/min (50Hz)						
Peso de pasteca	710kg						
Desarrollo y fabricación de procesos certificados según DIN ISO 9001.							

^{*1} Inklusive eventueller Totlast. Nutzlast + Totlast = Tragfähigkeit (Traglast)

*3 Schlagrichtung Seil:

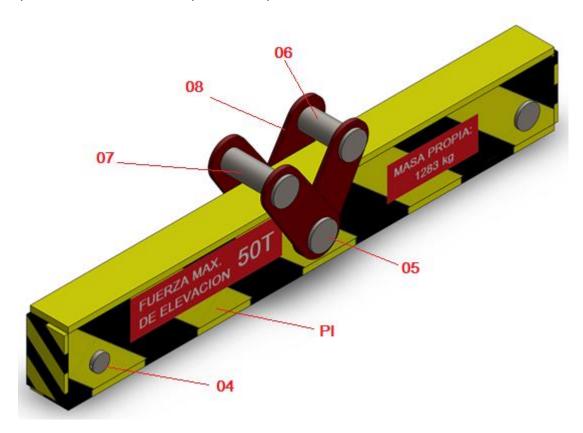
\$Z = Fechtsgeschlagenes Seil (Seiltrommel mit Linksgewinde, Seilfestpunkt auf der Lagerseite)

\$Z = linksgeschlagenes Seil (Seiltrommel mit Rechtsgewinde, Seilfestpunkt auf der Getriebeseite

*4 vz = verzinktes Drahtseil, b = blankes Drahtseil

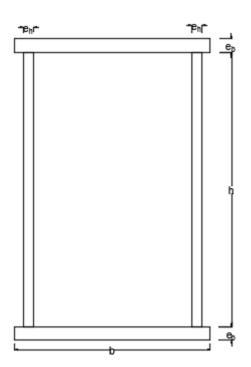
*5 A = dreihungsarmes Drahtseil

B = Nicht drehungsarmes Drahtseil


^{*1} Including any dead load. Live load + dead load = working load (lifting capacity)
*3 Direction of lay of rope:
SZ = rope with right-hand lay (rope drum with left-hand thread, rope anchorage on bearing side)
SZ = rope with left-hand lay (rope drum with right-hand thread, rope anchorage on gear side)
*4 vz = galvanised wire rope, b = bright metal wire rope
*5 A = twist-free wire rope,
B = non-rotation-resistant wire rope

^{*1} Y compris tout poids mort. Charge utile + poids mort = charge d'utilisation (capacité de charge)
*3 Commettage du câble : SZ = câble toronne à droite (tambour avec pas à gauche, attache du câble côté palier)
ZS = câble toronne à gauche (tambour avec pas à droite, attache du câble côté réducteur)

*4 vz = câble galvanisé, b = câble clair
*5 A = câble antigiratoire,
B = câble non antigiratoire


2.6. Percha de izaje PGA-PI-50

Los planos de detalle de cada pieza de la percha se encuentran en el ANEXO-F.

2.6.1. Viga cajón de la percha Pl

Del gancho nombrado anteriormente, se cuelga la percha de izaje PI. La misma es una viga cajón y está constituida por cuatro chapas de acero ASTM A36 soldadas entre sí, con las siguientes medidas:

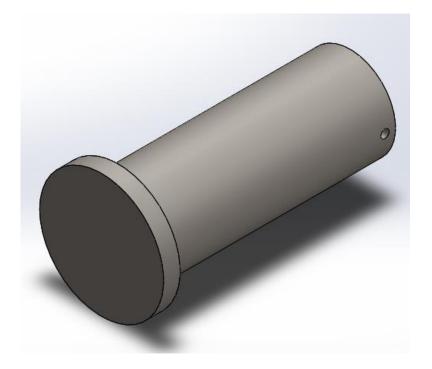
Donde:

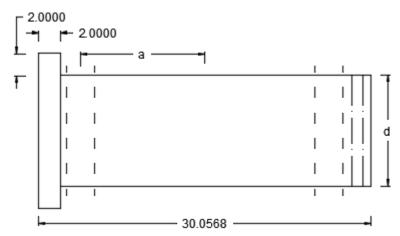
h: altura del alma (40cm).

b: ancho del ala (25cm)

c: distancia entre paredes de alma (14,38cm)

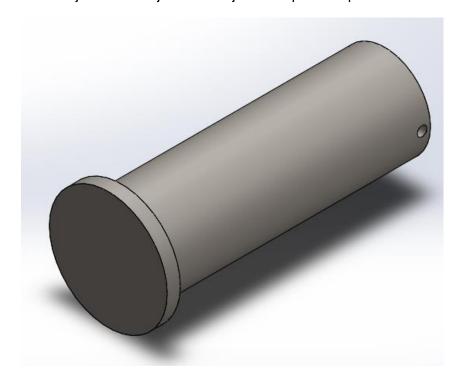
e_h: espesor del alma (1 1/2" =3,81cm)

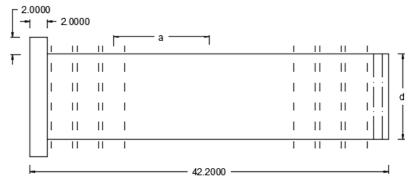

e_b: espesor del ala (1" =2,54cm)


L: longitud de la percha (3,2m)

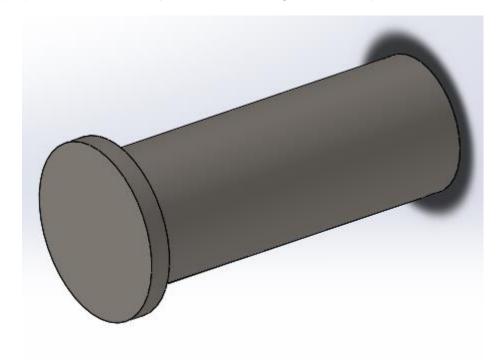
G: peso propio de la percha (103,5kg/m).

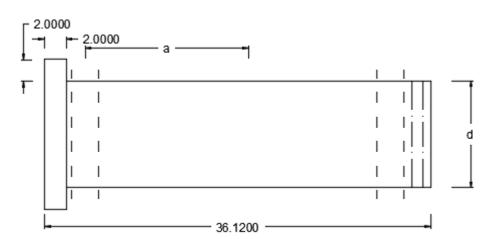
2.6.2. Pernos laterales 04


Pernos que conectan las eslingas de izaje con la percha.

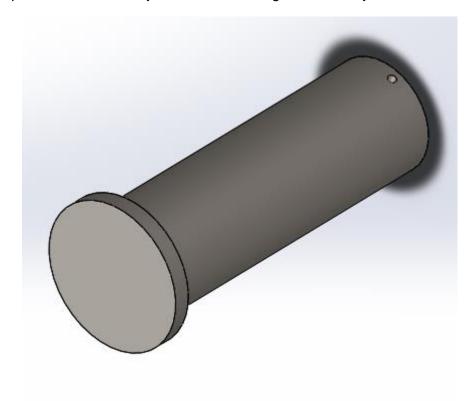


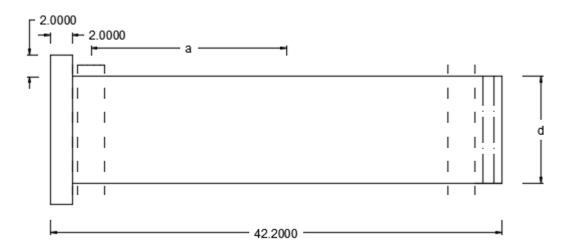
2.6.3. Perno central 05


Perno donde serán sujetadas las tijeras de izaje al cuerpo de la percha.

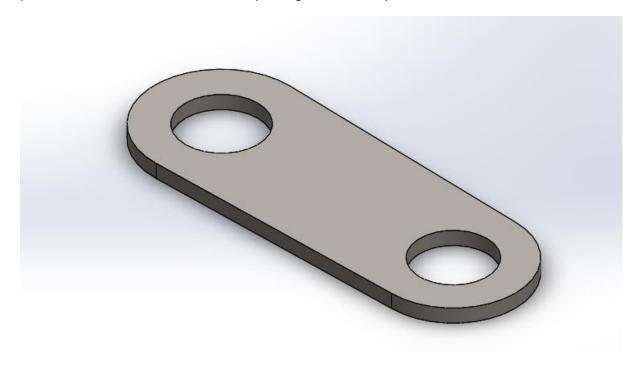


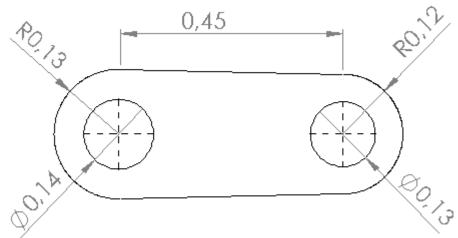
2.6.4. Perno de la tijera interior 06


Perno que permite conectar la tijera interior con el gancho de izaje.

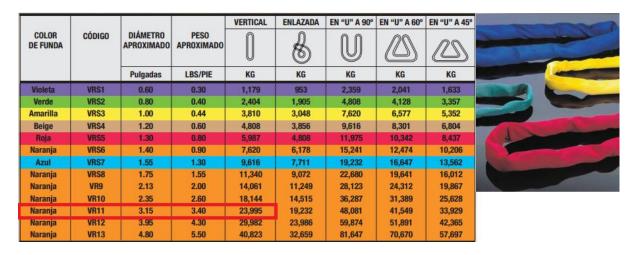


2.6.5. Perno de la tijera exterior 07


Perno que permite conectar la tijera exterior con el gancho de izaje.



2.6.6. Tijeras de izaje 08


Estas tijeras cuentan de dos chapas cada una de 1 pulgada de espesor, en la que en uno de sus extremos van solidarias al perno PGA-PI-05 y en el otro extremo cada tijera tiene un perno PGA-PI-06/07 del cual se acopla el gancho de izaje.

2.7. Selección de eslingas PGA-PI-ES

Se seleccionaron dos eslingas por percha, material de poliéster redondas sin-fin de la marca nacional Viking, de acuerdo a nuestra capacidad de carga (50tn):

Adoptando una longitud de 4m (13ft), nos da un peso aproximado de 20kg por eslinga.

3. Sistema de Izaje PGA-SI-10

Es utilizado para tareas más ligeras de mantenimiento de hasta 10tn de carga a elevar. A su vez, el desarrollo y fabricación de procesos están certificados según DIN ISO 9001.

Este sistema también fue seleccionado de un fabricante alemán STAHL, pero de la serie SH 5, aunque tiene dos distribuidores en Argentina, Forvis y también Jonach. El mismo cuenta con todos los accesorios: carro, polipasto, motorreductor, cable, pasteca y gancho.

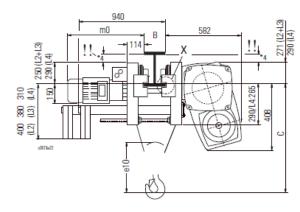
Con el número del grupo de trabajo (M5) y la carga (10tn) se obtiene la disposición de ramales (4/1) y el modelo del sistema de elevación (SH(F) 5025-20):

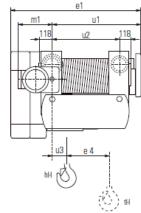
Einstufung nach FEM (ISO)	Classification to FEM (ISO)	Classification selon FEM (ISO)
Linaturung nach i Livi (180/	Classification to Livi (130)	Classification scion i Livi (130)

FEM 9.661 ISO	FEM 9.511 ISO	FEM 9.683* ISO	Typ Type	⊕_							
Seiltrieb Rope drive	Triebwerk Mechanism	Motor Motor			(₽					
Mouflage	Mécanisme	Moteur			[k	[g]					
	d'entraîne- ment			1/1 2/2-1	2/1 4/2-1	4/1	8/2-1				
M6	M7	M7	SH(F) 5016-20	1600	-	-	-				
			SH(F) 5016-25	-	3200	6300	Ī				
			SH(F) 5016-40	Ī							
M5	M6	M7	SH(F) 5020-20	2000	-	-	-				
			SH(F) 5020-25	-	4000	8000	Ī				
			SH(F) 5020-40]							
M5	M5	M7	SH(F) 5025-20	2500	5000	10000	-				
			SH(F) 5025-32	-	Ī						
M4	M4	M7	SH(F) 5032-16	3200	-	-	-				
			SH(F) 5032-25	-	6300	12500	Ī				

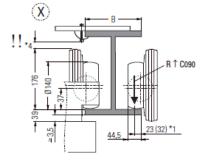
Las características del sistema seleccionado:

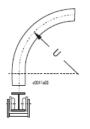
SH 5016	
SH 5020	
SH 5025	

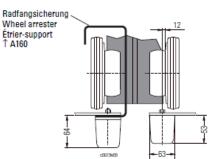

	B [mm]	2/1	4/1	4/2-1
С	119	665	615	570
	170	720	600	635
-L2	300	875	585	790
-L3	400	995	705	910
	500	1115	825	1030
С	119	935	615	570
	170	935	600	635
-L4	300	895	585	790
	400	945	705	910
	500	1065	825	1030
e1	-L2		1200	
	-L3		1515	
	-L4		2300	
e4	-L2	237	118	0
	-L3	394	197	0
	-L4	787	394	0
e10		548	463	350
		802*8		
u1	-L2		855	
	-L3		1170	
	-L4		2140	
u2	-L2		625	
	-L3		940	
	-L4		1910	
u3	-L2	232	321	456
	-L3	232	321	614
	-L4	417	506	1191
В			119 - 306	
			307 - 500	1
U *2			(m)	
	-L2		12,5 *7	
	-L3		18,8 *7	
	-L4		38,2 *7	



*3	₩	&	
	50 Hz (60 Hz)	kg	
	,		
	[m/min]	[kg]	[mm]
m0	5/20	10000	567
	(6,3/25)		
	2,5/10	10000	567
	(3,2/12,5)		
	8/32	6300	567
	(10/40)	800010000	621
m1	5/20	10000	241
	(6,3/25)		
	2,5/10	10000	241
	(3,2/12,5)		
	8/32	6300	241
	(10/40)	800010000	261


Auswahltabelle: 2/1, 4/1 ↑ 1/25 4/2-1 ↑ 1/36




Tableau de sélection : 2/1, 4/1 ↑ 1/25 4/2-1 ↑ 1/36

3.1. Carro-Polipasto PGA-SI-10-Cl y motor de elevación PGA-SI-10-MF

Luego en la tabla de selección, entramos con nuestra carga (10tn), nuestra altura de gancho (10m) y con el modelo del sistema de elevación, seleccionamos el tipo de motor de elevación y su velocidad:

\$	ISO	<u>&</u>							4											
kg		л ^{HW}			50 Hz (60 Hz)								_	Spurweite/Track gauge/Empattement [mm] *						
Kg		ĞŢ.		ESR	(60 Hz)			*1	-				1250	1400	1800	2240	2800	3150	4000	1
			₹	Lon	Туре			ļ .	kg	*,,,	kg	₽ ∏.				kg				₽ ∏.
		m	m/min	max			kW													L'I
1000	M4	12 20	3,3/20 (4/24)	-	SH 6050-40 2/1	L2 L3	5,6/38,0 (6,8/46,0)	H92	1086 1161	1/55	-	-	1421	1441 1501	1476 1536	1516 1581	1571 1636	1606 1666	1667 1727	1/70
		40	(42.)		٦.	L4	(0,0, 10,0)		1391		-		-	-	-	1736	1791	1826	1887	
		60				L5			1506		-		-	-	-	-	1946	1981	2042	\Box
	M5	6 10	0,15 (0,126)	7,5	SHF 5025-20 4/1	12 L3	9,0 (11,0)	4HS5	443 478	1/52	733 773	1/60	723	733 753	- 776	778 798	798 818	-	-	1/67
		20	(0,120)		4/1	L4	(11,0)		548		888		-	-	-	-	868		-	
	M5		0,168	12	SHF 5025-32	L2	15,0	4HS7	478	1/52	825	1/60	758	768	-	813	833	-	-	1/67
		10 20	(0,199,6)		4/1	L3 L4	(18,0)		513 583		871 986		-	788	811	833	853 903	-		
	M5	8,5	0,15	7,5	SHRF 6025-20	L2	9,0	4HS5	821	1/53	1371	1/62	1266	1286	1321	1366	1416	1451	-	1/69
		14	(0,126)		4/1	L3	(11,0)		876		1531		-	1331	1366	1411	1461	1496	-	
		28,5 42,5				L4 L5			1066 1131		1781		-	-	-	1546	1576 1806	1611 1841	-	

Netzanschlussschalter

3-polig mit Verschließeinrichtung (Vorhängeschloss bauseits)

- ohne Hauptsicherung

Main isolator

3-pole with locking facility (padlock by others)

- without main fuse

Interrupteur de secteur

Tripolaire avec dispositif de fermeture (cadenas à fournir par le client) - sans fusible principal

Hubmotor Hoist motor			Anschluss		Netzanschluss- schalter	Bestell-Nummer Order number		
				voltage limentation				
Moteur de			rension d a	ilimentation			Main isolator	No. de commande
levage		50 Hz			60 Hz		Interrupteur de	
	220-240 V	380-415 V	500-525 V	208-230 V	360-400 V	440-480 V	secteur	
12/2H33			P1	-25				
12/2H42		P1-25		P3-63	P1-32	P1-25]	
12/2H62	P3-63	P3-32	P1-25	P3-63	P1-32	P1-25]	
12/2H71	P3-63	P1-32	P1-25	P3-63	P1	-32]	
12/2H72	P3	-63	P1-32	P3-100	P3	-63	D. 05	04 700 40 70 0
12/2H91	*1	P3-100	P3-63	*1	P3-	-100	P1-25 P1-32	01 790 16 70 0 01 790 17 70 0
4HS3	-	P1	-25		-	P1-25	P3-63	01 790 17 70 0
4HS5		P1	-32			P1-32	P3-100	01 790 19 70 0
4HS7		P1	-32			P1-32	10.100	
4HS8		P3	-63			P3-63		
4HSA		P3-	100			P3-100		
4HA3	-	P1	-25	- P1-25				
4HA5								

3.2. Motor de traslación PGA-SI-10-MT

Y el motor de traslación para nuestra carga (10tn):

Frequenzgesteuerte Fahrmotoren für Einschienenfahrwerke

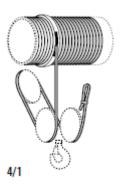
Frequency controlled travel motors for monorail trolleys

Moteurs de direction avec commande par fréquence pour chariots monorail

л		⊕.		50/6	0 Hz
(♦)		Ò		2,525 m/min	440 m/min
kg	1/1 2/2-1	2/1 4/2-1	4/1	Typ/Type kW	Typ/Type kW
5003200	SH 3 SH 4 SH 5	SH 3	SH3	SF 17111184 0,75	SF 17107184 0,75
10004000		SH 4	SH 4008 SH 4010		
50006300			SH 4012 SH 4016		SF 17207384 2,20
16003200	SH 5 - L4			2x SF 17111184 2x 0,75	2x SF 17107184 2x 0,75
32005000		SH 5016 SH 5020 SH 5025 SHR 6025		SF 17211184 0,75	SF 17207184 0,75
630010000		SH 5032	SH 5016 SH 5020 SH 5025		SF 17207384 2,20
12500			SH 5032	SF 17211384 2,20	

C071 Weitere Fahrmotordaten Further travel motor data

Autres charactéristiques des moteurs de direction


380...415V, 50 Hz / 440...480V, 60 Hz

Kennziffer	Тур	U1	f1		U2	f2	f3	1	N
Code No.	Туре							Y	Δ
Chiffre		[V]	[Hz]		[V]	[Hz]	[Hz]	[]	[Z]
184	4F18	380415	50		380415	50100		50	100
384	4F38	300413	30	U1/f1 M	000415	30100	100	30	100
484	4F48	440480	60	U2/f2 3-/	440480	50100		60	120
									L
Kennziffer	Tvn	I P	ı nı	TN TA TH TB	Jrot	N. I	v ICOS ω N	cos o K	FD R

Kennziffer	Тур		9	n	1	TN	TA	TH	TB	Jrot	- 1	N	I _K	cos φ N	cos φ K	ED	R
Code No. Chiffre	Туре	Y	Δ	Y	Δ						Y	Δ				DC FM	
		[k\	W]	[1/n	nin]	[Nm]	[Nm]	[Nm]	[Nm]	[kgm²]	[/	4]	[A]			[%]	[Ω]
184	4F18	0,38	0,75	1220	2440	2,94	5,1	3,8	5	0,0005	1,1	2,2	2,7	0,73	0,82	60	18,8
384	4F38	1,10	2,20	1370	2740	7,7	17	13	13	0,0032	2,6	5,2	9,5	0,80	0,87	60	5,6
484	4F48	1,60	3,20	1425	2850	10,7	31	34	20	0,0057	4,3	8,6	23	0,71	0,83	60	2,6

Selección de la pasteca PGA-SI-10-PA 3.3.

Debido a nuestro grupo de trabajo(M5) se llegó anteriormente que la relación para nuestra carga debe ser 4/1, por lo que la disposición del aparejo quedará de la siguiente manera:

Por lo que se seleccionó una pasteca de 2 poleas que cumple con nuestro grupo de mecanismo, la misma será de gancho simple para tareas más ligeras. La pasteca seleccionada tiene las siguientes características:

Hakengeschirre, Hakenflaschen sind mit Hakengeschirren bzw. Hakenflaschen ausgerüstet,

Seilzüge in Standardausführung außer bei 2/2-2 und 4/2-2, siehe nachstehende Tabelle.

Bottom hook blocks

Standard wire rope hoists are equipped with bottom hook blocks, except 2/2-2 and 4/2-2, see following table.

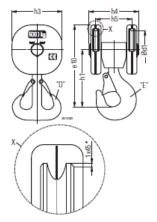
Moufles

Les palans à câble dans exécution standard sont équipés de moufles, à l'exeption de 2/2-2 et 4/2-2, voir le tableau suivant.

Wire ro	lzug pe hoist à câble	Hakengeschirr/-flasche Bottom hook block Moufle												
		1/1	1/1 2/1 4/1 2/2-1 4/2-1 8/2-1 2/2-2 4											
SI	13	H 122-1	H 125-2	H 125-4	T 100-2	H 100-4	-	H 86-1	H 100-2					
SI	14	H 122-1	H 164-2	H 162-4	T 130-2	H 125-4	-	H 122-1	H 125-2					
SH 5016,	L2, L3	H 130-1	H 225-2	H 226-4	T 141-2	H 162-4	-	H 122-1	H 164-2					
5020, 5025	L4		H 378-2											
SH 5032	L2, L3	H 190-1	H 225-2	H 227-4	T 161-2									
	L4		H 378-2											
SH	R6	-	H 252-2	H 252-4	-	-	-	-	-					
SI	16	H 200-1	H 375-2	H 375-4	T 181-2	H 227-4	U225-8	H 190-1	H 252-2					

B034

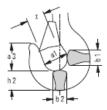
Hakenflasche 4/1 und 4/2-1 Die Hakenflasche ist wahlweise mit Einfach- oder Doppelhaken lieferbar.

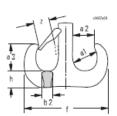

The bottom hook block is optionally available with load hook or ramshorn hook.

reevings

Bottom hook block, 4/1 and 4/2-1

Moufle 4/1 et 4/2-1


La moufle est livrable au choix avec crochet simple ou avec crochet double.



4/1 4/2-1		9	Haken-Nr. Hook no. No. du crochet	Seil Rope Câble Ø		[mm]							
Тур	FEM 9.51				e	10	h	11	h3	h4	h5	Ød1	
Type		0											
	M5	M4		[mm]	"E"	"D"	"E"	.D.					[kg]
H 100-4	2000		08	4-5,5	241	-	172	-	137	159	110	98	10
*													
H 125-4	32	00	1,6	6-7	291	-	208	-	166	182	126	125	15
H 162-4	63	00	2,5	7,5-10	348	341	244	238	212	207	149	160	25
H 226-4	100	000	4	11-12,5	468	450	325	307	281	268	201	225	48
H 227-4	12500		5	11-12,5	498	505	355	362	281	284	217	225	65
H 252-4	12500 16000		6	12-15	585	580	424	419	Ø320	331	262	250	75
H 375-4	20000	25000	10	16,5-20	756	745	521	510	Ø468	442	313	375	170
H 377-4	20000	25000	10	13-16	756	745	521	510	Ø468	442	313	365	170

Modelo de pasteca	H 226-4
Carga máxima	10000 kg
Peso	48 kg
Diámetro nominal	225 mm
Ancho nominal	268 mm

B050

Lasthaken Load hooks Crochets de charge

	Einfachlasthaken Load hook Crochet de charge simple							Doppellasthaken Ramshorn hook Crochet de charge double								
Haken- Nr. Hook no. No du crochet an du crochet MR 15401						Haken- Nr. Hook no. No. du	Hakenwerkstoff Hook material atériau du crochet			(D	IN 154)_ 02				
crochet	Hak Ho Matér	a1	a3	b1	b2	h2	2	crochet	Hak Ho Matér	a1	a2	a3	b2	f	h	Z
025	V	36	41	22	19	24	26	0,25	٧	-	-	-	-	-	-	-
04		40	45	27	22	29	28	0,4		-	-	-	-	-	-	-
05		43	49	29	24	31	29	0,5		-	-	-	-	-	-	-
08		48	54	35	29	37	33	0,8		•	-	-	-	-	-	-
1	V	50	50	38	32	40	35	1	V	-	-	-	-	-	-	-
1,6		56	64	45	38	48	40	1,6		-	-	-	-	-	-	-
2.5		63	72	53	45	58	42	2,5		50	40	65	40	208	50	30
4		71	80	63	53	67	49	4		56	45	73	48	238	60	33
5	V	80	90	71	60	75	53	5	V	63	50	82	53	266	67	40
6		90	101	80	67	85	62	6		71	56	92	60	301	75	42
10		112	127	100	85	106	82	10		90	71	116	75	377	95	50

Modelo del gancho de carga	DIN 15401 N°4
Peso	8.8 kg
Diámetro nominal	71 mm
Espesor en la zona de contacto	67 mm

B061	Seilrollen				Rope	sheav	es			Poulies		
b1 1x45 *	Ød1	Seil Rope Câble Ø	P max. *1			[mm]			Lager Bearings Roulement à billes	Werkstoff Material Matériel	O kg	Bestell-Nr. Order no. No. de com.
	[mm] 100 * 101	[mm] 4,0-5,5 6,0-6,5	[kg] 1000	b 26	b1 21	Ød 25	Ød2 120	R 3	DIN 625 2x 6005-2RS	EN-GJL-250	[kg] 1,0	01 430 01 53 0 01 430 04 53 0
Ød2 Ød1 Ød	125	6,5-7,0	1600	28	23	30	149	3,7	2x 6006-2Z	EN-GJL-250	1,6	01 430 00 53 0
	154	6,0-7,5	3200 3200	32,5	28	45	193	4,0 5.6	2x 6009-2Z 2x 6009-2Z	EN-GJL-250 EN-GJL-250	2,5	01 430 06 53 0
	152	8,0-10,0 6,0-7,5		·				,			2,5	01 430 06 53 0
<u>*</u>	225	12,0-12,5	6300	43	39	50	267	6,8	2x 6210-Z	EN-GJL-250	7	01 430 03 53 0 01 430 05 53 0
b ⊨	218 250	9,0-10,0 12,0-15,0	8000 8000	50	45	60	300	5,3 8,4	2x 6212-2Z	EN-GJL-250	9,7	03 330 40 53 0
	365	13,0-16,0	12500	65	60	70	443	8,5	2x 6214-Z	EN-GJL-250	21,2	03 330 69 53 0
	375	16,5-20,0	12500	65	60	70	443	11,5	2x 6214-Z	EN-GJL-250	21,2	25 330 00 53 0

Modelo de polea de retorno	H 226-4
Carga máxima de la polea	6300 kg
Peso de la polea	7 kg
Diámetro nominal de la polea	225 mm
Ancho de la polea	39 mm

3.4. Selección del cable PGA-SI-10-CA

Drahtseile

C100

Para la determinación del cable, se ingresa con la disposición del aparejo y el mismo tiene las siguientes características del cable de acero:

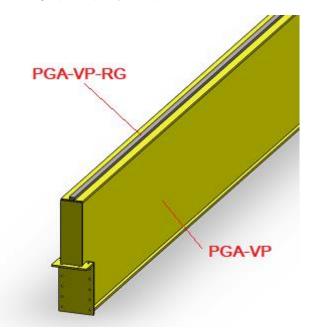
Wire ropes

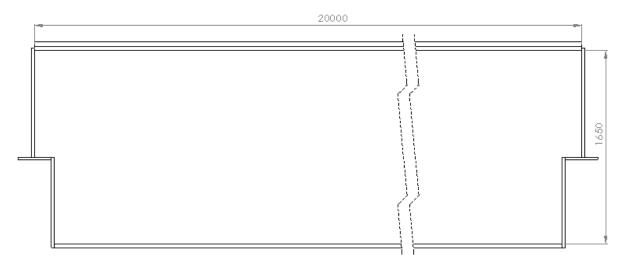
Câbles

Seilzug	Einscherung	Trommel-	Seil	Elastizitäts-	Seilfestigkeits-	Mindest-	Metallischer	Schlag-	Ober-	Art	Bestell-Nr.
Hoist	Reeving	länge	Rope	modul	klasse	seilbruchkraft	Querschnitt	richtung	fläche	Type	Oder no.
Palan	Mouflage	Drum length	Câble	Elasticity	Rope strength	Minimum rope	Metallic	Direction	Surface	Type	No. de
		Longueur du	Ø	module	class	breaking force	cross-section	of lay	Surface		commande
		tambour		Module	Classe de rési-	Force de rupture	Section	Commet-			
				d'élasticité	stance du câble	mini. du câble	métallique	tage			
					R _r	F _{min}					
			[mm]	[N/mm ²]	[N/mm ²]	[kN]	[mm ²]	*3	*4	*5	
SH 5016	2/1	2 - 4	10 *1	1,0x10 ⁵	2160	107,0	58,1	sZ	b	В	330 039 9 *1
-	4/1	2 - 4									
SH 5025	1/1	2 - 4			2160	98,6	56,2	sZ	b	Α	330 040 9 *1

Cable de alambre tipo B	Resistente a la rotación, antigiratorio
Resistencia del cable	2160 N/mm ²
Fuerza mínima de rotura	107 kN
Diámetro del cable	10 mm
Sección metálica	58,1 mm ²
Dirección de colocación del cable	sZ (con tendido a la derecha)

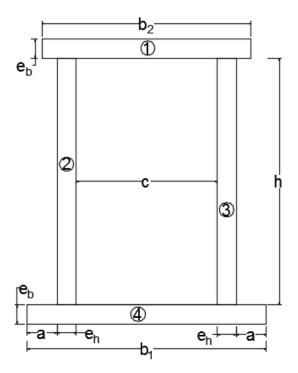
3.5. Características del sistema seleccionado


Modelo	SH(F) 5025-20 4/1 L3						
Carga máxima	10000 kg						
Altura de izaje	10m						
Peso de todo el sistema carro y polipasto	1251kg						
Velocidad de desplazamiento	2.5/25 m/min (50Hz)						
Velocidad de elevación	0,1/5 m/min (50Hz)						
Peso de pasteca	48kg						
Desarrollo y fabricación de procesos certificados según DIN ISO 9001.							


4. Viga Principal VP

Sobre estas dos vigas principales o vigas puente se desplaza en la parte superior el sistema de izaje SI-50 y a su vez, sobre solo una de ellas se desplaza en la parte inferior el sistema de izaje SI-10.

Las vigas principales se encuentran fijadas por medio de bulones en sus extremos sobre las vigas testeras VT, transmitiendo toda la carga a estas últimas.


Los planos de detalle de la viga principal y sus piezas se encuentran en el ANEXO-F.

4.1. Viga cajón de la PGA-VP

Están compuestas de cuatro chapas soldadas que conforman una viga cajón. Datos técnicos de la viga principal definitiva:

Donde:

h: altura de las paredes de la viga (165cm).

 b_1 : base inferior de la viga (40cm).

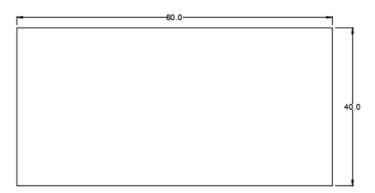
 b_2 : base superior de la viga (32cm).

 e_h : espesor de las paredes de la viga (2,54cm).

 e_h : espesor de la base de la viga (3,175cm).

c: distancia interior entre las paredes (24,92cm).

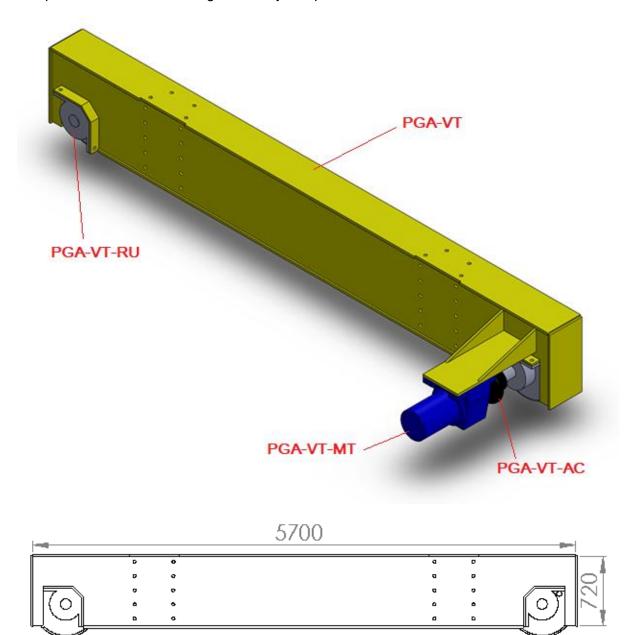
 \overline{y} : distancia vertical al centro de masa (83,673cm).


 \bar{x} : distancia horizontal al centro de masa (20cm).

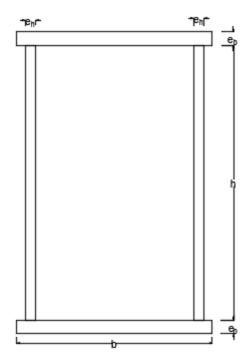
a: ala de la base inferior (5cm).

G: peso propio de la viga (832kg/m).

4.2. Riel guía PGA-VP-RG


Perfil de tipo Llantón de acero al carbono de 80x40 mm:

5. Viga Testera VT


Como se dijo anteriormente, estas vigas soportan la carga transmitida de las vigas principales VP. Las vigas testeras cumplen la función del desplazamiento transversal de la grúa sobre las vigas carrileras VC que, a su vez, transmiten las cargas a esta última por medio de sus dos ruedas por testera.

Los planos de detalle de la viga testera y sus piezas se encuentran en el ANEXO-F.

