BATISTUTA PRIETO, RUY DEMIAN


UNIVERSIDAD TECNOLÓGICA NACIONAL

Facultad Regional Reconquista

DOMOTICA APLICADA A UNA VIVIENDA FAMILIAR

Reconquista, Santa Fe Año 2019

BATISTUTA PRIETO, RUY DEMIAN

UNIVERSIDAD TECNOLÓGICA NACIONAL

Facultad Regional Reconquista

DOMOTICA APLICADA A UNA VIVIENDA FAMILIAR

Proyecto Final presentado en cumplimiento a las exigencias de la carrera Ingeniería Electromecánica de la Facultad Regional Reconquista.

Asesor:

Ing. Hugo Falabella

Reconquista, Santa Fe Año 2019

AGRADECIMIENTOS

A mi familia por darme la posibilidad de estudiar y brindarme su apoyo.

A mis amigos que me acompañaron y ayudaron durante la carrera.

A todos los docentes que participaron en mi formación como profesional.

A la Universidad Tecnológica Nacional por darme la posibilidad de formarme a nivel universitario.

Muchas gracias a todos.

1. MEMORIA DESCRIPTIVA	9
2. OBJETIVOS DEL PROYECTO	11
3. ANTECEDENTES	12
3.1 Tipos de arquitecturas y sus características	12
3.1.1 Sistema de control centralizado	12
3.1.2 Sistema de Control Distribuido o Descentralizado:	13
3.1.3 Sistema Mixto o combinado	14
3.2 Tipos de sensores (Entradas)	14
3.3 Tipos de actuadores (Salidas)	14
3.4 Tipos de comunicaciones	14
3.5 Topología de la red de automatización:	14
3.5.1 Anillo	14
3.5.2 Árbol	14
3.5.3 Estrella	14
3.5.4 Topología en bus	15
3.5.5 Topología mixta	15
3.6 Tipos de enlaces	15
3.6.1 Sistema cableado específico	15
3.6.2 Sistema cableado no específico	15
3.6.3 Sistema inalámbrico	15
3.7 Protocolos	15
4. ELECCIÓN DEL SISTEMA Y COMPONENTES A UTILIZAR	17
4.1 Descripción de la vivienda elegida	17
4.2 Elección de los sistemas a controlar	17
4 3 Elección del tipo de sistema a utilizar	10

Universidad Tecnológica Nacional Facultad Regional Reconquista

Proyecto Final Batistuta Prieto, Ruy Demián

4.4 Descripción de los distintos sistemas a implementar	21
4.4.1 Control de la iluminación	21
4.4.2 Climatización y ventilación de los distintos ambientes	23
4.4.3 Sistema de seguridad y alarma	25
5. ELECCIÓN Y DETALLES DE COMPONENTES A UTILIZAR	27
5.1 Arduino AT mega 2526	27
5.2 Matriz 4x4 (16 teclas)	27
5.3 Módulo LCD 1602 A	28
5.4 Adaptador LCD I2C	28
5.5 Módulo HC 05	29
5.6 Módulo DS3231	29
5.7 Módulo Esp 8266 (ESP-01, para conexión wifi)	30
5.8 Módulo GSM/GPRS SIM900	31
5.9 Módulo sensor de temperatura LM35D	31
5.10 Módulo sensor de movimiento HC SR 501 PIR	32
5.11 Módulo sensor crepuscular KY 018	32
5.12 Módulo sensor de gases MQ2.	33
5.13 Módulo de relés (x1; x2; x4)	33
5.14 Sensores magnéticos de apertura de puertas (tipo NC)	34
5.15 Módulo de control PWM en 220 V CA (Opto acoplador)	34
5.16 Fuente step down 12 V a 5 V	35
5.17 Conductores especiales para conexiones (DuPont)	35
5.18 Sirena de 12 V uso exterior	35
5.19 Fuente de alimentación con control de carga para batería	36
5.22 Otros elementos utilizados	36
6. PROGRAMACIÓN DEL ARDUINO	37

7. APLICACIONES DESARROLLADAS
7.1 Control manual por el usuario
7.2 Control por voz del usuario
8. DOCUMENTACIÓN DE DOMÓTICA4
9.INSTALACION ELECTRICA DE LA VIVIENDA4
9.1 Verificación los puntos de utilización y circuitos existentes en la vivienda4
9.2 Cálculo de la máxima corriente de cortocircuito4
9.3 Verificación de los conductores eléctricos existentes
9.4 Verificación de la resistencia de puesta a tierra de protección
9.5 Cálculo y verificación del sistema de Alimentación Carga Única (ACU)5
9.5.1 Conductores, protección diferencial e interruptor automático
9.5.2 Sistema protección interno contra sobretensiones transitorias
9.5.3 Canalizaciones de los conductores (ACU)
9.6 Verificación térmica de los tableros eléctricos utilizados5
10.ANALISIS ECONOMICO DEL PROYECTO
10.1 Estimación del ahorro energético de cada bimestre
10.1.1 Consumo eléctrico del último año
10.1.2 Ahorro energético de la vivienda con sistema de domótica
10.2.1 Inversión inicial e indicadores económicos
10.2.2 Cálculos de la TIR y del VAN6
10.2.3 Cálculo del Período de Recupero de la Inversión (PRI)6
10.3.3 Cálculo de la reducción de emisión de CO ₂ 6
11.PROPUESTAS Y DESAFIOS A FUTURO6
11.1 Mejoras sobre las aplicaciones y el control del usuario
11.2 Mejoras generales sobre el sistema6

12.BIBLIOGRAFÍA......66

LISTA DE IMÁGENES	68
LISTA DE IMÁGENES (Continuación)	.69
LISTA DE TABLAS	.70
LISTA DE TABLAS (Continuación)	.71
LISTA DE PLANOS	.71
Anexo I: cálculos	.72
Anexo I.1: Cálculo de cantidad de componentes a utilizar para cada sistema	72
Anexo I.1.1: Componentes para el sistema general de control.	72
Anexo I.1.2: Componentes para el control de la iluminación exterior	72
Anexo I.1.3: Componentes para el control de la iluminación interior	73
Anexo I.1.4: Componentes para el control de ventilación y climatización	73
Anexo I.1.5: Componentes para el sistema de seguridad y alarma	74
Anexo I.2: Cantidad de entradas y salidas necesarias.	75
Anexo I.3: Cálculo de longitud y cantidad de conductores necesarios	76
Anexo I.4: Cálculo de longitud y tipos de canalizaciones requeridas	78
Anexo I.5: Cálculo y verificación de caídas de tensiones	79
Anexo I.6: Cálculo y selección de motores tubulares para accionar las persianas	80
Anexo I.7: Cálculo estimado de ahorro energético	.81
Anexo I.8.: Cálculo del costo total de inversión	.83
Anexo I.9.: Cálculo del nivel de domotización según tablas del CIEC	.84
Anexo I.10.1: Planilla de cargas	. 89
Anexo I.10.2: Planilla de puntos	. 89
Anexo I.10.3: Planilla de mantenimiento del sistema	. 89
Anexo I.11: Cálculo de la autonomía del sistema UPS	90
Anexo II: programación de aplicación de control manual	.91
Anexo III: programación de aplicación de control por voz	92

Anexo IV: Programas del arduino	94
Anexo IV.1: Programación del arduino	94
Anexo IV.2: Diagramas de flujo de los diferentes sistemas	27
Anexo V: Planos1	32
Plano N°1 - Plano general de la vivienda1	33
Plano N°2-Diagrama de circuitos eléctricos de la vivienda	34
Plano N°3 – Diagrama unifilar de la instalación eléctrica	35
Plano N°4-Esquema de conexión del sistema automático de iluminación1	36
Plano N°5 - Esquema de conexión del sistema automático de climatización1	37
Plano N°6 - Esquema de conexión del sistema de alarma	38
Plano N°7 - Conexión alimentación general del arduino	39
Plano N°8 – Conexión de los sistemas de comunicaciones	40
Plano N°9 - Conexión matriz 4x4 con Arduino.	41
Plano N°10-Conexión del Reloj de tiempo real (RTC) y del LCD (LCD1602A)14	42
Plano N°11 - Conexión del sistema de control automático de la iluminación14	43
Plano N°12 - Conexión del sistema de climatización y ventilación automática 14	44
Plano N°13 - Conexión del sistema para la detección de pérdidas de gas14	45
Plano N°14-Conexión del sistema de alarma (PIR, Sirena y sensores)14	46
Plano N°15- Diagrama lógico y diagrama funcional control de temperatura14	47
Plano N°16- Diagrama lógico y funcional control de iluminación exterior14	48
Plano N°17- Diagrama lógico y funcional control de iluminación interior14	49
Plano N°18- Diagrama lógico y funcional sistema de seguridad (Alarma)1	50
Plano N°19-Diagrama lógico y funcional sistema de simulación de presencia1:	51
PlanoN°20-Diagrama lógico y funcional del sistema de seguridad ante pérdidas	de
gas1:	52
Anexo VI: Hoja de datos y catálogos de componentes utilizados	53

1. MEMORIA DESCRIPTIVA

En este proyecto se presenta el desarrollo de un sistema de domótica aplicado a una vivienda familiar. Se describen y seleccionan todos los componentes necesarios para desarrollar el mismo, realizando además la programación requerida y las aplicaciones que permitan un uso más adecuado y sencillo de dicho sistema.

Se estudiará una vivienda familiar tipo, sobre la cual se establecerá el proyecto, buscando mejorar la eficiencia energética, la seguridad, comodidad y el confort de quienes la habiten, que sólo se deban realizar mínimas modificaciones en la misma y que a su vez el proyecto pueda adaptarse a otras viviendas.

Primero se realiza un estudio de antecedentes para conocer los distintos tipos de sistemas, sensores y actuadores utilizados en domótica domiciliaria.

Siguiendo con el trabajo, se toman las dimensiones de la vivienda, posiciones, cantidad y tipo de aberturas que posee y todos los datos que permitan seleccionar el tipo de sistema, la cantidad y tipo de componentes se podrán utilizar en la misma. Con dichos datos se estudian las diferentes alternativas que permitan cumplir con las condiciones planteadas y que presenten un bajo costo económico.

Una vez determinado el tipo de sistema a utilizar se plantea la instalación de cada uno de los componentes de la opción elegida, junto con la programación requerida del sistema, verificando su correcto funcionamiento y posibles mejoras. Además, se llevará a cabo el diseño y la programación correspondientes a las aplicaciones desarrolladas para permitirle al usuario un mejor y más sencillo uso del sistema utilizado.

Se determinará según la norma AEA 90364 parte 7, sección 771 y sección 780, el tipo de instalación eléctrica necesaria para el sistema de domótica y sus respectivas protecciones, además de verificar que la instalación eléctrica existente cumpla con dicha norma. Se tendrá en cuenta, además, lo establecido por la Comisión de Domótica del Colegio de Ingenieros

Especialistas de Córdoba (CIEC), en la guía de contenidos mínimos para la elaboración de un proyecto de domótica.

Por último, se realiza un análisis económico del proyecto para ver si el mismo resultaría económicamente rentable, comparando además el consumo eléctrico de la vivienda con y sin el sistema de control por domótica planteado.

2. OBJETIVOS DEL PROYECTO

Como objetivos generales, se pretenderá realizar la selección, el diseño, cálculos y programación necesarios para un sistema de domótica en la vivienda planteada, que brinde a sus habitantes mayor seguridad, confort y un uso más eficiente de la energía eléctrica, con un bajo costo económico.

