
Fuzzy Bi-Objective Particle Swarm Optimization

for Next Release Problem

Carlos Casanova∗, Giovanni Daián Rottoli∗, Esteban Schab∗, Luciano Bracco∗,

Fernando Pereyra∗ and Anabella De Battista∗

∗ Computational Intelligence and Software Engineering Research Group (GIICIS)

Regional Faculty from Concepción del Uruguay.

National Technological University (UTN), Entre Rı́os, Argentina.

Email: {casanovac,rottolig,schabe,braccol,pereyraf,debattistaa}@frcu.utn.edu.ar

Abstract—In search-based software engineering (SBSE),
software engineers usually have to select one among many
quasi-optimal solutions with different values for the objectives
of interest for a particular problem domain. Because of
this, a metaheuristic algorithm is needed to explore a larger
extension of the Pareto optimal front to provide a bigger set
of possible solutions. In this regard the Fuzzy Multi-Objective
Particle Swarm Optimization (FMOPSO), a novel a posteriori
algorithm, is proposed in this paper and compared with other
state-of-the-art algorithms. The results show that FMOPSO is
adequate for finding very detailed Pareto Fronts.

Index Terms—Search-Based Software Engineering;
Multi-Objective Optimization; Particle Swarm Optimization;
Next Release Problem; Fuzzy Logic.

I. INTRODUCTION

Search-Based Software Engineering (SBSE) is a discipline

that aims to help software engineers build high quality

software through the application of search methods. The main

strategy is to change the focus from describing how to develop

the software to describing what the software characteristics

are. This description has to be codified to be understood by a

search algorithm capable of generating new possible products

and evaluate their quality using a set of rules provided by the

engineer [1].

The problems to be solved using this type of approach are

formulated as optimization problems that have, in the majority

of the cases, a combinatorial search space and multiple

objectives. Because of this, metaheuristics are generaly

used, discarding classical methods for optimization such as

mathematical programming.

This paper introduces a first version of a novel metaheuristic

algorithm named Fuzzy Multi-Objective Particle Swarm

Optimization (FMOPSO), designed to deal with this kind

of problems by creating a fitness function of multiple

objectives using fuzzy weight factors. Different configurations

of this fitness function are used to guide the method

in the aproximation of the Pareto-optimal front. This

new algorithm has been tested on two instances of a

well-known Search-Based Software Engineering problem, the

Next Release Problem (NRP).

DOI reference number: 10.18293/SEKE2019-082

This problem, first proposed by [2], is aimed at finding

a requirement subset to be implemented that satisfy the

stakeholders’ needs, looking for the maximization of the profit

and minimization of the implementation cost [3]. In addition, it

may also be restricted by dependencies between requirements

such as precedence and simultaneity, among others.

The rest of this paper is organized as follows. In Section

II the multi-objective optimization is introduced. Section III

describes the Fuzzy Bi-Objective Particle Swarm Optimization

algorithm proposed in this paper. Section IV explores the

behavior of this proposal and compares it with another well

known state-of-the-art algorithms. Finally, Section V contains

the conclusions and future work.

II. MULTI-OBJECTIVE OPTIMIZATION

A commonly used optimization approach consists on

selecting as objective function one of the system’s attributes

and using it to define the (total) order of preferences of the

feasible solutions, resulting a mono-objective problem. The

rest of the attributes modeled as constraints.

On the other hand, the multi-objective optimization

approach uses several attributes as objective function. These

objectives compete against each other defining a partial order

on the solution space where there are solutions that are not

comparable a priori. This partial order is called Dominance

Relation. The set of all the non-dominated solutions is called

Pareto Front, and is the result of an optimization method

that makes no assumptions about the preferences of the

decision-maker.

It is important for the Pareto Front to be as detailed as

possible so the decision-maker can select the solution that

best fits their needs. Additionally, the Pareto Front provides

valuable information about the relation between the competing

objectives to use to analyze “What if...?” questions.

III. FUZZY MULTI-OBJECTIVE PARTICLE SWARM

OPTIMIZATION

Particle Swarm Optimization (PSO) is a population-based

metaheuristic, which means that in each iteration there is a

set (swarm) of possible solutions called particles that move

through the search space to find new solutions.

509





1). Therefore, the fitness function evaluated for a position X

in group j is:

µD(X, j) = min

(

µC

(

X,
2(j − 1)

(n− 1)

)

, µB

(

X, 2−
2(j − 1)

(n− 1)

))

(8)

C. Topology and individual best updates

A key aspect to consider when using PSO is to define how

the particles communicate with each other. The component

that rules this communication is called topology.

Assuming that there are n different weighting factors values

or, in other words, n groups into the swarm, the particles

assigned to the jth group share a single best group position

denoted bj that is used into the memory term of the movement

equation. If each group has the same number of particles,

say m, the swarm is thus arranged in a matrix Mm×n.

Consequently, each particle can be denoted with a double

subindex (i, j), with 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Additionally, each particle has access to the best position

reached by its adjacent groups bj−1 and bj+1, if they exist. In

order to determine the position to be used in the cooperation

term, the one with the highest value is selected.