Viga cajón de la PGA-VT 5.1.

Están compuestas de cuatro chapas soldadas que conforman una viga cajón. Datos técnicos de la viga testera:

Donde:

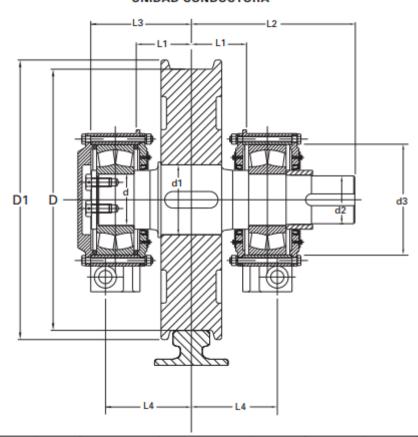
h: altura del alma (72cm).

b: ancho del ala (37cm)

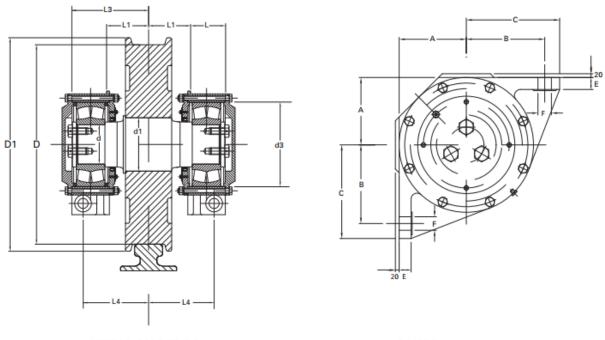
c: distancia entre paredes de alma (30cm)

e_h: espesor del alma (3/4" =1,905cm)

e_b: espesor del ala (1" =2,54cm)


L: longitud de la viga testera (5,64m)

G: peso propio de la viga testera (324kg/m).


Ruedas de traslación PGA-VT-RU

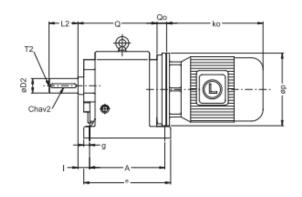
Fueron seleccionadas del catálogo del fabricante Miguel Abad "Traslaciones y conjuntos rodantes" y poseen las siguientes características:

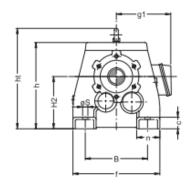
UNIDAD CONDUCTORA

N° SERIE	D (mm) h11	RIEL	RODAMIENTO	CARGA ADM (N)	D1 (mm)	d (mm) k6	d1 (mm) k6	d2 (mm) k6	d3 (mm) k6
MA1 250	250	A45	22312CW33	80.000	300	60	100	55	130
MA1 315	315	A55	22314CW33	150.000	365	70	110	65	150
MA1 400	400	A75	22318CW33	180.000	450	90	130	85	190
MA1 500 S	500	A75	22320CW33	250.000	550	100	140	90	215
MA1 500 H	500	A100	22324CW33	300.000	550	120	170	90	260
MA1 630 S	630	A75	22322CW33	280.000	680	110	150	95	240
MA1 630 H	630	A100	22326CW33	400.000	680	130	180	110	280
MA1 710 S	710	A100	22328CW33	500.000	760	140	190	130	300
MA1 710 H	710	A120	22330CW33	590.000	760	150	200	140	320
MA1 800	800	A120	22332CW33	680.000	850	160	210	150	340

UNIDAD CONDUCIDA

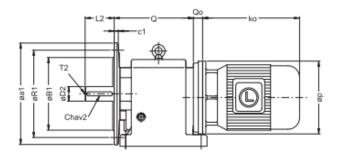
CAJERA


N° SERIE	A (mm)	B (mm)	C (mm)	E (mm)	F (mm)	L1 (mm)	L2 (mm)	L3 mm)	L4 (mm)
MA1 250	85	110	135	20	22	90	300	155	130
MA1 315	95	120	145	22	25	100	380	170	140
MA1 400	125	150	185	25	28	115	400	205	170
MA1 500 S	135	160	195	30	33	120	450	212	117
MA1 500 H	160	185	220	30	33	150	450	254	219
MA1 630 S	150	175	210	30	33	120	390	224	189
MA1 630 H	170	200	240	30	33	150	530	264	224
MA1 710 S	180	210	250	30	33	150	445	274	234
MA1 710 H	190	220	260	30	33	150	500	282	242
MA1 800	200	230	270	30	33	150	550	290	250


5.3. Motorreductor de traslación PGA-VT-MT

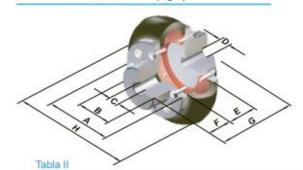
Motorreductor de marca LENTAX, de la línea coaxial. Ingresando con la potencia de 4HP y la velocidad de salida de 20,20rpm obtenemos un motorreductor cuyo modelo es C45T3.

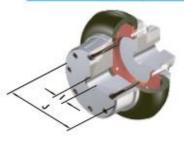
	Potencia Velocidad Relación Entrada Salida aprox.		Relación	MODELO		Factor de Seguridad	Momento Util	Velocidad Entrada aprox.	Carga Radial adm.	Carga Axial adm.	Peso aprox.	Medidas	Repuestos
kW	HP	(RPM)	(i)			(fz)	(Nm)	(RPM)	(kg)	(kg)	(kg)	Página	Página
		11,0	86,66	C5T3	4,00 /	6 3,25	2483	955	7070	2828	375	pag 57	pag 76
		11,8	80,76	C5T3	4,00 /	6 3,50	2314	955	7070	2828	375	pag 57	pag 76
		8,0	183,54	C5T3	4,00	2,30	3536	1420	7070	2828	350	pag 57	pag 76
		10,0	143,39	C5T3	4,00	2,95	2763	1420	7070	2828	350	pag 57	pag 76
		11,0	133,49	C5T3	4,00	3,15	2572	1420	7070	2828	350	pag 57	pag 76
		12,0	115,92	C5T3	4,00	3,65	2233	1420	7070	2828	350	pag 57	pag 76
		5,9	241,50	C45HR	4,00	1,05	4580	1420	4220	1688	258	pag 58	pag 74-76
		6,8	209,40	C45HR	4,00	1,20	3971	1420	4220	1688	258	pag 58	pag 74-76
		7,3	193,84	C45HR	4,00	1,30	3676	1420	4220	1688	258	pag 58	pag 74-76
>	_												
≥	유	5,6	171,80	C45T3	4,00 /		3258	955	4220	1688	263	pag 57	pag 76
	_	6,6	143,90	C45T3	4,00 /		2729	955	4220	1688	263	pag 57	pag 76
		7,8	122,70	C45T3	4,00 /		2327	955	4220	1688	263	pag 57	pag 76
0	8	8,4	113,60	C45T3	4,00 /		2154	955	4220	1688	263	pag 57	pag 76
8	0	9,0	106,10	C45T3	4,00 /	6 1,65	2012	955	4220	1688	263	pag 57	pag 76
ന്	4												
	-	8,3	171,80	C45T3	4,00	1,55	3258	1420	4220	1688	238	pag 57	pag 76
		9,9	143,90	C45T3	4,00	1,85	2729	1420	4220	1688	238	pag 57	pag 76
		11,6	122,70	C45T3	4,00	2,15	2327	1420	4220	1688	238	pag 57	pag 76
		12,5	113,60	C45T3	4,00	2,35	2154	1420	4220	1688	238	pag 57	pag 76
		13,4	106,10	C45T3	4,00	2,50	2012	1420	4220	1688	238	pag 57	pag 76
		15,3	92,70	C45T3	4,00	2,85	1758	1420	4220	1688	238	pag 57	pag 76
		17,5	81,18	C45T3	4,00	3,25	1540	1420	4220	1688	238	pag 57	pag 76
		20,2	70,17	C45T3	4,00	3,75	1331	1420	4220	1688	238	pag 57	pag 76
		9,0	157,29	C4T3	4,00	1,05	3030	1420	3000	1200	160	pag 57	pag 76
		9,6	148,13	C4T3	4,00	1,05	2854	1420	3000	1200	160	pag 57	pag 76
		11,5	123,44	C4T3	4,00	1,25	2378	1420	3000	1200	160	pag 57	pag 76


TABLA DE MEDIDAS - SERIE "C" OVERALL DIMENSIONS - TYPE "C"

Modelo Model		D2ø	L2	chav 2 keway 2	T2	H2	A	В	Sø	ı	IEC 71	IEC 80-90	Q0 IEC 100-112	IEC 132	IEC 160-200	IEC 225-280
COOT	mm	25	50	8x7	M10	90	130	110	9	25	20	35				
Cool	inch	1.000	2	1/4 x 1/8	UNC 3/8ª	3.543	5 1/8	4 11/32	3/8"	1	25/32	1 3/8				
COT	mm	30	2 3/8	8x7 1/4 x 1/8	M10 UNC 3/8 ^a	115 4,528	165 6 1/2	135 5 5/16	14 9/16	30	20 25/32	35 1 3/8				
	mm	1.188	70	1/4 x 1/8 10x8	M12	130	195	150	14	1 3/16 30	20/32	35	42	64		
C1T	inch	1.375	2 3/4		UNC 1/2*	5.118	7 11/16	5 29/32	9/16	1 3/16	25/32	1 3/8	1 21/32	2 17/32		
C2T	mm	40	80	12x8	M16	140	205	170	18	35	20	35	42	64		
CZI	inch	1.625	3 1/8	3/8 x 3/16	UNC 5/8 ^a	5.512	8 1/16	6 11/16	23/32	1 3/8	25/32	1 3/8	1 21/32	2 17/32		
C3T	mm	50	100	14x9	M16	180	260	215	18	40		32	32	52	82	
	inch	2.000	120	1/2 x 1/4 18x11	UNC 5/8 ^a M20	7.087	10 1/4 310	8 15/32 250	23/32	1 9/16 40	****	1 1/4 32	1 1/4 32	2 1/16	3 7/32 82	****
C4T	inch	2.375	4 3/4	5/8 x 5/16	UNC 3/4*	8.858	12 7/32	9 27/32	7/8	1 9/16		1 1/4	1 1/4	2 1/16	3 7/32	
CUTT	mm	70	140	20 x 12	M20	250	370	290	26	45			45	45	75	105
C45T	inch	2.750	5 1/2	5/8 x 5/16	UNC 3/4 ⁸	9.843	14 9/16	11 7/16	1 1/32	1 3/4			1 25/32	1 25/32	2 15/16	4 1/8
C5T	mm	90	170	25 x 14	M24	315	410	340	33	50			45	45	75	105
Col	inch	3.500	6 3/4	7/8 x 7/8	UNC 1*	12.402	16 1/8	13 3/8	1 5/16	1 31/32	****	****	1 25/32	1 25/32		4 1/8
C6T	inch	110 4.313	210 8 1/4	28 x 16 1 x 1	M24 UNC 1*	355 13.976	500 19 11/16	380 14 31/32	39 1 17/32	50 1 31/32				45 1 25/32	75 2 15/16	105 4 1/8

Modelo Model		Q	B1ø	R1ø	S1ø	a1ø	с	c1	e	f	g	h	ht	n	Peso kg Weight lb	aceite Its oil fl.oz
COOT	mm	151	110	130	9	160	20	10	155	150	11.5	155	165	40	12	0.65
2001	inch	5 15/16		5 1/8	3/8	6 5/16	13/16	3/8	6 1/8	5 7/8	7/16	6 1/8	6 1/2	1 5/8	26	22
COT	mm	186	130	165	11	200	25	12	195	195	15	190	200	57.5	21	0.8
Col	inch	7 5/16	5.118	6 1/2	7/16	7 7/8	1	1/2	7 3/4	7 3/4	5/8	7 1/2	7 7/8	2 1/4	46	28
C1T	mm	210.5	180	215	14	250	30	12	230	215	18.5	218	270	62.5	31	1.1
CII	inch	8 9/32	7.087	8 15/32	9/16	9 7/8	1 3/16	1/2	9 1/8	8 1/2	3/4	8 5/8	10 5/8	2 1/2	68	38
COT	mm	232	230	265	14	300	30	14	245	240	19	240	290	65	44	1.9
C2T	inch	9 1/8	9.055	10 7/16	9/16	11 7/8	1 3/16	9/16	9 5/8	9 1/2	3/4	9 1/2	11 1/2	2 5/8	97	66
-	mm	273	250	300	18	350	40	18	300	300	20	300	370	80	75	3.1
C3T	inch	10 3/4	9.843	11 13/16	11/16	13 13/16	1 9/16	11/16	11 7/8	11 7/8	3/4	1 7/8	14 1/2	3 3/16	165	107
	mm	335	350	400	18	450	50	18	358	350	23	375	440	95	130	6.0
C4T	inch	13 3/16		15 3/4	11/16	17 3/4	2	11/16	14 1/8	13 13/16	7/8	14 3/4	17 3/8	3 3/4	287	207
0.107	mm	392	350	400	18	450	60	18	430	400	27	426	496	110	208	10.0
C45T	inch	15 7/16		15 3/4	11/16	17 3/4	2 3/8	11/16	16 15/16	15 3/4	1 1/8	16 3/4	19 1/2	4 3/8	459	345
	mm	457	450	500	18	550	70	24	490	450	32	490	560	110	320	15
C5T	inch	18	17,717	19 11/16	11/16	21 5/8	2 3/4	15/16	19 5/16	17 3/4	1 1/4	19 5/16	22 1/8	4 3/8	705	517
	mm	522	450	500	18	550	80	28	590	530	36	565	635	150	532	24
C6T	inch	20 9/16		19 11/16	11/16	21 5/8	3 1/8	1 1/8	23 1/4	20 7/8	1 7/16	22 1/4	25	5 7/8	1173	826
	m/CII	20 3/10	*****	13 11/10		21 370	3 .70	. 1/0	20 1/4	20770	/ 10	1/4	23	3770		020

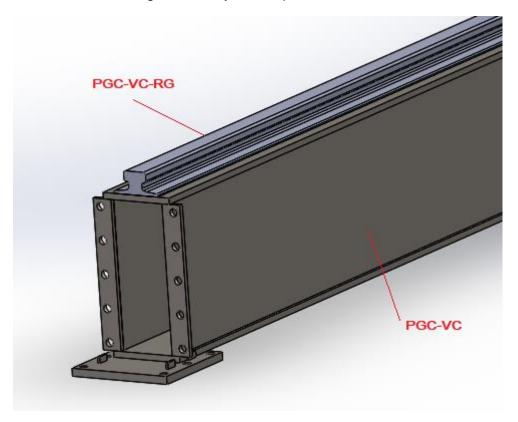


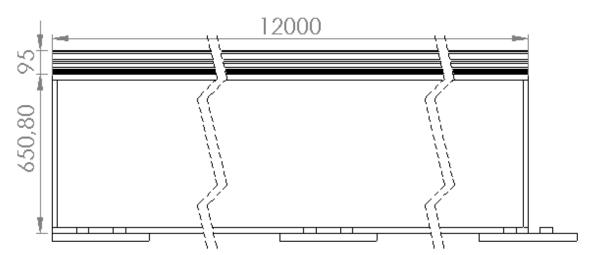

Acoplamiento PGA-VT-AC

El mismo es de la marca Gummi, del tipo elástico para baja rotación. Y tiene las siguientes características:

Con 2 cubos normales (fig.1)

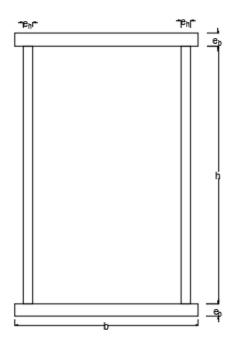
Con 1 cubo normal y 1 cubo integral (fig.2)


- A Ø Brida Cubo
- B Ø Cuello Cubo
- C Ø Máx. aleasaje
- D Ø Agujero piloto
- E Ancho centro
- F Ancho cubo
- G Long, total
- H Ø Centro
- I Ø Máx. aleasaje
- J Ø Cuello Cubo


CUBO Fig. NORMAL												Fig.2 CUBO INTEGRAL	
MODELO	Torq, Nom. Nm	HP x 100 rpm	Peso (1) (Kg.)	Α	В	C Máx	D Min	E	F	G	Н	I Máx	J
BR-100	4080	56,20	27.00	218	116	85	30	90	80	250	302	100	180
BR-110	8090	111,43	36,00	235	138	100	40	90	80	250	330	125	198
BR-150	15040	207,10	99.00	297	195	140	45	120	130	380	403	170	27
BR-160	20410	281,06	99.50	297	195	140	45	120	130	380	403	170	270
BR-180	29250	325,44	128,00	350	220	165	50	140	150	440	470	200	316
BR-220	35090	483,23	210.00	436	276	200	120	185	180	545	550	250	380
BR-230	80210	1104,53	215,00	436	276	200	120	185	180	545	550	250	38
BR-320	150400	2071,00	520.00	535	390	300	100	236	275	786	740	300	47

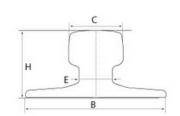
6. Viga Carrilera VC

Estas vigas cuentan con un riel en su parte superior para la rodadura de la viga testera VT y como su nombre lo dice, sirven como carril para el traslado transversal de la grúa a lo largo de la nave. Transmiten la carga recibida a las columnas de apoyo CO.

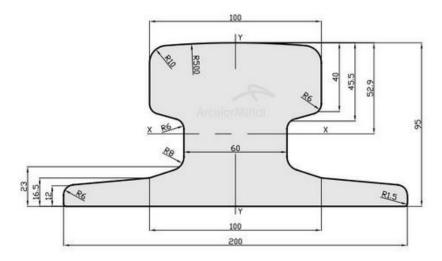

Los planos de detalle de la viga carrilera y de sus piezas se encuentran en el ANEXO-F.

6.1. Viga cajón de la PGC-VC

Están compuestas de cuatro chapas soldadas que conforman una viga cajón. Datos técnicos de la viga carrilera:



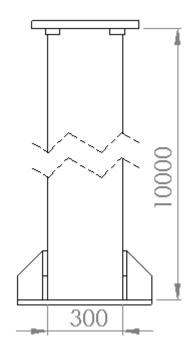
Donde:


- h: altura del alma (60cm).
- b: ancho del ala (30cm)
- c: distancia entre paredes de alma (23,19 cm).
- e_h: espesor del alma (3/4" =1,905cm)
- e_b: espesor del ala (1" =2,54cm)
- L: longitud de la viga carrilera (5x12m)
- G: peso propio de la viga testera (267,46kg/m).

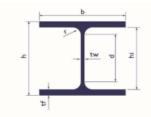
6.2. Riel guía PGC-VC-RG

Del catálogo de la empresa ArcelorMittal, seleccionamos carriles tipo "Burbach" A100:

7. Columna de Apoyo CO


Son las columnas encargadas de absorber todas las cargas de la grúa y transmitirlas al suelo. En el extremo superior se apoyan las vigas carrileras VC y en el extremo inferior van empotradas al suelo. Características de las mismas:

- Consta de 15 columnas por lado, dando un total de 30.
- Cada columna está separada 4 metros de la siguiente.
- A su vez, cada una transmite al suelo 558,7 kN.


Los planos de detalle de la columna de apoyo y de sus piezas se encuentran en el ANEXO-F.

Dichas columnas están conformadas de perfiles HEB, seleccionados de la empresa SIDERSA S.A. y cuentan con las siguientes características:

Designación	Altura	Ala	Espesor Alma	Espesor Ala	Radios de Acuerdo		nsiones s del alma	Sección Nominal	Masa Nominal	Momento	de Inercia	Módulo R	tesistente	Radio	de Giro
del Perfil	h	b	tw	tf	r	ď	hi	Ø	G	l _x	l _y	W _x	W _y	i _x	i _y
	mm	mm	mm	mm	mm	mm	mm	cm ²	Kg/m	cm ⁴	cm ⁴	cm ³	cm ³	cm	cm
HEB 100	100	100	6.0	10.0	12	56	80	26.0	20.4	450.0	167.0	89.9	33.5	4.16	2.53
HEB 120	120	120	6.5	11.0	12	74	98	34.0	26.7	864.0	318.0	144.0	52.9	5.04	3.06
HEB 140	140	140	7.0	12.0	12	92	116	43.0	33.7	1510.0	550.0	216.0	78.5	5.93	3.58
HEB 160	160	160	8.0	13.0	15	104	134	54.3	42.6	2490.0	889.0	311.0	111.0	6.77	4.05
HEB 180	180	180	8.5	14.0	15	122	152	65.3	51.2	3830.0	1360.0	426.0	151.0	7.66	4.56
HEB 200	200	200	9.0	15.0	18	134	170	78.1	61.3	5700.0	2000.0	570.0	200.0	8.54	5.06
HEB 220	220	220	9.5	16.0	18	152	188	91.0	71.5	8090.0	2840.0	736.0	258.0	9.43	5.59
HEB 240	240	240	10.0	17.0	21	164	206	106.0	83.2	11260.0	3920.0	938.0	327.0	10.30	6.08
HEB 260	260	260	10.0	17.5	24	177	225	118.0	93.0	14920.0	5130.0	1150.0	395.0	11.20	6.59
HEB 280	280	280	10.5	18.0	24	196	244	131.0	103.0	19270.0	6590.0	1380.0	471.0	12.10	7.09
HEB 300	300	300	11.0	19.0	27	208	262	149.0	117.0	25170.0	8560.0	1680.0	571.0	13.00	7.58

8. Chapas para la construcción de las vigas

Estas chapas se seleccionaron del catálogo "Chapas de laminado grueso" de la empresa SIDERSA SA, en cuatro medidas distintas como se ve en la imagen a continuación. Las mismas son utilizadas para la construcción de las vigas cajones que conforman al puente grúa ya se vigas principales, testeras y carrileras, como así también sus acoples y apoyos.

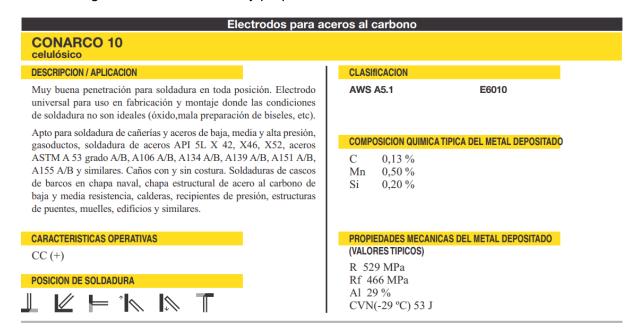
9. Uniones roscadas

Para todas las uniones roscadas se utilizan los siguientes bulones, tuercas y arandelas, de la Distribuidora Central Rosario SRL "DCR" los cuales tienen las siguientes características:

				BULG	ÓN CA	BEZA	HEXAG	ONAL				MATIZ	ZADO		
LISTA							PRECIOS		RO NOMIN						
7-1	Medidas en pulgadas y mm	1/4 6.4	5/16 7.9	3/8 9.5	7/16 11.1	1/2 NC 12.7	1/2 WH 12.7	9/16 14.3	5/8 15.9	3/4 19.1	7/8 22.2	1 25.4	1.1/8 28.6	1.1/4 31.8	1.1/2 38.1
	1/2 13	425 001	220 026	175 056											
	5/8 16	290 002	200 027	130 057											
	3/4 19	300 003	180 028	110 058	100 089	60 118	70 316								
	7/8 22	250 004	170 029	115 059	200 090	60 119	55 317								
	1 25	200 005	150 030	110 060	75 091	50 120	50 318	100 154	30 185	50 218					
	1.1/4 32	170 006	125 031	90 061	65 092	45 121	45 319	100 155	25 186	15 219					
	1.1/2 38	150 007	100 032	75 062	50 093	35 122	35 320	100 156	20 187	15 220					
	1.3/4 44	130 008	95 033	65 063	50 094	35 123	35 321	50 157	20 188	12 221	20 252				
	2 50	115 009	75 034	45 064	45 095	30 124	30 322	50 158	20 189	12 222	20 253	20 284			
	2.1/4 56	120 010	60 035	50 065	45 096	30 125	30 323	50 159	15 190	10 223	20 254	20 285			
	2.1/2 63	105 011	65 036	45 066	35 097	25 126	25 324	50 160	15 191	10 224	20 255	20 286			
	2.3/4 70	95 012	60 037	45 067	35 098	25 127	25 325	50 161	15 192	8 225	20 256	20 287			
	3 76	75 013	60 038	40 068	35 099	20 128	20 326	50 162	12 193	8 226	20 257	10 288	10 343	10 367	1 501
	3.1/4 82	60 014	60 039	40 069	30 100	20 129	20 327	50 163	10 194	8 227	20 258	10 289			
	3.1/2 90	75 015	50 040	35 070	25 101	20 130	20 328	50 164	10 195	6 228	20 259	10 290	10 344	10 368	5 503

				TUERCA	AUTOF	RENANTE	NC Y W	H ZINCA	DA (18-1)	
					PR	ECIOS POR 100	UNIDADES EN I	PESOS			
LISTA	MEDIDA	3/16	1/4	5/16	3/8	7/16	1/2	1/2 WH	9/16	5/8	3/4
	PASO	24	20	18	16	14		12			10
18	ENTRE CARA	3/8	7/16	1/2	9/16	5/8	3/4	3/4A	7/8	15/16	1.1/8A
		500 501	500 502	500 503	300 504	200 505	150 506	150 531	100 507	100 538	50 539
	MEDIDA PASO ENTRE CARA	7/8 9 1.5/16	1 8 1.1/2	1.1/8 7 1.5/8	1.1/4 7 1.7/8	1.3/8 6 2	1.1/2 6 2.1/4				
		30 510	20 511	5 512	5 513		2 515	·			

DISTRIBUIDORA CENTRAL ROSARIO SRL
VALPARAÍSO 563-S2002MYA ROSARIO-PCIA. SANTA FE-ARGENTINA
Tel: (0341) 4398001/4304100 Fax: (0341) 4392653/0810-888-5566
Mail: ventas@dcrsrl.com.ar Web: www.dcrsrl.com.ar


ARANDELAS GROWER

PRECIOS POR 1000 UNIDADES EN PESOS

30-1/2		
	PULGADA (30-1)	
CÓDIGO MEDIDA	ENVASE	PRECIO
301501 1/8	5000	
301502 5/32	5000	
301503 3/16	5000	
301504 7/32	1000	
301505 1/4	2000	
301506 5/16	1000	
301507 3/8	1000	
301508 7/16	1000	
301509 1/2	1000	
301510 9/16	500	
301511 5/8	500	
301512 3/4	250	
301513 7/8	250	
301514 1	100	
301515 1./8	50	
301516 1.1/4	50	
301517 1.3/8	25	
301518 1.1/2	25	
301519 1.3/4	25	

10. Uniones soldadas

Para el caso de las uniones soldadas que llevan todas las vigas como así sus acoplamientos, se seleccionaron electrodos celulósicos del fabricante CONARCO. El mismo tiene las siguientes características y propiedades mecánicas:

11. Seguridad y riegos inminentes

Riesgos

Un riesgo fundamental en la operación de este tipo de maquinaria debe ser considerado: El desplome de objetos pesados. Cabe incluir en este riesgo, el desplome de las cargas, el de elementos de la máquina, el de la propia máquina o de sus estructuras de sustentación, etc.

A este debe añadirse otro riesgo específico: golpes por objetos móviles; considerando también que éstos pueden ser las propias cargas, partes de las máquinas o sus accesorios, la máquina, etc.

A estos riesgos estará sometido todo el personal que opere en el entorno de acción del aparato. Otros riesgos, no específicos, afectarán únicamente a los operadores: atrapamientos, caídas desde alturas, contactos eléctricos, etc.

Se presenta a continuación las normas y consideraciones fundamentales para llevar a cabo una manipulación segura de los puentes grúa para evitar los riesgos mencionados anteriormente que se derivan de una incorrecta manipulación e imprudencias cometidas por los operarios:

- Verificar la grúa y todos sus componentes antes de operar.
- Antes de elevar la carga, realizar una pequeña elevación para comprobar su estabilidad y realizar un eslingado que asegure una carga estable.

- Elevar la carga siempre con el carro y el puente alineado con la misma tanto horizontal como verticalmente para evitar balanceos. La carga se debe encontrar suspendida horizontalmente para un desplazamiento seguro.
- El operario debe acompañar siempre a la carga para un mayor control de las distancias y observar en todo momento la trayectoria de la misma, evitando golpes contra obstáculos fijos.
- No colocarse nunca debajo de ninguna carga suspendida, ni trasportarla por encima de trabajadores.
- La colocación de las eslingas debe asegurar un perfecto amarre de la carga.
- En este caso como se trabaja con dos puentes grúa, se deberá seguir un plan establecido para dichas operaciones y contar además de un encargado de señales.
- En ningún caso se debe superar la carga máxima útil de la grúa. Del mismo modo, nunca se debe superar la carga máxima señalada en las especificaciones de sus elementos auxiliares, ganchos, cables, eslingas, etc.
- Las cargas se desplazarán a la menos altura posible. Los movimientos sin carga se deben hacer con el gancho elevado.
- Todos los desplazamientos de las cargas se deben hacer lentamente evitando movimientos bruscos.
- No se debe dejar los aparatos de izar con las cargas suspendidas. El operador nunca debe dejar el puesto de mando con el aparato en carga.
- Se debe evitar que los ganchos se apoyen sobre el suelo u otros objetos, para que el cable no pierda tensión.
- Cuando no se utilicen los aparatos de elevación, se debe imposibilitar que el personal no autorizado pueda utilizarlos, por ejemplo: bloqueo de interruptores.

Equipos de seguridad para los operadores del puente

El operario de puentes grúa dispondrá de los siguientes medios de protección personal:

- Casco de seguridad.
- Aisladores acústicos.
- Calzado de seguridad.

Requerimientos psicofísicos de los operarios

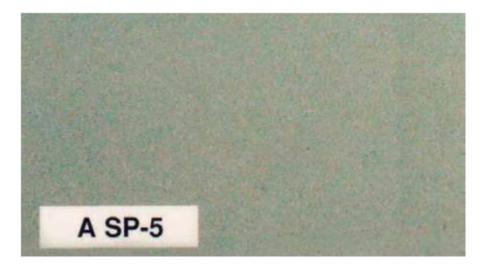
La figura clave de la seguridad durante la utilización de la maquina es el gruista o conductor, el cual debe cumplir unas determinadas condiciones físicas o psíquicas determinantes:

- Rapidez de decisión.
- Coordinación muscular.
- Reflejos.
- Aptitud de equilibrio.
- Normalidad de miembros.
- Agudeza visual, percepción de relieve y color.
- Edad (superior a 20 años).

Asimismo, debe ser capacitado para maniobrar la grúa con seguridad mediante una instrucción teórico-practica que debe ser reforzada cada uno o dos años.

Elementos de seguridad del puente grúa

Los principales elementos de seguridad que deben estar presentes en el puente grúa son los siguientes:


- Se debe tener conocimiento de las capacidades mecánicas de aparejos de elevación, como también de las eslingas, perchas y gancho.
- Se debe contar con un lugar específico y adecuado para dejar el mando de control cuando no se utilice.
- Los mandos y todos los equipos eléctricos deben contar con un tablero de distribución, con sus respectivas protecciones y su puesta a tierra.
- Debe figurar una indicación claramente visible de la capacidad nominal del puente grúa.
- Los cables de tensión deberán encontrarse aislados y protegidos a lo largo de toda su longitud.
- Las vigas puente o principales y las vigas testeras deben estar pintadas de amarillo señal (RAL 1003).
- Las columnas de apoyo y las perchas deben ir pintadas de amarillo señal (RAL 1003) y franjas negras de 10cm en ángulo de 45°.

Preparación y pintura de superficie

Para lograr una buena protección de la estructura es necesario seguir los siguientes pasos para su pintado basados en la norma SSCP:

Limpieza de superficie: Esto tiene como objetivo eliminar toda impureza que pueda ocasionar fallas permanentes en el sistema de protección con pinturas. Proporcionar una superficie que pueda impregnarse fácilmente, la cual provea una buena adherencia del recubrimiento aplicado.

Para ello es necesario utilizar el método de limpieza con chorro abrasivo grado metal blanco (NACE 1/SSPC – SP5) en el cual, la superficie se define como una superficie con color uniforme gris blanco metálico, ligeramente rugosa y con un conveniente perfil de anclaje para la pintura. La superficie quedara libre de aceite, grasa, suciedad, cascarilla de laminación, herrumbre, productos de corrosión, óxidos, pintura o cualquier otra materia extraña.

La superficie limpiada con chorro debe ser tratada o imprimada antes de que se oxide. De otra manera, los beneficios de la limpieza por chorro se perderían. El metal desnudo recientemente expuesto se oxidará rápidamente bajo condiciones de alta humedad, punto de roció o atmosfera corrosiva. Bajo condiciones atmosféricas normales y suaves, la mejor práctica es imprimar o tratar químicamente dentro de las 6 horas después de la limpieza. Bajo ninguna circunstancia debe permitirse que el acero se oxide antes de pintarlo, para ello se debe tener cuidado con el tiempo que trascurre entre la limpieza y la aplicación del imprimante.

Primera capa: Debe ser aplicado un imprimante anticorrosivo o también conocido como base anticorrosiva la cual es aplicada directamente sobre el metal. La misma tiene el propósito principal de inhibir la oxidación del material, y secundariamente el de proporcionar una superficie que ofrezca las condiciones propias para ser pintada con otros acabados.

Segunda capa: Sello epóxico aducto amina – trietilen tetra amina, esta capa tiene la finalidad de proteger a la primera capa de pintura, a su vez ser una barrera contra el ingreso de humedad, proveer cuerpo al recubrimiento frente a golpes o rasguños y proporcionar una buena adherencia para la capa final.

Capa final: Para esta capa se debe aplicar un esmalte de alto brillo como por ejemplo un poliéster hidroxilado de color Amarillo señal (RAL 1003). Y en color negro grande y visible la capacidad de elevación de la grúa (6 ton).