Por otro lado, los objetivos específicos que se buscan con este trabajo son:

- Plantear un control automático y eficiente de la climatización y ventilación para los distintos ambientes.
- Brindar al usuario la posibilidad de tener un sistema de iluminación automático que varíe su intensidad según se requiera, y que además el usuario pueda variarla manualmente acorde a su elección.
- Establecer un sistema de seguridad, con alarma y aviso al celular del dueño de la vivienda.
- Desarrollar aplicaciones que permitan a los habitantes utilizar fácilmente el sistema y tener un control de ciertos dispositivos mediante su Smartphone.
- Calcular y verificar la instalación eléctrica existente en la vivienda y también la necesaria para alimentar y proteger el sistema de control por domótica, para lo cual se seguirá lo establecido por la norma AEA 90364 parte 7, sección 771.

3. ANTECEDENTES

3.1 Tipos de arquitecturas y sus características

Los tipos de sistemas de domótica utilizados actualmente se pueden clasificar de acuerdo al modo en que sus diferentes elementos constitutivos se conectan físicamente y a como se relacionan entre sí, para esto, la norma AEA 90364 parte 7, sección 780 (Pág. 10 y 11) y también la Guía de contenidos mínimos para la elaboración de un proyecto de domótica, de la Comisión de Domótica del Colegio de Ingenieros Especialistas de Córdoba (Pág. 9), establecen una clasificación según la distribución del control en:

3.1.1 Sistema de control centralizado

Se caracterizan por tener una única unidad de control (nodo) para todo el sistema y los demás elementos constitutivos del mismo (sensores, actuadores, etc.) se conectarán a él, de este modo, esta unidad tomará todas las decisiones en función a su programación y a los datos brindados por los demás componentes.

En este tipo de sistema cada elemento debe conectarse a la unidad de control, requiriéndose el cableado correspondiente, lo cual es una de sus principales desventajas, además ante la falla de dicha unidad, el sistema completo dejará de funcionar.

Como ventajas tenemos que, al utilizar una única unidad de mando no se requieren programaciones especiales entre unidades de mando.

En la Imagen 3.1 se puede ver un esquema correspondiente a un sistema centralizado de domótica como el descripto anteriormente.

Imagen 3.1: Esquema de un sistema centralizado – Elaboración propia.

3.1.2 Sistema de Control Distribuido o Descentralizado:

Estos sistemas se caracterizan por tener varias unidades de control (nodos), comunicadas entre sí y a los diferentes elementos constitutivos del mismo. La toma de decisiones podrá ser de una sola unidad o de cada uno por separado, según el tipo de comunicación que se elija tener entre las mismas.

Como ventaja principal tenemos que ante una falla de alguna de las unidades de control sólo se afectará a la parte del sistema que esta controle, además se reducirá el cableado de los demás elementos constitutivos, ya que los mismos se podrán conectar a cualquiera de estas unidades.

Por otro lado, las desventajas que se presentan son que se requiere una programación especial y comunicación entre unidades de control, para determinar quién o quienes tomarán las decisiones y obtener un solo sistema de control global interconectado y no tener varios sistemas que actúen aislados entre sí, lo cual podría generar un conflicto.

En la Imagen 3.2 se puede ver un esquema correspondiente a un sistema distribuido de domótica como el descripto anteriormente.

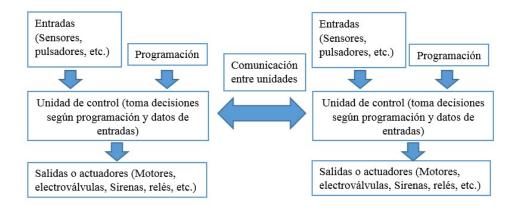


Imagen 3.2: Esquema de un sistema distribuido – Elaboración propia

3.1.3 Sistema Mixto o combinado

Estos sistemas poseen características de los dos tipos anteriormente descriptos, permitiendo tener las ventajas de cada uno en un único sistema interconectado. Se podría utilizar por ejemplo en casos donde la vivienda tenga varios pisos.

3.2 Tipos de sensores (Entradas)

De acuerdo a las necesidades específicas de cada sistema, se pueden utilizar distintos tipos de sensores que permitan determinar valores correspondientes a las variables que se desean medir y enviárselas a la unidad de control correspondiente, para que ésta tome la decisión adecuada.

Algunos ejemplos de sensores que se pueden utilizar son por ejemplo sensores de movimiento, de iluminancia, de humedad, magnéticos, de temperatura, de presión, etc.

3.3 Tipos de actuadores (Salidas)

Se pueden utilizar distintos tipos de actuadores o salidas según que se desea controlar, por ejemplo, relés o contactores, motores, servos, etc.

3.4 Tipos de comunicaciones

Para la comunicación entre la unidad de control y el Smartphone se puede utilizar, por ejemplo, módulos de comunicación por red de internet (ethernet o wifi), bluetooth, GSM/GPS (mensajes o llamadas), etc.

3.5 Topología de la red de automatización:

Según la forma en que se interconectan los nodos del sistema entre sí. La AEA 90364 parte 7, sección 780 (Pág. 11 y 12) establece la siguiente clasificación.

3.5.1 Anillo

Cuando todos los nodos forman un sistema lineal cerrado.

3.5.2 Árbol

Cuando todos se conectan en paralelo con derivaciones sucesivas en cualquier punto de la red.

3.5.3 Estrella

Cuando todos se conectan al nodo central.

3.5.4 Topología en bus

Cuando se conectan varios dispositivos a una red troncal, y ésta a la unidad de control (nodo).

3.5.5 Topología mixta

Cuando la conexión entre los nodos se realiza combinando alguna de las anteriores.

3.6 Tipos de enlaces

Según el medio físico de transmisión de la información. La AEA 90364 parte 7, sección 780 (Pág. 10) establece la siguiente clasificación.

3.6.1 Sistema cableado específico

Sistemas que usan, en todo o en parte, información transmitida por cables específicos para dicha función (ejemplos: cables trenzados, paralelos, coaxial, fibra óptica, etc.).

3.6.2 Sistema cableado no específico

Sistemas que usan, en todo o en parte, información modulada sobre cableado de potencia (ejemplo: onda portadora).

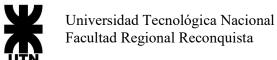
3.6.3 Sistema inalámbrico

Sistemas que usan, en todo o en parte, señales radiadas (ejemplos: infrarrojo, radiofrecuencia, ultrasonido).

3.7 Protocolos

Es el conjunto de reglas normalizadas que se emplean para la comunicación entre los nodos con el objetivo de transmitir datos.

Para este proyecto se utilizan dos protocolos de comunicación inalámbrica: El protocolo WIFI o IEEE 802.11, creada en 2009 por el Instituto de Ingenieros Eléctricos y Electrónicos (IIEE) y además el protocolo Bluetooth, creado por Bluetooth Special Interest Group, Inc.


En el caso de éste último protocolo, actualmente, en lo que refiere a domótica, se prefiere la utilización de un protocolo Zigbee (IEEE 802.15.4), que permite, entre otras cosas, una mayor cantidad de dispositivos conectados de manera simultánea entre sí (hasta 65535 dispositivos), en comparación con los 8 que permite el protocolo Bluetooth. La principal desventaja que presenta actualmente la utilización de dispositivos con el protocolo Zigbee es

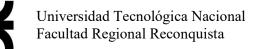
su costo, por ejemplo, para este caso, el módulo Zigbee que reemplazaría al Bluetooth, tiene un valor de unos \$3600, en comparación con el de un módulo bluetooth \$350. Además de esto, hay que considerar que cada dispositivo a controlar con ese protocolo, debe soportarlo y, este tipo de componente tienen un precio que también es elevado, rondando los \$3000 pesos cada tomacorriente con protocolo Zigbee (precios de la fecha 1/11/2019). Como principal ventaja de este protocolo tenemos, que además de poder conectar una cantidad mayor de dispositivos, esta tarea es mucho más sencilla de realizar, ya que cada fabricante presenta su aplicación con la cual solo debe sincronizarse por única vez los dispositivos que se quieran controlar.

Por otro lado, también se podría sustituir el protocolo Bluetooth y Wifi utilizados en este proyecto, por el protocolo Z-Wave (diseñado por la empresa Zen-Sys) que permite además, controlar los dispositivos a través de Internet, pero, este protocolo tiene también un alto costo, similar a los dispositivos con protocolo Zigbee.

En la actualidad, hay tres grandes fabricantes de productos que permiten controlar dispositivos con estos tipos de protocolos. El Asistente de Google (Google Assistant), desarrollado por Google; Alexa, desarrollada por Amazon, y Siri, desarrollado por Apple y Siri Inc. Estos tres son asistentes personales, que permiten al usuario de un Smartphone, poder controlar de manera sencilla, utilizando su voz, todos los dispositivos compatibles con los mismos. Cualquiera de estos tres asistentes podría reemplazar las aplicaciones desarrolladas para este proyecto, pero como se mencionó anteriormente, en la actualizad y especialmente para nuestro país, los precios que están en dólares o Euros, resultan muy elevados, por lo cual se decidió desarrollar las aplicaciones correspondientes, aunque las mismas no puedan realizar todas las funciones que permiten los asistentes personales antes mencionados.

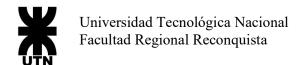
4. ELECCIÓN DEL SISTEMA Y COMPONENTES A UTILIZAR

4.1 Descripción de la vivienda elegida


La vivienda seleccionada tiene las siguientes características:

- En el frente tenemos un portón y una puerta de acceso al terreno correspondiente a la vivienda.
- Tiene un garaje cubierto (techado).
- Para ingresar al interior de la vivienda tenemos tres puertas, una con acceso al living, otra a la cocina y la última a un dormitorio.
- Posee tres dormitorios, dos de ellos tienen persianas y los tres tienen aires acondicionado individuales.
- Un living con persiana y aire acondicionado individual.
- Una cocina con persiana.
- Un pasillo que une los diferentes ambientes, un baño.
- En la parte de atrás de la vivienda tenemos otro patio, con una galería, lavadero y un depósito (galpón).

4.2 Elección de los sistemas a controlar


Una vez analizada la vivienda elegida y obtenidos los datos necesarios se realizan los planos correspondientes y se decide que elementos básicos se van a controlar, los cuales son:

- En las aberturas de acceso al terreno de la vivienda y al interior de la mismas se instalarán sensores para detectar su apertura, y activar el sistema de alarma cuando corresponda.
- En la cocina se medirá que no exista alguna fuga de gas, de ser así se cerrará el suministro del mismo.
- En los dormitorios y el living se tendrá un sistema de control automático de las luminarias, de la ventilación y climatización.
- En las luces exteriores se establecerá un sistema de encendido y apagado de acuerdo al nivel de iluminancia.

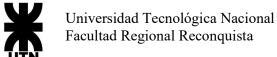
Proyecto Final Batistuta Prieto, Ruy Demián

- Toda la vivienda contará con un sistema de alarma con clave y aviso al usuario en caso de que se active, además de un sistema de simulación de presencia.
- Los habitantes de la mismas podrán conectarse a la unidad y tener control de las luminarias y del sistema de climatización, mediante una aplicación.
- Los sistemas de climatización de cada ambiente y el de iluminación podrán ser desactivados en caso de que el usuario así lo desee, por ejemplo, si se ausenta de la vivienda en sus vacaciones, evitándose gastos indeseados de energía eléctrica.

4.3 Elección del tipo de sistema a utilizar

Teniendo en cuenta que la vivienda es de un único piso, que sus dimensiones no son tan grandes, además de que los elementos a controlar no presentan una gran complejidad de control, se elige un sistema de domótica centralizado.

Analizando las distintas opciones para realizar el sistema de domótica centralizado, se decide utilizar un sistema de control con un Arduino, el cual presenta un costo económico considerablemente bajo.


Teniendo en cuenta la gran capacidad de entradas y salidas, de sensores disponibles y los diferentes modelos de un Arduino que se encuentran a disposición en el mercado en función de las necesidades de los clientes, elegí el modelo Arduino ATmega 2526 del fabricante Atmel Corporation.