Furthermore, an additional rule has to be taken into account

to update the best group solutions bj . When a new position

X
[k+1]
ij is computed, it is evaluated according to at most

three version of the fitness function: µD(X
[k+1]
ij , j − 1),

µD(X
[k+1]
ij , j) and µD(X

[k+1]
ij , j + 1).

As each particle is affected by its neighbours, this particle

can find a good solution to its own fitness function version

or to the version of its neighbors. Thus, when it is time

to update the best group positions, bj , the new position to

be evaluated are X
[k+1]
il , with i ∈ {1, . . . ,m} and l ∈

{max(1, j − 1), . . . ,min(j + 1, n)}.

D. Binary Operators

The binary operations used in the FMOPSO implementation

are Xor, And & Or from Boole’s Algebra, denoted by ⊕, ·,
+, respectively. In this approach, the movement equation leave

aside the inertia term:

V
[k+1]
ij = r

[k+1]
1 ·

(

b
[k]
j ⊕X

[k]
ij

)

+ r
[k+1]
2 ·

(

b
[k]
V j

⊕X
[k]
ij

)

(9)

This rule can compute an unfeasible position, thus, the

Xor operation related to the movement is performed in

increasing order adding predecessors or removing successors,

as appropriate.

Finally, if the particle does not change its position in two

consecutive iterations, a mutation is applied on a random

component to invert its value, adding predecessors or removing

successors too.

IV. EXPERIMENTAL DESIGN

A study on two NRP instances obtained from the classic set

of instances of [8] were performed. The first one, named nrp1

has 140 requirements and 100 stakeholders. The second one,

named nrp2, has 620 requirements and 500 stakeholders. Both

instances have precedence relations between requirements. The

reference values Bmin and Cmin were set to 0 for both

instances. The values for Bmax were 2909 for nrp1 and

14708 for nrp2. The values for Cmax were 787 for nrp1 and

4758 for nrp2. These values were found through an exact

mono-objective optimization using Branch & Bound.

Several tests were conducted on the aforementioned

instances using the proposed FMOPSO algorithm. The

results were compared with two widely used state-of-the-art

algorithms: NSGA-II (Non-Dominated Sorting Genetic

Algorithm) [9] and IBEA (Indicator-Based Evolutionary

Algorithm) [10].

The metrics used for the comparison were the Hypervolume

(HV), to evaluate the quality of the solution, and the Pareto

Front Size (PFS), to assess the population diversity [11].

The parameters were tuned ad-hoc by executing each

algorithm 5 times with many different configurations to find

the best set of values. The best configurations were selected

according to the median of the Hypervolume. With this best

setting for each algorithm, 10 more executions were performed

to obtain a representative value distribution of the selected

metrics. All the partial results can be found in [12].

The software used for the experiment was written in C++

using and extending the ParadisEO library [13]. FMOPSO

was implemented by the authors. The ParadisEO’s versions of

NSGA-II and IBEA were used. The crossover operator used

to produce two new individuals is equivalent to the boolean

operators + and ·. The mutation operator is the same used in

the FMOPSO, as mentioned before. The code can be found in

https://github.com/casanovac/FMOPSO.

The running time was the same for all the algorithms: 30

seconds for nrp1 and 60 seconds for nrp2.

A. Results

The results (Table I) show that FMOPSO is a better option

regarding diversity, this is, the values for the PFS metric,

obtained using this algorithm, are higher than those obtained

using the state-of-the-art alternatives. However, FMOPSO

is overtaken by IBEA for the Hypervolume, but shows a

better performance than NSGA-II, a widely used algorithm

in Search-Based Software Engineering (Fig. 2).

Additionally, Figure 3 shows that NSGA-II does not cover

the Pareto Front uniformly: there are many regions that were

not explored. IBEA, on the other hand, generates the best

non-dominated solutions, but with many gaps too. FMOPSO,

however, scans the whole front in a uniform way, with a low

TABLE I: Result Descriptors

Problem NRP1 NRP2

Metric Algorithm FMOPSO IBEA NSGAII FMOPSO IBEA NSGAII

HV

Min 0.5651 0.5586 0.5256 0.4550 0.4967 0.3952

1
st Q. 0.5673 0.5614 0.5323 0.4570 0.4977 0.3996

Median 0.5683 0.5652 0.5347 0.4592 0.4981 0.4032

Mean 0.5679 0.5631 0.5351 0.4594 0.4982 0.4027

3
rd Q. 0.5689 0.5646 0.5392 0.4612 0.4990 0.4052

Max 0.5695 0.5668 0.5422 0.4663 0.4996 0.4106

PFS

Min 227 85 100 338 45 242

1
st Q. 234 85 105.5 347 47.25 251.5

Median 239 87.5 112 353.5 48 259

Mean 240 88.22 110.2 353.2 47.9 257.8

3
rd Q. 250 90.5 115 357,5 49 263

Max 253 95 116 369 50 271

511