12. Presupuesto

Descripción	Precio por unidad	Cantidad	Precio final (U\$S)
Chapa de 1,5mx6mx¾" ASTM A36	1.346	24	32.304
Chapa de 1,5mx6mx1" ASTM A36	1.795	25	44.875
Chapa de 2mx6mx1" ASTM A36	2.393	27	64.611
Chapa de 1,5mx6mx1 ¹ / ₄ " ASTM A36	2.244	14	31.416
Chapa de 1,5mx6mx1½" ASTM A36	2.692	2	5.384
Perfil HEB 300	117 \$/m	320m	37.440
Perno 04 SAE 1045 11cmØ	12	4	48
Perno 06 SAE 1045 13cmØ	18	2	36
Perno 07 SAE 1045 13cmØ	21	2	42
Perno 05 SAE 1045 14cmØ	22	2	44
PGA-VT-RU	265	8	2.120
PGA-VT-MT	730	4	2.920
PGA-VT-AC	677	4	2.708
PGA-VC-RG	30 \$/m	120m	3.600
PGA-PI-ES	254	4	1.016
PGA-SI-50	86.644	2	173.288
PGA-SI-10	17.330	2	34.660
PGA-VP-RG	27 \$/m	80m	2.160
Bulones	2,75	464	1.276
Tuercas	1	464	464
Arandelas Grower	1,40	464	650
TOTAL			441.062

Con el dólar a 63 es la tabla

PROYECTO FINAL DE CARRERA (P F C)

Diseño de grúa para Trenes Argentinos Cargas de Concordia

Normativas de aplicación

Proyecto Nº: PFC-1909A Autores: Ledesma, Franco Pezzatti, Santiago

Tutor: Ing. Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. Aníbal De Carli

AÑO 2019

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Índice

1.	Mecánica	1
2	Higiene v Seguridad en el Trabajo	1

1. Mecánica

- Norma UNE 58132-2: Aparatos de elevación.
- Norma UNE-EN 1993-1-1: Eurocódigo 3: Proyecto de estructuras de acero.
- Norma ASME BTH-1: Diseño debajo de gancho de dispositivos de elevación.
- Norma AWS A5.1: Especificación para electrodos de acero al carbono para soldadura de arco metálico protegido.
- Norma CMAA-70: Especificación para el puente de ejecución superior y el tipo de pórtico múltiple.
- Norma CMAA-74: Especificación para grúas de desplazamiento eléctrico de única viga de alto rendimiento y bajo funcionamiento que utilizan polipasto de trole de bajo funcionamiento.
- Norma SSPC: Preparación de superficies.
- Norma IRAM IAS U 500 215-2: Perfiles HEB
- Norma DIN A100: Carriles de grúa.
- Norma DIN 15070: Traslaciones y conjuntos rodantes.
- Norma DIN ISO 9001: Gestión de calidad de todos los equipos y piezas.
- Norma DIN EN 14492-2: Diseño de polipastos.
- Norma FEM 9661: Dimensiones y diseño de componentes de cable.
- Norma FEM 9511: Clasificación de mecanismo.
- Norma FEM 9683: Motores de elevación y de motores de traslación.

2. Higiene y Seguridad en el Trabajo

- Norma ASME B30.9: Norma de seguridad para eslingas.
- Norma ASME B30.10: Norma de seguridad para ganchos.
- Norma ASME B30.20: Norma de seguridad para dispositivos de elevación debajo del gancho.
- Norma IRAM 3920: Seguridad en equipos de izaje.
- Norma IRAM 3800: Sistema de Gestión de Seguridad y Salud Ocupacional (OSHAS 18001 y 18002).
- Norma IRAM 10005 Parte 1 y 2: Colores y Señales de Seguridad.
- Ley 19587 de Higiene y Seguridad en el Trabajo. Decreto Nacional N° 351/79.

PROYECTO FINAL DE CARRERA (P F C)

Diseño de grúa para Trenes Argentinos Cargas de Concordia

Estándares propios del proyecto

Proyecto Nº: PFC-1909A Autores: Ledesma, Franco Pezzatti, Santiago

Tutor: Ing. Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. Aníbal De Carli

AÑO 2019

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Contenido

Codif	ficación de componentes de Grúa Puente	1
1.	Diferenciación de los puentes:	1
2.	Tipo de viga o componentes principales:	1
3.	Accesorios de cada viga:	2
4.	Componentes del sistema de izaje:	3
Lista	do de piezas y componentes	3
Pu	ente A:	3
Pu	ente B:	5
Es	tructuras de guía y apoyo del sistema	7
Codif	ficación de planos	8
1.	Plano	8
2.	Tipo de viga o componentes principales:	8
3.	Subcomponente de viga:	8
Lista	do de planos	9

Codificación de componentes de Grúa Puente

XXX-XX-XX 2 3 4

Donde cada lugar es ocupado por su respectivo nivel de significancia, como se describe a continuación:

1. Diferenciación de los puentes:

PGA: Puente Grúa A.

PGB: Puente Grúa B.

PGC: Estructuras de guía y apoyo del sistema.

2. Tipo de viga o componentes principales:

VP: Viga Principal.

VT: Viga Testera.

VC: Viga Carrilera.

CO: Columna de Apoyo.

PI: Percha de Izaje.

SI: Sistema de Izaje.

3. Accesorios de cada viga:

- 04: Perno de la percha de izaje de 11cm de diámetro.
- 05: Perno de la percha de izaje de 14cm de diámetro.
- 06: Perno de la percha de izaje de 13cm de diámetro.
- 07: Perno de la percha de izaje de 13cm de diámetro.
- 08: Tijeras de percha de izaje.
- 10: Sistema de izaje de 10tn.
- 50: Sistema de izaje de 50 tn.
- ES: Eslingas.
- MT: Motor de traslación de vigas testeras.
- AC: Acoplamiento elástico.
- RU: Ruedas del sistema de traslación.
- RG: Rieles guía.
- A1: Ala Superior.
- A2: Ala Inferior.
- B1: Alma Derecha.
- B2: Alma Izquierda.
- C1: Tapa del Frente.
- C2: Tapa Trasera.
- D1: Herraje Vertical.
- D2: Herraje Horizontal.
- D3: Herraje del Piso.
- E1: Soporte Rueda.
- E2: Soporte Triangular.
- E3: Soporte Rectangular.

4. Componentes del sistema de izaje:

PA: Pasteca de izaje.

CA: Cable de izaje.

CI: Carro-polipasto de izaje.

PO: Polea de izaje.

ME: Motor de elevación.

MT: Motor de traslación del carro de izaje.

Listado de piezas y componentes

Puente A:

PGA-SI-50: Sistema de izaje para 50tn.

PGA-SI-50-CI: Carro-polipasto para el sistema de izaje de 50tn.

PGA-SI-50-ME: Motor de elevación para el gancho del sistema de izaje de 50tn.

PGA-SI-50-MT: Motor de traslación para el carro del sistema de izaje de 50tn.

PGA-SI-50-PA: Pasteca para el sistema de izaje de 50tn.

PGA-SI-50-CA: Cable para el sistema de izaje de 50tn.

PGA-PI-50: Percha para el sistema de izaje de 50tn.

PGA-PI: Viga cajón de la percha de izaje de 50tn.

PGA-PI-04: Perno de 11cm de diámetro de la percha de izaje de 50tn.

PGA-PI-05: Perno de 14cm de diámetro de la percha de izaje de 50tn.

PGA-PI-06: Perno de 13cm de diámetro de la percha de izaje de 50tn.

PGA-PI-07: Perno de 13cm de diámetro de la percha de izaje de 50tn.

PGA-PI-08: Tijera de la percha de izaje de 50tn.

PGA-PI-A1: Ala Superior de la percha de izaje de 50tn.

PGA-PI-A2: Ala Inferior de la percha de izaje de 50tn.

PGA-PI-B1: Alma Derecha de la percha de izaje de 50tn.

PGA-PI-B2: Alma Izquierda de la percha de izaje de 50tn.

PGA-PI-C1: Tapa del Frente de la percha de izaje de 50tn.

PGA-PI-C2: Tapa Trasera de la percha de izaje de 50tn.

PGA-PI-ES: Eslingas para el sistema de izaje de 50tn.

PGA-SI-10: Sistema de izaje para 10tn.

PGA-SI-10-CI: Carro-polipasto para el sistema de izaje de 10tn.

PGA-SI-10-ME: Motor de elevación para el gancho del sistema de izaje de 10tn.

PGA-SI-10-MT: Motor de traslación para el carro del sistema de izaje de 10tn.

PGA-SI-10-PA: Pasteca para el sistema de izaje de 10tn.

PGA-SI-10-CA: Cable para el sistema de izaje de 10tn.

PGA-VP: Viga cajón de la viga principal.

PGA-VP-A1: Ala Superior de la Viga principal.

PGA-VP-A2: Ala Inferior de la Viga principal.

PGA-VP-B1: Alma Derecha de la Viga principal.

PGA-VP-B2: Alma Izquierda de la Viga principal.

PGA-VP-C1: Tapa del Frente de la Viga principal.

PGA-VP-C2: Tapa Trasera de la Viga principal.

PGA-VP-D1: Herraje Vertical de la Viga principal.

PGA-VP-D2: Herraje Horizontal de la Viga principal.

PGA-VP-RG: Rieles guía de la viga principal.

PGA-VT: Viga cajón de la viga testera.

PGA-VT-A1: Ala Superior de la Viga testera.

PGA-VT-A2: Ala Inferior de la Viga testera.

PGA-VT-B1: Alma Derecha de la Viga testera.

PGA-VT-B2: Alma Izquierda de la Viga testera.

PGA-VT-C1: Tapa del Frente de la Viga testera.

PGA-VT-C2: Tapa Trasera de la Viga testera.

PGA-VT-E1: Soporte Rueda de la Viga testera.

PGA-VT-E2: Soporte Motorreductor.

PGA-VT-RU: Ruedas del sistema de traslación de las vigas testeras.

PGA-VT-MT: Motor de traslación para las vigas testeras.

PGA-VT-AC: Acoplamiento elástico para el motor de traslación de las vigas testeras.

Puente B:

PGB-SI-50: Sistema de izaje para 50tn.

PGB-SI-50-CI: Carro-polipasto para el sistema de izaje de 50tn.

PGB-SI-50-ME: Motor de elevación para el gancho del sistema de izaje de 50tn.

PGB-SI-50-MT: Motor de traslación para el carro del sistema de izaje de 50tn.

PGB-SI-50-PA: Pasteca para el sistema de izaje de 50tn.

PGB-SI-50-CA: Cable para el sistema de izaje de 50tn.

PGB-PI-50: Percha para el sistema de izaje de 50tn.

PGB-PI: Viga cajón de la percha de izaje de 50tn.

PGB-PI-04: Perno de 11cm de diámetro de la percha de izaje de 50tn.

PGB-PI-05: Perno de 14cm de diámetro de la percha de izaje de 50tn.

PGB-PI-06: Perno de 13cm de diámetro de la percha de izaje de 50tn.

PGB-PI-07: Perno de 13cm de diámetro de la percha de izaje de 50tn.

PGB-PI-08: Tijera de la percha de izaje de 50tn.

PGB-PI-A1: Ala Superior de la percha de izaje de 50tn.

PGB-PI-A2: Ala Inferior de la percha de izaje de 50tn.

PGB-PI-B1: Alma Derecha de la percha de izaje de 50tn.

PGB-PI-B2: Alma Izquierda de la percha de izaje de 50tn.

PGB-PI-C1: Tapa del Frente de la percha de izaje de 50tn.

PGB-PI-C2: Tapa Trasera de la percha de izaje de 50tn.

PGB-PI-ES: Eslingas para el sistema de izaje de 50tn.

PGB-SI-10: Sistema de izaje para 10tn.

PGB-SI-10-CI: Carro-polipasto para el sistema de izaje de 10tn.

PGB-SI-10-ME: Motor de elevación para el gancho del sistema de izaje de 10tn.

PGB-SI-10-MT: Motor de traslación para el carro del sistema de izaje de 10tn.

PGB-SI-10-PA: Pasteca para el sistema de izaje de 10tn.

PGB-SI-10-CA: Cable para el sistema de izaje de 10tn.

PGB-VP: Viga cajón de la viga principal.

PGB-VP-A1: Ala Superior de la Viga principal.

PGB-VP-A2: Ala Inferior de la Viga principal.

PGB-VP-B1: Alma Derecha de la Viga principal.

PGB-VP-B2: Alma Izquierda de la Viga principal.

PGB-VP-C1: Tapa del Frente de la Viga principal.

PGB-VP-C2: Tapa Trasera de la Viga principal.

PGB-VP-D1: Herraje Vertical de la Viga principal.

PGB-VP-D2: Herraje Horizontal de la Viga principal.

PGB-VP-RG: Rieles guía de la viga principal.

PGB-VT: Viga cajón de la viga testera.

PGB-VT-A1: Ala Superior de la Viga testera.

PGB-VT-A2: Ala Inferior de la Viga testera.

PGB-VT-B1: Alma Derecha de la Viga testera.

PGB-VT-B2: Alma Izquierda de la Viga testera.

PGB-VT-C1: Tapa del Frente de la Viga testera.

PGB-VT-C2: Tapa Trasera de la Viga testera.

PGB-VT-E1: Soporte Rueda de la Viga testera.

PGB-VT-E2: Soporte Motorreductor.

PGB-VT-RU: Ruedas del sistema de traslación de las vigas testeras.

PGB-VT-MT: Motor de traslación para las vigas testeras.

PGB-VT-AC: Acoplamiento elástico para el motor de traslación de las vigas testeras.

Estructuras de guía y apoyo del sistema

PGC-VC: Viga cajón de la viga carrilera.

PGC-VC-A1: Ala Superior de la Viga carrilera.

PGC-VC-A2: Ala Inferior de la Viga carrilera.

PGC-VC-B1: Alma Derecha de la Viga carrilera.

PGC-VC-B2: Alma Izquierda de la Viga carrilera.

PGC-VC-C1: Tapa del Frente de la Viga carrilera.

PGC-VC-D1: Herraje Vertical de la Viga carrilera.

PGC-VC-D2: Herraje Horizontal de la Viga carrilera.

PGC-VC-RG: Rieles guía de la viga carrilera.

PGC-CO: Columna de apoyo.

PGC-CO-D2: Herraje Horizontal de la Columna de apoyo.

PGC-CO-D3: Herraje del Piso de la Columna de apoyo.

PGC-CO-E2: Soporte Triangular Columna de apoyo.

PGC-CO-E3: Soporte Rectangular Columna de apoyo.

Codificación de planos

1 2 3

Donde cada lugar es ocupado por su respectivo nivel de significancia, como se describe a continuación:

1. Plano

PLA: Plano.

2. Tipo de viga o componentes principales:

VP: Viga Principal.

VT: Viga Testera.

VC: Viga Carrilera.

CO: Columna de Apoyo.

PI: Percha de Izaje.

SI: Sistema de Izaje.

3. Subcomponente de viga:

04: Perno de la percha de izaje de 11cm de diámetro.

05: Perno de la percha de izaje de 14cm de diámetro.

06: Perno de la percha de izaje de 13cm de diámetro.

07: Perno de la percha de izaje de 13cm de diámetro.

08: Tijeras de percha de izaje.

A1: Ala Superior.

A2: Ala Inferior.

B1: Alma Derecha.

B2: Alma Izquierda.

C1: Tapa del Frente.

C2: Tapa Trasera.

D1: Herraje Vertical.

D2: Herraje Horizontal.

D3: Herraje del Piso.

E1: Soporte Rueda.

E2: Soporte Triangular.

E3: Soporte Rectangular.

Listado de planos

PLA-SI: Sistema de izaje.

PLA-PI: Percha para el sistema de izaje de 50tn.

PLA-PI-04: Perno de 11cm de diámetro de la percha de izaje de 50tn.

PLA-PI-05: Perno de 14cm de diámetro de la percha de izaje de 50tn.

PLA-PI-06: Perno de 13cm de diámetro de la percha de izaje de 50tn.

PLA-PI-07: Perno de 13cm de diámetro de la percha de izaje de 50tn.

PLA-PI-08: Tijera de la percha de izaje de 50tn.

PLA-PI-A1: Ala Superior de la percha de izaje de 50tn.

PLA-PI-A2: Ala Inferior de la percha de izaje de 50tn.

PLA-PI-B1: Alma Derecha de la percha de izaje de 50tn.

PLA-PI-B2: Alma Izquierda de la percha de izaje de 50tn.

PLA-PI-C1: Tapa del Frente de la percha de izaje de 50tn.

PLA-PI-C2: Tapa Trasera de la percha de izaje de 50tn.

PLA-VP: Viga principal.

PLA-VP-A1: Ala Superior de la Viga principal.

PLA-VP-A2: Ala Inferior de la Viga principal.

PLA-VP-B1: Alma Derecha de la Viga principal.

PLA-VP-B2: Alma Izquierda de la Viga principal.

PLA-VP-C1: Tapa del Frente de la Viga principal.

PLA-VP-C2: Tapa Trasera de la Viga principal.

PLA-VP-D1: Herraje Vertical de la Viga principal.

PLA-VP-D2: Herraje Horizontal de la Viga principal.

PLA-VT: Viga testera.

PLA-VT-A1: Ala Superior de la Viga testera.

PLA-VT-A2: Ala Inferior de la Viga testera.

PLA-VT-B1: Alma Derecha de la Viga testera.

PLA-VT-B2: Alma Izquierda de la Viga testera.

PLA-VT-C1: Tapa del Frente de la Viga testera.

PLA-VT-C2: Tapa Trasera de la Viga testera.

PLA-VT-E1: Soporte Rueda de la Viga testera.

PLA-VT-E2: Soporte Motorreductor.

PLA-VC: Viga carrilera.

PLA-VC-A1: Ala Superior de la Viga carrilera.

PLA-VC-A2: Ala Inferior de la Viga carrilera.

PLA-VC-B1: Alma Derecha de la Viga carrilera.

PLA-VC-B2: Alma Izquierda de la Viga carrilera.

PLA-VC-C1: Tapa del Frente de la Viga carrilera.

PLA-VC-D1: Herraje Vertical de la Viga carrilera.

PLA-VC-D2: Herraje Horizontal de la Viga carrilera.

PLA-CO: Columna de apoyo.

PLA-CO-D2: Herraje Horizontal de la Columna de apoyo.

PLA-CO-D3: Herraje del Piso de la Columna de apoyo.

PLA-CO-E2: Soporte Triangular Columna de apoyo.

PLA-CO-E3: Soporte Rectangular Columna de apoyo.

PROYECTO FINAL DE CARRERA (P F C)

Diseño de grúa para Trenes Argentinos Cargas de Concordia

Definiciones y Glosario

Proyecto Nº: PFC-1909A Autores: Ledesma, Franco Pezzatti, Santiago

Tutor: Ing. Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. Aníbal De Carli

AÑO 2019

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Contenido

Definiciones	. 1
Nomenclatura	2

Definiciones

- ASTM: American Society for Testing and aterials, es una organización de normas internacionales que desarrolla y publica acuerdos de normas técnicas para una amplia gama de materiales y servicios.
- Bogie: Conjunto de dos o tres pares de ruedas montadas sobre sendos ejes próximos, paralelos y solidarios entre sí que se utilizan en vehículos destinados a circular sobre rieles.
- Burbach: Tipo de riel para puentes grúas.
- CMAA: Crane Manufacturers Association of America, (Asociación de fabricantes de Grúas de America).
- DIN: Deutsche Institut für Normung, Establece estándares para la fabricación y la seguridad alemanas.
- FEM: European Federation of Materials, Federación europea de fabricantes de manipulación y embalaje de materiales.
- Fuerza centrífuga: Es una fuerza que aparece cuando se describe el movimiento de un cuerpo en un sistema de referencia de rotación.
- Heterogeneidad: Mezcla formada por la unión de dos o mas sustancias puras, que mantienen propiedades independientes y que se pueden distinguir a simple vista.
- Inercia: Incapacidad que tienen los cuerpos de modificar por sí mismo s el estado de reposo en el que se encuentran.
- ISO: International Standards Organization, es un estándar de calidad adoptado por organizaciones de todo el mundo.
- Limite elástico: Tensión máxima que un material puede soportar sin sufrir deformaciones permanentes.
- Momento resistente: magnitud geométrica que caracteriza la resistencia de un prisma mecánico sometido a flexión.
- Pandeo: Es la aparición de una flexión adicional en el pilar cuando se halla sometido a la acción de esfuerzos axiales.
- Pasteca: Conjunto de poleas.
- Polipasto: O aparejo, es una maquina compuesta por dos o mas poleas y una cuerda o cuerda que pasa por las diversas poleas, se utiliza para levantar o mover una carga con una gran ventaja mecánica.
- Punto de fluencia: punto a partir del cual solo se recuperará la parte de la deformación correspondiente a la deformación elástica, quedando una deformación irreversible en la pieza.
- SAE: Society of Automotive Engineers, establecen una nomenclatura y composición de los aceros.
- TAKRAF: Empresa alemana dedicada a la fabricación de grúas.
- Tensión admisible: Tensión máxima permitida.

- Tensión de aplastamiento: Esfuerzo de compresión desarrollado entre dos cuerpos en su superficie de contacto.
- Tensión de corte: tensión que actúa tangencialmente a un plano determinado.

Nomenclatura

- A: área
- A_c: Área de corte
- A_n: Sección necesaria de cordón de soldadura
- d: Diámetro perno
- e₄: Distancia entre la posición mas elevada y mas baja de la pasteca carro 50tn
- e_b: Espesor de ala de viga cajón
- e_h: Espesor de alma de viga cajón
- G_o Peso total del caro de 50tn
- G⊤: Peso por metro de viga principal
- h_{min}: Altura mínima de corte
- I: Momento de inercia
- Inec: Momento de inercia necesario
- I_x: Momento de inercia con respecto al eje X
- I_v: Momento de inercia con respecto al eje Y
- M_A: Momento flector en A
- M_B: Momento flector en B
- M_f: Momento flector
- M_{fgmax}: Momento flector máximo
- M_H: Par producido por las cargas horizontales.
- mKa: peso total del carro con accesorios carro 10tn
- mL: Carga a elevar
- M_V: Par producido por las cargas verticales.
- Q: Capacidad máxima de carro de 50 tn
- Q_{qmax}: Corte máximo debido al peso propio
- R_{1max}: Reacción máxima en rueda 1
- R_{1propiopeso}: Reacción máxima por peso propio en rueda 1
- R_{2max}: Reacción máxima en rueda 2
- R_{2propiopeso}: Reacción máxima por peso propio en rueda 2
- Spw: Distancia entre ruedas carro de 50tn
- S_T: Solicitaciones combinadas.
- T: Tiempo en horas
- u₂: Distancia entre ruedas carro 10 tn.
- u₃: Distancia de gancho a rueda en la posición más alta, carro 10tn
- V: Coeficiente complementario (tipo de soldadura)
- V₂: Coeficiente complementario (esfuerzo a la que está sometida la soldadura)
- W_{4\y}: Momento resistente en eje Y

- W_{nec}: Momento resistente necesario
- W_x: Momento resistente en eje X
- x_i: Distancia desde apoyo izquierdo a rueda izquierda de carro de 10 tn.
- X_{MP1}: Posición de carro para la cual el momento flector es máximo debido a P1
- x_s: Distancia desde apoyo izquierdo a rueda izquierda de carro de 50 tn
- yi: Distancia desde apoyo derecho a rueda derecha de carro de 10 tn
- y_{MP2}: Posición de carro para la cual el momento flector es máximo debido a P2
- y_s: Distancia desde apoyo derecha a rueda derecha de carro de 50 tn
- Z₁: Distancia de pasteca a R1 cuando la se encuentra en su posición más alta en carro de 50tn.
- σ_{admA36}: tensión admisible para el acero ASTM A36
- σ_{apla}: Tensión de aplastamiento
- σ_h: Tensiones en viga principal debido a cargas horizontal.
- σ_v : Tensiones en viga principal debido a cargas verticales.
- τ_{adm}: Tensión de corte admisible
- T_{med}: Tensión cortante promedio.

UNIVERSIDAD TECNOLOGICA NACIONAL Facultad Regional Concepción del Uruguay INGENIERIA ELECTROMECANICA

PROYECTO FINAL DE CARRERA (P F C)

Referencias bibliográficas y catálogos

Proyecto Nº: PFC 1909A Autores: Ledesma, Franco

Pezzatti, Santiago

Tutor: Ing. Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. Aníbal de Carli

AÑO 2019

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Índice

Bibliografía	1
	•
Catálogos de productos	. 1

Bibliografía

- Los transportes en la ingeniería industrial (teoría) Miravete, Larrodé, Castejón, Cuartero. 1ra Ed. Reimpresión 2002.
- Resistencia de materiales STIOPIN 1ra Ed. 1968.
- Elementos de Maquinas Calculo, diseño y construcción G. Niemann. 2da Ed. 1973.
- Manual del constructor de máquinas Dubbel. 5ta Ed. 1977.
- Calculo de Estructuras de Acero Vicente, Cudós, Samblancat. 1ra Ed. 1978.
- Mecánica de Materiales Beer, Johnston, Dewolf, Mazurek. 5ta Ed. 2009.

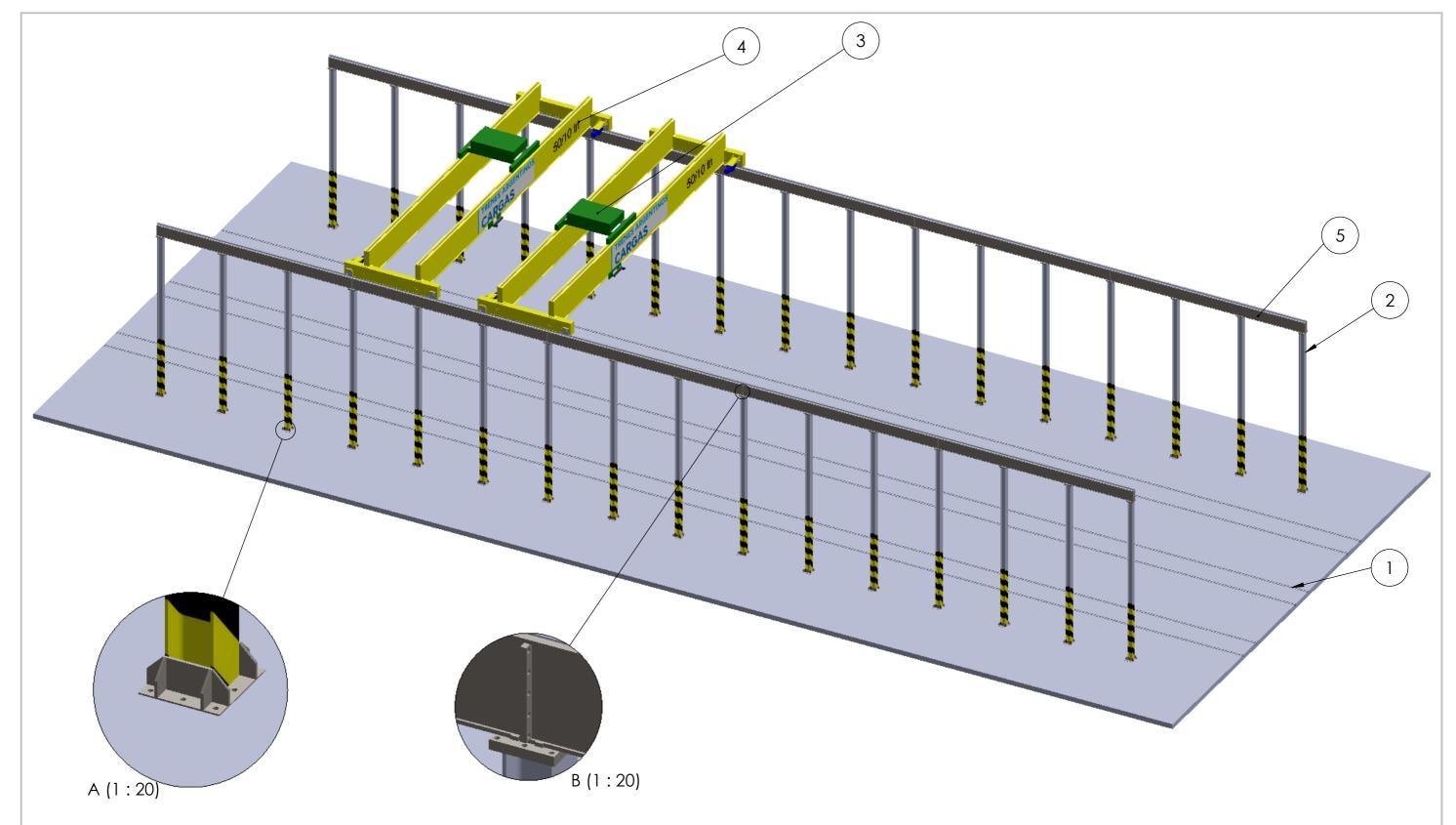
Catálogos de productos

- ArcelorMittal Catalogo general de carril.
- Conarco Electrodos, características y aplicaciones.
- Distribuidora Central Rosario SRL Catalogo Burlonería.
- Gantrail Clips de fijación de base soldada.
- Gummi Acople elástico Línea BR.
- Lentax Motorreductor Línea coaxial.
- Miguel Abad Traslaciones y conjuntos rodantes.
- Sidersa S.A Chapas laminado grueso.
- Sidersa S.A Perfiles HEB.
- Sika Preparación de superficies.
- STHAL cranesystem Carro y polipasto SH AS7.
- Viking Eslingas de poliéster.

PROYECTO FINAL DE CARRERA (P F C)

Diseño de grúa para Trenes Argentinos Cargas de Concordia

Planos

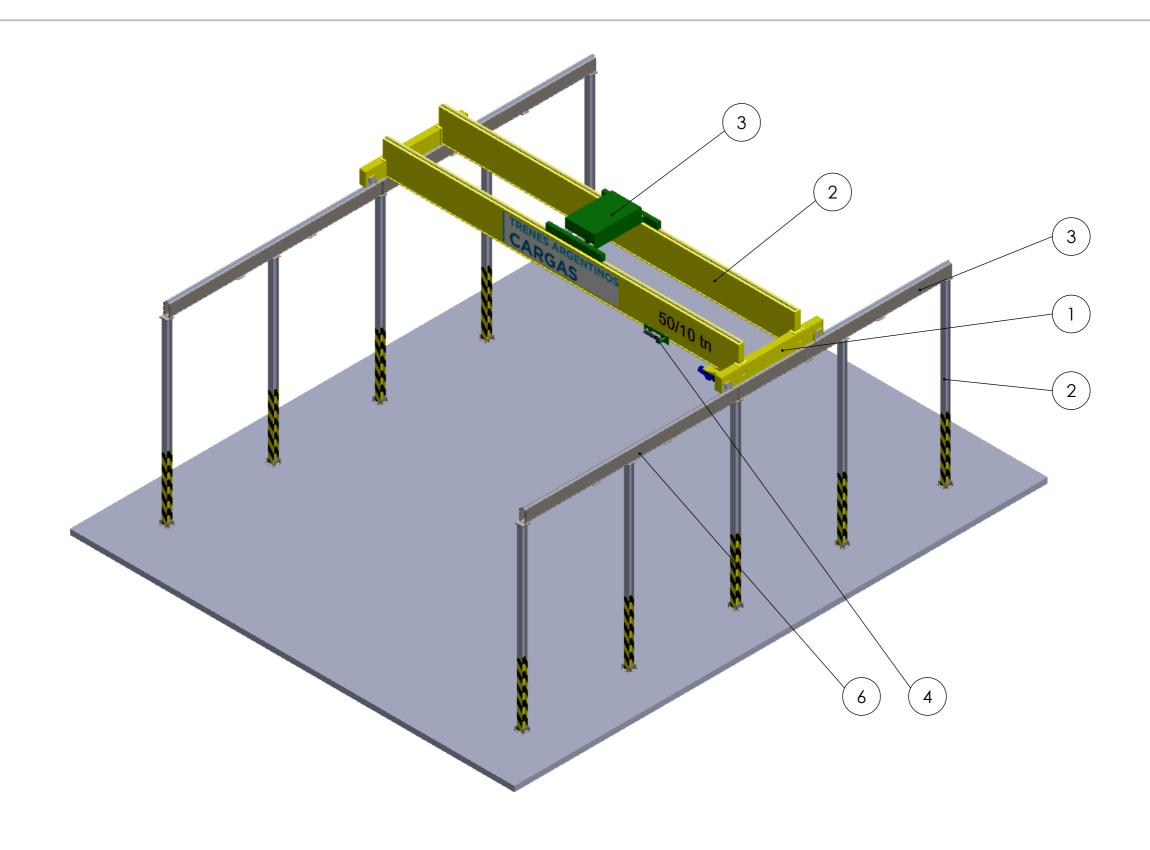

Proyecto Nº: PFC-1909A Autores: Ledesma, Franco Pezzatti, Santiago

Tutor: Ing. Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. Aníbal De Carli