Este dispositivo tiene una gran cantidad de entradas y salidas analógicas y digitales, permite, además, añadirle distintos tipos de módulos para comunicación (bluetooth, wifi, ethernet, GPS/GSM, etc.), y presenta un bajo costo económico en comparación a otras alternativas, razones por la cual resulta adecuado para este proyecto.

La tabla 4.1 muestra algunas de las características del dispositivo elegido, las mimas fueron extraídas de la hoja de datos pertenecientes al fabricante.

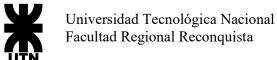

Características Arduino AT mega 2526		
Microcontrolador	Atmega 2526	
Fabricante	Atmel Corporation	
Voltaje operativo	5 V	
Voltaje de entrada	7-12 V	
Voltaje de entra. límit.	6-20 V	
Pines digitales Ent./Sal.	54	
Posibles salidas PWM	15 (de las 54)	
Pines análog.	16	

Tabla 4.1: Característica Arduino ATmega 2526 – Elaborada desde hoja de datos.

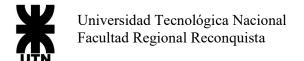
Según lo establecido por la norma AEA 90364 parte 7, sección 780 (Pág. 10 y 11) y también la Guía de contenidos mínimos para la elaboración de un proyecto de domótica, de la Comisión de Domótica del Colegio de Ingenieros Especialistas de Córdoba, el sistema tendrá las siguientes características:

- Sistema centralizado, su único nodo será el Arduino ATmega 2526 del fabricante Atmel Corporation.
- La topología de la red será mixta, teniendo una parte en estrella (todos los sensores y actuadores se conectan al controlador central), y una parte en bus (el display LCD, el módulo de tiempo real, etc., que se conectan a un mismo par de conductores (red troncal) utilizando el protocolo de comunicación en serie.
- El sistema o tipo de enlace será en su mayoría cableado específico, pero también tiene una parte inalámbrica, por ejemplo, en la emisión infrarroja de los códigos hacia los equipos de aire acondicionado.
- Protocolos utilizados: En la parte de programación, el Arduino posee su propio lenguaje que está basado en el C++ (*1), y, además, para la comunicación serie se utiliza un protocolo serie denominado Circuito Inter-Integrado, abreviado como I²C (*2). Por otro lado, para la comunicación inalámbrica se utilizó el protocolo WIFI o IEEE 802.11, creado por el Instituto de Ingenieros Eléctricos y Electrónicos (IIEE) y el protocolo Bluetooth, creado por Bluetooth Special Interest Group, Inc.

4.4 Descripción de los distintos sistemas a implementar

Se estudiaron los distintos tipos de sensores y actuadores que se pueden utilizar con el arduino, para elegir los más adecuados y establecer cuales se usarán en los diferentes mecanismos y sistemas a controlar, según lo planteado anteriormente para la vivienda.

4.4.1 Control de la iluminación


Para el sistema de luminarias se tendrán diferentes formas de controlarlo:

- Manualmente, mediante los interruptores correspondientes (sistema actual).
- Manualmente de manera remota, mediante la aplicación desarrollada.
- Automáticamente, teniendo en cuenta el nivel de iluminación natural y la presencia de personas en cada ambiente.

Las luminarias exteriores se encenderán automáticamente cuando la iluminancia baje del nivel mínimo establecido, para lo cual se utilizará un sensor crepuscular (fotorresistencia) KY 018 (*3), que varía su resistencia inversamente proporcional a la luz que incide sobre el mismo, entre el día (baja resistencia) y la noche (alta resistencia). Este sensor se conecta al arduino para que el mismo active y desactive la salida digital correspondiente al relé que encenderá o apagará dichas luminarias, según corresponda.

Para las luminarias interiores se medirá la iluminancia mediante los sensores KY 018 (*3) antes mencionados, y se buscará mantenerla en el valor medio normalizado según el ambiente (Ley 19587 de Higiene y seguridad, basada en la Norma IRAM-AADL J 20-06), para lo que se utilizará las salidas PWM del arduino que permiten controlar la intensidad de las luminarias en función de los valores medidos con el sensor. Como las luminarias funcionan con 220 V se deberá usar una placa que transforme la señal PWM que sale del arduino en una PWM que pueda alimentar dichas luminarias. La vivienda tiene todas sus luminarias del tipo LED dimerizables, lo cual permitirá un sencillo manejo de su iluminancia mediante las salidas PWM del arduino, como se explicó.

(*3)Fabricante: Cebek

Por otro lado, el sistema de iluminación interior censará la presencia de personas en cada ambiente mediante sensores infrarrojos de movimiento HC SR 501 PIR (*4), si no detecta alguna presencia en un lapso de media hora apagará las luminarias correspondientes. Además, dicho sistema se activará solo si no es conveniente abrir las persianas del ambiente (si es de noche o si la temperatura exterior es elevada).

También, se tendrá un sistema de simulación de presencia para los momentos en los que los propietarios se ausenten de la casa por un lapso de varios días, por ejemplo, en caso de algún viaje o vacaciones.

El usuario podrá desactivar o activar el control automático de las luminarias según lo desee, por ejemplo, si se ausenta por un lapso indeterminado de la vivienda.

En la imagen 4.2 se muestra un esquema del sistema de control de las luminarias exteriores y en la imagen 4.3 el correspondiente al sistema de control de las luminarias interiores. Los mismos presentan las entradas y salidas de cada sistema. Se plantea el mismo sistema para cada ambiente interior.

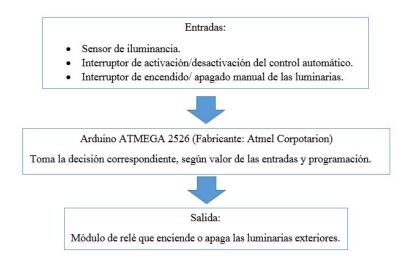


Imagen 4.2: Sistema de control de luminarias exteriores—Elaboración propia.

Entradas:

- · Sensor de movimiento.
- Sensor de iluminancia.
- Interruptor de activación/desactivación del control automático.
- Interruptor de encendido/ apagado manual de las luminarias.
- Ordenes provenientes de las aplicaciones, mediante módulo bluetooth.

Arduino ATMEGA 2526 (Fabricante: Atmel Corpotarion)

Toma la decisión correspondiente, según valor de las entradas y programación.

Salida:

Una de las salidas PWM del arduino se conecta con una placa que transforma dicha señal en otra, pero a una tensión de 220 V que alimenta a cada luminaria.

Imagen 4.3: Sistema de control de luminarias interiores—Elaboración propia.

4.4.2 Climatización y ventilación de los distintos ambientes

Este sistema utilizará sensores de temperatura LM35D (*5) para obtener valores de los ambientes a climatizar y del exterior, se fijará una temperatura de 24 grados, entonces el sistema decidirá si es conveniente abrir o cerrar las persianas, por comparación entre temperatura exterior e interior. Si resulta conveniente abrir o cerrar una persiana, utilizarán relés para activar el motor tubular de la misma en el sentido de giro correspondiente.

Por otro lado, estando cerradas las persianas, se encenderá si es necesario el sistema de aire acondicionado media hora antes de que los dueños vuelvan a la vivienda, en días laborales (horarios prefijados), permitiendo además que el usuario lo encienda o apague remotamente cuando así lo desee, mediante las aplicaciones. Para realizar dichas acciones, el sistema utilizará, en cada ambiente, LED emisores infrarrojos, que enviarán el código correspondiente (prefijado según el modelo del aire y la función que deba realizar, los mismos se leen previamente con el arduino y un receptor infrarrojo).

Además, el sistema permite que las personas en la vivienda puedan abrir y cerrar las persianas desde su Smartphone en el momento que lo crea necesario.

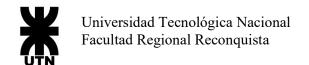
Todo este sistema podrá habilitarse o deshabilitarse por los habitantes de la vivienda de modo tal que brindará un uso eficiente de la energía eléctrica, al encender los equipos de aire acondicionado, solo en caso de ser necesario.

En la imagen 4.4 se muestra un esquema del sistema de climatización y ventilación de los ambientes. El mismo muestra las entradas y salidas de cada sistema, y se plantea el mismo sistema para cada ambiente.

Entradas:

- Sensor de temperatura exterior.
- · Sensor de temperatura interior, de cada ambiente.
- · Interruptor de activación/desactivación del control automático.
- · Interruptores de control manual de las persianas.
- · Interruptores finales de carrera de las persianas.
- Ordenes provenientes de las aplicaciones, mediante módulo bluetooth.
- · Tiempo (hora y fecha), mediante módulo de tiempo real.
- · Led receptor infrarrojo.

Arduino ATMEGA 2526 (Fabricante: Atmel Corpotarion)


Toma la decisión correspondiente, según valor de las entradas y programación.

Salidas:

- · Leds emisores infrarrojos (genéricos)
- · Módulo de relés que abren o cierran las persianas.

Imagen 4.4: Sistema de control de climatización y ventilación – Elaboración propia.

4.4.3 Sistema de seguridad y alarma

El sistema de seguridad tendrá sensores en los puntos de acceso a la vivienda, que detectarán su apertura y darán un tiempo de 1 minuto para el ingreso de la clave correspondiente en el teclado, de no ser así se activará una sirena y se enviará un aviso al Smartphone del usuario.

Al retirarse de la vivienda el usuario tendrá que ingresar nuevamente la clave para activar el sistema de alarma y tendrá un tiempo de 1 minuto para salir de la misma antes de que active el sistema.

Por otro lado, se tendrá un sistema de simulación de presencia, que abrirá las persianas de día y encenderá las luces de noche, estableciéndose una secuencia distinta para cada día, el mismo se activará automáticamente cuando pasen 12 horas sin detectar movimientos en el interior de la vivienda y se desactivará al ingresar la clave de la alarma. El usuario podrá activar este sistema cuando lo desee.

Todo el sistema tendrá una UPS, mediante la que se alimentará aún en caso de cortes de energía eléctrica. Para dicho sistema se utilizará una fuente de 220 V a 12 V con salida para cargar baterías (control de carga de las mismas) y la batería de 12 V correspondiente. Este sistema tendrá una autonomía de aproximadamente tres horas, calculada en Anexo I.11.

Además, en la cocina se utilizará un sensor de gas MQ2(*6), el cual medirá la concentración de dicho gas en el aire y la enviará al arduino. Si se detecta una concentración peligrosa de gas, se cerrará el suministro del mismo y se avisará en una pantalla al usuario que debe revisar la instalación porque se detectó dicha fuga.

En la imagen 4.5 se muestra un esquema del sistema de seguridad para pérdidas de gas, en la imagen 4.6 el correspondiente al sistema de alarma y en la imagen 4.7 el perteneciente al sistema de simulación de presencia. Los mismos muestran las entradas y salidas de cada sistema.

(*6) Fabricante: Hanwei eletronics CO.

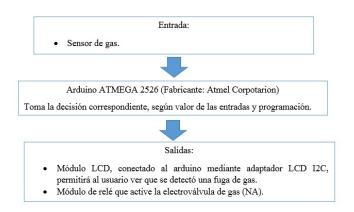


Imagen 4.5: Sistema de seguridad para pérdidas de gas - Elaboración propia.



Imagen 4.6: Sistema de alarma- Elaboración propia.

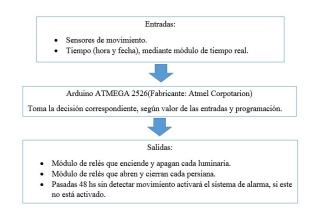


Imagen 4.7: Sistema de simulación de presencia – Elaboración propia.

5. ELECCIÓN Y DETALLES DE COMPONENTES A UTILIZAR

Los sensores y componentes a utilizar se eligieron de acuerdo a las necesidades de casa sistema de automatización y domótica planteado. A continuación, se detallan cada uno, junto con sus respectivas funciones, requerimientos y características, las cuales se extraen de las hojas de datos de cada componente.