AÑO 2019

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

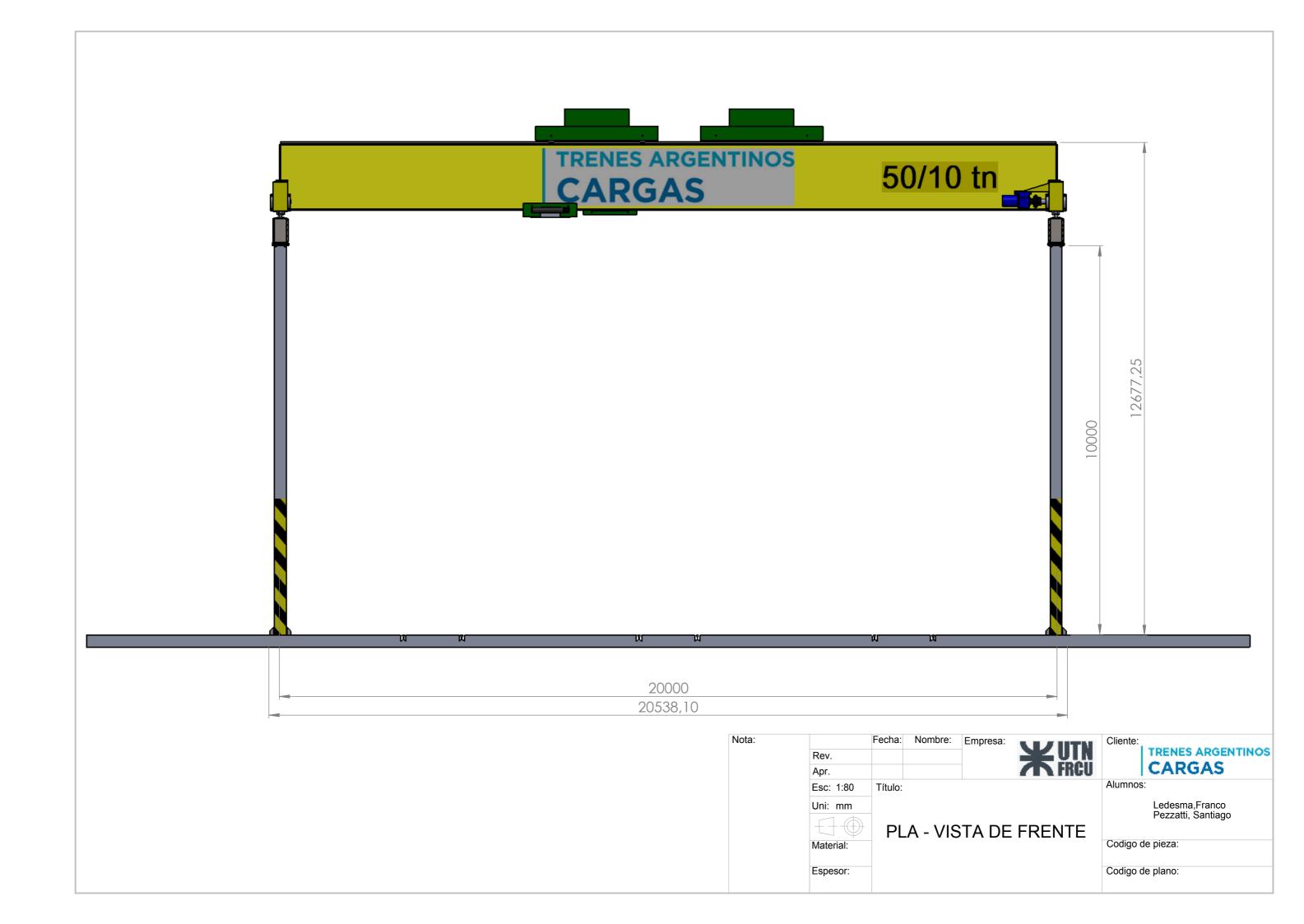


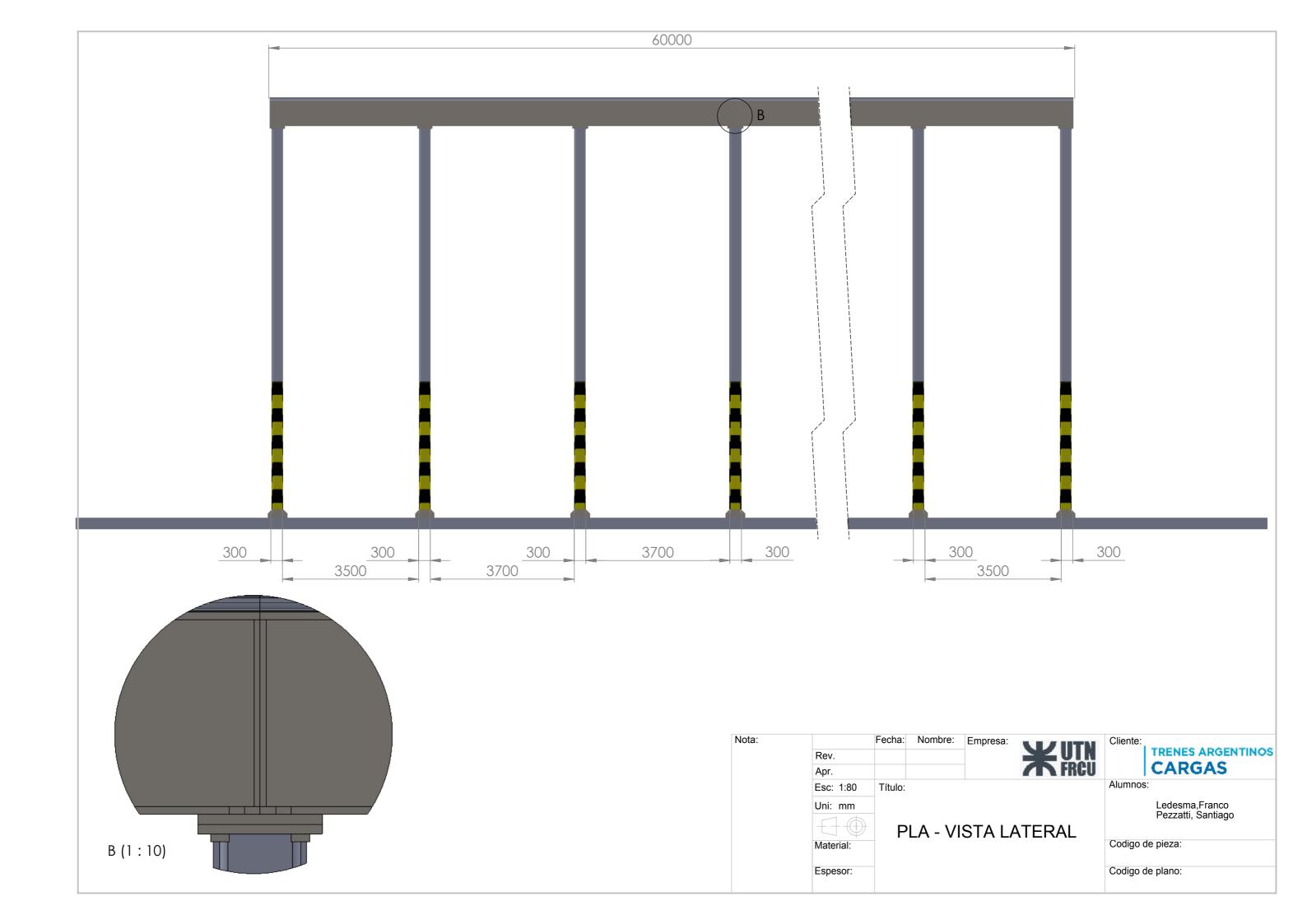
ITEM NO.	Nombre	Codigo de plano
1	Rieles	-
2	Columnas	PLA-CO
3	Puente Grua - A.	PLA-PGA
4	Puente Grua - B.	PLA-PGB
5	Vigas Carrileras	PLA-VC

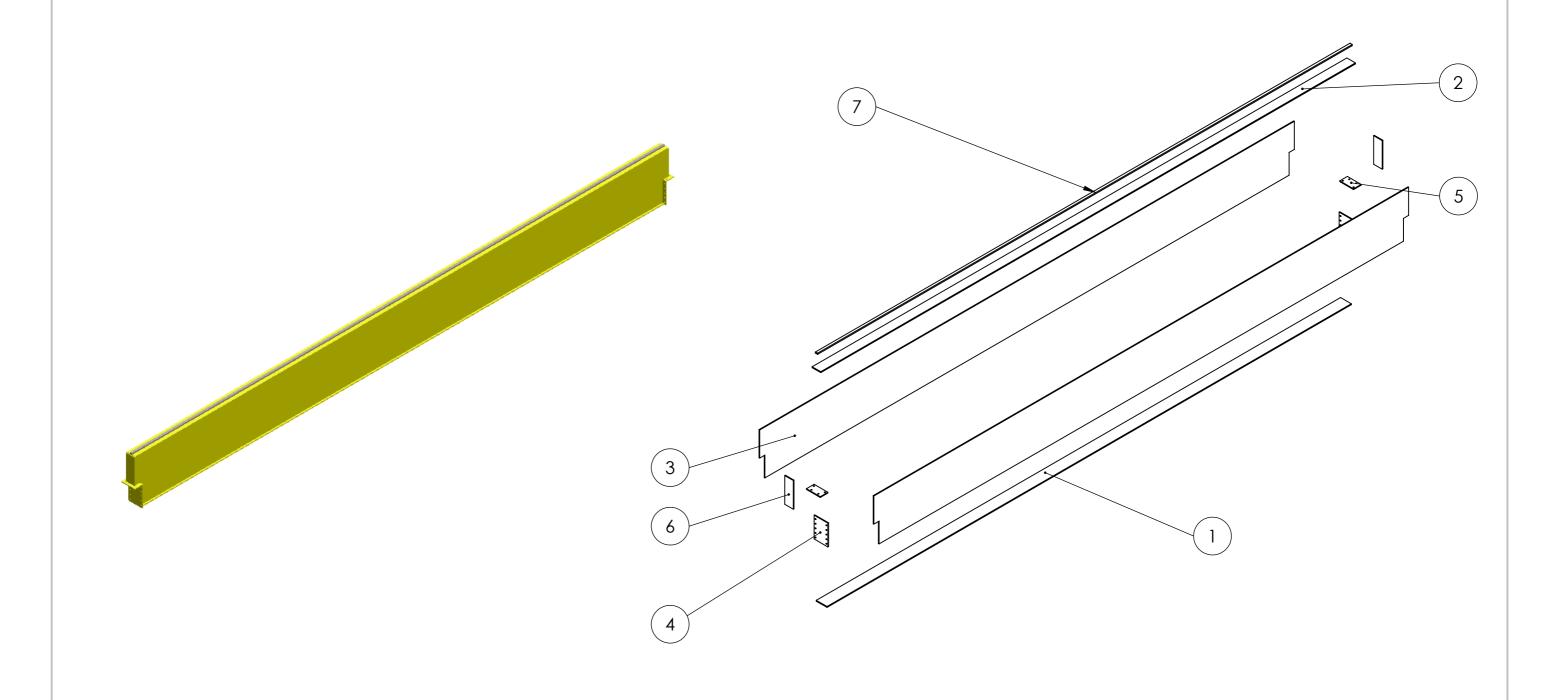
Nota:		Fecha:	Nombre:	Empresa:	VI / HTM	CI
	Rev.				AS OIM	
	Apr.				A FRCU	
	Esc: 1:200	Título:				Al
	Uni: mm					
		F	PLA - V	ista Tre	emétrica	
	Material:					Co

Espesor:

ITEM NO.	Nombre de pieza	Codigo de plano	QTY.
1	Viga testera	PLA-VT	2
2	Viga principal	PLA-VP	2
3	Carro 50 Tn	-	1
4	Carro 10 Tn	-	1

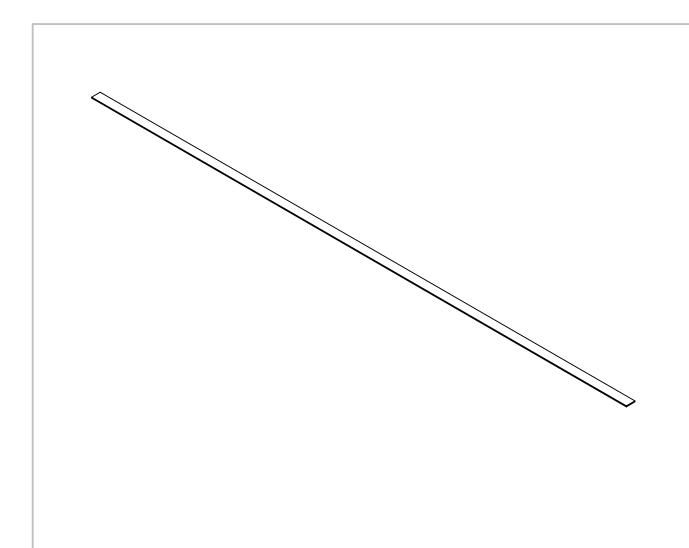

Nota:		Fecha:	Nombre:	Empresa:	VI / HTM	Cliente:	
	Rev.				AK UIM		ENE
	Apr.				A FRCU	C	AR
	Esc: 1:1	Título:				Alumnos:	
	Uni: -						edesm
			חובג	ITE OF		P	ezzatti
	Material:		PUEN	ITE GF	KUA	Codigo de pi	eza:

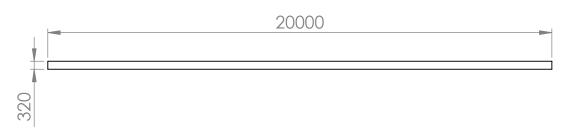

Espesor:

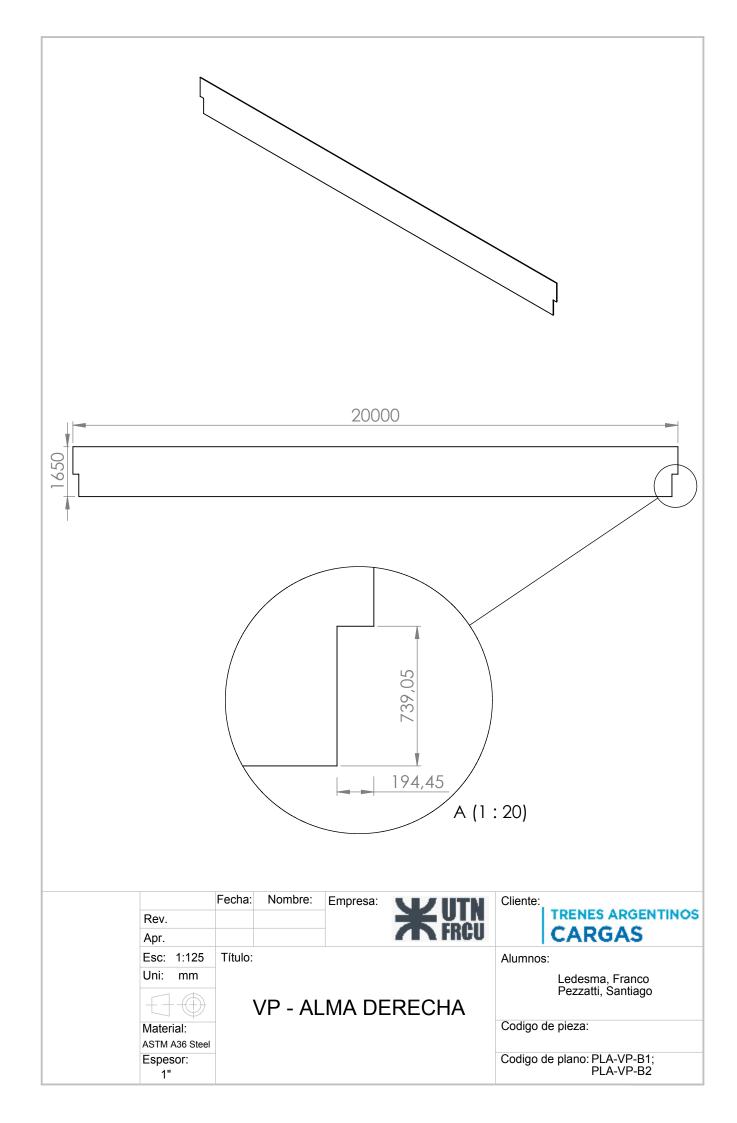

TRENES ARGENTINOS CARGAS

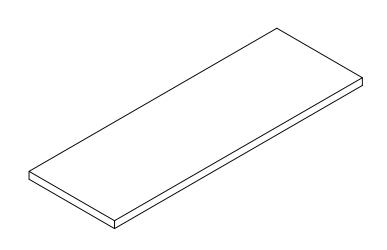
Ledesma,Franco Pezzatti, Santiago

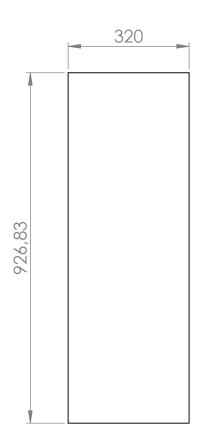
Codigo de plano:PLA-PGA; PLA-PGB

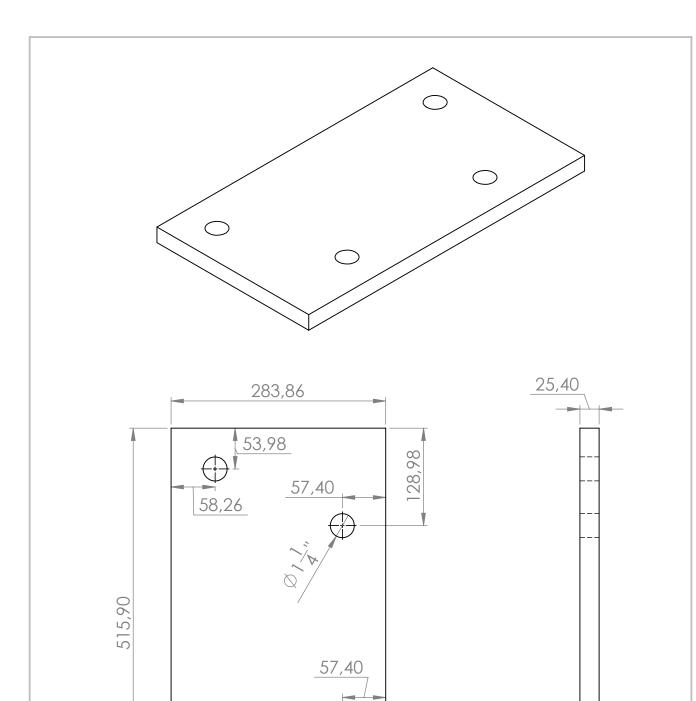




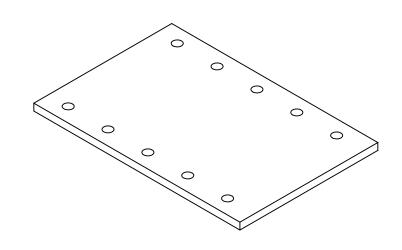

ITEM NO.	nombre de pieza	codigo de pieza	codigo de plano	QTY.
1	Ala inferior		PLA-VP-A2	1
2	Ala superior		PLA-VP-A1	1
3	Alma		PLA-VP-B1; PLA-VP-B2	2
4	Union vertical		PLA-VP-D1	2
5	Union horizontal	sd	PLA-VP-D2	2
6	Tapa lateral		PLA-VP-C1; PLA-VP-C2	2
7	Riel	-	-	1

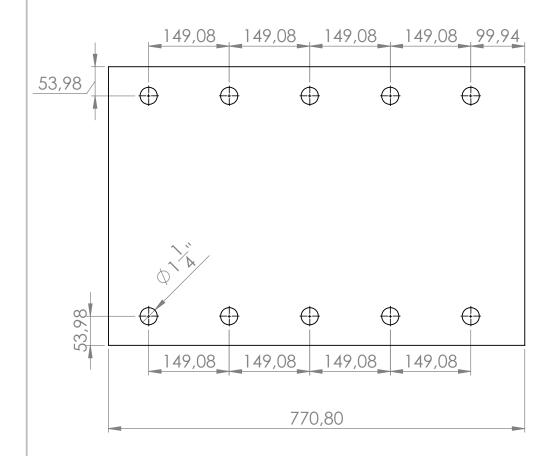

Nota:		Fecha:	Nombre:	Empresa:	VI/IITH	Cliente:		
	Rev.				22 UIN		TRENES ARGENTINOS	
	Apr.				A FRCU		CARGAS	
	Esc: 1:100	Título:				Alumnos	:	
	Uni: -						Ledesma, Franco	
				PIEZAS		Pezzatti, Santiago		
	Material:			'IGA DE RINCIPAL		Codigo	de pieza: -	
						Codigo	de plano:PLA-VP	




	Fecha:	Nombre:	Empresa:	VI JITN	Cliente:			
Rev.				T UIN		TRENES ARGENTINOS		
Apr.				FRCU		CARGAS		
Esc: 1:150	Título:				Alumno	s:		
Uni: mm					Ledesma, Franco Pezzatti, Santiago			
		VP - A	LA SU	PERIOR				
Material:					Codigo	de pieza:		
ASTM A36 Steel								
Espesor:					Codigo	de plano: PLA-VP-A1		
1 1/4"								

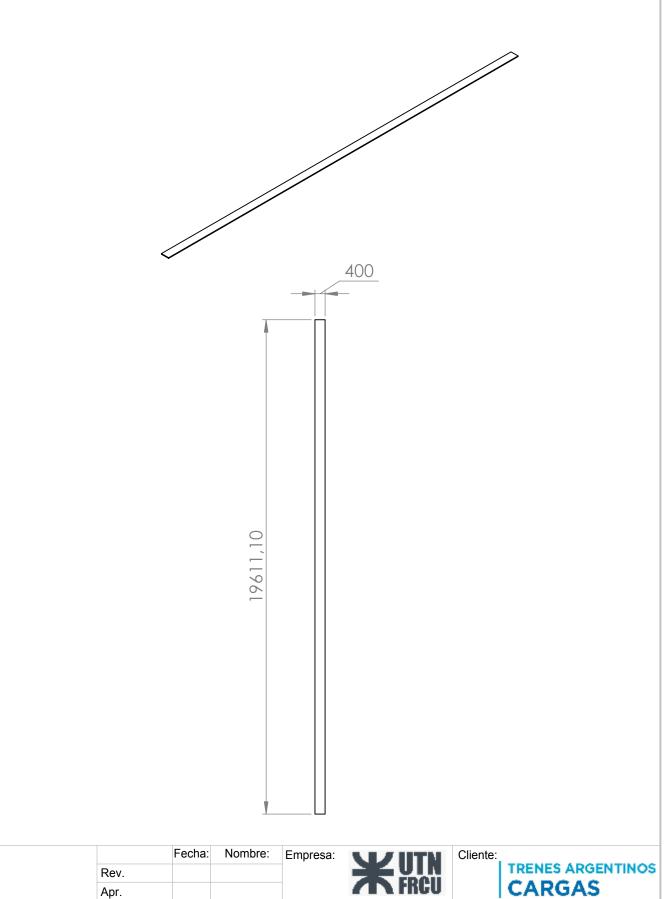
	Fecha:	Nombre:	Empresa:	WIIIW	Cliente:			
Rev.				FROM	TRENES ARGENTINOS			
Apr.				PIX PKGU	CARGAS			
Esc: 1:10	Título:				Alumnos:			
Uni: mm					Ledesma, Franco			
	VF	P - TAP	TERALES	Pezzatti, Santiago				
Material:					Codigo de pieza:			
ASTM A36 Steel								
Espesor: 1"					Codigo de plano: PLA-VP-C1; PLA-VP-C2			

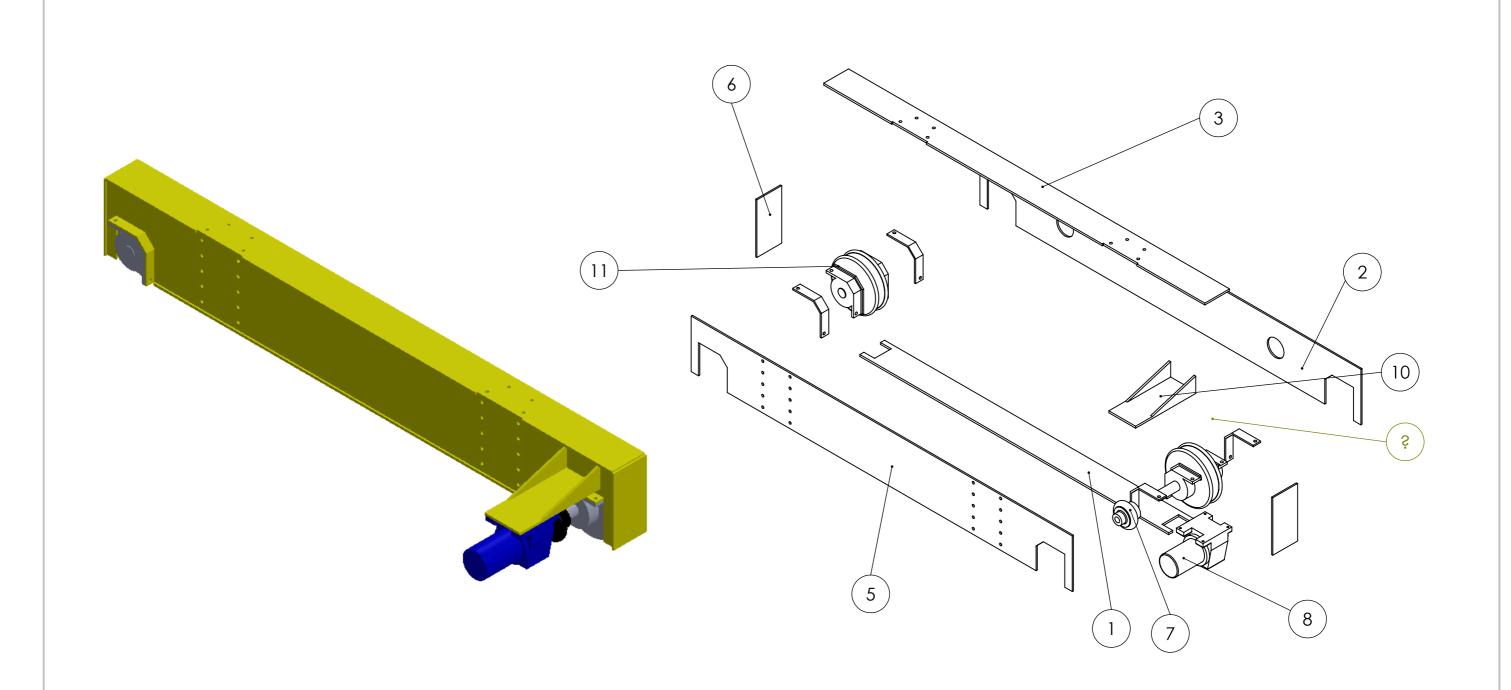




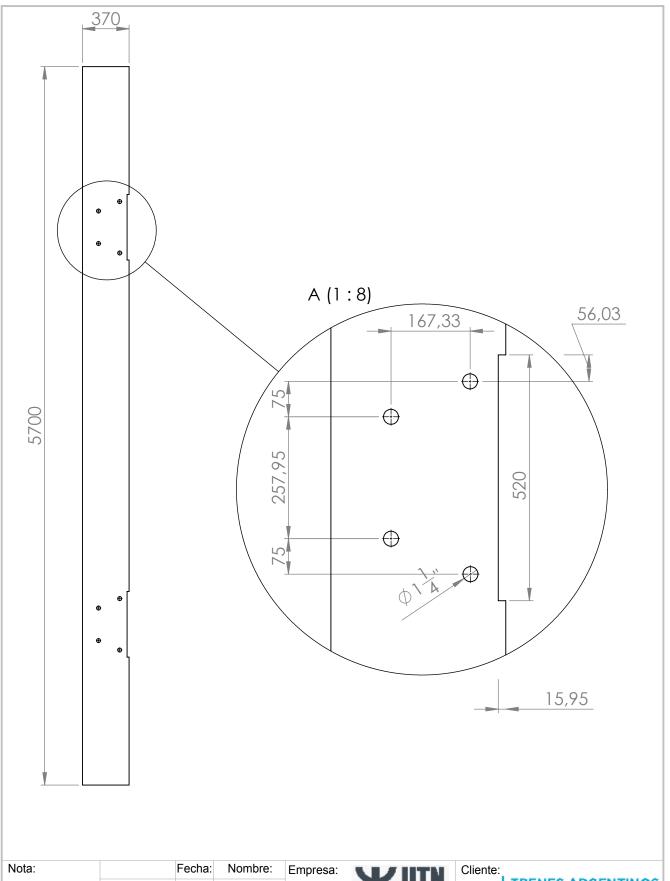
128,98

58,26

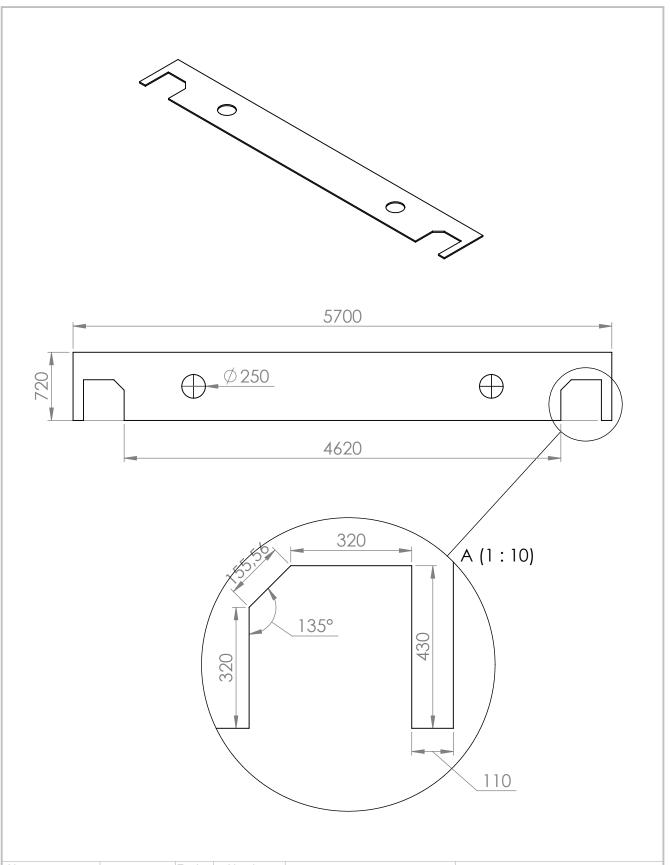

53,98



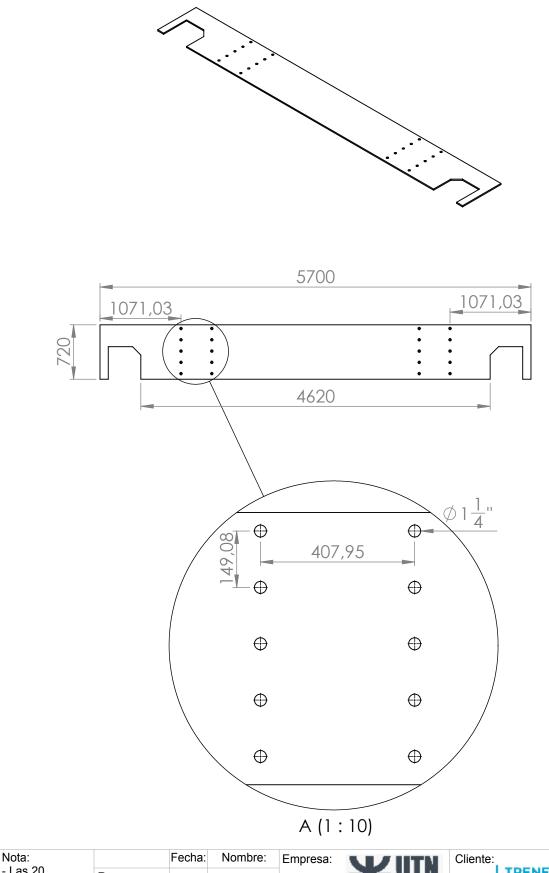
Nota:		Fecha:	Nombre:	Empresa:		Cliente:	
10 perforacione	Rev.				- UIN		TRENES ARGENTINOS
de igual diametro.	Apr.				← FRCU		CARGAS
	Esc: 1:7	Título:				Alumnos	s:
	Uni: mm						Ledesma, Franco
	ПА	Ī.,	\\D\\\D\\\\\\\\\\\\\\\\\\\\\\\				Pezzatti, Santiago
		\ \	_	_	ERTICAL	0 1	1
	Material:		(CON V	T .	Codigo	de pieza:
	ASTM A36 Steel				-		
	Espesor: 1"					Codigo	de plano: PLA-VP-D1

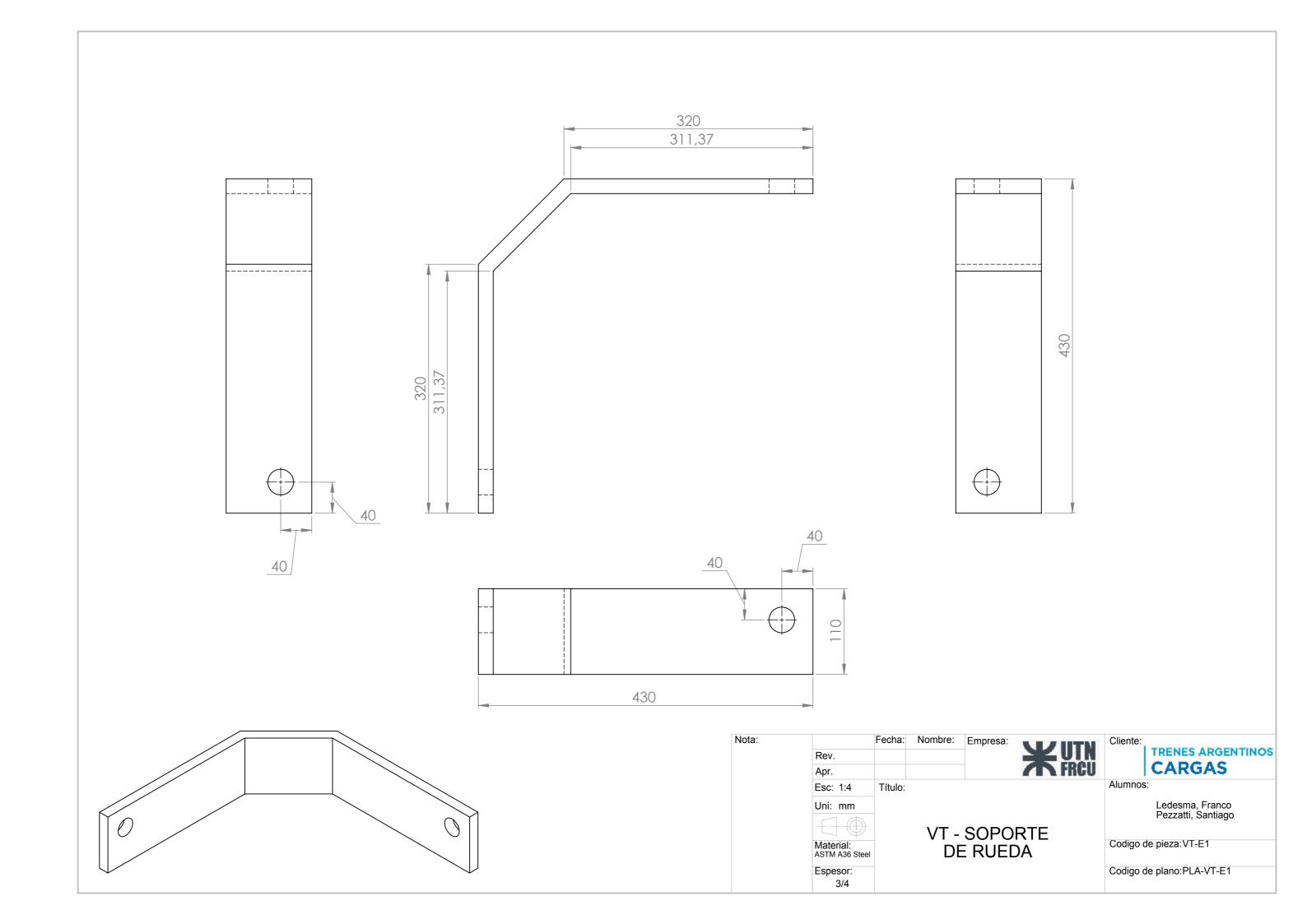


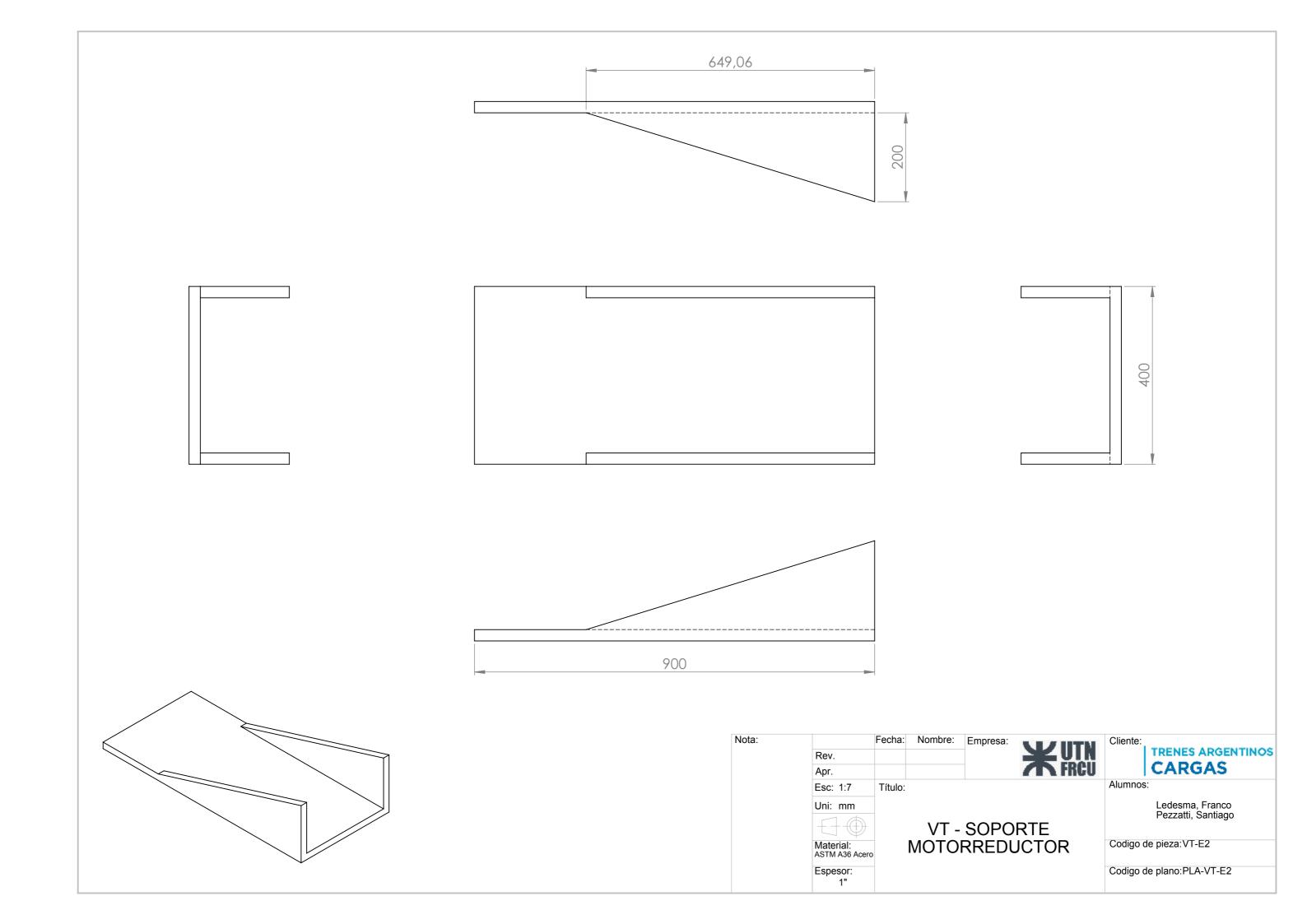
ITEM NO.	Nombre de pieza	Codigo de plano	QTY.
1	Ala inferior	PLA-VT-A2	1
2	ALMA EXTERIOR	PLA-VT-B1	1
3	Ala superior	PLA-VT-A1	1
4	Soporte para rueda	PLA-VT-E1	4
5	Alma interior	PLA-VT-B2	1
6	Тара	PLA-VT-C1; PLA-VT-C2	2
7	Acoplamiento	-	1
8	Motorreductor	-	1
9	Rueda	-	2
10	Soporte motorreductor	PLA-VT-E2	1

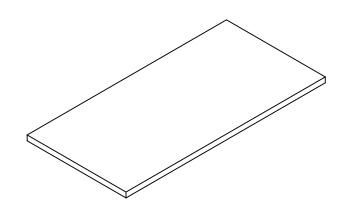

Nota:		Fecha:	Nombre:	Empresa:	11/1		
Las 4 vigas testeras	Rev.				*		
constan de las	Apr.				M		
mismas caracteristicas.	Esc: 1:40	Título:					
	Uni: mm						
				_	S DE VIGA		
	Material:		TE	ESTER	XA		

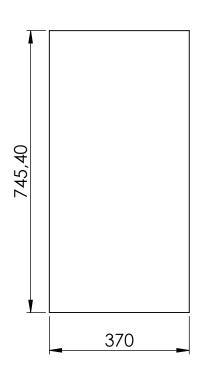
Espesor:

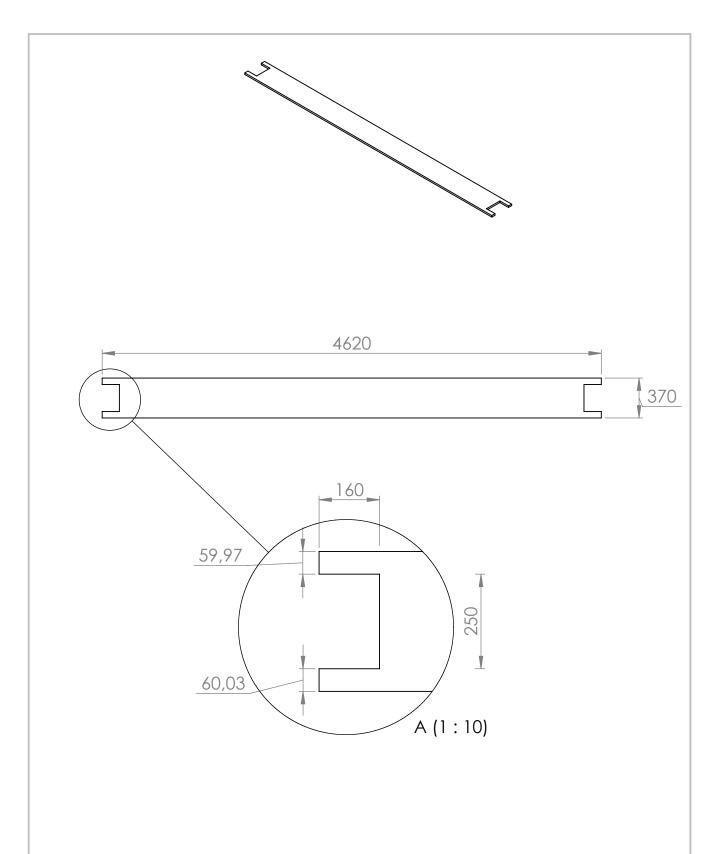

*UTN FREU TRENES ARGENTINOS CARGAS Alumnos: Ledesma, Franco Pezzatti, Santiago Codigo de pieza: Codigo de plano:PLA-VT

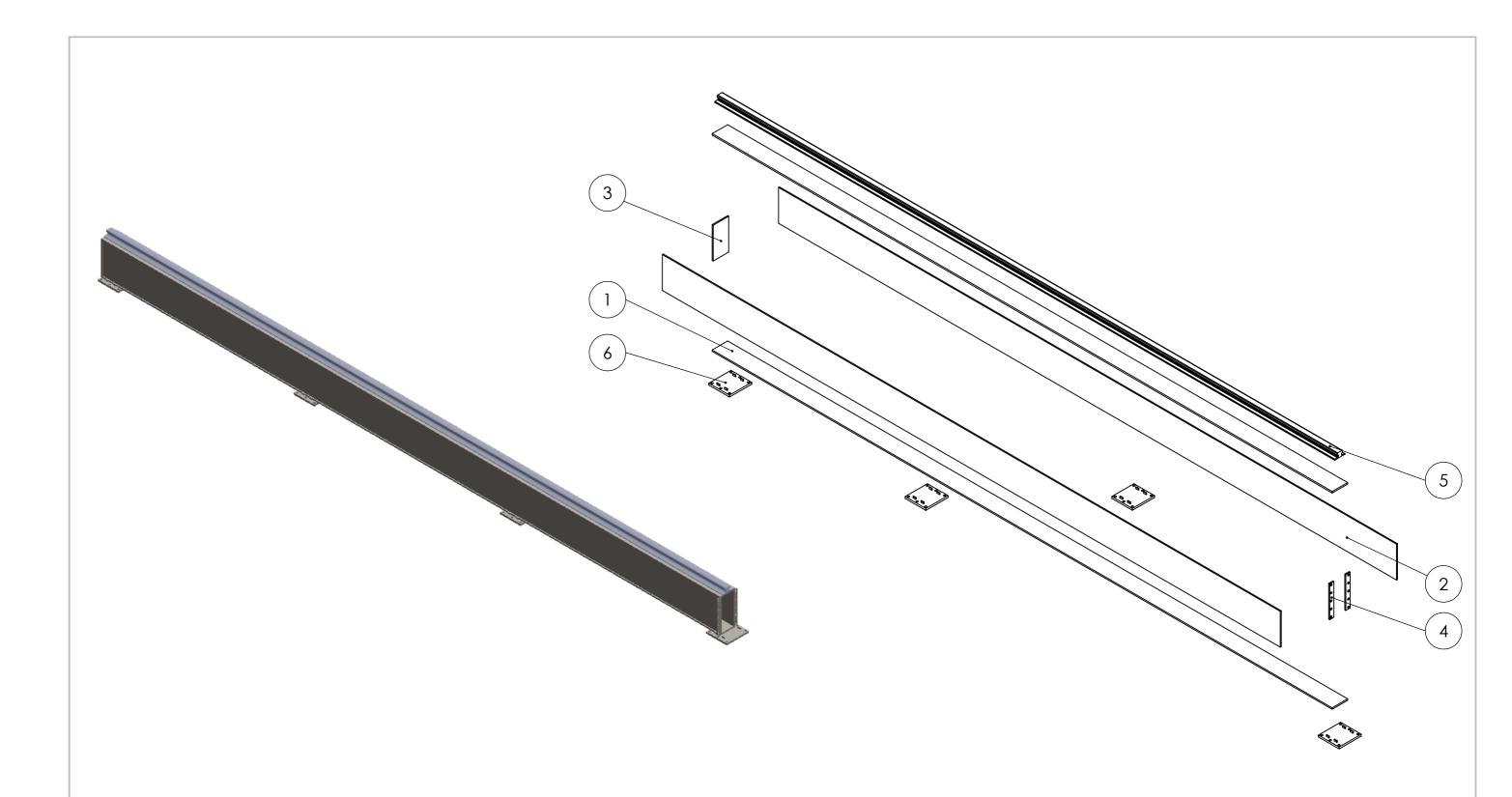




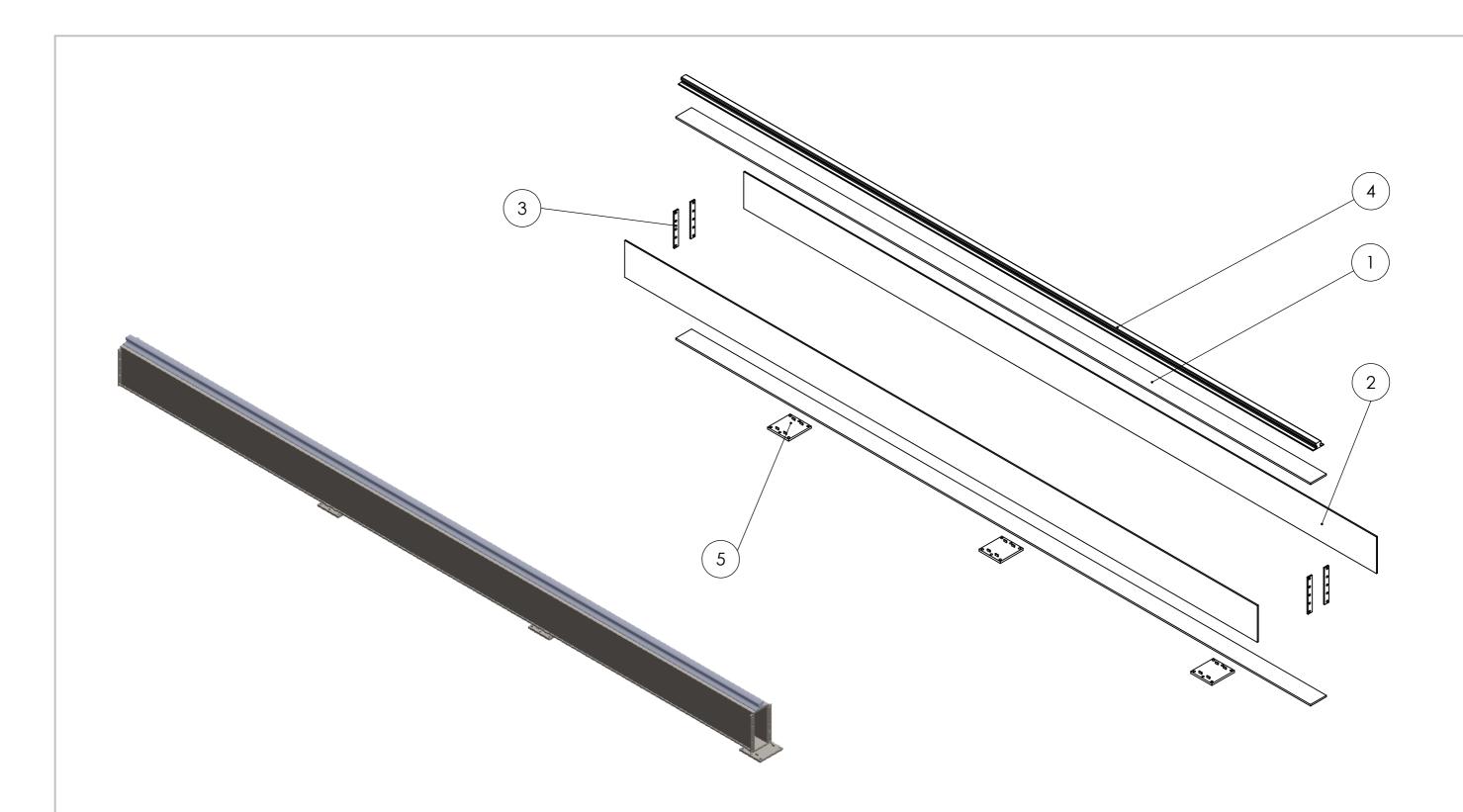


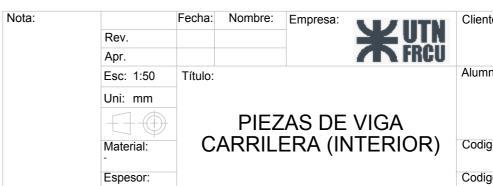




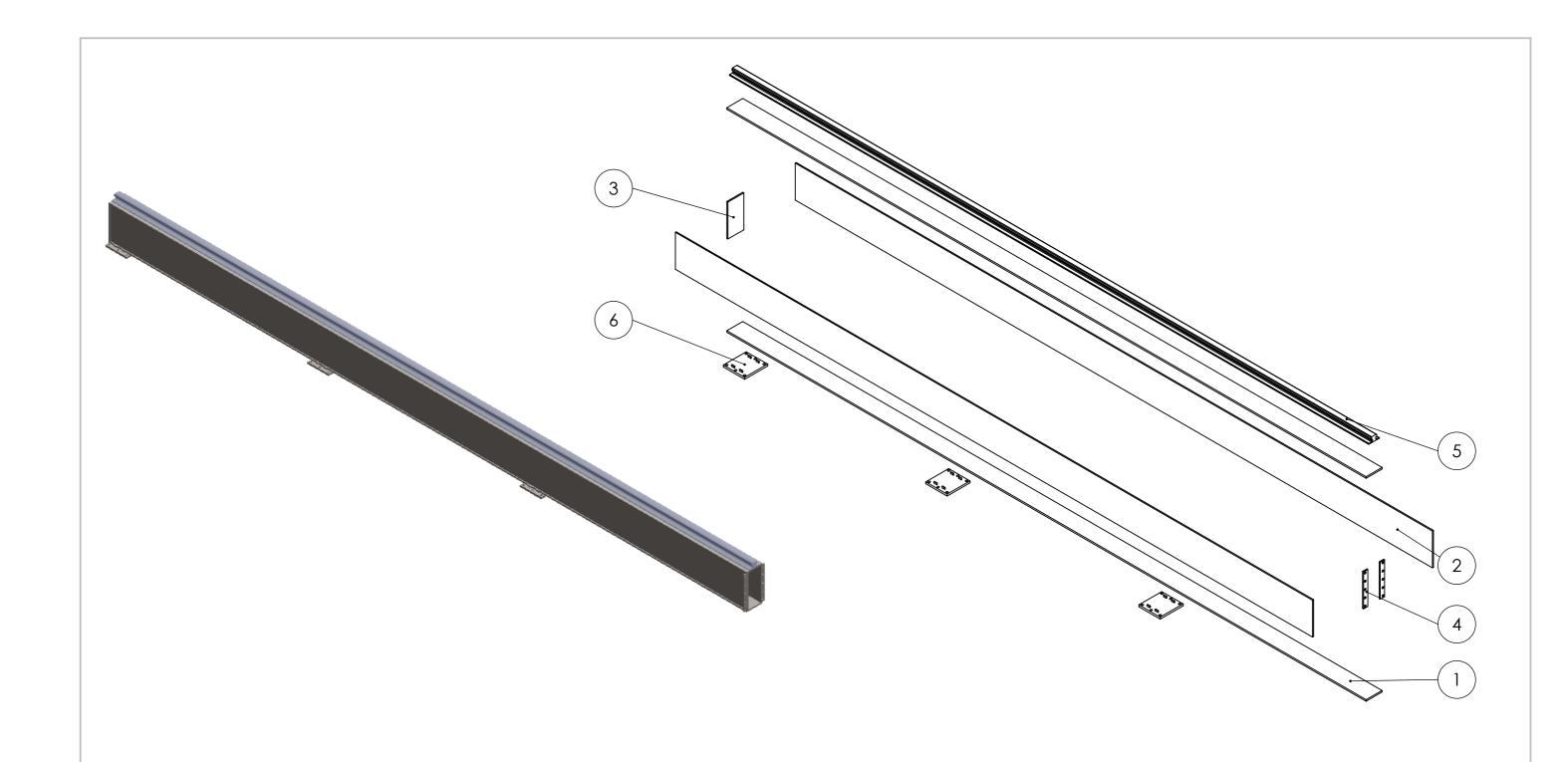


Nota:		Fecha:	Nombre:	: Empresa:		Cliente:	
	Rev.				FDON		TRENES ARGENTINOS
	Apr.				FRCU		CARGAS
	Esc: 1:10	Título:				Alumnos	3:
	Uni: mm						Ledesma, Franco
			V	T - TAF	PA		Pezzatti, Santiago
	Material:					Codigo	de pieza: VT-C1; VT-C2
	ASTM A36 Acerd)					
	Espesor: 3/4"					Codigo	de plano: PLA-VT-C1; PLA-VT-C2

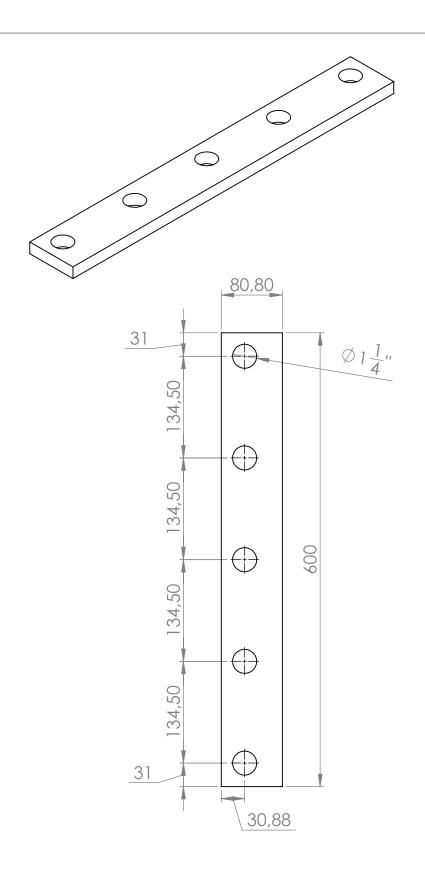


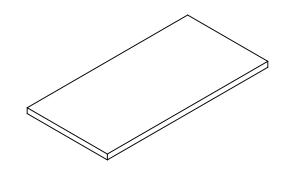


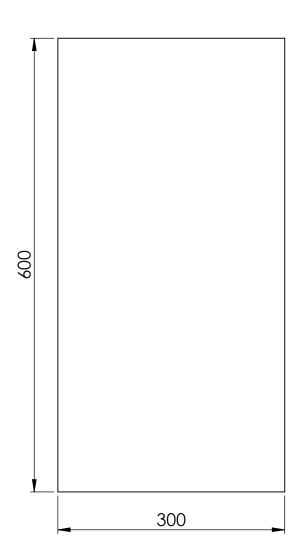
ITEM NO.	Nombre de pieza	Codigo de plano	Codigo de pieza	QTY.
1	Ala	PLA-VC-A2; PLA-VC-A1	PGC-VC-A2; PGC-VC-A1	2
2	Alma	PLA-VC-B1; PLA-VC-B3	PGC-VC-B1; PGC-VC-B2	2
3	Тара	PLA-VC-C1	PGC-VC-C1	1
4	Herraje de union vertical	PLA-VC-D1	PGC-VC-D1	2
5	Riel	-	PGC-VC-RG	1
6	Herraje de union horizontal	PLA-VC-D2	PGC-VC-D2	4

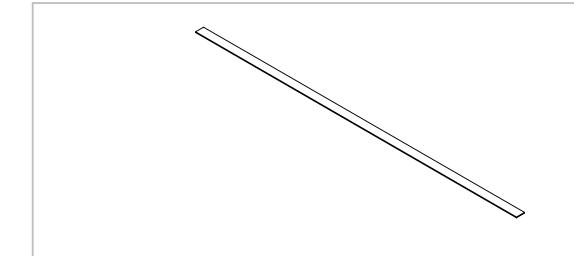


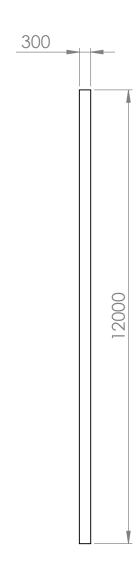
ITEM NO.	Nombre de pieza	Codigo de pieza	Codigo de plano	QTY.
1	Ala	PGC-VC-A2; PGC-VC-A1	PLA-VC-A2; PLA-VC-A1	2
2	Alma	PGC-VC-B1; PGC-VC-B2	PLA-VC-B1; PLA-VC-B3	2
3	Herraje de union vertical	PGC-VC-D1	PLA-VC-D1	4
4	Riel	PGC-VC-RG	-	1
5	Herraje de union horizontal	PGC-VC-D2	PLA-VC-D2	3

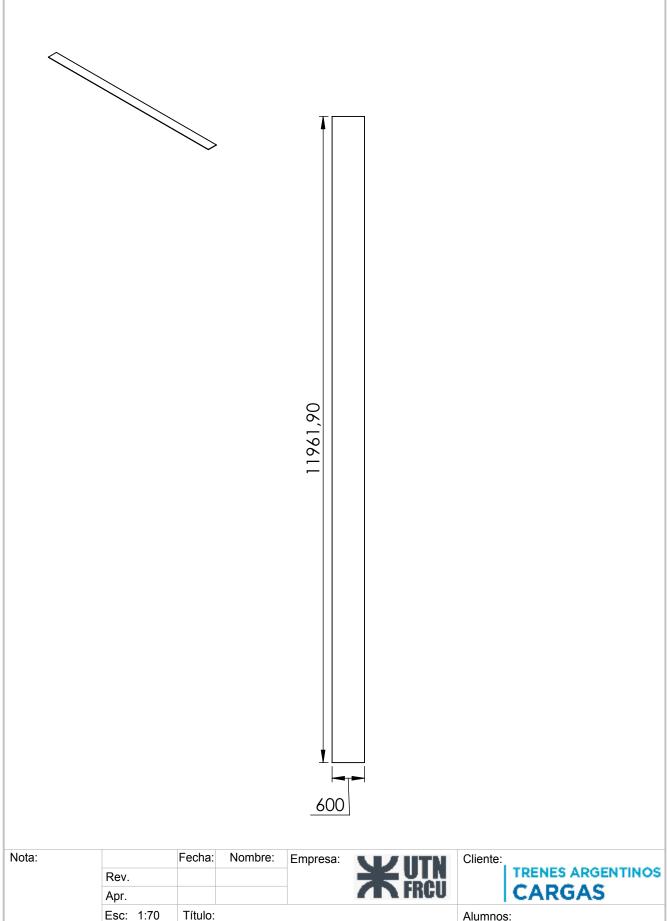




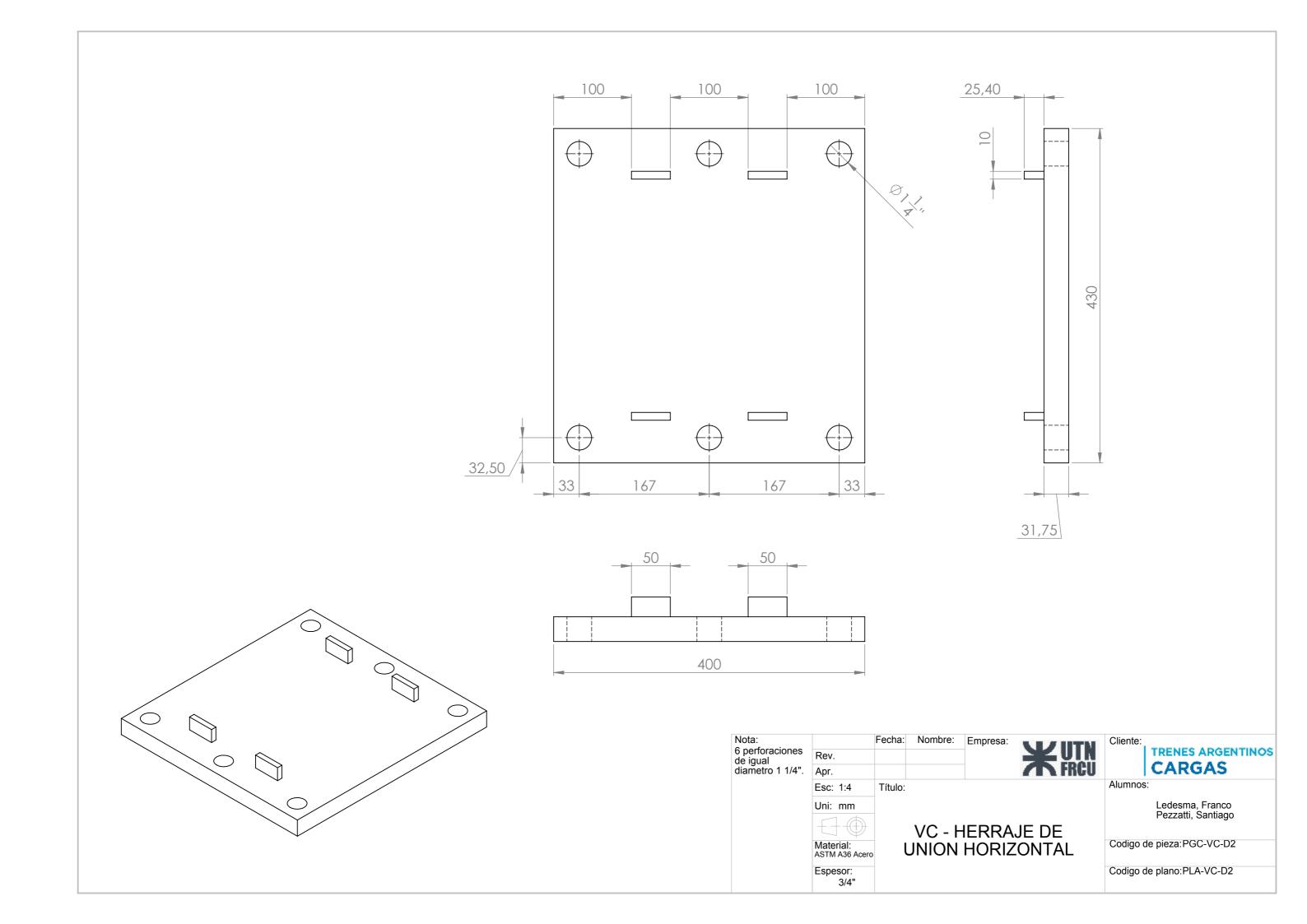

ITEM NO.	Nombre de pieza	Codigo de pieza	Codigo de plano	QTY.
1	Ala	PGC-VC-A2; PGC-VC-A1	PLA-VC-A2; PLA-VC-A1	2
2	Alma	PGC-VC-B1; PGC-VC-B2	PLA-VC-B1; PLA-VC-B3	2
3	Тара	PGC-VC-C1	PLA-VC-C1	1
4	Herraje de union vertical	PGC-VC-D1	PLA-VC-D1	2
5	Riel	PGC-VC-RG	-	1
6	Herraje de union horizontal	PGC-VC-D2	PLA-VC-D2	3

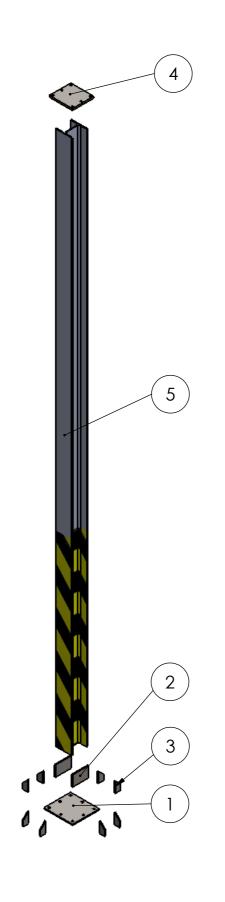


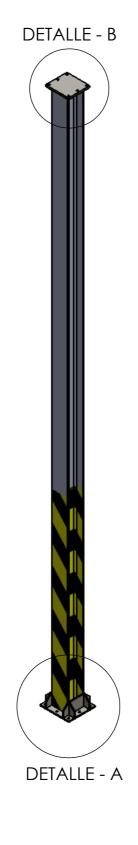


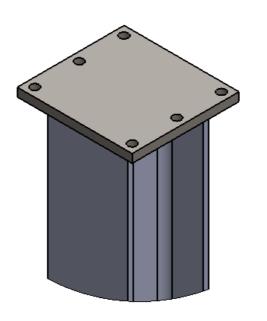


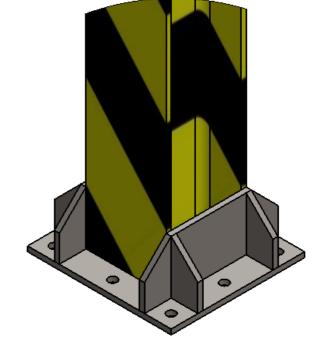
Nota:		Fecha:	Nombre:	Empresa:	VI IITH	Cliente:	
	Rev.				UIN		TRENES ARGENTINOS
	Apr.				AL PREU		CARGAS
	Esc: 1:5	Título:				Alumnos	S:
	Uni: mm						Ledesma, Franco
			V	VC - TAPA			Pezzatti, Santiago
	Material:					Codigo	de pieza: PGC-VC-C1
	ASTM A36 Acerd)					
	Espesor: 3/4"					Codigo	de plano: PLA-VC-C1

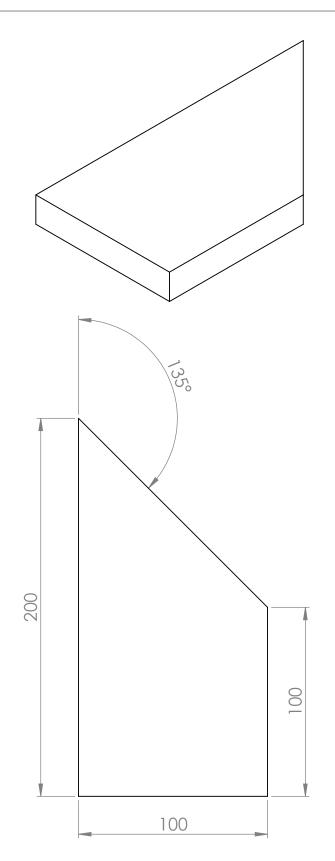





Nota:		Fecha:	Nombre:	Empresa:		Cliente:	
	Rev.				UIN		TRENES ARGENTINOS
	Apr.				⚠ FRCU		CARGAS
	Esc: 1:100	Título:				Alumnos	5 :
	Uni: mm						Ledesma, Franco
			1/4	O ALAC		Pezzatti, Santiago	
			V	C - ALAS	45	Codigo	do niezo: DCC VC A2:
	Material:					Codigo	de pieza: PGC-VC-A2; PGC-VC-A1
	ASTM A36 Acero						
	Espesor:					Codigo	de plano: PLA-VC-A2; PLA-VC-A1

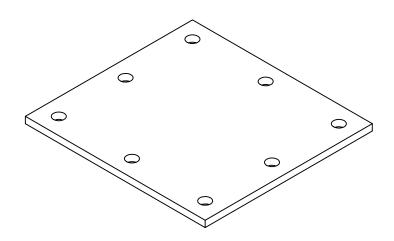


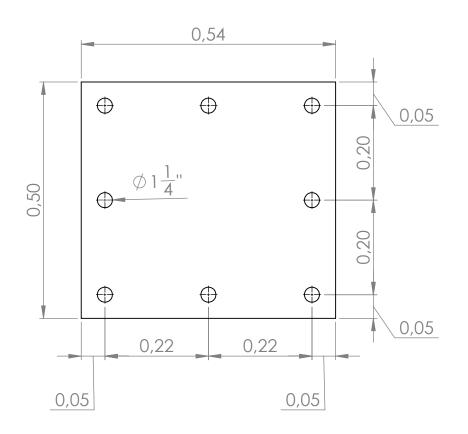


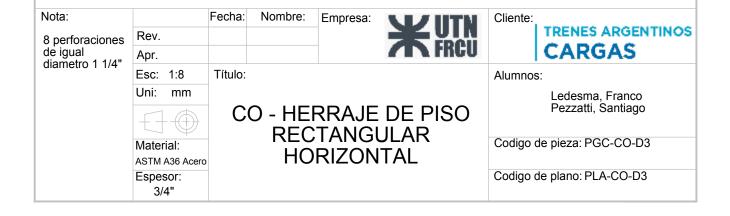

DETALLE - B (1:10)

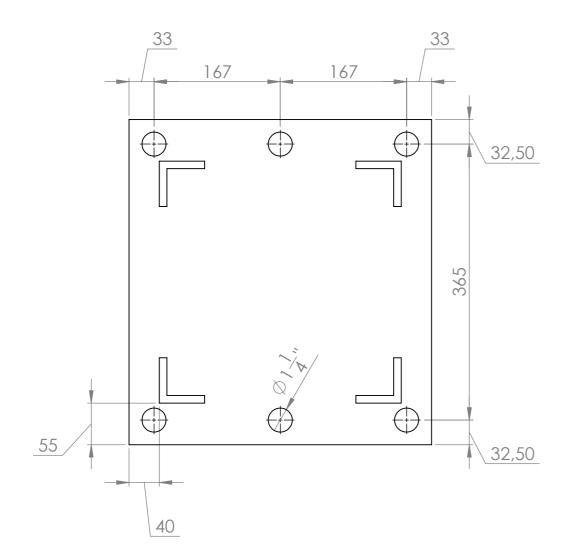
DETALLE - A (1:10)