5.1 Arduino AT mega 2526

Se seleccionó este modelo debido a su gran capacidad de entradas y salidas digitales y analógicas, lo que lo hacen adecuado para este trabajo. Tiene un microcontrolador ATmega2560, su tensión de alimentación es de 5V, una tensión de entrada recomendada de entre 7 y 12 V ambas de corriente continua, 54 entradas/salidas digitales (14 con PWM), 16 entradas analógicas, y la corriente máxima por pin es de 40 mA. En el anexo VI se ven todos los datos de este componente, el mismo se presenta en la imagen 5.1.

Imagen 5.1: Arduino AT mega 2526 (*7)

5.2 Matriz 4x4 (16 teclas)

Permitirá al usuario ingresar datos (clave de la alarma). Este componente requiere la conexión a 8 pines digitales del arduino. En el anexo VI se ven todos los datos de este componente, el mismo se presenta en la imagen 5.2 y sus detalles de conexión se ven en el Anexo V: Plano N°9 – "Conexión matriz 4x4 con arduino".

Imagen 5.2: Matriz 4 x 4 (*8)

(*7) Fabricante: Atmel Corporation; (*8) Fabricante: Parallax.Inc

5.3 Módulo LCD 1602 A

Permitirá al usuario visualizar información (como ser la contraseña ingresada, temperaturas, etc.) en una pantalla LCD. Tiene la posibilidad de ajustar el contraste de la pantalla mediante la utilización, por ejemplo, de un potenciómetro. Este componente estará conectado al adaptador LCD I2C y a su respectiva alimentación. En el anexo VI se ven todos los datos de este componente, el mismo se presenta en la imagen 5.3 y sus detalles de conexión se ven en el Anexo V: Plano N°10 – "Conexión del Reloj de tiempo real (RTC) y del LCD (LCD 1602 A)".

Imagen 5.3: Módulo LCD 1602 A. (*9)

5.4 Adaptador LCD I2C

Permitirá conectar el LCD con el arduino, ahorrando pines de conexión. Este componente estará conectado dos pines digitales. En el anexo VI se ven todos los datos de este componente, el mismo se presenta en la imagen 5.4 y sus detalles de conexión se ven en el Anexo V: Plano N°10 – "Conexión del Reloj de tiempo real (RTC) y del LCD (LCD 1602 A)".

Imagen 5.4: Adaptador LCD I2C (PCF8574). (*10)

5.5 Módulo HC 05

Permitirá que los usuarios se conecten con su Smartphone al arduino y así lograr controlar por ejemplo la apertura y cierre de las persianas. Este componente estará conectado a dos pines digitales y a su respectiva alimentación. Se debe enlazar por única vez el Smartphone con el arduino, mediante el nombre (ejemplo "BLUETOOTH CASA") y pin o clave de acceso (ejemplo "12092018") que se le configura a la placa bluetooth mencionada. En el anexo VI se ven todos los datos de este componente, el mismo se presenta en la imagen 5.5 y sus detalles de conexión se ven en el Anexo V: Plano N° 8 – "Conexión de los sistemas de comunicaciones".

Imagen 5.5: Módulo HC 05 (*11)

5.6 Módulo DS3231

Permitirá al arduino tener el dato de la fecha y hora. Este componente estará conectado a dos pines analógicos y a su respectiva alimentación. Utiliza una pila de 3V y proporciona segundos, minutos, horas, día, fecha, mes y año, ajustada automáticamente para los meses con menos de 31 días, incluidas las correcciones para los años bisiestos, funciona en formato de 24 horas o de 12 horas con indicador AM / PM. Se configurará a la fecha y hora que tenga la PC al momento de cargar el programa al arduino, luego la mantiene mediante su pila. En el anexo VI se ven todos los datos de este componente, el mismo se presenta en la imagen 5.6 y sus detalles de conexión se ven en el Anexo V: Plano N°10 – "Conexión del Reloj de tiempo real (RTC) y del LCD (LCD 1602 A)".

Imagen 5.6: Módulo DS3231 (*12)

5.7 Módulo Esp 8266 (ESP-01, para conexión wifi)

Para conectar el arduino a la red wifi de la vivienda. Este componente estará conectado a dos pines digitales y a su respectiva alimentación. Se lo configura para que se conecte a la red de la vivienda, con el nombre (ejemplo "WIFICASA"), la contraseña (ejemplo"12092018"), una dirección IP y un puerto correspondiente luego se le puede enviar datos al arduino desde una PC o Smartphone, por ejemplo, si la IP es 192.168.0.18 y el puerto es 50, en cualquier buscador de internet se ingresa 192.168.0.18:50/1, en este ejemplo el arduino recibe el carácter 1, y según su configuración realizará la acción correspondiente. Además, existen aplicaciones gratuitas ya desarrolladas que permiten configurar botones y realizar un control por wifi de una forma más sencilla, configurando la red a la que se debe conectar y que dato queremos que envié cada botón, junto con sus respectivos nombres. En el anexo VI se ven todos los datos de este componente, el mismo se presenta en la imagen 5.7 y sus detalles de conexión se ven en el Anexo V: Plano N° 8 – "Conexión de los sistemas de comunicaciones".

Imagen 5.7: Módulo Esp 8266 (ESP-01) (*13)

5.8 Módulo GSM/GPRS SIM900

Para comunicación entre arduino y Smartphone, mediante llamadas o mensajes. Se debe configurar en el programa el N° de teléfono (ejemplo "+543482120918") al que queremos llamar o enviar mensajes de alerta o avisos, mediante este módulo. Además, tendrá que instalarse un chip de cualquier compañía telefónica en el módulo y mantenerlo con crédito. En el anexo VI se ven todos los datos de este componente, el mismo se presenta en la imagen 5.8 y sus detalles de conexión se ven en el Anexo V: Plano N° 8 – "Conexión de los sistemas de comunicaciones".

Imagen 5.8: Módulo GSM/GPRS SIM900 (*14)

5.9 Módulo sensor de temperatura LM35D

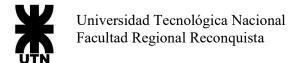
Para medir las temperaturas interiores y exteriores. Mide temperaturas entre 0°C y 100°C, con una tensión de salida de 10 mV por °C (10 mV/°C). Este componente estará conectado a un pin analógico y a su respectiva alimentación. En el anexo VI se ven todos los datos de este componente, el mismo se presenta en la imagen 5.9 y sus detalles de conexión y ubicación se ven en el Anexo V: Plano N°12 – "Conexión del sistema de climatización y ventilación automática" y Plano N°4 – "Esquema de conexión del sistema automático de ventilación y climatización", respectivamente.

Imagen 5.9: Módulo sensor de temperatura LM35D (*15)

(*14) Fabricante: SIMCOM; (*15) Fabricante: National Semiconductor Corporation

5.10 Módulo sensor de movimiento HC SR 501 PIR

Para detectar la presencia de personas en el interior y exterior de la vivienda. Este componente estará conectado a un pin digital y a su respectiva alimentación. Tiene un rango de medición de 0.5 a 7m ajustables, un ángulo de detección de120° y una tensión de alimentación de 5 a 12 V. En el anexo VI se ven todos los datos de este componente, el mismo se presenta en la imagen 5.10 y sus detalles de conexión y ubicación se ven en el Anexo V: Plano N°14 – "Conexión del sistema de alarma (PIR, Sirena y sensores de aberturas)" y Plano N°6 – "Esquema de conexión del sistema de alarma", respectivamente.


Imagen 5.10: Módulo sensor de movimiento HC SR 501 PIR (*16)

5.11 Módulo sensor crepuscular KY 018

Para medir las iluminancia exterior e interior (del living y los dormitorios). Este componente estará conectado a un pin digital y a su respectiva alimentación. Su resistencia a 10 Lux es de $50 \text{ K}\Omega$ o mayor, y a 0 Lux es de $1 \text{ M}\Omega$. En el anexo VI se ven todos los datos de este componente, el mismo se presenta en la imagen 5.11 y sus detalles de conexión y ubicación se ven en el Anexo V: Plano N°11 – "Conexión del sistema automático de iluminación" y Plano N°4 – "Esquema de conexión del sistema automático de iluminación", respectivamente.

Imagen 5.11: Módulo sensor crepuscular KY 018 (*17)

5.12 Módulo sensor de gases MQ2.

Para detectar alguna posible fuga de gas en la cocina. Este componente estará conectado a un pin digital, uno analógico y a su respectiva alimentación. El sensor es capaz de detectar Gas Licuado, Butano, Metano Alcohol, Hidrógeno y Humo. En el anexo VI se ven todos los datos de este componente, el mismo se presenta en la imagen 5.12, y sus detalles de conexión se ven en el Anexo V: Plano N°13 – "Conexión del sistema para la detección de pérdidas de gas"

Imagen 5.12: Módulo sensor de gases MQ2 (*18)

5.13 Módulo de relés (x1; x2; x4)

Para encender o apagar artefactos de hasta 10 A. Este componente estará conectado a pines digitales (1, 2 o 4 pines según corresponda), a su respectiva alimentación de 5V y al elemento a controlar junto con su alimentación. En el anexo VI se ven todos los datos de este componente y el mismo se presenta en la imagen 5.13.

Imagen 5.13: Módulo de relés. (*19)

5.14 Sensores magnéticos de apertura de puertas (tipo NC)

Para detectar la apertura de las puertas y del portón (sistema de alarma). Cada uno de estos sensores se conectará a un pin digital, y serán del tipo normalmente cerrados. El componente descripto se muestra en la imagen 5.14, y sus detalles de conexión y ubicación se ven en el Anexo V: Plano N°14 – "Conexión del sistema de alarma (PIR, Sirena y sensores de aberturas)" y Plano N°6 – "Esquema de conexión del sistema de alarma", respectivamente.

Imagen 5.14: Sensores magnéticos de apertura de puertas, tipo NC. (*20)

5.15 Módulo de control PWM en 220 V CA (Opto acoplador)

Para poder controlar con PWM (a 220 V de C.A.) las luminarias de 220 V C.A. con el control PWM del arduino (5 V). Este componente estará conectado a cuatro pines digitales PWM del arduino, y a las luminarias de los tres dormitorios y del living, junto con su respectiva alimentación. El mismo se muestra en la imagen 5.15, y sus detalles de conexión y ubicación se ven en el Anexo V: Plano N°11 – "Conexión del sistema automático de iluminación" y Plano N°3 – "Esquema de conexión del sistema automático de iluminación", respectivamente.

Imagen 5.15: Módulo de control PWM en 220 V CA (Opto acoplador). (*21)

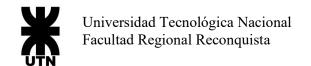
5.16 Fuente step down 12 V a 5 V

Se encargará de reducir los 12 V C.C. provenientes de la fuente o batería a los 5 V C.C. requeridos para alimentar el sistema. El componente se muestra en la imagen 5.16, y sus detalles de conexión se ven en el Anexo V: Plano N°7 – "Conexión alimentación general del arduino".

Imagen 5.16: Fuente step down 12 V a 5 V de C.C. (5 A máx.) (*22)

5.17 Conductores especiales para conexiones (DuPont)

Facilitan la conexión de cada elemento al arduino. Estos conductores vienen de tres tipos: macho/macho; macho/ hembra y hembra/hembra, el tipo a utilizar depende de los componentes a conectar. El componente descripto se muestra en la imagen 5.17.


Imagen 5.17: Conductores especiales para conexiones. (*23)

5.18 Sirena de 12 V uso exterior

Se utilizará para alertar en caso de que se active el sistema de alarmas. El mismo se muestra en la imagen 5.18, y sus detalles de conexión y ubicación se ven en el Anexo V: Plano N°14 – "Conexión del sistema de alarma (PIR, Sirena y sensores de aberturas)" y Plano N°6 – "Esquema de conexión del sistema de alarma", respectivamente.