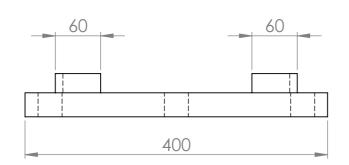
ITEM NO.	Nombre de pieza	Codigo de pieza	Codigo de plano	QTY.
1	Herraje de piso rectangular horizontal	PGC-CO-D3	PLA-CO-D3	1
2	Refuerzo de piso rectangular vertical	PGC-CO-E3	PLA-CO-E3	2
3	Refuerzo de piso triangular vertical	PGC-CO-E2	PLA-CO-E2	8
4	Herraje union horizontal	PGC-CO-D3	PLA-CO-D3	1
5	Perfil HEB 300	HEB 300	-	1

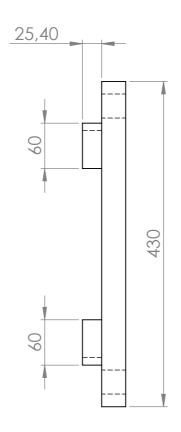

Nota:		Fecha:	Nombre:	Empresa:	A D / HTM	
	Rev.				AK UIN	
	Apr.				A FRCU	
	Esc: 1:50	Título:				1
	Uni: mm					
		DIE	740 0			
	Material:	PIE	ZAS L	E LA C	COLUMNA	1
	Fenesor:					L

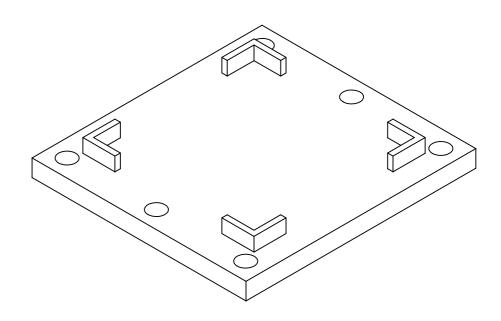






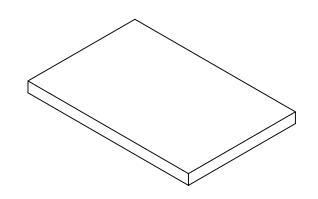

3/4"

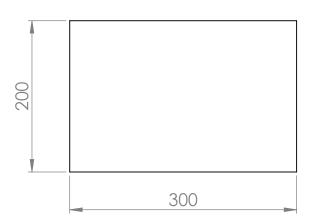




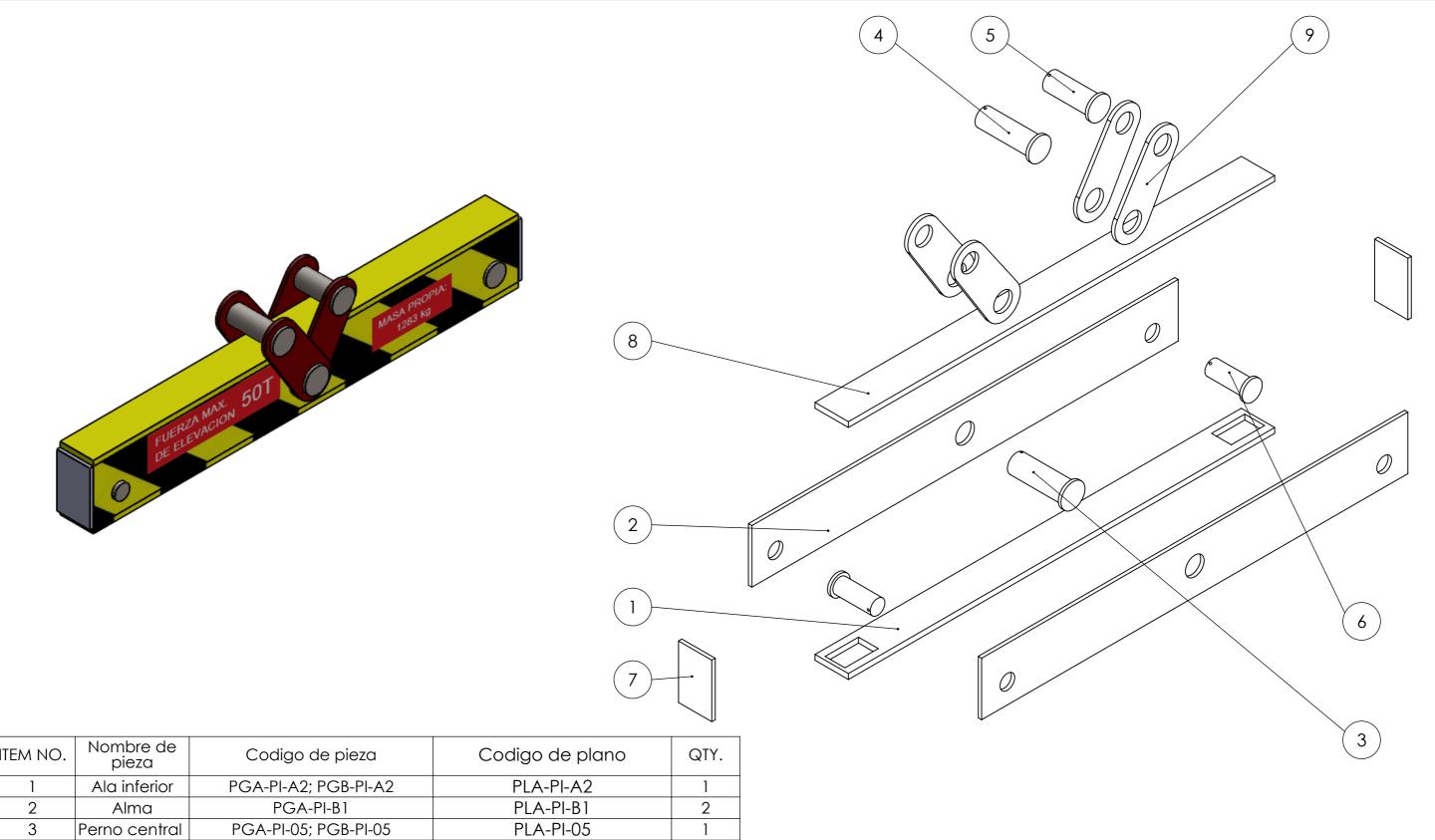
Nota:		Fecha:	Nombre:	Empresa:	VI / HTM	T
6 perforaciones	Rev.				A UIN	
de igual diametro 1 1/4".	Apr.				A FRCU	
	Esc: 1:5	Título:				4
	Uni: mm					
			CO -	HERR	RAJE	
	Material: ASTM A36 Acerd	L	JNION	HORIZ	ONTAL	

Espesor: 3/4"


Cliente: TRENES ARGENTINOS CARGAS

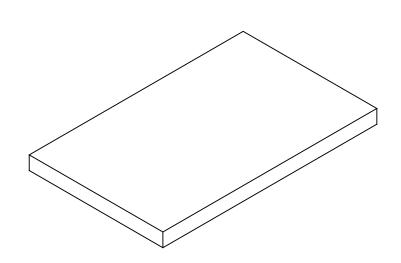

Alumnos:

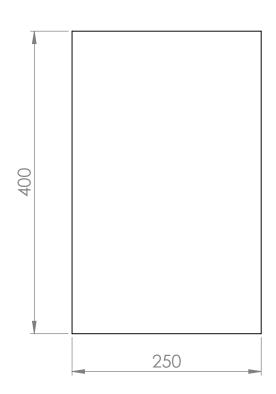
Ledesma, Franco Pezzatti, Santiago


Codigo de pieza:PGC-CO-D3

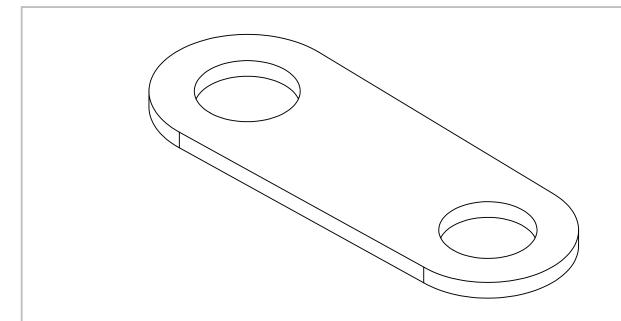
Codigo de plano:PLA-CO-D3

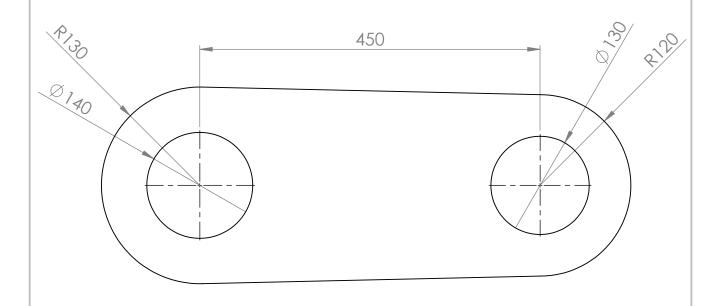
Nota: Fecha: Nombre: Empresa: Cliente: **TRENES ARGENTINOS** Rev. **CARGAS** Apr. Título: Esc: 1:5 Alumnos: Uni: mm Ledesma, Franco Pezzatti, Santiago CO - REFUERZO DE PISO RECTANGULAR VERTICAL Codigo de pieza: PGC-CO-E3 Material: ASTM A36 Acero Codigo de plano: PLA-CO-E3 Espesor: 3/4"

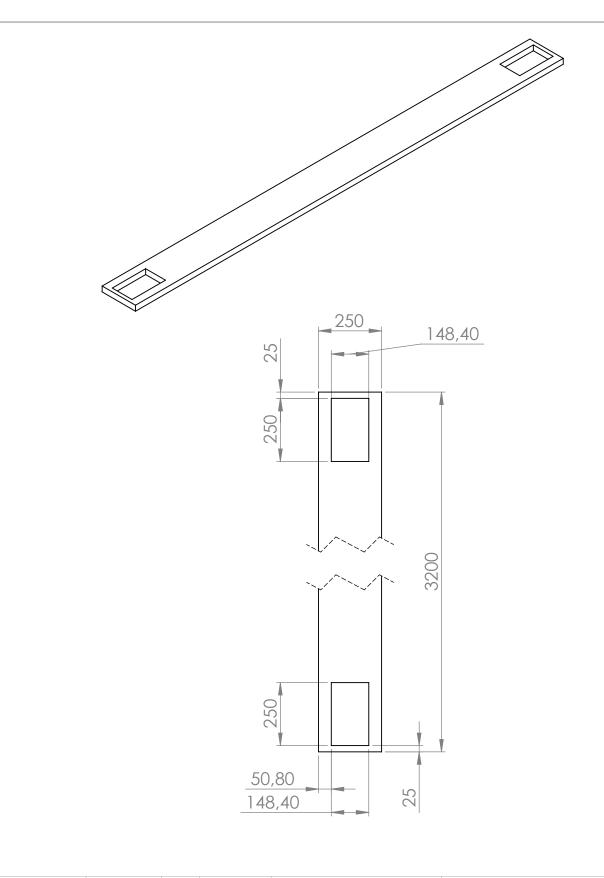

ITEM NO.	Nombre de pieza	Codigo de pieza	Codigo de plano	QTY.
1	Ala inferior	PGA-PI-A2; PGB-PI-A2	PLA-PI-A2	1
2	Alma	PGA-PI-B1	PLA-PI-B1	2
3	Perno central	PGA-PI-05; PGB-PI-05	PLA-PI-05	1
4	Perno union tijeras exterior	PGA-PI-06; PGB-PI-06	PLA-PI-06	1
5	Perno union tijeras interior	PGA-PI-07; PGB-PI-07	PLA-PI-07	1
6	Pernos laterales	PGA-PI-04; PGB-PI-04	PLA-PI-04	2
7	Тара	PGA-PI-C1; PGA-PI-C2; PGB-PI- C1; PGA-PI-C2	PLA-PI-C1	2
8	Ala superior	PGA-PI-A2; PGB-PI-A2	PLA-PI-A2	1
9	Tijera de izaje	PGA-PI-08; PGB-PI-08	PLA-PI-08	4


Nota:		Fecha:	Nombre:	Empresa:	VI / HTM	С
	Rev.				AK DIW	
	Apr.				A FRCU	
	Esc: 1:20	Título:				A
	Uni: mm					
			PIEZAS	S DE P	ERCHA	
	Material:		D	E IZAJ	ΙE	С

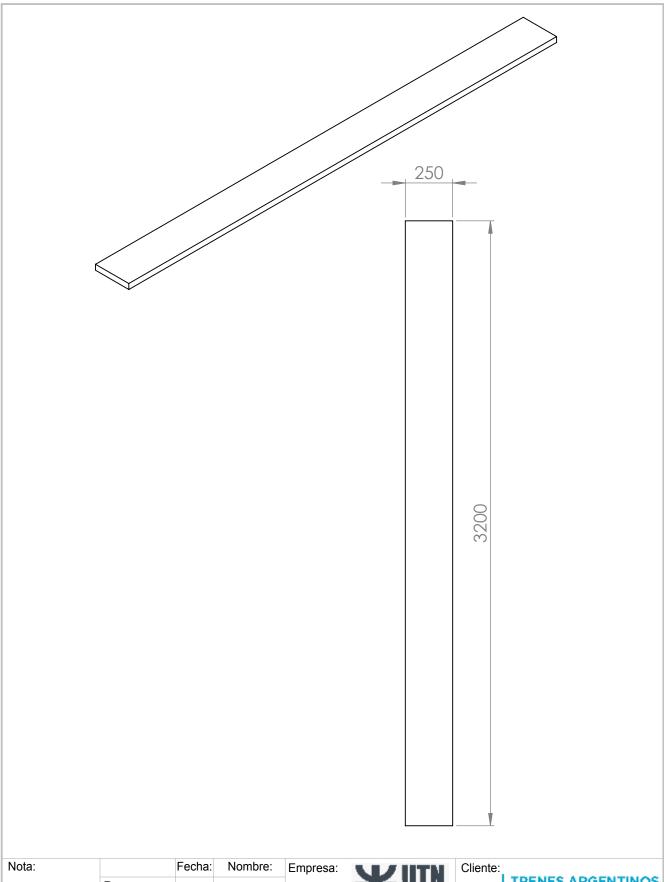
Espesor:

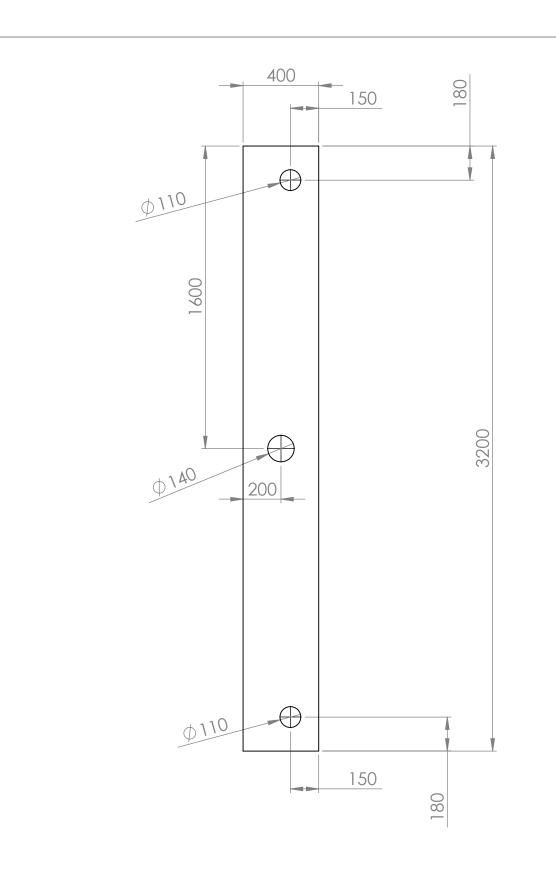

Cliente:	TRENES ARGENTINOS CARGAS
Alumnos	3:
	Ledesma, Franco Pezzatti, Santiago
Codigo	de pieza:PGA-PI; PGB-PI

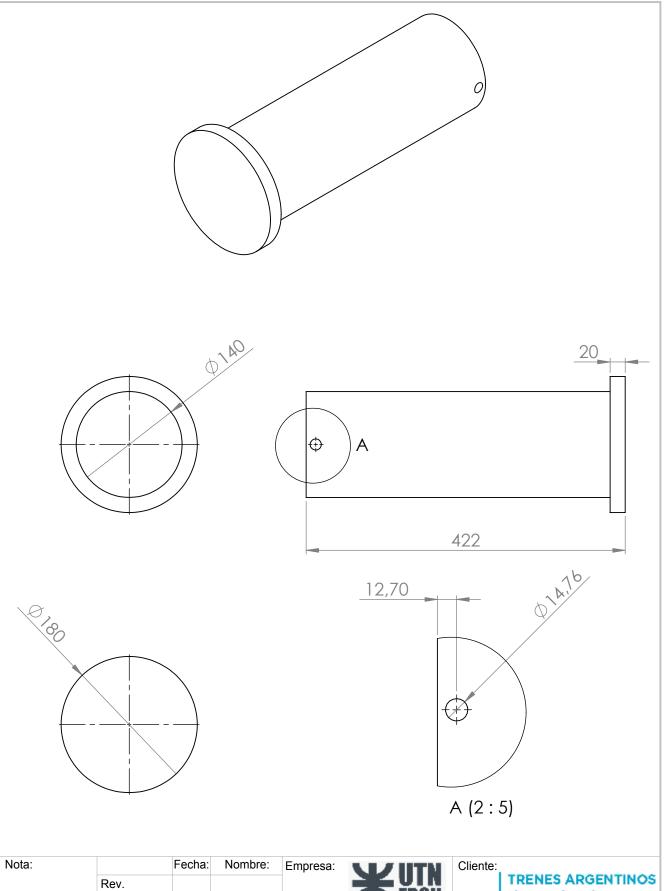

Codigo de plano:PLA-PI

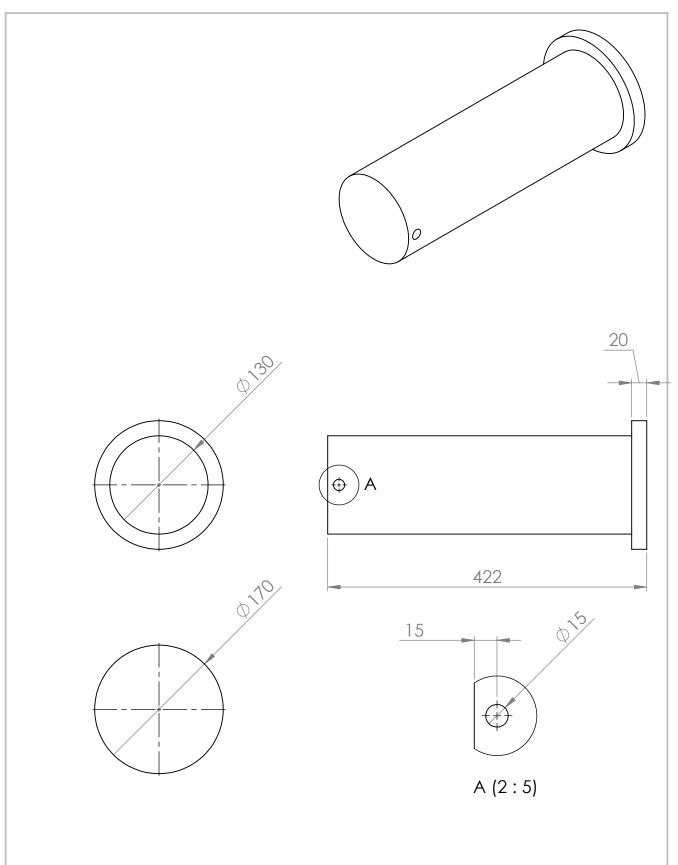


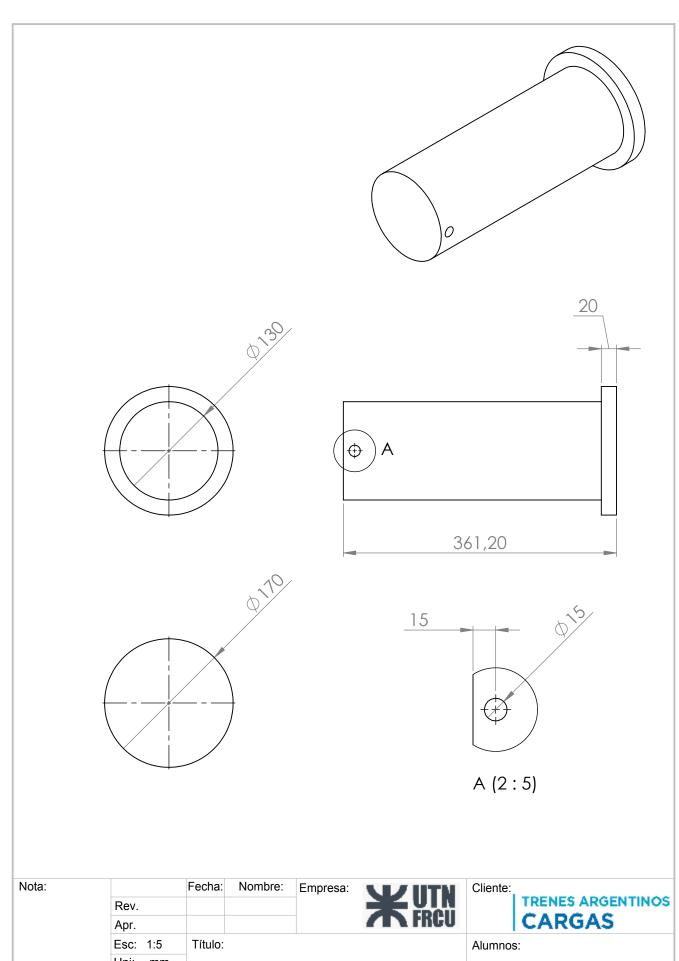
Nota:		Fecha:	Nombre:	Empresa:	WIII VI	Cliente:		
	Rev.				UIN	TRENES ARGENTINOS		
	Apr.				AL PREU	CARGAS		
	Esc: 1:5	Título:				Alumnos:		
	Uni: mm					Ledesma, Franco		
			Р	I - TAP		Pezzatti, Santiago		
	Material:					Codigo de pieza: PGA-PI-C1; PGA-PI-C2		
	ASTM A36 Steel					PGB-PI-C1; PGA-PI-C2		
	Espesor: 1"					Codigo de plano: PLA-PI-C1		

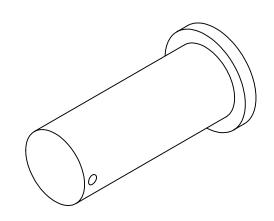


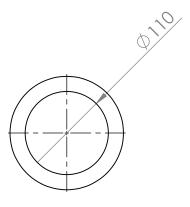

Nota: Fecha: Nombre: Empresa: Cliente: **TRENES ARGENTINOS** Rev. **CARGAS** Apr. Título: Esc: 1:5 Alumnos: Uni: mm Ledesma, Franco Pezzatti, Santiago PI-TIJERA DE IZAJE Codigo de pieza: PGA-PI-08; PGB-PI-08 Material: ASTM A36 Steel Codigo de plano: PLA-PI-08 Espesor: 1"

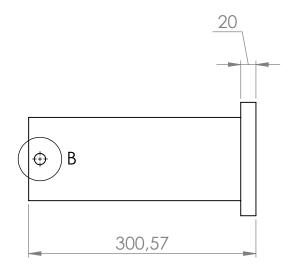


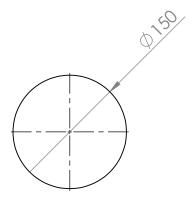


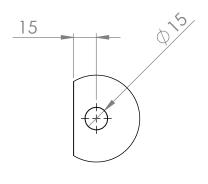











Nota:		Fecha:	Nombre:	Empresa:	WIIIW	Cliente:		
	Rev.						TRENES ARGENTINOS	
	Apr.			FRCU			CARGAS	
	Esc: 1:5	Título:	0:				Alumnos:	
	Uni: mm						Ledesma, Franco Pezzatti, Santiago	
			PI -PE	RNO L	JNION	r czzatti, cantiago		
	Material: AISI 1045 Steel, cold drawn	-	TIJERA	AS INT	ERIOR	Codigo	de pieza: PGA-PI-07; PGB-PI-07	
	Diametro: 130mm					Codigo	de plano: PLA-PI-07	

B (2:5)

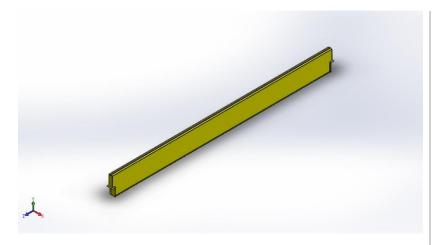
Nota:		Fecha:	Nombre:	Empresa:	WIIIW	Cliente:		
	Rev.				# FRCU		TRENES ARGENTINOS	
	Apr.						CARGAS	
	Esc: 1:5	Título:				Alumnos:		
	Uni: mm						Ledesma, Franco Pezzatti, Santiago	
			PI -	- PERN	IOS	Fezzatti, Santiago		
	Material: AISI 1045 Steel, cold drawn			TERAL		Codigo	de pieza: PGA-PI-04; PGB-PI-04	
	Diametro: 110mm					Codigo	de plano: PLA-PI-04	

UNIVERSIDAD TECNOLOGICA NACIONAL Facultad Regional Concepción del Uruguay INGENIERIA ELECTROMECANICA

PROYECTO FINAL DE CARRERA (P F C)

Diseño de grúa para Trenes Argentinos Cargas de Concordia

Simulaciones


Proyecto Nº: PFC 1909A Autores: Ledesma, Franco Pezzatti, Santiago

Tutor: Ing. Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. Aníbal de Carli

AÑO 2019

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Descripción

Se realizó la simulación de la viga principal sometida a corte máximo (cuando el carro se encuentra sobre la izquierda de la misma).

Simulación de VP ensamble

Fecha: lunes, 27 de enero de 2020

Diseñador: Solidworks

Nombre de estudio: Análisis estático 2 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción
Información de modelo
Propiedades de estudio
Unidades
Propiedades de material
Cargas y sujeciones
Información de contacto
Información de malla
Fuerzas resultantes
Resultados del estudio

Información de modelo

Nombre de documento y referencia	Tratado como	Propiedades volumétricas
Mirror1	Sólido	Masa:1955.13 kg Volumen:0.249061 m^3 Densidad:7850 kg/m^3 Peso:19160.3 N
Boss-Extrude1	Sólido	Masa:1595.12 kg Volumen:0.2032 m^3 Densidad:7850 kg/m^3 Peso:15632.2 N
Mirror1	Sólido	Masa:6522.56 kg Volumen:0.8309 m^3 Densidad:7850 kg/m^3 Peso:63921.1 N
Mirror1	Sólido	Masa:6522.56 kg Volumen:0.8309 m^3 Densidad:7850 kg/m^3 Peso:63921.1 N
Boss-Extrude1	Sólido	Masa:502.4 kg Volumen:0.064 m^3 Densidad:7850 kg/m^3 Peso:4923.52 N
Boss-Extrude1	Sólido	Masa:59.1359 kg Volumen:0.00753323 m^3 Densidad:7850 kg/m^3 Peso:579.532 N
Boss-Extrude1	Sólido	Masa:59.1359 kg Volumen:0.00753323 m^3 Densidad:7850 kg/m^3 Peso:579.532 N

Cut-Extrude1	Sólido	Masa:28.5677 kg Volumen:0.0036392 m^3 Densidad:7850 kg/m^3 Peso:279.963 N
Cut-Extrude1	Sólido	Masa:28.5677 kg Volumen:0.0036392 m^3 Densidad:7850 kg/m^3 Peso:279.963 N
Cut-Extrude1	Sólido	Masa:77.7099 kg Volumen:0.00989936 m^3 Densidad:7850 kg/m^3 Peso:761.557 N
Cut-Extrude1	Sólido	Masa:77.7099 kg Volumen:0.00989936 m^3 Densidad:7850 kg/m^3 Peso:761.557 N

Propiedades de estudio

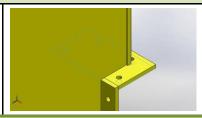
Nombre de estudio	Análisis estático 2
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Propie	edades	Componentes
Ĭ.	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante:	ASTM A36 Steel Isotrópico elástico lineal Desconocido 2.5e+008 N/m^2 4e+008 N/m^2 2e+011 N/m^2 0.26 7850 kg/m^3 7.93e+010 N/m^2	Sólido 1(Mirror1)(VP ala inferior-1), Sólido 1(Boss-Extrude1)(VP ala superior-1), Sólido 1(Mirror1)(VP alma-1), Sólido 1(Mirror1)(VP alma-2), Sólido 1(Boss-Extrude1)(VP tapa lateral-1), Sólido 1(Boss-Extrude1)(VP tapa lateral-2), Sólido 1(Cut-Extrude1)(VP union con testera horizontal-2), Sólido 1(Cut-Extrude1)(VP union con testera horizontal-3), Sólido 1(Cut-Extrude1)(VP union con testera vertical-3), Sólido 1(Cut-Extrude1)(VP union con testera vertical-6)
Datos de curva:N/A			
j.	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante:	ASTM A36 Acero Isotrópico elástico lineal Desconocido 2.5e+008 N/m^2 4e+008 N/m^2 2e+011 N/m^2 0.26 7850 kg/m^3 7.93e+010 N/m^2	Sólido 1(Boss-Extrude1)(VP riel-1)


Cargas y sujeciones

Nombre de sujeción	lmagen de sujeción	Detalles de sujeción
Fijo-1		Entidades: 1 cara(s) Tipo: Geometría fija

Fuerzas resultantes

i dei zas i esultantes				
Componentes	X	Υ	Z	Resultante
Fuerza de reacción(N)	-0.975899	305599	-27361.7	306822
Momento de reacción(N.m)	0	0	0	0

Fijo-2

Entidades: 1 cara(s)
Tipo: Geometría fija

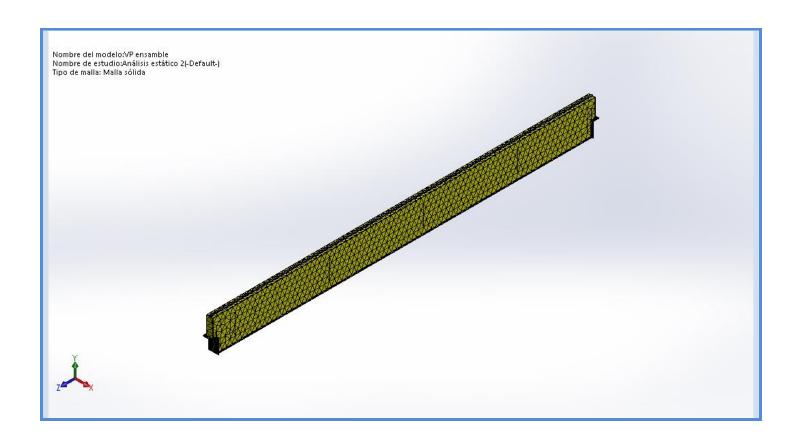
_						
Fıı	erz	25	res	udt	ant	tes

Componentes	X	Υ	Z	Resultante
Fuerza de reacción(N)	2.96287	23475.4	27359.2	36050.3
Momento de reacción(N.m)	0	0	0	0

Nombre de carga	Cargar imagen	Detalles de carga
Fuerza-1	i.	Entidades: 1 plano(s) Referencia: Right Plane Tipo: Aplicar fuerza Valores:, -164530, N
Fuerza-2	i.	Entidades: 1 plano(s) Referencia: Right Plane Tipo: Aplicar fuerza Valores:, -164530, N

Información de contacto

Contacto	Imagen del contacto	Propiedades del contacto
Contacto global	, i	Tipo: Unión rígida Componentes: 1 componente(s) Opciones: Mallado compatible


Información de malla

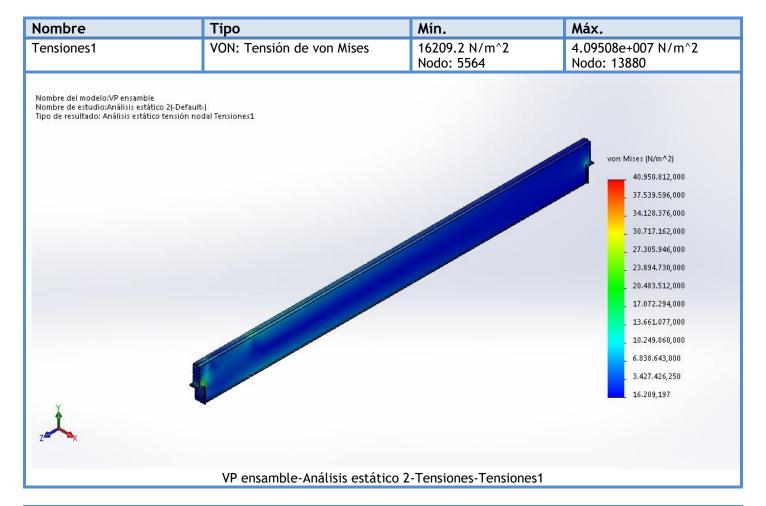
Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	0.262781 m
Tolerancia	0.013139 m
Calidad de malla	Elementos cuadráticos de alto orden
Regenerar la malla de piezas fallidas con malla incompatible	Desactivar

Información de malla - Detalles

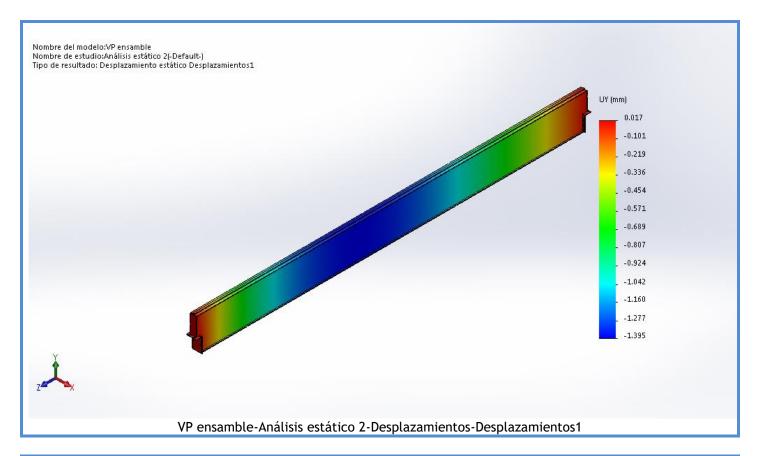
Número total de nodos	24893
Número total de elementos	12983
Cociente máximo de aspecto	74.776
% de elementos cuyo cociente de aspecto es < 3	6.39
% de elementos cuyo cociente de aspecto es > 10	45.9
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:06
Nombre de computadora:	ASUS-PC

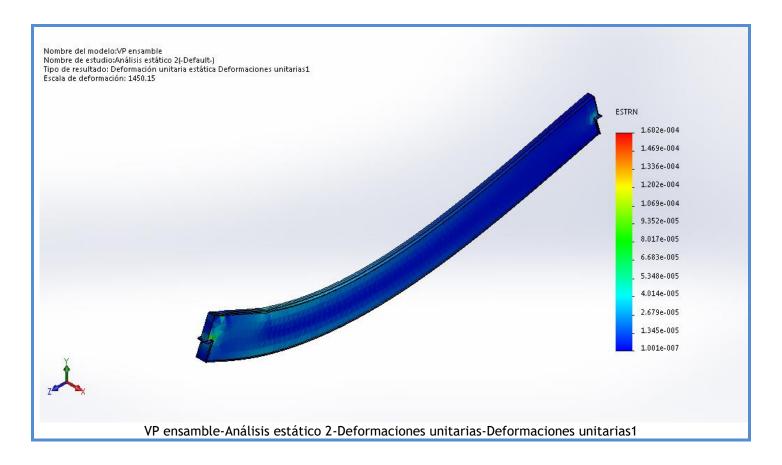
Fuerzas resultantes

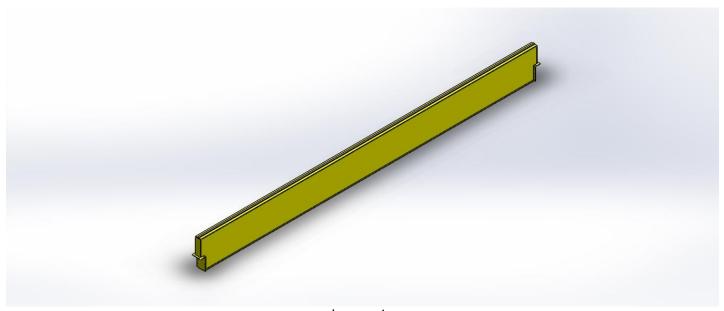
Fuerzas de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	1.98699	329075	-2.44678	329075

Momentos de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0


Resultados del estudio



Nombre	Tipo	Mín.	Máx.
Desplazamientos1	UY: Desplazamiento de Y	-1.395 mm Nodo: 12980	0.0167428 mm Nodo: 20208

Nombre	Tipo	Mín.	Máx.
Deformaciones unitarias1	ESTRN: Deformación unitaria	1.00148e-007	0.000160247
	eguivalente	Elemento: 10744	Elemento: 11433

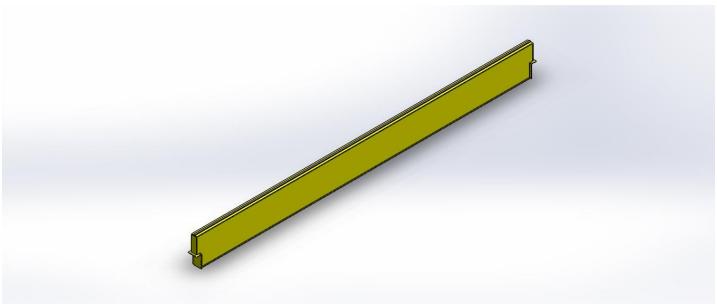
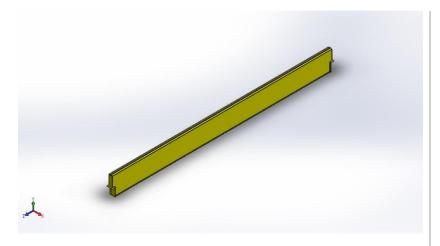



Imagen-2

Descripción

Se realizó la simulación de la viga principal sometida a momento máximo (cuando el carro se encuentra a mitad de la misma).

Simulación de VP ensamble

Fecha: lunes, 27 de enero de 2020

Diseñador: Solidworks

Nombre de estudio: Análisis estático 2 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción1
Información de modelo2
Propiedades de estudio
Unidades
Propiedades de material
Cargas y sujeciones6
Información de contacto
Información de malla
Fuerzas resultantes9
Resultados del estudio

Información de modelo

Nombre de documento y referencia	Tratado como	Propiedades volumétricas
Mirror1	Sólido	Masa:1955.13 kg Volumen:0.249061 m^3 Densidad:7850 kg/m^3 Peso:19160.3 N
Boss-Extrude1	Sólido	Masa:1595.12 kg Volumen:0.2032 m^3 Densidad:7850 kg/m^3 Peso:15632.2 N
Mirror1	Sólido	Masa:6522.56 kg Volumen:0.8309 m^3 Densidad:7850 kg/m^3 Peso:63921.1 N
Mirror1	Sólido	Masa:6522.56 kg Volumen:0.8309 m^3 Densidad:7850 kg/m^3 Peso:63921.1 N
Boss-Extrude1	Sólido	Masa:502.4 kg Volumen:0.064 m^3 Densidad:7850 kg/m^3 Peso:4923.52 N
Boss-Extrude1	Sólido	Masa:59.1359 kg Volumen:0.00753323 m^3 Densidad:7850 kg/m^3 Peso:579.532 N
Boss-Extrude1	Sólido	Masa:59.1359 kg Volumen:0.00753323 m^3 Densidad:7850 kg/m^3 Peso:579.532 N

Cut-Extrude1	Sólido	Masa:28.5677 kg Volumen:0.0036392 m^3 Densidad:7850 kg/m^3 Peso:279.963 N
Cut-Extrude1	Sólido	Masa:28.5677 kg Volumen:0.0036392 m^3 Densidad:7850 kg/m^3 Peso:279.963 N
Cut-Extrude1	Sólido	Masa:77.7099 kg Volumen:0.00989936 m^3 Densidad:7850 kg/m^3 Peso:761.557 N
Cut-Extrude1	Sólido	Masa:77.7099 kg Volumen:0.00989936 m^3 Densidad:7850 kg/m^3 Peso:761.557 N

Propiedades de estudio

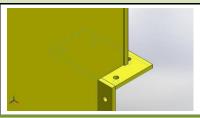
Nombre de estudio	Análisis estático 2
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Nombre: Tipo de modelo: Límite de tracción: ASTM A36 Acero Tipo de modelo: Límite de tracción: ASTM A36 Acero Tipo de modelo: Límite elástico: Límite de tracción: ASTM A36 Acero Tipo de modelo: Límite elástico: Límite elástico: Límite de tracción: Módulo cortante: Nombre: Tipo de modelo: Límite elástico: L	Propiedades de material			
Tipo de modelo: Isotrópico elástico líneal Criterio de error predeterminado: Límite elástico: 2.5e+008 N/m^2 Sólido 1(Mirror1)(VP alma-1), Sólido 1(Boss-Extrude1)(VP tapa lateral-1), Sólido 1(Boss-Extrude1)(VP tapa lateral-1), Sólido 1(Cut-Extrude1)(VP union con testera horizontal-1), Sólido 1(Cut-Extrude1)(VP union con testera horizontal-1), Sólido 1(Cut-Extrude1)(VP union con testera vertical-3), Sólido 1(Cut-Extrude1)(VP union con testera vertical-3), Sólido 1(Cut-Extrude1)(VP union con testera vertical-3), Sólido 1(Cut-Extrude1)(VP union con testera vertical-3) Extrude1)(VP union con testera vertical-3), Sólido 1(Cut-Extrude1)(VP union con testera vertical-6) Extrude1)(VP union c	Referencia de modelo	Propie	edades	Componentes
Nombre: ASTM A36 Acero Tipo de modelo: Isotrópico elástico lineal Criterio de error predeterminado: Límite elástico: 2.5e+008 N/m^2 Límite de tracción: 4e+008 N/m^2 Módulo elástico: 2e+011 N/m^2 Coeficiente de Poisson: Densidad: 7850 kg/m^3 Módulo cortante: 7.93e+010 N/m^2	į.	Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad:	Isotrópico elástico lineal Desconocido 2.5e+008 N/m^2 4e+008 N/m^2 2e+011 N/m^2 0.26 7850 kg/m^3	inferior-1), Sólido 1(Boss-Extrude1)(VP ala superior-1), Sólido 1(Mirror1)(VP alma-1), Sólido 1(Mirror1)(VP alma-2), Sólido 1(Boss-Extrude1)(VP tapa lateral-1), Sólido 1(Boss-Extrude1)(VP tapa lateral-2), Sólido 1(Cut-Extrude1)(VP union con testera horizontal- 2), Sólido 1(Cut-Extrude1)(VP union con testera horizontal- 3), Sólido 1(Cut-Extrude1)(VP union con testera vertical-3),
Tipo de modelo: Isotrópico elástico lineal Criterio de error Desconocido predeterminado: Límite elástico: 2.5e+008 N/m^2 Límite de tracción: 4e+008 N/m^2 Módulo elástico: 2e+011 N/m^2 Coeficiente de 0.26 Poisson: Densidad: 7850 kg/m^3 Módulo cortante: 7.93e+010 N/m^2	Datos de curva:N/A			
Datos de curva:N/A	j.	Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad:	Isotrópico elástico lineal Desconocido 2.5e+008 N/m^2 4e+008 N/m^2 2e+011 N/m^2 0.26 7850 kg/m^3	
	Datos de curva:N/A			


Cargas y sujeciones

Nombre de sujeción	lmagen de sujeción	Detalles de sujeción
Fijo-1		Entidades: 1 cara(s) Tipo: Geometría fija

Fuerzas resultantes

del Zas l'esultantes								
Componentes	X	Υ	Z	Resultante				
Fuerza de reacción(N)	6.13974	174621	-95498.8	199029				
Momento de reacción(N.m)	0	0	0	0				

Fijo-2

Entidades: 1 cara(s)
Tipo: Geometría fija

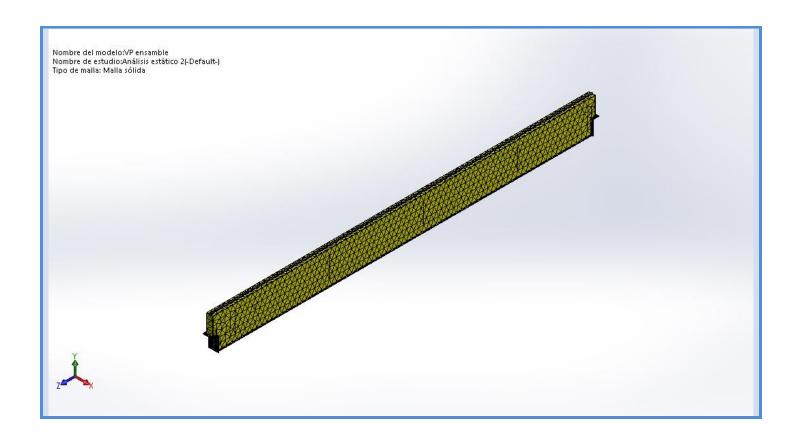
F	п	6	rz	a	<	r	6	S	П	lt	·a	n	ıt	6	2

- uci zus i csultulites	. 45.245 : 5541541155									
Componentes	X	Υ	Z	Resultante						
Fuerza de reacción(N)	48.4313	154540	95392.9	181610						
Momento de reacción(N.m)	0	0	0	0						

Nombre de carga	Cargar imagen	Detalles de carga
Fuerza-1	i.	Entidades: 1 plano(s) Referencia: Right Plane Tipo: Aplicar fuerza Valores:, -164530, N
Fuerza-2	i.	Entidades: 1 plano(s) Referencia: Right Plane Tipo: Aplicar fuerza Valores:, -164530, N

Información de contacto

Contacto	Imagen del contacto	Propiedades d	el contacto
Contacto global		•	Unión rígida 1 componente(s)


Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	0.262781 m
Tolerancia	0.013139 m
Calidad de malla	Elementos cuadráticos de alto orden
Regenerar la malla de piezas fallidas con malla incompatible	Desactivar

Información de malla - Detalles

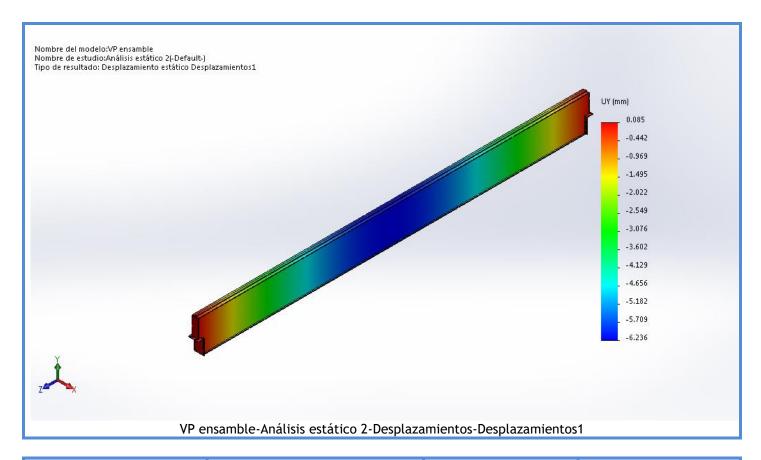
Número total de nodos	24868
Número total de elementos	12962
Cociente máximo de aspecto	58.959
% de elementos cuyo cociente de aspecto es < 3	6.4
% de elementos cuyo cociente de aspecto es > 10	45.9
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:07
Nombre de computadora:	ASUS-PC

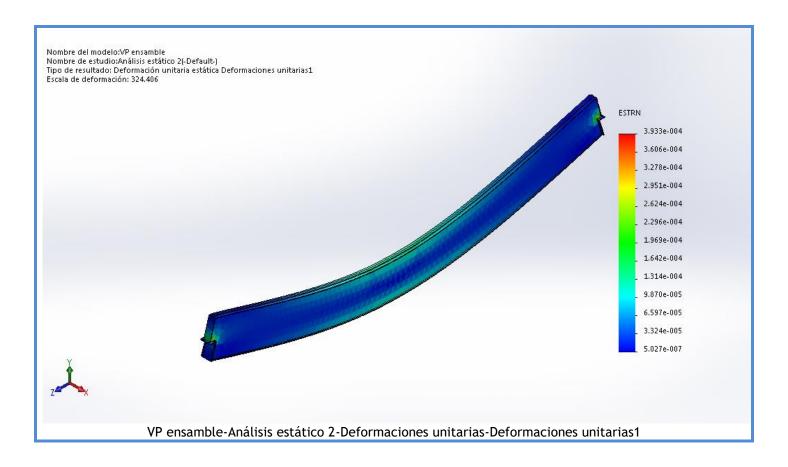
Fuerzas resultantes

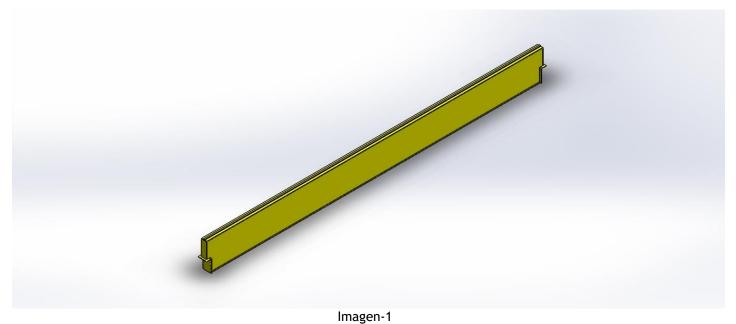
Fuerzas de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	54.5694	329161	-105.864	329161

Momentos de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0


Resultados del estudio


Nombre	Tipo	Mín.	Máx.
Tensiones1	VON: Tensión de von Mises	100604 N/m^2 Nodo: 19709	9.57595e+007 N/m^2 Nodo: 24454
Nombre del modelo:VP ensamble Nombre de estudio:Análisis estático Tipo de resultado: Análisis estático to	2(-Default-) ensión nodal Tensiones 1		
			von Mises (N/m^2)
			95.759.544,000
			87.787.960,000
			_ 79.816.384,000
			_ 71.844.808,000
			_ 63.873.232,000
			_ 55.901.652,000
			_ 47.930.076,000
			_ 39.958.496,000
			_ 31.986.918,000
			_ 24.015.340,000
			_ 16.043.761,000
			8.072.182,500
v.			100.603,805
†			
z ×			
	VP ensamble-Análisis estático	2-Tensiones-Tensiones	1

Nombre	Tipo	Mín.	Máx.
Desplazamientos1	UY: Desplazamiento de Y	-6.2359 mm Nodo: 13230	0.0847843 mm Nodo: 20183

Nombre	Tipo	Mín.	Máx.
Deformaciones unitarias1	ESTRN: Deformación unitaria	5.02733e-007	0.000393292
	equivalente	Elemento: 10723	Elemento: 12960

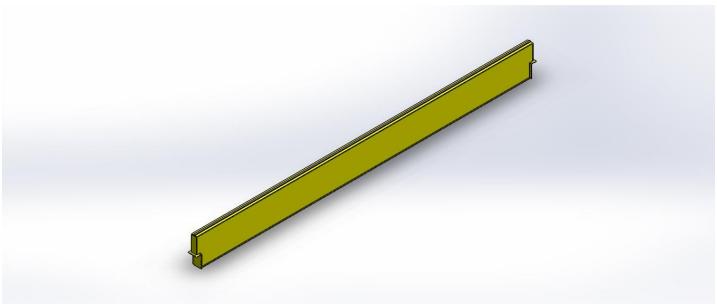
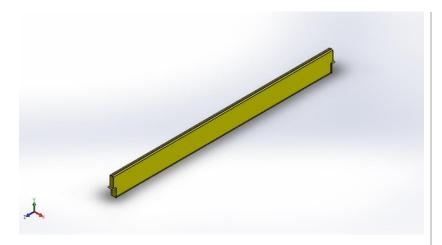



Imagen-2

Descripción

Se realizó la simulación de la viga principal sometida a corte máximo (cuando el carro se encuentra sobre la derecha de la misma).

Simulación de VP ensamble

Fecha: lunes, 27 de enero de 2020

Diseñador: Solidworks

Nombre de estudio: Análisis estático 2 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción	. 1
Información de modelo	. 2
Propiedades de estudio	۷.
Unidades	. 4
Propiedades de material	. 5
Cargas y sujeciones	. 6
Información de contacto	. 7
Información de malla	. 8
Fuerzas resultantes	. 9
Resultados del estudio	1(

Información de modelo

Nombre de documento y referencia	Tratado como	Propiedades volumétricas
Mirror1	Sólido	Masa:1955.13 kg Volumen:0.249061 m^3 Densidad:7850 kg/m^3 Peso:19160.3 N
Boss-Extrude1	Sólido	Masa:1595.12 kg Volumen:0.2032 m^3 Densidad:7850 kg/m^3 Peso:15632.2 N
Mirror1	Sólido	Masa:6522.56 kg Volumen:0.8309 m^3 Densidad:7850 kg/m^3 Peso:63921.1 N
Mirror1	Sólido	Masa:6522.56 kg Volumen:0.8309 m^3 Densidad:7850 kg/m^3 Peso:63921.1 N
Boss-Extrude1	Sólido	Masa:502.4 kg Volumen:0.064 m^3 Densidad:7850 kg/m^3 Peso:4923.52 N
Boss-Extrude1	Sólido	Masa:59.1359 kg Volumen:0.00753323 m^3 Densidad:7850 kg/m^3 Peso:579.532 N
Boss-Extrude1	Sólido	Masa:59.1359 kg Volumen:0.00753323 m^3 Densidad:7850 kg/m^3 Peso:579.532 N

Cut-Extrude1	Sólido	Masa:28.5677 kg Volumen:0.0036392 m^3 Densidad:7850 kg/m^3 Peso:279.963 N
Cut-Extrude1	Sólido	Masa:28.5677 kg Volumen:0.0036392 m^3 Densidad:7850 kg/m^3 Peso:279.963 N
Cut-Extrude1	Sólido	Masa:77.7099 kg Volumen:0.00989936 m^3 Densidad:7850 kg/m^3 Peso:761.557 N
Cut-Extrude1	Sólido	Masa:77.7099 kg Volumen:0.00989936 m^3 Densidad:7850 kg/m^3 Peso:761.557 N

Propiedades de estudio

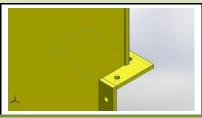
Nombre de estudio	Análisis estático 2
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Propie	edades	Componentes
Ĭ.	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante:	ASTM A36 Steel Isotrópico elástico lineal Desconocido 2.5e+008 N/m^2 4e+008 N/m^2 2e+011 N/m^2 0.26 7850 kg/m^3 7.93e+010 N/m^2	Sólido 1(Mirror1)(VP ala inferior-1), Sólido 1(Boss-Extrude1)(VP ala superior-1), Sólido 1(Mirror1)(VP alma-1), Sólido 1(Mirror1)(VP alma-2), Sólido 1(Boss-Extrude1)(VP tapa lateral-1), Sólido 1(Boss-Extrude1)(VP tapa lateral-2), Sólido 1(Cut-Extrude1)(VP union con testera horizontal-2), Sólido 1(Cut-Extrude1)(VP union con testera horizontal-3), Sólido 1(Cut-Extrude1)(VP union con testera vertical-3), Sólido 1(Cut-Extrude1)(VP union con testera vertical-6)
Datos de curva:N/A			
į.	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante:	ASTM A36 Acero Isotrópico elástico lineal Desconocido 2.5e+008 N/m^2 4e+008 N/m^2 2e+011 N/m^2 0.26 7850 kg/m^3 7.93e+010 N/m^2	Sólido 1(Boss-Extrude1)(VP riel-1)


Cargas y sujeciones

Nombre de sujeción	lmagen de sujeción	Detalles de sujeción
Fijo-1		Entidades: 1 cara(s) Tipo: Geometría fija

Fuerzas resultantes

Tuerzas resultantes				
Componentes	X	Υ	Z	Resultante
Fuerza de reacción(N)	-2.75702	23493	-27321.4	36033
Momento de reacción(N.m)	0	0	0	0

Fijo-2

Entidades: 1 cara(s)
Tipo: Geometría fija

_						
Fıı	erz	25	res	udt	ant	tes

Componentes	X	Υ	Z	Resultante
Fuerza de reacción(N)	13.0093	305570	27316.6	306788
Momento de reacción(N.m)	0	0	0	0

Nombre de carga	Cargar imagen	Detalles de carga
Fuerza-1	į.	Entidades: 1 plano(s) Referencia: Right Plane Tipo: Aplicar fuerza Valores:, -164530, N
Fuerza-2	i.	Entidades: 1 plano(s) Referencia: Right Plane Tipo: Aplicar fuerza Valores:, -164530, N

Información de contacto

Contacto	lmagen del contacto	Propiedades del contacto	
Contacto global		•	Unión rígida 1 componente(s)

Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	0.262781 m
Tolerancia	0.013139 m
Calidad de malla	Elementos cuadráticos de alto orden
Regenerar la malla de piezas fallidas con malla incompatible	Desactivar

Información de malla - Detalles

Número total de nodos	24893
Número total de elementos	12983
Cociente máximo de aspecto	74.776
% de elementos cuyo cociente de aspecto es < 3	6.39
% de elementos cuyo cociente de aspecto es > 10	45.9
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:07
Nombre de computadora:	ASUS-PC

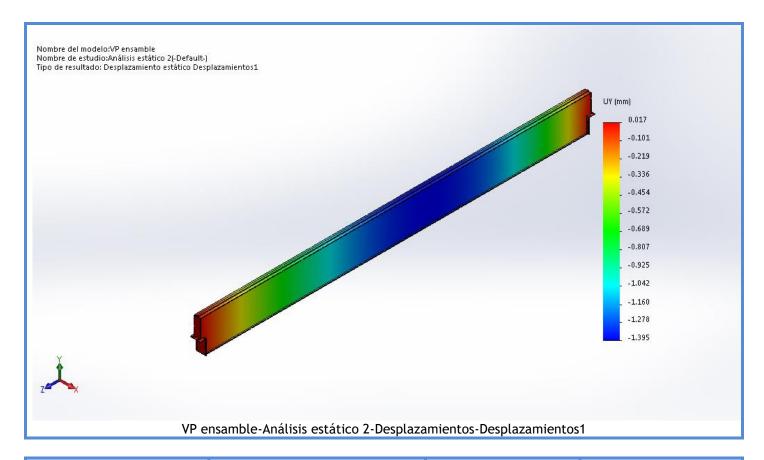
Fuerzas resultantes

Fuerzas de reacción

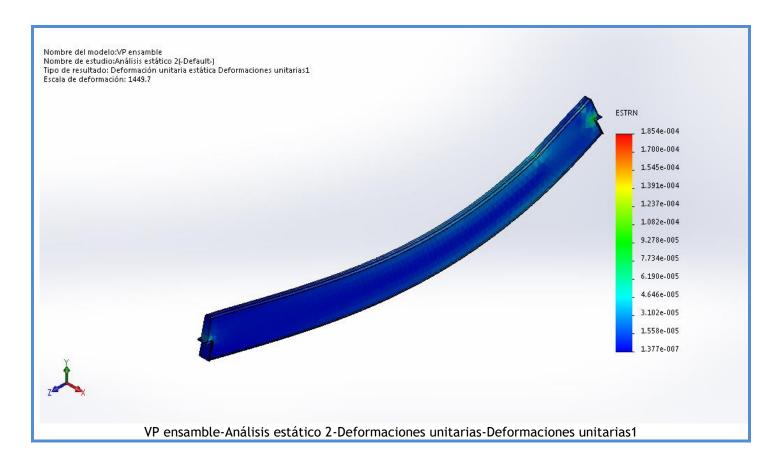
Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	10.2523	329063	-4.84741	329063

Momentos de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0



Resultados del estudio


Nombre	Tipo	Mín.	Máx.
Tensiones1	VON: Tensión de von Mises	20801.9 N/m ² Nodo: 6045	4.77525e+007 N/m^2 Nodo: 24479
Nombre del modelo:VP ensamble Nombre de estudio:Análisis estático 2(-Defa Tipo de resultado: Análisis estático tensión	ult-) nodal Tensiones1		
			von Mises (N/m^2)
			47.752.548,000
			43.774.904,000
			. 39.797.256,000
			35.819.612,000
			_ 31.841.968,000
			27.864.322,000
			23.886.676,000
			19.909.030,000 15.931.385,000
			11.953.739,000
			7.976.093,500
			3.998.447,750
			20.801,893
z ×			
	VP ensamble-Análisis estático	2-Tensiones-Tensiones	

Nombre	Tipo	Mín.	Máx.
Desplazamientos1	UY: Desplazamiento de Y	-1.39544 mm Nodo: 15079	0.016792 mm Nodo: 20331

Nombre	Tipo	Mín.	Máx.
Deformaciones unitarias1	ESTRN: Deformación unitaria	1.37703e-007	0.000185424
	equivalente	Elemento: 11201	Elemento: 12981

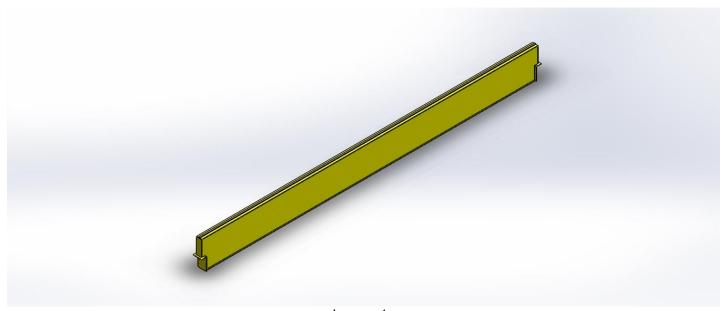


Imagen-1

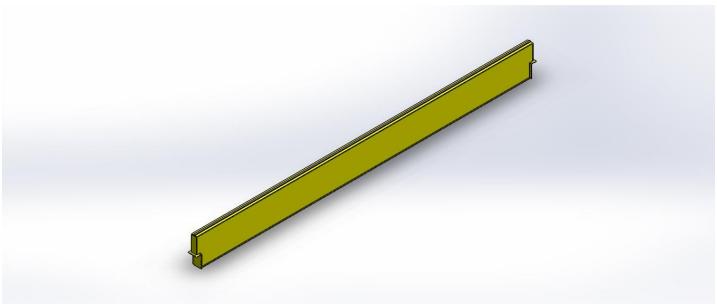
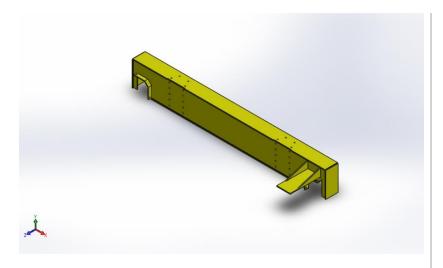



Imagen-2

Descripción

Se realizó la simulación de la viga testera a la deformación de la carga máxima.

Simulación de ensamble viga testera

Fecha: lunes, 27 de enero de 2020

Diseñador: Solidworks

Nombre de estudio: Análisis estático 2 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción1
Información de modelo2
Propiedades de estudio4
Unidades 4
Propiedades de material5
Cargas y sujeciones6
Información de contacto7
Información de malla8
Fuerzas resultantes9
Resultados del estudio

Información de modelo

Nombre de documento y referencia	Tratado como	Propiedades volumétricas
Simetría1	Sólido	Masa:97.6634 kg Volumen:0.0124412 m^3 Densidad:7850 kg/m^3 Peso:957.102 N
Cortar-Extruir15	Sólido	Masa:545.55 kg Volumen:0.0694968 m^3 Densidad:7850 kg/m^3 Peso:5346.39 N
Cortar-Extruir16	Sólido	Masa:557.863 kg Volumen:0.0710654 m^3 Densidad:7850 kg/m^3 Peso:5467.06 N
Simetría1	Sólido	Masa:324.977 kg Volumen:0.0413984 m^3 Densidad:7850 kg/m^3 Peso:3184.78 N
Cut-Extrude2	Sólido	Masa:12.635 kg Volumen:0.00160955 m^3 Densidad:7850 kg/m^3 Peso:123.823 N
Cut-Extrude2	Sólido	Masa:12.635 kg Volumen:0.00160955 m^3 Densidad:7850 kg/m^3 Peso:123.823 N

Cut-Extrude2	Sólido	Masa:12.635 kg Volumen:0.00160955 m^3 Densidad:7850 kg/m^3 Peso:123.823 N
Cut-Extrude2	Sólido	Masa:12.635 kg Volumen:0.00160955 m^3 Densidad:7850 kg/m^3 Peso:123.823 N
Saliente-Extruir1	Sólido	Masa:41.2435 kg Volumen:0.00525395 m^3 Densidad:7850 kg/m^3 Peso:404.187 N
Saliente-Extruir1	Sólido	Masa:41.2435 kg Volumen:0.00525395 m^3 Densidad:7850 kg/m^3 Peso:404.187 N
Simetría1	Sólido	Masa:415.943 kg Volumen:0.0529864 m^3 Densidad:7850 kg/m^3 Peso:4076.24 N

Propiedades de estudio

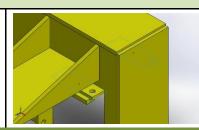
Nombre de estudio	Análisis estático 2
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Propie	edades	Componentes
<u>*</u>	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante:	ASTM A36 Acero Isotrópico elástico lineal Desconocido 2.5e+008 N/m^2 4e+008 N/m^2 2e+011 N/m^2 0.26 7850 kg/m^3 7.93e+010 N/m^2	Sólido 1(Simetría1)(soporte- 1), Sólido 1(Cortar- Extruir15)(viga testera alma exterior-1), Sólido 1(Cortar- Extruir16)(viga testera alma interior-1), Sólido 1(Simetría1)(viga testera piso-1), Sólido 1(Saliente- Extruir1)(viga testera tapa- 1), Sólido 1(Saliente- Extruir1)(viga testera tapa- 2), Sólido 1(Simetría1)(viga testera tapa- 2), Sólido 1(Simetría1)(viga testera techo-1)
Datos de curva:N/A			
*	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante:	ASTM A36 Steel Isotrópico elástico lineal Desconocido 2.5e+008 N/m^2 4e+008 N/m^2 2e+011 N/m^2 0.26 7850 kg/m^3 7.93e+010 N/m^2	Sólido 1(Cut-Extrude2)(viga testera soporte cajera con alma-1), Sólido 1(Cut-Extrude2)(viga testera soporte cajera con alma-2), Sólido 1(Cut-Extrude2)(viga testera soporte cajera con alma-3), Sólido 1(Cut-Extrude2)(viga testera soporte cajera con alma-4)


Cargas y sujeciones

Nombre de sujeción	lmagen de sujeción	Detalles de sujeción
Fijo-1	<u> </u>	Entidades: 2 cara(s) Tipo: Geometría fija

Fuerzas resultantes

uci zus i esuituites					
Componentes	X	Υ	Z	Resultante	
Fuerza de reacción(N)	-2.21289	394709	2.56641	394709	
Momento de	0	0	0	0	
reacción(N.m)	0	0	0	ŭ	

Rodillo/Control deslizante-1

Entidades: 2 cara(s)

Tipo: Rodillo/Control deslizante

Fuerzas resultantes

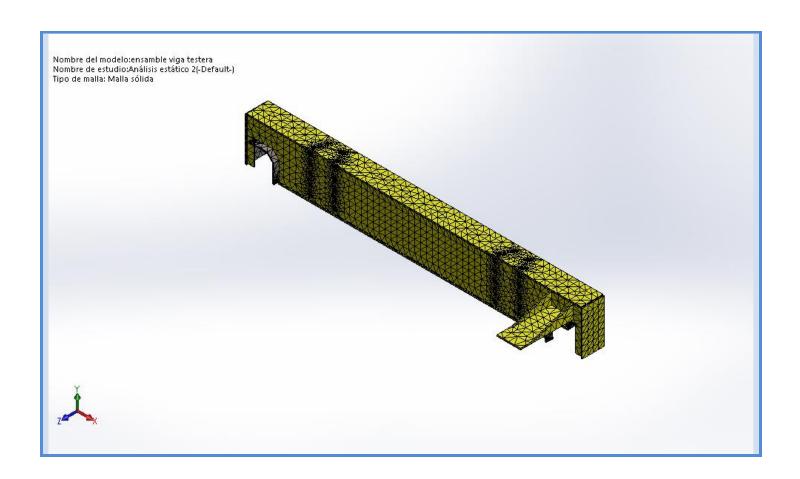
. 45.245.054341105						
Componentes	X	Υ	Z	Resultante		
Fuerza de reacción(N)	0	392950	0	392950		
Momento de reacción(N.m)	0	0	0	0		