Imagen 5.18: Sirena de 12 V uso exterior. (*24)

5.19 Fuente de alimentación con control de carga para batería

De 220 V c.a./ 12 V c.c. con control de carga para batería de 12 V (sistema UPS con una autonomía de 3hs, calculada en Anexo I.11). La batería a utilizar es de libre de mantenimiento, marca PRESS, de 12 V y 9 Ah. La fuente elegida es de la marca PRONEXT, se ve en la imagen 5.19. Los datos y características se ven en el anexo VI y los detalles de conexión (también los de la batería mencionada) se ven en el Anexo V: Plano N°7 – "Conexión alimentación general del arduino".

Imagen 5.19: Fuente de alimentación con control de carga para batería (Fabricante: PRONEXT).

5.22 Otros elementos utilizados

- Leds emisores infrarrojos (genéricos) y un receptor infrarrojo VS1838B (Fabricante: LFN).
- Se utilizará un gabinete metálico para contener y proteger el arduino, LCD, teclado, el sistema de alimentación y comunicación y la placa controladora de PWM en 220 V. El mismo se ubicará en el pasillo y permitirá que los componentes queden protegidos mediante un acceso a los mismos con cerradura, permitiendo además que los mismos tengan una correcta ventilación.
- Para alimentar y proteger todo el sistema de control en 220 V se utilizará un sistema de alimentación ininterrumpida (UPS).
- Por seguridad y para proteger los módulos de relés se los instalarán dentro de cajas estancas de PVC, las mismas tienen un nivel de protección IP65.El fabricante de las cajas utilizadas es Tubelectric y los datos de las mismas se encuentran en el anexo VI.
- Para el sistema de seguridad ante pérdidas de gas se utilizará una electroválvula de 12 V cc, que será normalmente cerrada, del fabricante Jefferson, y sus datos se encuentran en el anexo VI: Hojas de datos y catálogos de componentes utilizados

6. PROGRAMACIÓN DEL ARDUINO

La programación del arduino se realizó mediante el programa "IDE" (Entorno de Desarrollo Integrado, traducido del inglés) perteneciente al fabricante de estos dispositivos, en su versión 1.8.3, el mismo se descarga gratuitamente desde la siguiente página web https://www.arduino.cc, y permite compilar los programas para ver si existe algún error de programación.

El programa contiene además algunas librerías que permiten programar de una manera más sencilla los distintos elementos que se le agregan según la necesidad, por ejemplo, para el módulo bluetooth, el GSM/GPS y el módulo LCD.

Una vez terminada la programación, se procede a verificar y cargar por medio de un cable USB incluido junto con el arduino, seleccionando previamente en el panel de herramientas, el modelo de la placa arduino que se está utilizando, como se muestra en la imagen 6.1. Por último, se carga el programa al arduino, dicho proceso se realizará una única vez, ya que este dispositivo almacena el programa en una memoria interna que posee.

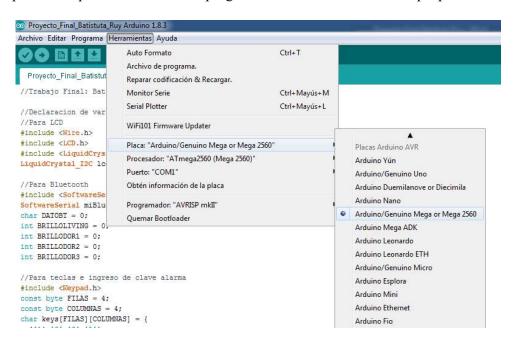
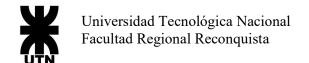



Imagen 6.1: Captura del programa, selección del modelo – Elaboración propia

7. APLICACIONES DESARROLLADAS

Se desarrollaron dos aplicaciones para permitirles a los habitantes de la vivienda que se conecten con sus Smartphones y a través de una comunicación vía bluetooth al arduino y permitirles realizar un control de las luminarias, los aires acondicionados y las persianas de los distintos ambientes. Dicha comunicación tendrá una clave de acceso prestablecida.

Para el desarrollar las aplicaciones se utilizó la página web http://ai2.appinventor.mit.edu que permite una creación sencilla de las mismas, mediante una programación gráfica que facilita dicho trabajo.

Dedicando un mayor tiempo se pueden mejorar las mimas tanto estéticamente o agregando nuevas funciones. Las aplicaciones desarrolladas son solamente de ejemplo para este trabajo, además debido al gran uso del Arduino y a la sencilla programación de las aplicaciones, por ejemplo, mediante la página antes mencionada, se encuentran disponibles aplicaciones gratuitas que se pueden adaptar y cumplir con las mismas o más funciones.

Por otro lado, como se mencionó en el capítulo tres de este trabajo (Ver Pág. 16), en la actualidad se prefiere utilizar otros protocolos de comunicación en reemplazo del bluetooth, con aplicaciones propias de los fabricantes de esa clase de dispositivos, o también mediante asistentes personales, pero estos protocolos presentan, actualmente, un mayor costo económico al momento de implementarse, al menos en nuestro país.

7.1 Control manual por el usuario

La aplicación desarrollada permite que el usuario encienda y apague los sistemas de aire acondicionado, abra y cierre las persianas, y controle el nivel de iluminancia de las luminarias (su brillo) según desee a través de un control manual con la aplicación desde un Smartphone.

Lo primero que debe hacer el usuario es presionar el botón "Conectar por Bluetooth" y seleccionar el bluetooth del arduino, esta acción se realiza solo una vez por Smartphone y luego solo presiona el botón correspondiente a la acción que desee realizar. La imagen 7.1 muestra una captura de la aplicación desarrollada para el control manual desde un Smartphone, y en el anexo II: "Programación de aplicación de control manual" se muestra su programación.

Imagen 7.1: Aplicación desarrollada para el control manual – Elaboración propia

7.2 Control por voz del usuario

La aplicación desarrollada permite que el usuario encienda y apague los sistemas de aire acondicionado, abra y cierre las persianas, y controle el nivel de iluminancia de las luminarias (su brillo) según desee, mediante el reconocimiento de voz, para el cual se establecen frases que el usuario deberá decir para cada acción.

Al igual que con la otra aplicación, el usuario debe presionar el botón "Conectar por Bluetooth" y seleccionar el bluetooth del arduino, esta acción se realiza solo una vez por Smartphone y luego solo presiona el botón correspondiente al micrófono (imagen del micrófono) y pronuncia la frase correspondiente a la acción que desee realizar. La imagen 7.2 muestra una captura de la aplicación desarrollada para el control por voz, y en el anexo II: "Programación de aplicación de control por voz" se muestra su programación.

Imagen 7.2: Aplicación desarrollada para el control por voz – Elaboración propia

8. DOCUMENTACIÓN DE DOMÓTICA

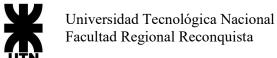
Para realizar la documentación del sistema de domótica planteado en este trabajo, se consideró además de lo establecido en la AEA 90364 parte 7, sección 780, lo que se indica en la Guía de contenidos mínimos para la elaboración de un proyecto de domótica, de la Comisión de Domótica del Colegio de Ingenieros Especialistas de Córdoba, dichos puntos son:

- El proyecto debe tener una descripción general del mismo (Ver "Memoria descriptiva" en pág.9), junto con la descripción de las aplicaciones desarrolladas en el inmueble (Ver "Aplicaciones desarrolladas" en pág.35), el método adoptado para integrar las mimas (Ver "Programación del arduino" en pág.34) y el nivel de domotización alcanzado según las tablas que presenta esta guía en su anexo 2 (Las mismas se encontrarán en el anexo VI de este proyecto).
 - Por otro lado, debe contener información sobre la arquitectura del sistema (Ver "Elección del tipo de sistema a utilizar" en pág. 18), especificaciones técnicas y de funcionamiento de los elementos de control, de entrada y de salida utilizados (Ver "Elección y detalles de sensores y componentes a utilizar" en pág.26); los diagramas de conexiones, funcionales (*25) y los lógicos (*26) (Ver planos en anexo V), además de los planos de planta de la instalación, con la ubicación de los sensores, actuadores y controladores, nivel e domotización (Nivel 1, con puntuación de 62) de acuerdo a tablas de esta guía (Ver "Anexo I.9.: Cálculo del nivel de domotización según tablas del CIEC" en pág. 82), una planilla de puntos (*27) (Ver Anexo I.10.1 "Panilla de puntos" en pág. 87), una de cargas (*28) (Ver Anexo I.10.2 "Panilla de cargas" en pág. 87), y de mantenimiento (Ver Anexo I.10.3 "Panilla de de mantenimiento del sistema" en pág. 87).

(*25) Diagramas funcionales: indican los símbolos de los componentes utilizados y su conexión física (cableado). (*26) Diagramas lógicos: Muestran las conexiones lógicas entre cada componente y sus efectos sobre los demás. Los diagramas funcionales y lógicos de este proyecto se encuentran en el anexo V, planos desde el N°15 al N°20. (*27) y (*28) La planilla de cargas indica los elementos de potencia junto a sus características y la de puntos indica para cada ambiente la cantidad de elementos de control analógicos y digitales.

9.INSTALACION ELECTRICA DE LA VIVIENDA

La instalación eléctrica de la vivienda debe cumplir con lo establecido por la norma AEA 90364 parte 7-seccion 771 (Reglamentación para la ejecución de Instalaciones Eléctricas en Inmuebles), por lo que primero se verificará que la instalación existente cumpla con dicha norma, para luego agregar un circuito de alimentación carga única (ACU), que alimente todo el circuito de control por domótica. Todos los cálculos se realizarán según lo establece dicha reglamentación, teniendo en cuenta además lo que establece dicha norma en su sección 780 (Instalaciones Eléctricas de Automatización de Edificios). Las tablas utilizadas de la misma se encuentran en el anexo VI: Hojas de datos y catálogos de componentes utilizados.

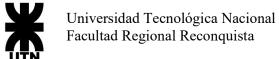

9.1 Verificación los puntos de utilización y circuitos existentes en la vivienda

Primero se realiza un relevamiento de los puntos de utilización existentes en la vivienda, junto con las dimensiones de cada ambiente y se verifica el grado de electrificación de la misma.

Los datos relevados se presentan en la imagen 9.1: Resumen de los circuitos eléctricos existentes en la vivienda.

Resumen de los circuitos eléctricos existentes en la vivienda									
Datos de la vivienda	Punt	os de Utili	zación	Superf.(m2)					
Ambiente	IUG	TUG1	TUG2	Superi.(mz)					
Comedor Living	2	-	4	20,3					
Baño	1	-	1	7,5					
Cocina	2	-	4	14,3					
Dormitorio N°1	1	3	-	20,6					
Dormitorio N°2	1	2	-	6,8					
Dormitorio N°3	1	2	-	10,3					
Pasillo	1	1	-	8,2					
Lavadero/galería	1	1	-	10,8					
Depósito	1	1	-	8,1					
Patio	2	-	-	-					
Garaje	1	-	1	21,5					
Puntos de Utilización (Total)	IUG	TUG1	TUG2	Sup.Tot.(m2)					
N° Total de Bocas	14	10	10	442.25					
Pot.max.Simultanea [VA]	1386	2200	2200	112,25					
Potencia Total de la vivienda [VA]	5786	Grado de Electrificación		Medio					
Pot.Total[VA] (aplicando coef. Si	mult.)	5207	Coef.Sim.	0,9					
Plano en anexo VI (Pl	ano N°2:I	Diagrama d	e circuitos						

Imagen 9.1: Resumen de los circuitos eléctricos existentes en la vivienda. – Elaboración propia


La superficie de la vivienda es de 112,25 m², calculada con la superficie cubierta más el 50% de la semicubierta, como se establece en la norma (Pág.26). Con este valor predeterminamos el grado de electrificación mediante la tabla 771.8.I- Resumen de electrificación de las viviendas (Pág. 27) (*), en este caso será un grado de electrificación medio, con un valor de demanda máxima simultanea calculada de 7 kVA, como lo indica dicha tabla.

Luego, mediante la tabla 771.8.II (Pág.28) (*) se tendrá un número mínimo de circuitos y las variantes posibles, en este caso son tres circuitos, uno de iluminación de uso general (IUG) y dos de tomacorrientes de uso general (TUG1 y TUG2).

Con el grado de electrificación y los distintos circuitos, ingresamos en la tabla 771.8.III (Pág.30) (*) para verificar los puntos mínimos de utilización para cada tipo de circuito, en cada uno de los ambientes. (Ver en anexo IV, Plano N°2: Diagrama de circuitos eléctricos de la vivienda)

A continuación, se calcula la demanda máxima de potencia simultánea, guiándose con la tabla 771.9.I – Demanda máxima de potencia simultánea (Pág.45) (*) y se verifica que el valor sea menor al establecido por la norma, en este caso 5786 VA (5,78 kVA) son menores al valor máximo para este grado de electrificación (7 kVA).

Una vez verificado que la vivienda cumple con estos putos, se procede a calcular la corriente máxima de cortocircuito en el tablero principal de la vivienda y a verificar los conductores de cada circuito eléctrico, junto con las protecciones del circuito eléctrico y la resistencia de puesta a tierra de protección.

9.2 Cálculo de la máxima corriente de cortocircuito

Para realizar estos cálculos partimos de los siguientes datos:

- El transformador de distribución que alimenta la vivienda es de S_n = 315 kVA, con una relación de transformación de 13,2/0,4 kV, conexión D/Y, una tensión de cortocircuito asignada μ_{cc%}=4% y unas pérdidas en ensayo de cortocircuito del transformador de P_{cc} = 4250 W (Datos de un transformador del fabricante Tadeo Czerweny S.A., su catálogo se presenta en el anexo VI: Hojas de datos y catálogos de componentes utilizados). Dicho transformador se encuentra a 40 metros de la bajada hasta el medidor de energía de la vivienda.
- El tramo de 40 metros desde el transformador de distribución hasta el medidor de energía de la vivienda es de un conductor de 3 x 70 + 50 mm², con impedancia de Z= (0,569 + j 0,085) Ω/km (Datos de un conductor preensamblado del fabricante Prysmian, su catálogo se presenta en el anexo VI).
- El conductor de bajada hacia el medidor tiene una longitud aproximada de 4m y son de 2 x 6 mm², con una impedancia de Z= (3,3 + j 0,09) Ω/km (Datos de un conductor del fabricante I.M.S.A, su catálogo se presenta en el anexo VI: Hojas de datos y catálogos de componentes utilizados).
- Entre el medidor de energía y el tablero principal de la vivienda tendremos unos 5,85 m de conductor que será de 2 x 6 mm² + PE y de impedancia igual al anterior.

Entonces con los datos anteriores debemos calcular la máxima corriente presunta de cortocircuito en la entrada del tablero principal de la vivienda, para lo cual se sigue lo establecido por la AEA en las pág. 224 y 225.

Primero calculamos la máxima corriente presunta de cortocircuito en los bornes del transformador de distribución, considerando una falla franca, es decir con resistencia cero (cortocircuito justo en los bornes de salida del transformador), además se toma una potencia de cortocircuito en la red de media tensión (alimentación del transformador de distribución) de 300 MVA, un factor de tensión C de 1,1 (De la tabla 1 de la AEA 90909-0, para una tensión de 1 a 230 kV, y el valor máximo de corriente de cortocircuito, dicha tabla se encuentra en el anexo

IV) y una relación R/X = 0.1 (para media tensión, en los bornes del transformador), siguiendo con lo establecido en la norma.

La componente directa (+) e inversa (-) de la impedancia de la red, aguas arriba del transformador será:

$$Z_{Red(\pm)} = \frac{C * U^2}{Scc} = \frac{1,1 * (0,4 \ kV)^2}{3000000 \ kA} * \frac{1 \ \Omega}{1000 \ k \ \Omega} = 5,87 \ x \ 10^{-4} \ \Omega$$

$$R_{Red} = 0,1 * Z_{red} = 5,87 \ x \ 10^{-5} \ \Omega$$

$$X_{Red} = \sqrt{Z_{red}^2 - R_{red}^2} = 5,84 \ x \ 10^{-4} \ \Omega$$

La componente homopolar de al impedancia de la red es cero: $Z_{Red(0)} = 0$

Ahora, calculamos las componentes de la impedancia del trasformador

$$Z_{Trafo(\pm)} = \frac{\mu_{\%cc}}{100\%} x \frac{U^2}{S_n} = \frac{4\%}{100\%} x \frac{(400V)^2}{315000 \, VA}$$

$$Z_{Trafo(\pm)} = 0,0203 \, \Omega$$

$$R_{Trafo} = P_{cc} x \, \frac{U^2}{(S_n)^2} = 4250 \, W \, x \frac{(400V)^2}{(315000 \, VA)^2}$$

$$R_{Trafo} = 6,85 \, x \, 10^{-3} \, \Omega$$

$$X_{Trafo} = \sqrt{Z_{Trafo}^2 - R_{Trafo}^2} = 0,019 \, \Omega$$

La componente homopolar de la impedancia del transformador será igual a las directa e inversa, según lo establecido en la AEA 90909-0, para un transformador con conexión D/Y. (Ver la tabla en el anexo IV.)

$$Z_{Trafo(\pm)} = Z_{Trafo(0)}$$

La impedancia equivalente en los bornes del transformador, se calcula como la suma vectorial de la impedancia de la red y la del transformador antes calculadas.

$$Z_{Bornes} = \sqrt{(R_{Red} + R_{Trafo})^2 + j (X_{Red} + X_{Trafo})^2} \Omega$$

$$Z_{Rornes} = 0.0213 \Omega$$

Ahora calculamos la máxima corriente presunta en los bornes de salida del transformador para un cortocircuito trifásico:

$$I''_{k} = \frac{C * U}{\sqrt{3} x Z_{Bornes}} = \frac{1,05 * 400 V}{\sqrt{3} x 0,0213\Omega} = 11346,5 A$$

$$I''_{k} = 11,35 \, kA$$

Esta corriente de cortocircuito se verá atenuada por las impedancias propias de los conductores que unen los bornes de salida del transformador con el punto en el cual se quiera determinar la máxima corriente presunta y su correspondiente impedancia homopolar (para este caso en el que los cortocircuitos son monofásicos).

Entonces se calcularán los valores de resistencia e impedancias de los tramos de conductores hasta cada punto, partiendo de los diferentes valores de r (Ω/m) y x (Ω/m) , según la sección y tipo de conductor, dados por el fabricante (I.M.S.A.), con estos datos y con las relaciones Ro/R Y Xo/X presentadas en los gráficos del libro de autor SPITTA y SEIP, "Instalaciones Eléctricas" (Ver la tabla en el anexo IV), tendremos los valores de Ro (Ω/m) y Xo (Ω/m) , para afectarlos por la longitud de conductor hasta ese punto y así hallamos luego las impedancias directas y homopolares mediante la suma vectorial de las del transformador y la red en ese punto, dada por la siguiente fórmula:

$$Z(\Omega) = \sqrt{(R_{Red} + R_{Trafo} + R_{Cond.})^2 + (X_{Red} + X_{Trafo} + X_{Cond.})^2}$$

Una vez obtenidos los valores de las impedancias total hasta cada punto tendremos que calcular la corriente máxima de cortocircuito en dicho punto, para lo cual tenemos la fórmula:

$$I_k" = \frac{1,1 * 400 V * \sqrt{3}}{(Z_{d eq(+)} + Z_{i eq(-)} + Z_{0 eq})}$$

Como se explicó anteriormente, calculamos ahora la máxima corriente presunta en los bornes de entrada al tablero principal. Para el caso del tablero principal tendremos el tramo de conductor preensamblado desde el transformador hasta la bajada hacia el medidor eléctrico de la vivienda, más el tramo desde éste último punto hasta llegar al tablero principal.

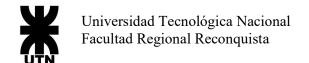
Entonces tenemos la resistencia total de los conductores:

$$R_{Cond.} = (\left(0,000569 \frac{\Omega}{m} * 40 m\right) + \left(0,0033 \frac{\Omega}{m} * 9,85 m\right))$$

$$R_{Cond.(+)} = 0,053 \Omega$$

Y la impedancia total de los conductores será:

$$X_{Cond.} = \left(\left(0,000085 \frac{\Omega}{m} * 40 m \right) + \left(0,00009 \frac{\Omega}{m} * 9,85 m \right) \right)$$


$$X_{Cond.(+)} = 4,28 \times 10^{-3} \Omega$$

Las relación $\frac{R_0}{R} = 4$ (Iguales para los tres tipos de conductores de este caso).

Y
$$\frac{X_0}{X} = 4 (Para los conductores de 6 mm^2), \frac{X_0}{X} =$$

3,85 (Para el tramo de preensamblado)

$$R_{Cond.(0)}=0.013\Omega$$

$$X_{Cond.de~6mm^2(0)}=2x~10^{-4}~\Omega$$

$$X_{Cond.Preemsamblado(0)}=8.8x~10^{-4}~\Omega$$

Entonces calculamos la máxima corriente de cortocircuito trifásico en los bornes de entrada del tablero principal perteneciente a la vivienda:

$$I_{k}" = \frac{c * U * \sqrt{3}}{(Z_{d eq} + Z_{i eq} + Z_{0 eq})} = 2489 A$$
$$I"_{k} = 2,48 kA$$

Esta corriente se utilizará para verificar que todos los interruptores termomagnéticos tengan un poder de corte mayor a la misma, en este caso deberán ser de al menos 3 kA, además se utilizará para verificar los conductores de cada circuito.

9.3 Verificación de los conductores eléctricos existentes

Los conductores eléctricos se verificarán según la tabla 771-H.1(La misma se muestra en la tabla 9.3.1: Tabla para determinar la sección de conductores) teniendo en cuenta, además, la tabla 771.16.IV de factores de reducción para agrupamiento de más de un circuito (*), la tabla 771.13.I Secciones mínimas de conductores (*), y las que presenta el catálogo del fabricante (I.M.S.A.).

Paso	Dato Origen	Cálculo	Resultado	Obs.	
Determinación de la corriente de	DPMS (VA)	DPMS/220	la In	Circuito monofásico Circuito trifásico	
proyecto la	(dei circuito considerado)	$DPMS/\sqrt{(3 \times 380)}$	16	Circuito triiasico	
Elección del			S	Tener en cuenta las	
conductor a partir de su corriente máxima Iz	ls	$I_Z \ge I_B$	Iz	condiciones de instalación.	
Elección de la	ls			Tener en cuenta Ir en	
corriente asignada del dispositivo In	Iz	$I_B \le I_n \le I_Z$	In	aparatos regulables	
Verificación de la actuación de la			_	Si no verifica cambiar la sección o aislación	
protección por sobrecarga	Iz	$I_2 \le 1,45 I_Z$	S1		
Determinación de la corriente de	Empresa distribuidora o potencia del	Calcular o utilizar			
corriente de cortocircuito máxima l"k		tablas según se indica en <u>771.H.2.2</u>	l"k		
Verificación por	l "k, l²t t	$k^2S^2 \ge I^2t$ o		Si S2 > S1	
máxima exigencia térmica	t,S,k	$S \ge \frac{I\sqrt{t}}{k}$	S2	Entonces S = S2	
Verificación de la	I "k, S, In	Calcular o utilizar		Si	
actuación de la protección por	Curvas fijas	tablas <u>771-H.VII</u>		S3 > S	
corriente mínima de	Regulaciones	771-H.VIII	S3	S = S3	
cortocircuito Ikmín.	Instantáneas				
Verificación caída de		771.9		Si S4 > S	
Tensión en el extremo del circuito	ls .	Consideraciones de proyecto	S4	S = S4	

Tabla 9.3.1: Tabla para determinar la sección de conductores -AEA 90364-Parte 7-Sección 771.