Nombre de carga	Cargar imagen	Detalles de carga
Fuerza-1	<u></u>	Referencia: Cara< 1 > Tipo: Aplicar fuerza Valores:, 196900, N

Fuerza-2	<u></u>	Referencia: Tipo: Valores:	Cara< 1 > Aplicar fuerza , 196900, N
Fuerza-3	<u></u>	Referencia: Tipo: Valores:	Cara< 1 > Aplicar fuerza , 196900, N
Fuerza-4	<u></u>		Cara< 1 > Aplicar fuerza , 196900, N

Información de contacto

Contacto	Imagen del contacto	Propiedades del contacto	
Contacto global		Tipo: Unión rígida Componentes: 1 componente(s) Opciones: Mallado compatible	


Información de malla

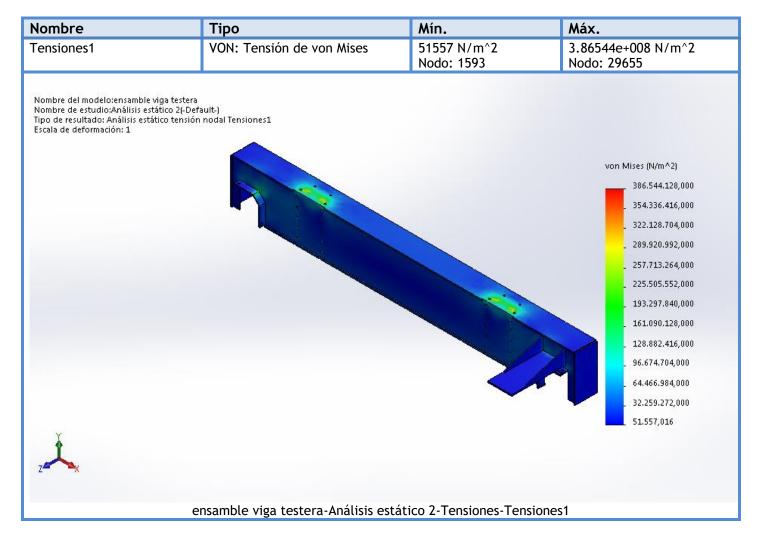
Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	0.102911 m
Tolerancia	0.00514554 m
Calidad de malla	Elementos cuadráticos de alto orden
Regenerar la malla de piezas fallidas con malla incompatible	Desactivar

Información de malla - Detalles

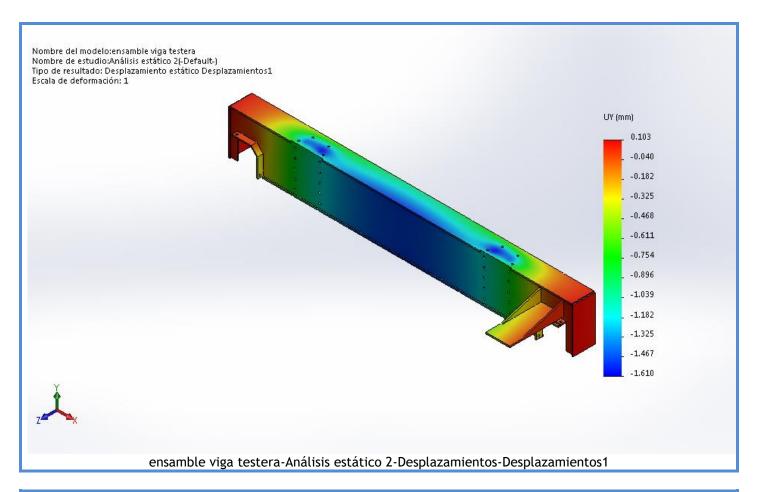
Número total de nodos	30060
Número total de elementos	14647
Cociente máximo de aspecto	87.681
% de elementos cuyo cociente de aspecto es < 3	30.9
% de elementos cuyo cociente de aspecto es > 10	1.3
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:06
Nombre de computadora:	ASUS-PC

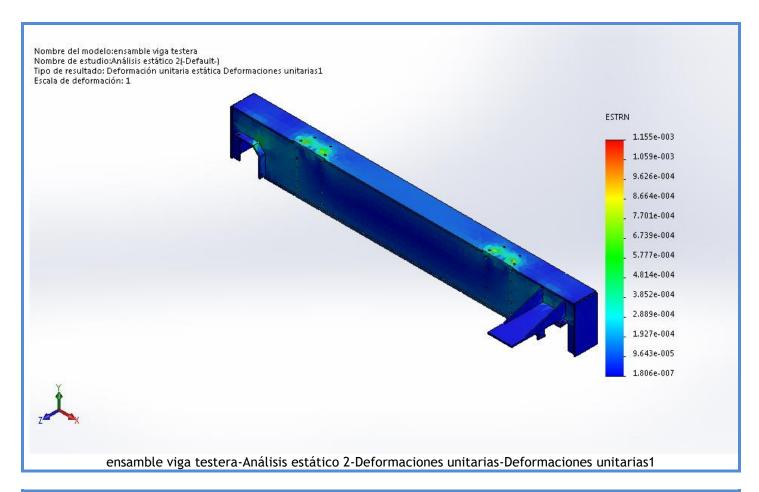
Fuerzas resultantes

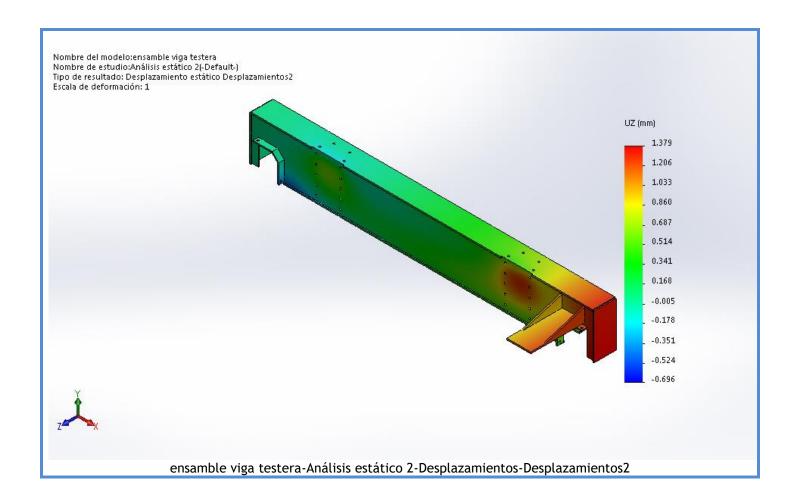
Fuerzas de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	-2.21289	787660	2.56641	787660

Momentos de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0


Resultados del estudio


Nombre	Tipo	Mín.	Máx.
Desplazamientos1	UY: Desplazamiento de Y	-1.61026 mm Nodo: 28574	0.103205 mm Nodo: 22851

Nombre	Tipo	Mín.	Máx.
Deformaciones unitarias1	ESTRN: Deformación unitaria	1.80627e-007	0.00115513
	equivalente	Elemento: 79	Elemento: 11471

Nombre	Tipo	Mín.	Máx.
Desplazamientos2	UZ: Desplazamiento de Z	-0.69648 mm Nodo: 5295	1.37916 mm Nodo: 22855

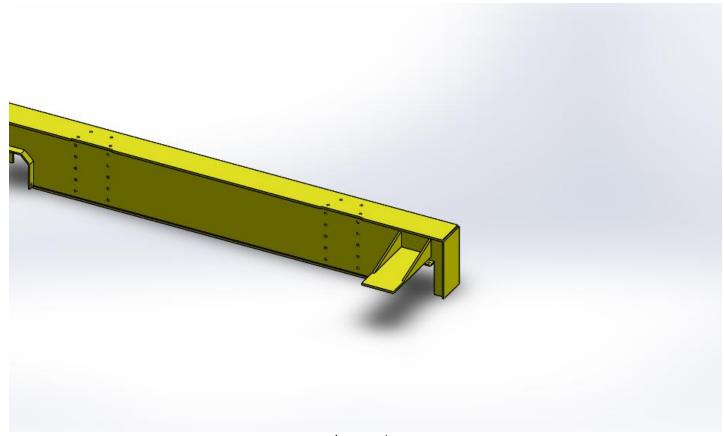


Imagen-1

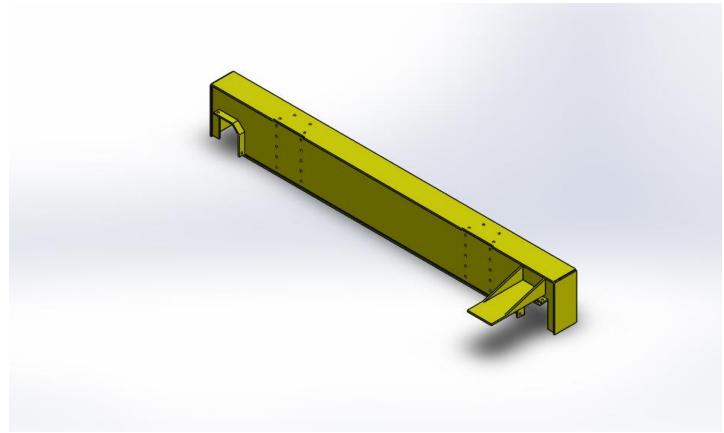


Imagen-2

Descripción

Se realizó la simulación de uno de los tramos de la viga carrilera a la deformación de la carga máxima.

Simulación de tramo de viga carrilera

Fecha: martes, 28 de enero de 2020

Diseñador: Solidworks

Nombre de estudio: Análisis estático 1 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción	1
Información de modelo	2
Propiedades de estudio	2
Unidades	2
Propiedades de material	5
Cargas y sujeciones	6
Información de contacto	7
Información de malla	8
Fuerzas resultantes	ç
Resultados del estudio 1	C

Información de modelo

Nombre de documento y referencia	Tratado como	Propiedades volumétricas
Saliente-Extruir1	Sólido	Masa:1073.29 kg Volumen:0.136725 m^3 Densidad:7850 kg/m^3 Peso:10518.2 N
Saliente-Extruir1	Sólido	Masa:1073.29 kg Volumen:0.136725 m^3 Densidad:7850 kg/m^3 Peso:10518.2 N
Cortar-Extruir1	Sólido	Masa:6.65783 kg Volumen:0.000848132 m^3 Densidad:7850 kg/m^3 Peso:65.2468 N
Cortar-Extruir1	Sólido	Masa:6.65783 kg Volumen:0.000848132 m^3 Densidad:7850 kg/m^3 Peso:65.2468 N
Simetría2	Sólido	Masa:42.0837 kg Volumen:0.00536098 m^3 Densidad:7850 kg/m^3 Peso:412.42 N
Simetría2	Sólido	Masa:42.0837 kg Volumen:0.00536098 m^3 Densidad:7850 kg/m^3 Peso:412.42 N
Simetría2	Sólido	Masa:42.0837 kg Volumen:0.00536098 m^3 Densidad:7850 kg/m^3 Peso:412.42 N

Simetría2	Sólido	Masa:42.0837 kg Volumen:0.00536098 m^3 Densidad:7850 kg/m^3 Peso:412.42 N
Saliente-Extruir2	Sólido	Masa:892.624 kg Volumen:0.11371 m^3 Densidad:7850 kg/m^3 Peso:8747.71 N
Saliente-Extruir1	Sólido	Masa:26.9177 kg Volumen:0.003429 m^3 Densidad:7850 kg/m^3 Peso:263.793 N
Saliente-Extruir1	Sólido	Masa:717.804 kg Volumen:0.09144 m^3 Densidad:7850 kg/m^3 Peso:7034.48 N
Saliente-Extruir1	Sólido	Masa:717.804 kg Volumen:0.09144 m^3 Densidad:7850 kg/m^3 Peso:7034.48 N

Propiedades de estudio

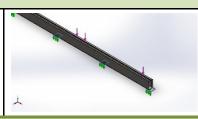
Nombre de estudio	Análisis estático 1
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Propiedades		Componentes
	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante:	ASTM A36 Acero Isotrópico elástico lineal Desconocido 2.5e+008 N/m^2 4e+008 N/m^2 2e+011 N/m^2 0.26 7850 kg/m^3 7.93e+010 N/m^2	Sólido 1(Saliente-Extruir1)(viga carrilera ALMA-1), Sólido 1(Saliente-Extruir1)(viga carrilera ALMA-2), Sólido 1(Cortar-Extruir1)(viga carrilera BRIDA-1), Sólido 1(Cortar-Extruir1)(viga carrilera BRIDA-2), Sólido 1(Simetría2)(viga carrilera PLACA SOPORTE en Vg-1), Sólido 1(Simetría2)(viga carrilera PLACA SOPORTE en Vg-2), Sólido 1(Simetría2)(viga carrilera PLACA SOPORTE en Vg-3), Sólido 1(Simetría2)(viga carrilera PLACA SOPORTE en Vg-3), Sólido 1(Simetría2)(viga carrilera PLACA SOPORTE en Vg-4), Sólido 1(Saliente-Extruir2)(viga carrilera RIEL-1), Sólido 1(Saliente-Extruir1)(viga carrilera TAPA-1), Sólido 1(Saliente-Extruir1)(viga carrilera TAPA-1), Sólido 1(Saliente-Extruir1)(viga carrilera TECHO PISO-1), Sólido 1(Saliente-Extruir1)(viga carrilera TECHO PISO-2)


Cargas y sujeciones

Nombre de sujeción	lmagen de sujeción	Detalles de sujeción
Fijo-1		Entidades: 1 cara(s) Tipo: Geometría fija

Fuerzas resultantes

Componentes	Х	Υ	Z	Resultante
Fuerza de reacción(N)	0.854669	311676	-2.0718	311676
Momento de reacción(N.m)	0	0	0	0

Rodillo/Control deslizante-1

Entidades: 3 cara(s)
Tipo: Rodillo/Control deslizante

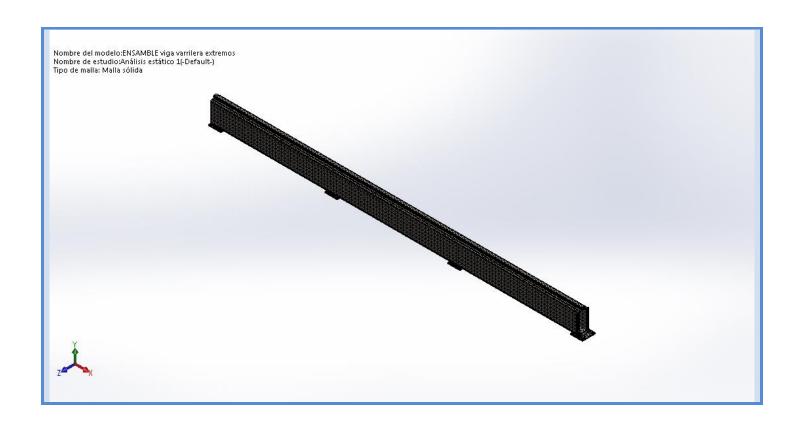
ruerzas resultantes				
Componentes	X	Υ	Z	Resultante
Fuerza de reacción(N)	0	1.31271e+006	0	1.31271e+006
Momento de reacción(N.m)	0	0	0	0

Nombre de carga	Cargar imagen	Detalles de carga
Fuerza-1	X	Referencia: Cara< 1 > Tipo: Aplicar fuerza Valores: -406100,, N
Fuerza-2	<u></u>	Referencia: Cara< 1 > Tipo: Aplicar fuerza Valores: -406100,, N

Fuerza-3		Referencia: Tipo: Valores:	Cara< 1 > Aplicar fuerza -406100,, N
Fuerza-4	, the state of the		Cara< 1 > Aplicar fuerza -406100,, N

Información de contacto

Contacto	Imagen del contacto	Propiedades del contacto	
Contacto global	į.	Tipo: Unión rígida Componentes: 1 componente(s) Opciones: Mallado compatible	


Información de malla

Tipo de malla	Malla sólida		
Mallador utilizado:	Malla estándar		
Transición automática:	Desactivar		
Incluir bucles automáticos de malla:	Desactivar		
Puntos jacobianos	4 Puntos		
Tamaño de elementos	0.10014 m		
Tolerancia	0.00500699 m		
Calidad de malla	Elementos cuadráticos de alto orden		
Regenerar la malla de piezas fallidas con malla incompatible	Desactivar		

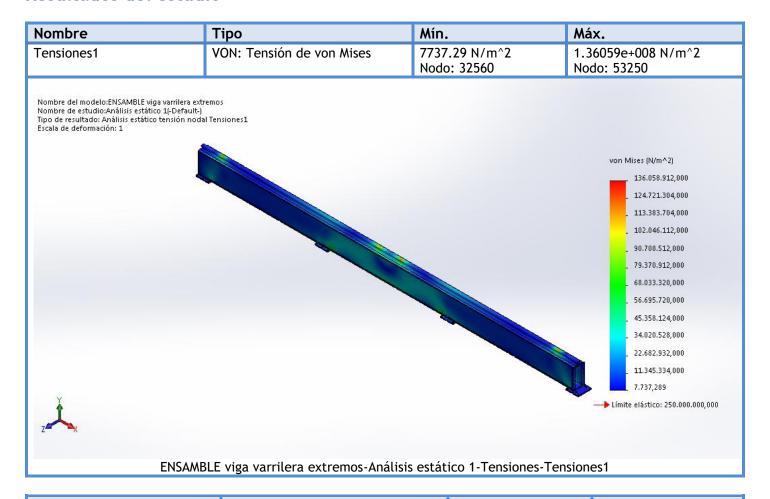
Información de malla - Detalles

Número total de nodos	67419	
Número total de elementos	36506	
Cociente máximo de aspecto	33.724	
% de elementos cuyo cociente de aspecto es < 3	8.78	
% de elementos cuyo cociente de aspecto es > 10	20.7	
% de elementos distorsionados (Jacobiana)	0	
Tiempo para completar la malla (hh;mm;ss):	00:00:18	
Nombre de computadora:	ASUS-PC	

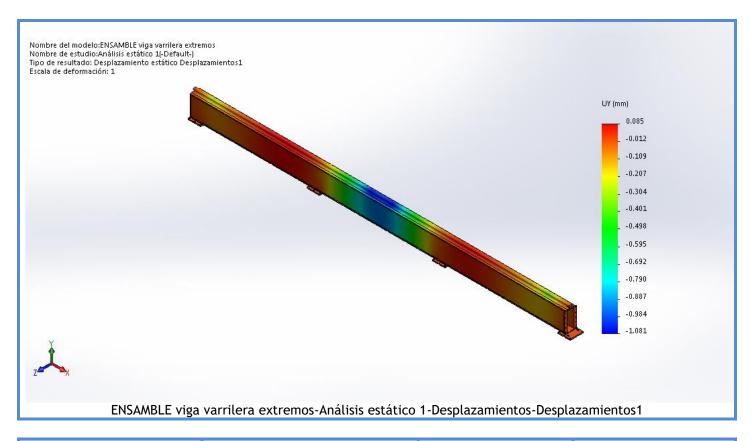
Fuerzas resultantes

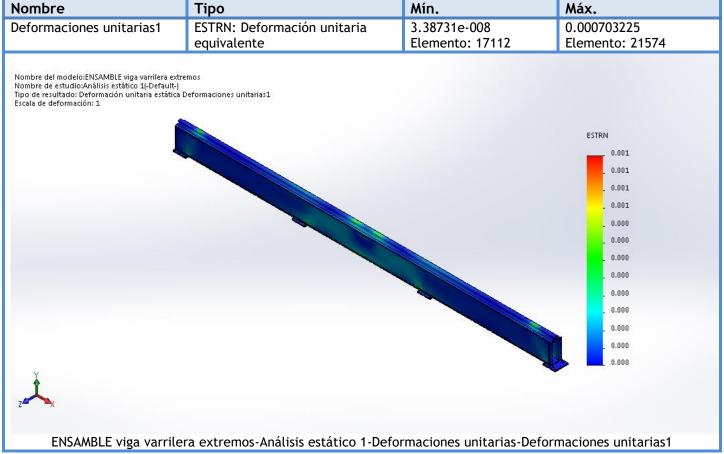
Fuerzas de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	0.854669	1.62439e+006	-2.0718	1.62439e+006


Momentos de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0


Analizado con SOLIDWORKS Simulation


Resultados del estudio

Nombre	Tipo	Mín.	Máx.
Desplazamientos1	UY: Desplazamiento de Y	-1.08126 mm	0.0850374 mm
		Nodo: 47631	Nodo: 2227

Nombre	Tipo	Mín.	Máx.
Desplazamientos2	UZ: Desplazamiento de Z	-0.240579 mm Nodo: 15941	0.188731 mm Nodo: 1116
Nombre del modelo:ENSAMBLE viga varrilera extremo Nombre de estudio:Análisis estático 1(-Default-) Tipo de resultado: Desplazamiento estático Desplaza Escala de deformación: 1			
			UZ (mm)
			1.887e-001 1.530e-001
			1.172e-001
			8.140e-002
			_ 4.563e-002
			_ 9.852e-003
			2.592e-002
			6.170e-002
		100	9.748e-002
			1.333e-001
			-1.690e-001
			2.048e-001
z X			-2.406e-001
ENSAMBLE viga v	arrilera extremos-Análisis estático	1-Desplazamientos-Desp	lazamientos2

Descripción

Se realizó la simulación de la percha de izaje a la deformación de la carga máxima.

Simulación de **ENSAMBLE**

Fecha: lunes, 27 de enero de 2020

Diseñador: Solidworks

Nombre de estudio: Análisis estático 1 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción
Información de modelo
Propiedades de estudio
Unidades
Propiedades de material
Cargas y sujeciones
Información de contacto
Información de malla
Fuerzas resultantes
Resultados del estudio

Información de modelo

Nombre de documento y referencia	Tratado como	Propiedades volumétricas
Cut-Extrude1	Sólido	Masa:38.9349 kg Volumen:0.00495985 m^3 Densidad:7850 kg/m^3 Peso:381.562 N
Cut-Extrude1	Sólido	Masa:248.36 kg Volumen:0.0316382 m^3 Densidad:7850 kg/m^3 Peso:2433.93 N
Cut-Extrude1	Sólido	Masa:248.36 kg Volumen:0.0316382 m^3 Densidad:7850 kg/m^3 Peso:2433.93 N
Cut-Extrude1	Sólido	Masa:52.3855 kg Volumen:0.00667332 m^3 Densidad:7850 kg/m^3 Peso:513.378 N
Cut-Extrude1	Sólido	Masa:45.2699 kg Volumen:0.00576687 m^3 Densidad:7850 kg/m^3 Peso:443.645 N
Cut-Extrude1	Sólido	Masa:23.5528 kg Volumen:0.00300036 m^3 Densidad:7850 kg/m^3 Peso:230.818 N
Cut-Extrude1	Sólido	Masa:23.5528 kg Volumen:0.00300036 m^3 Densidad:7850 kg/m^3 Peso:230.818 N

6 . 5		
Cut-Extrude1	Sólido	Masa:217.076 kg Volumen:0.027653 m^3 Densidad:7850 kg/m^3 Peso:2127.34 N
Boss-Extrude1	Sólido	Masa:19.939 kg Volumen:0.00254 m^3 Densidad:7850 kg/m^3 Peso:195.402 N
Boss-Extrude1	Sólido	Masa:19.939 kg Volumen:0.00254 m^3 Densidad:7850 kg/m^3 Peso:195.402 N
Boss-Extrude1	Sólido	Masa:239.268 kg Volumen:0.03048 m^3 Densidad:7850 kg/m^3 Peso:2344.83 N
Boss-Extrude1	Sólido	Masa:26.5215 kg Volumen:0.00337854 m^3 Densidad:7850 kg/m^3 Peso:259.911 N
Boss-Extrude1	Sólido	Masa:26.5215 kg Volumen:0.00337854 m^3 Densidad:7850 kg/m^3 Peso:259.911 N
Boss-Extrude1	Sólido	Masa:26.5215 kg Volumen:0.00337854 m^3 Densidad:7850 kg/m^3 Peso:259.911 N
Boss-Extrude1	Sólido	Masa:26.5215 kg Volumen:0.00337854 m^3 Densidad:7850 kg/m^3 Peso:259.911 N

Propiedades de estudio

Nombre de estudio	Análisis estático 1
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción:	AISI 1045 Steel, cold drawn Isotrópico elástico lineal Desconocido 5.3e+008 N/m^2	Componentes Sólido 1(Cut-Extrude1)(Perno tijera interior-1), Sólido 1(Cut-Extrude1)(perno central percha-1), Sólido 1(Cut-Extrude1)(perno tijera exterior-1),
	Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	6.25e+008 N/m ² 2.05e+011 N/m ² 0.29 7850 kg/m ³ 8e+010 N/m ² 1.2e-005 /Kelvin	Sólido 1(Cut- Extrude1)(pernos laterales percha-1), Sólido 1(Cut- Extrude1)(pernos laterales percha-2)
į.	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante:	ASTM A36 Steel Isotrópico elástico lineal Desconocido 2.5e+008 N/m^2 4e+008 N/m^2 2e+011 N/m^2 0.26 7850 kg/m^3 7.93e+010 N/m^2	Sólido 1(Cut-Extrude1)(pared percha-1), Sólido 1(Cut-Extrude1)(pared percha-2), Sólido 1(Cut-Extrude1)(piso percha-1), Sólido 1(Boss-Extrude1)(tapas percha-1), Sólido 1(Boss-Extrude1)(tapas percha-2), Sólido 1(Boss-Extrude1)(techo percha-1), Sólido 1(Boss-Extrude1)(tijeras percha-1), Sólido 1(Boss-Extrude1)(tijeras percha-2), Sólido 1(Boss-Extrude1)(tijeras percha-2), Sólido 1(Boss-Extrude1)(tijeras percha-3), Sólido 1(Boss-Extrude1)(tijeras percha-3), Sólido 1(Boss-

Cargas y sujeciones

Nombre de sujeción	lmagen de sujeción	Detalles de sujeción
Fijo-1	i Mask	Entidades: 2 cara(s) Tipo: Geometría fija

Fuerzas resultantes Resultante Componentes Χ Υ Z Fuerza de reacción(N) -38.0123 441112 17.8638 441112 Momento de 0 0 0 0 reacción(N.m)

Nombre de carga	Cargar imagen	Detalles de carga
Fuerza-1	i.	Entidades: 1 cara(s) Referencia: Cara< 1 > Tipo: Aplicar fuerza Valores:, 220650, N
Fuerza-2	i.	Entidades: 1 cara(s) Referencia: Cara< 1 > Tipo: Aplicar fuerza Valores:, 220650, N

Información de contacto

Contacto	Imagen del contacto	Propiedades del	contacto
Contacto global	i de la constant de l	Componentes: 1 C Opciones: N	Jnión rígida componente(s) Aallado compatible


Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	0.0686926 m
Tolerancia	0.00343463 m
Calidad de malla	Elementos cuadráticos de alto orden
Regenerar la malla de piezas fallidas con malla incompatible	Desactivar

Información de malla - Detalles

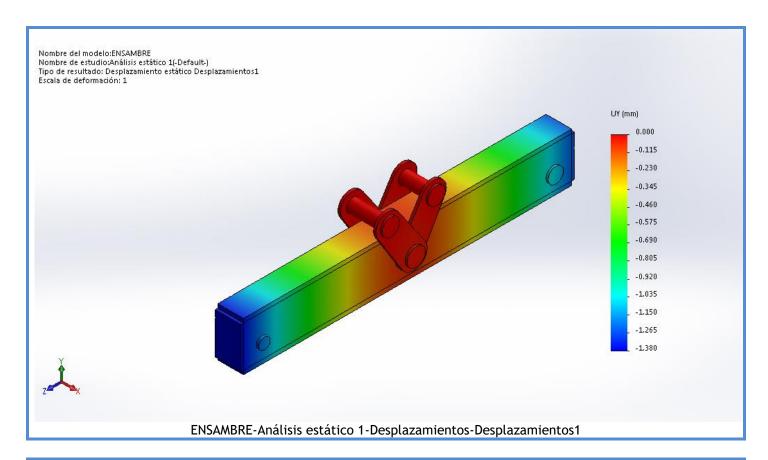
Número total de nodos	19679
Número total de elementos	10032
Cociente máximo de aspecto	73.326
% de elementos cuyo cociente de aspecto es < 3	66.2
% de elementos cuyo cociente de aspecto es > 10	2.21
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:06
Nombre de computadora:	ASUS-PC

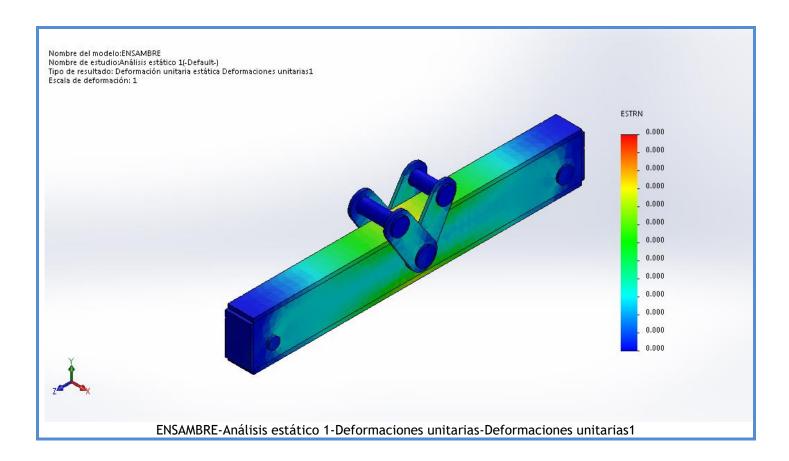
Fuerzas resultantes

Fuerzas de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	-38.0123	441112	17.8638	441112

Momentos de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0


Resultados del estudio

Nombre	Tipo	Mín.	Máx.
Tensiones1	VON: Tensión de von Mises	353.112 N/m^2 Nodo: 10801	1.22968e+008 N/m^2 Nodo: 9479
Nombre del modelo:ENSAMBRE Nombre de estudio:Análisis estático 1(-Default- Tipo de resultado: Análisis estático tensión noc Escala de deformación: 1	-) dal Tensiones 1		
			von Mises (N/m^2)
			122.968.288,000
			_ 112.720.960,000
			_ 102.473.632,000
			_ 92.226.304,000
			_ 81.978.976,000
			_ 71.731.648,000
			_ 61.484.320,000
			_ 51.236.992,000
			_ 40.989.664,000
			_ 30.742.338,000
			20.495.010,000
			10.247.681,000
	O		353.112
À			
z-X			
	ENSAMBRE-Análisis estático 1-	Tensiones-Tensiones1	

Tipo	Mín.	Máx.
UY: Desplazamiento de Y	-1.37959 mm Nodo: 15024	0.000129553 mm Nodo: 18657
	•	UY: Desplazamiento de Y -1.37959 mm

Nombre	Tipo	Mín.	Máx.
Deformaciones unitarias1	ESTRN: Deformación unitaria	1.47797e-009	0.000344728
	equivalente	Elemento: 4983	Elemento: 4446

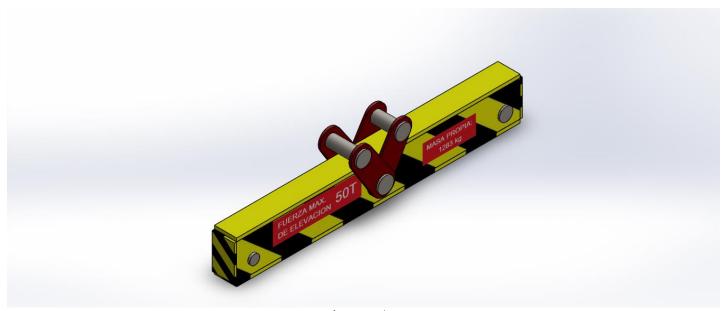


Imagen-1

PROYECTO FINAL DE CARRERA (P F C)

Diseño de grúa para Trenes Argentinos Cargas de Concordia

Resumen Ejecutivo y Agradecimientos

Proyecto Nº: PFC-1909A

Autores: Ledesma, Franco

Pezzatti, Santiago

Tutor: Ing. Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. Aníbal De Carli

AÑO 2019

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Contenido

Resumen ejecutivo	1
Abstract	1
Agradecimientos	2
0	

Resumen ejecutivo

Este proyecto consiste en el cambio y mejora del sistema de elevación de locomotoras para su correcto mantenimiento. El lugar donde se llevará a cabo es en el taller del área de mantenimiento de la estación de ferrocarril ubicada en la ciudad de Concordia, perteneciente a Trenes Argentinos Cargas. La tarea a realizar es el diseño de un correcto sistema de elevación, más seguro y eficiente que el utilizado en la actualidad.

El sistema actual de izaje de locomotoras es realizado con una grúa ferroviaria Takraf con una capacidad de 120 toneladas, la misma fue adquirida para el uso en tareas de descarrilo en zonas aledañas. Además de cumplir con dicha tarea, es utilizada para tareas de mantenimiento lo cual no es correcto ni seguro.

Para brindar una solución segura a las tareas de mantenimiento se propuso un diseño de 2 puentes grúa, los cuales en conjunto proporcionan la capacidad de carga para izar la locomotora de mayor porte de la flota que representaría el caso más desfavorable (120tn). Los mismos se instalarán en uno de los galpones existentes en el taller, al cual se le deberá realizar una remodelación en la altura de su techo ya que no cuenta con la altura requerida, es decir, es muy bajo y debe elevarse.

Abstract

This project involves the change and improvement of the locomotive acceleration system for proper maintenance. The place where it will take place is the highest in the maintenance area of the railway station located in the city of Concordia, belonging to Argentinian Freight Trains. The task to be carried out is the design of a correct system that is correct, safer and more efficient than the one currently used.

The current locomotive lifting system is carried out with a Takraf railway crane with a capacity of 120 tons, it was acquired for use in derailment tasks in surrounding areas. In addition to fulfilling this task, it is used for maintenance tasks which is neither correct nor safe.

To provide a safe solution to the maintenance tasks, a design of 2 crane bridges was proposed, which together provide the load capacity to lift the largest locomotive in the fleet that would represent the most unfavorable case (120tn). They will be installed in one of the existing warehouses in the workshop, which will have to be remodeled at the height of its roof since it does not have the required height, that is, it is very low and must be raised.

Agradecimientos

A nuestras familias y amigos, por el apoyo brindado durante los años de carrera.

A Trenes Argentinos Cargas, en especial al Jefe de Mantenimiento Cristian Maschke por su buena predisposición para colaborar con el proyecto.

Al Ing. Guillermo Reynoso, por su acompañamiento constante como tutor.

A la comunidad de la UTN FRCU, por brindar el espacio para desarrollar nuestros estudios y estar siempre a nuestra disposición.