Los cálculos y verificaciones se realizan para cada tramo de la instalación eléctrica existente, para los casos más desfavorables de cada tipo de circuito existente, es decir, para los puntos de utilización más lejanos en los que la caída de tensión será la mayor. Esta última deberá ser menor a las caídas de tensiones admisibles que establece la normativa (menor a 1% en líneas de alimentación, principales y circuitos seccionales, menor a 3% y 5% en la última boca de iluminación y tomacorrientes respectivamente).

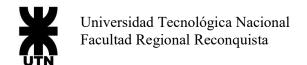
Entonces se realizaron los cálculos y verificaciones en el programa Microsoft Excel, los resultados obtenidos se presentan en la tabla 9.3.2: Caídas de tensión y corrientes admisibles de los conductores eléctricos.

	Caídas de tensión y corrientes admisibles de los conductores eléctricos											
Circuito	DPMS(VA)	lb (A)	S.(mm2)	Longitud(m)	Iz(A)(Cañeria)	F.correc.	Iz(corregida)(A)	lb < lz	Z+/-(Ω)	ΔU(%)	Verif. ΔU(%)	
Medidor-T.P.	5207,4	22,54	6	5,85	36	0,96	34,6	Verifica	0,028	0,27%	Verifica	
T.PT.Secc.	5207,4	22,54	6	7,1	36	0,96	34,6	Verifica	0,061	0,87%	Verifica	
IUG (último)	1386	6	2,5	10,6	21	0,96	20,2	Verifica	0,101	0,86%	Verifica	
TUG1(último)	2200	9,52	2,5	9,6	21	0,96	20,2	Verifica	0,178	1,33%	Verifica	
TUG2(último)	2200	9,52	2,5	17,8	21	0,96	20,2	Verifica	0,257	1,7%	Verifica	

Tabla 9.3.2: Caídas de tensión y corrientes admisibles de los conductores eléctricos – Elaboración propia.

Ib (A): corriente de proyecto calculada en base a la DPMS (demanda de potencias máxima simultánea) en cada tramo.

S: Sección nominal del conductor seleccionado (mm²)


Iz (corregida) (A): corriente admisible del conductor, dato que sale del catálogo del fabricante en función del tipo y sección del mismo, luego se los debe corregir según las condiciones de tendido del conductor y temperatura.

ΔU (%): caída de tensión porcentual hasta el punto considerado, la misma se calculó mediante la siguiente fórmula:

$$\Delta U(\%) = \frac{2*I_b*l*(r*cos\varphi+X*sen\varphi)}{U} * 100\% (*)$$

 $l = longitud \ del \ tramo \ (m) \ ; \ r \ y \ X: datos \ conductor \left(\frac{\Omega}{m}\right); U: tensi\'on \ nominal \ (V)$

(*): La fórmula mencionada pertenece a la AEA 90364 parte 7-seccion 771 (Pág.141)

Por otro lado, en caso de que se produzca un cortocircuito, los conductores deberán soportar la energía generada en estas situaciones, para lo cual la norma brinda tablas normalizadas (según clase, Pdc y Tipo de curva, en las tablas 771-H.IX y 771-H.X, pág. 232) (*) la cantidad de energía que limitará cada tipo de interruptor automático, para las verificaciones correspondientes.

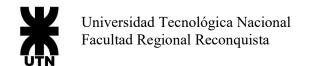
Entonces con los datos de los interruptores automáticos (IA) de la vivienda y los de las tablas mencionadas se verifican los conductores, verificando además que dichas protecciones actúen ante la corriente de cortocircuito mínima, que soporten la máxima corriente de cortocircuito y la corriente de empleo, considerando que la corriente nominal del IA se ve reducida por factores de apilamiento y temperatura, establecidos por la norma y por el fabricante en sus catálogos. (Fabricante: Schneider).

Los datos de las protecciones pertenecientes a la vivienda, junto con las verificaciones se presentan en la tabla 9.3.3: Verificación de conductores y protecciones existentes.

	Verificación de conductores y protecciones existentes													
	Tablero Principal													
Elemento	lb (A)	S.(mm2)	Long.(m)	Iz(correg.)(A)	Ztotal(Ω)	Icc Entrada(A)	Icc Salida(A)	In(A)	In(Correg.)(A)	Verf. $I_B \leq I_n \leq I_Z$	Curva	Pdc(A)	Lím.E.(A2.Seg)	Verf.Lim.E.
IA General	22,54	6,00	-	34,56	-	2489,60	2489,60	32	24,4352	Verifica	C/Clase 3	4500	39000	Verifica
Int.Diferencial		In=40 A ; Isen.=30 mA ; Clase:AC (ID) Tipo G .												
	*Todos los elementos de protección son de dos polos y su fabricante es Schneider Electric													
							Tablero Seccio	onal						
Circuito	Ib (A)	S.(mm2)	Long.(m)	Iz(correg.)(A)	Ztotal(Ω)	Icc Entrada(A)	Icc Salida(A)	In(A)	In(Correg.)(A)	Verf. $I_B \leq I_n \leq I_Z$	Curva	Pdc(A)	Lím.E.(A2.Seg)	Verf.Lim.E.
IA General	22,54	6	-	34,56	-	1609,8	1609,8	32	24,44	Verifica	C/Clase 3	4500	39000	Verifica
IA (IUG,último)	6	2,5	10,6	20,16	0,63	1609,8	1160,5	10	7,64	Verifica	C/Clase 3	4500	30000	Verifica
IA(TUG1,último)	9,52	2,5	9,6	20,16	0,78	1609,8	930,4	16	12,22	Verifica	C/Clase 3	4500	30000	Verifica
IA(TUG1,último)	9,52	2,5	17,8	20,16	0,95	1609,8	762,3	16	12,22	Verifica	C/Clase 3	4500	30000	Verifica

Tabla 9.3.3: Verificación de conductores y protecciones existentes – Elaboración propia.

Verificado que los conductores y las protecciones de la instalación eléctrica existente cumplen con lo establecido por la AEA 90364, se continúa por la verificación del sistema de puesta a tierra.


9.4 Verificación de la resistencia de puesta a tierra de protección

El esquema de conexión a tierra utilizado es el TT, es decir que el centro de estrella del transformador (neutro) se encuentra firmemente puesto a tierra (tierra de servicio) y todas las masas eléctricas de la instalación de la vivienda estarán conectadas mediante un conductor de protección (PE) a la toma de tierra de la misma (tierra de protección), la cual debe ser eléctricamente independiente de la toma de servicio.

Entonces tenemos como dato que la resistencia de la puesta a tierra de protección de la vivienda es de R_a =35 Ω (jabalina de l=3m de longitud y diámetro d=12,6 mm), esta última resulta menor a los 40 Ω establecidos en la reglamentación como valor máximo de resistencia de puesta a tierra de protección, según la tabla 771.3.1 (*).

La reglamentación AEA 90364 establece, además, que para conformar el esquema TT debemos cumplir con la condición de "tierra lejana". Para cumplir esta condición, entre la toma de tierra de la instalación (tierra de protección) y la de servicio deberá existir una distancia, medida en cualquier dirección, mayor a diez (10) veces el radio equivalente de la jabalina. En este caso la distancia es de unos 40m. Entonces verificamos que se cumpla la condición:

$$10 * Re = 10 * \frac{l}{\ln\left(\frac{l}{d}\right)} = 10 * \frac{3 \text{ m}}{\ln\left(\frac{3 \text{ m}}{0.0126 \text{ m}}\right)} = 5,48 \text{ m} < 40 \text{ m} \text{ (Verifica)}$$

9.5 Cálculo y verificación del sistema de Alimentación Carga Única (ACU)

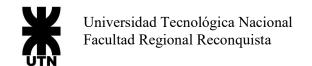
En este proyecto se utilizará un circuito de Alimentación carga única (ACU), que será el encargado de alimentar todo el circuito de control por domótica.

En dicho circuito se calcularán e instalarán tres tipos de protecciones eléctricas:

- Un interruptor diferencial.
- Un interruptor automático termomagnético.
- Descargadores de sobretensiones.

9.5.1 Conductores, protección diferencial e interruptor automático.

Comenzamos calculando y verificando los conductores a utilizar, según la tabla 771-H.VII de la pág. 230 (*) correspondiente la norma antes mencionada, de manera similar a los cálculos y las verificaciones realizadas sobre la instalación eléctrica existente. Para calcular la corriente de proyecto para el circuito ACU, la potencia máxima simultanea se tomará igual a la establecida por la norma para un TUG, es decir 2200 VA.


Se selecciona un conductor del fabricante I.M.S.A, que será de 2 x 2,5 mm² + PE (también de 2,5 mm²), de cobre con aislación de PVC.

Con la corriente de proyecto se selecciona el interruptor automático a utilizar, teniendo en cuenta el poder de corte mínimo antes calculado y las verificaciones establecidas por la norma.

Los datos del interruptor seleccionado y un resumen de las verificaciones se presentan en la tabla 9.5.1: Datos del IA y las verificaciones del circuito ACU.

Datos del IA y las verificaciones del circuito ACU.														
Elemento	Ib (A)	S.(mm2)	Long.(m)	Iz(correg.)(A)	Ztotal(Ω)	Icc Entrada(A)	Icc Salida(A)	In(A)	In(Correg.)(A)	Verf. $I_B \leq I_n \leq I_Z$	Curva	Pdc(A)	Lím.E.(A2.Seg)	ΔU(%)
IA (ACU)	9,52	2,5	1,5	20,16	0,48	1609,8	1521,49	16	12,22	Verifica	C/Clase 3	4500	30000	0,87%

Tabla 9.5.1: Datos del IA y las verificaciones del circuito ACU. – Elaborada desde hoja de datos.

Verificados los conductores a utilizar y el IA, se selecciona un interruptor diferencial clase B, del tipo "Super Inmunizados" o "SI" (Fabricante Schneider Electric), ya que el tipo de carga que se conectará al circuito ACU presenta la particularidad de generar contenido de armónicas, y éste tipo de protecciones es el indicado para cargas que presentan esa particularidad.

Se agregará el interruptor automático (IA) en el tablero seccional de la vivienda y el interruptor diferencial se colocará en el tablero principal. Los datos de estos dos dispositivos fueron extraídos desde el catálogo del fabricante Schneider Electric y se muestran en la tabla 8.6: Datos del IA y del Id del circuito ACU.

Datos del IA y del Id del circuito ACU.								
Elemento	Ubicación	Fabricante	N° Polos	In(A)	Pdc/Isen	Curva/Clase	Modelo de Referencia	
Interruptor Automático (IA)	Tablero Seccional	Schneider Electric	2	16	4500(A)	C/Clase 3	11783	
Interruptor Diferencial (Id)	Tablero Principal	Schneider Electric	2	40	30 (mA)	Clase B - SI (Super Inmunizado)	23524	

Tabla 9.5.2: Datos del IA y del Id del circuito ACU – Elaborada desde hoja de datos.

9.5.2 Sistema protección interno contra sobretensiones transitorias

Este sistema se encargará de evitar que las sobretensiones afecten a los equipos de control por domótica, para lo cual se utilizará una protección escalonada, con los siguientes tres niveles de protección:

ler Nivel de protección (Protección basta o gruesa – TIPO I): se efectuará en el tablero principal, y será el encargado de derivar la mayor parte de estas corrientes transitorias a tierra.

2do Nivel de protección (Protección media – TIPO II): como el tablero seccional de la vivienda se encuentra a una distancia menor a los 10m recomendados para una protección eficaz, se podría usar una bobina de acople entre la protección tipo I y tipo II, pero en este caso se decide utilizar un dispositivo de protección combinado, que ya presenta estos dos tipos de protecciones juntas y la bobina de acople respectiva, todos en un mismo dispositivo. El mismo se instalará en el tablero principal de la vivienda, y entonces allí tendremos los dos primeros niveles de protección.

3er Nivel de protección (Protección fina – TIPO III): se efectuará en el tablero seccional de la vivienda, que se encuentra a 7,1 m del tablero principal donde se tendrá la protección tipo II, entonces se cumple con la distancia mínima de 5m entre la protección de tipo II y tipo III.

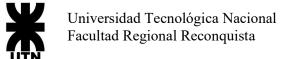
Además, se utilizará un sistema de protección de transmisión de datos, para proteger en caso de descargas sobre el cable de conexión a internet.

Como el esquema de puesta a tierra es TT, se utilizarán descargadores de sobretensión entre la fase y el neutro y entre el neutro y el conductor de protección (PE), y para su selección, en los catálogos del fabricante, en este caso Schneider Electric, se parte de la tensión máxima de operación permanente de: $U_c = 1.5 * U_N$; Con $U_N = 220V$ entonces $U_c = 330V$

Los descargadores a utilizar son de la marca Schneider Electric y son los siguientes:

TIPO I+II: Descargador combinado Schneider Electric-Modelo: A9L16632

Este tipo de descargador requiere un IA que lo proteja, interrumpiendo el circuito del descargador cuando éste se dañe, es decir, si queda conduciendo luego de que desaparezca la sobretensión, el IA cortará solamente este circuito y se deberá reemplazar el descargador. El fabricante brinda una tabla de selección del IA en función del tipo y modelo de descargador. Para este modelo corresponde un IA de 2 x 25 A, Curva C (Schneider Electric-Modelo: 11785).


TIPO III: Descargador Schneider Electric-Modelo: A9L16298.

Sistema de transmisión de datos: Descargador Schneider Electric-Modelo: A9L16339

Los datos y características de cada tipo se encuentran en el catálogo del fabricante, presente en el anexo VI.

9.5.3 Canalizaciones de los conductores (ACU)

Utilizando la tabla 771.12.IX de la norma (*), de máxima cantidad de conductores por canalización, y teniendo en cuenta que el tipo de material y curvaturas mínimas utilizadas cumplan con las normas, se seleccionarán los tubos a utilizar para canalizar los distintos conductores de la parte de control por domótica y de su alimentación (ACU). Los tubos rígidos semipesados de PVC, auto extinguibles (no propagan la llama), que permiten curvarse en frío y son del fabricante Tubelectric, cuyo catálogo se encuentra en el anexo IV.

Para el sistema ACU el tubo a utilizar debe contener dos conductores de 2,5 mm2 + PE, entonces utilizando la tabla de la norma, el caño deberá ser RS16.

Por otro lado, la norma establece que, para conductores no incluidos en la tabla, los mismos no podrán ocupar más de un 35% de la sección interna menor del conducto, entonces para los conductores utilizados en la parte de control, que son de 5 x 1 mm2 (d=13,4 mm) y de 7 x 1 mm2 (d=14,49mm) las secciones de caños a utilizar serán:

$$S_{(5x1)} = \frac{\pi}{4} * (13.4mm)^2 = 141.03 mm^2$$

$$S_{(7x1)} = \frac{\pi}{4} * (14,49mm)^2 = 165 mm^2$$

Como estas secciones solo pueden ocupar como máximo un 35% de la sección interna del tubo, se puede calcular la sección mínima del tubo de la siguiente manera:

$$S_{(5x1)} \le 0.35 \frac{\pi}{4} * (d_{tubo})^2$$

$$d_{tubo} \ge 22,65 \ mm$$

$$S_{(7x1)} \le 0.35 \frac{\pi}{4} * (d_{tubo})^2$$

$$d_{tubo} \ge 24,5 \ mm$$

Entonces con estos datos buscamos en la tabla 771.12.IX de la norma (*), los valores inmediatos superiores, que para ambos casos da un tubo de 25 mm de diámetro (RS 25).

(*): Las tablas mencionadas pertenecen a la AEA 90364 parte 7-seccion 771, y se encuentran en el anexo IV

9.6 Verificación térmica de los tableros eléctricos utilizados

Para un correcto dimensionamiento y verificación de los tableros eléctricos utilizados, la norma establece una guía en función de la potencia disipada por polo de los dispositivos de protección situados dentro de cada tablero.

Entonces se verificarán los tableros de la vivienda teniendo en cuenta lo establecido por la norma. Partiendo del tipo y la cantidad de dispositivos que habrá en cada tablero, mostrados en la tabla 9.6.1: Datos de los tableros eléctricos de la vivienda.

Datos de los tableros e	eléctricos de la vivi	enda
Elemento	Ubicación	In(A)
IA general	Tablero Principal	32
IA (Descargador)	Tablero Principal	25
Descargador (I+II)	Tablero Principal	*(5w)
Id (Existente)	Tablero Principal	40
Id (Super Inmunizado)	Tablero Principal	40
IA general	Tablero Seccional	32
IA (IUG)	Tablero Seccional	10
IA (TUG1)	Tablero Seccional	16
IA (TUG2)	Tablero Seccional	16
Descargador (III)	Tablero Seccional	*(5w)
IA (ACU)	Tablero Seccional	16

Tabla 9.6.1: Datos de los tableros eléctricos de la vivienda – Elaboración propia.

Se calcula entonces las potencias mínimas que deberán disipar el tablero principal y el seccional de la vivienda, tomando los valores de potencia disipada por polo (W) que establece la norma en su tabla 771-H-XII (*), y aplicando las fórmulas que establece la misma:

$$I_{nq} = I_{ne} * K_e$$

Donde I_{nq} es la corriente asignada del tablero, I_{ne} es la corriente asignada de entrada, perteneciente al dispositivo de protección ubicado en la entrada (IA general), y K_e es el factor de utilización que se toma como 0,85.

Calculamos luego la corriente asignada de salida, como las suma de las corrientes nominales de los dispositivos de protección de salida del tablero, es decir: $I_{nu} = \sum I_N$

Ahora calculamos los valores de los factores de simultaneidad k, como la relación entre la corriente asignada del tablero I_{nq} y la de salida I_{nu} , es decir: $k=\frac{l_{nq}}{\sum I_{nu}}$

Luego se debe calcular la potencia total (P_{tot}) mínima que debe disipar cada tablero con la fórmula:

$$P_{tot} = P_{dp} + 0.2 * P_{dp} + P_{au}$$

Donde P_{dp} es la potencia disipada por los dispositivos de protección, considerando K_e y K, luego $0.2 * P_{dp}$ es la potencia total disipada por las conexiones, tomacorrientes, relés, interruptores diferenciales, etc, y P_{au} la disipada por otros dispositivos no incluidos en los dos términos anteriores.

La potencia disipada por cada elemento se calculará como

$$P_{dcorregida} = P_{d/polo} * N^{\circ} Polos$$

$$* (K_e \ o \ K)^2, Ke \ para \ el \ elemento \ de \ cabecera \ y \ K \ para \ los \ demás$$

Por último, en cada caso se debe cumplir que la potencia total disipada debe ser menor o igual a la que puede disparar el tablero eléctrico, según los datos que brinda el fabricante de los mismos. Es decir: $P_{tot} \leq P_{de}$

Realizando los cálculos en el programa Microsoft Excel, se tienen las potencias mínimas que deben disipar el tablero principal y el seccional de la vivienda, los mismos se muestran en la tabla 9.6.2: Potencia total disipada en los tableros de la vivienda.

	Datos de los t	ablero	s eléctric	os de la vivie	nda		
Elemento	Ubicación	In(A)	N° Polos	Pd/Polo(W)	Pd (W)	Ke/K	Pd corregida(w)
IA general	Tablero Principal	32	2	6 12		0,85	8,67
IA (Descargador)	Tablero Principal	25	2	4,5	9	1,09	10,7
Descargador (I+II)	Tablero Principal	*(5w)	2		5		5
Id (Existente)	Tablero Principal	40	2	6 11 1 102 01			
Id (Super Inmunizado)	Tablero Principal	40	2	Considerados en el 0,2 x Pdp			
Para el tablero princip	l disipa	ada será:	Ptot (W)			28,19	
IA general	Tablero Seccional	32	2	6	12	0,85	8,67
IA (IUG)	Tablero Seccional	10	2	3	6	0,469	1,32
IA (TUG1)	Tablero Seccional	16	2	3,5	7	0,469	1,54
IA (TUG2)	Tablero Seccional	16	2	3,5	7	0,469	1,54
Descargador (III)	Tablero Seccional	*(5w)	2	5			5
IA (ACU)	Tablero Seccional	16	2	3,5	7	0,469	1,54
Para el tablero seccion	al, la potencia tota	l disip	ada será:	Ptot (W) 22,53			22,53

Tabla 9.6.2: Potencia total disipada en los tableros de la vivienda – Elaboración propia.

Con estos datos, comparamos estas dos potencias máximas disipadas con las que pueden disipar los tableros de la vivienda, en este caso ambos tableros son de hasta 12 polos, con una disipación máxima de 30 W, según datos del fabricante Conextube, cuyo catálogo se encuentra en el anexo IV.

10.ANALISIS ECONOMICO DEL PROYECTO

El proyecto analizado presenta cierta dificultad a la hora de realizar un análisis económico que sea lo más aproximado posible a una situación real, debido a que no se podrá tener con exactitud, por ejemplo, el tiempo de encendido de las luminarias y los equipos acondicionadores de aire que se podrá evitar. Además, que el consumo de cada uno de estos dependerá de cada caso en particular.

10.1 Estimación del ahorro energético de cada bimestre

Se realizará una comparación económica anual entre el costo de energía eléctrica de la vivienda con y sin el sistema de control por domótica. Para el consumo de la misma sin el sistema de control, se utiliza los datos de consumos bimestrales correspondientes al último año, para sumarlos y obtener el costo anual, y para el caso en que la vivienda tenga el sistema de domótica instalado se calculará el ahorro bimestralmente, sumándolos luego para obtener el anual. Se toman los consumos bimestrales para marcar la diferencia en los dos primeros bimestres donde se utilizan los equipos de aire acondicionado, respecto de los demás bimestres donde no se utilizan, pero se compararán los costos anuales (Precio de comparación), los mismos se expresarán en dólares estadunidenses, con una cotización de 59,4 pesos, a la fecha 06/10/2019 (obtenido de la página del Banco Nación: http://www.bna.com.ar/Personas).

Luego se calcularán los principales indicadores económicos (Tasa Interna de Retorno, Valor Actual Neto, Costo del Capital y Periodo de Recupero).

10.1.1 Consumo eléctrico del último año

Se relevaron los datos de consumo eléctrico de la vivienda para el último año, los mismos se presentan en la tabla 10.1.1: Facturas de consumo eléctrico del último año.

Facturas de consumo eléctrico del último año										
Año	Periodo	Consumo(kWh)	Importe(\$)	Importe(U\$S)						
2019	Bim.1	711	\$ 4.184,78	70,45						
2019	Bim.2	552	\$ 3.979,00	66,99						
2018	Bim.3	681	\$ 3.198,32	53,84						
2018	Bim.4	436	\$ 1.791,88	30,17						
2018	Bim.5	464	\$ 2.306,02	38,82						
2018	Bim.6	638	\$ 3.424,80	57,66						
*D	atos extra	idos desde factur	ación de la E	.P.E.						

Tabla 10.1.1: Facturas de consumo eléctrico del último año-Elaboración propia desde facturación de la E.P.E

10.1.2 Ahorro energético de la vivienda con sistema de domótica

Para el sistema de control por domótica se plantea un ahorro de una hora diaria de cada equipo de aire acondicionado, durante los cuatro meses del año que se utilizan (son cuatro equipos de aire acondicionado, tipo frío sólo). Además, se considera un ahorro de 15% en su consumo de la iluminación interior que normalmente se usan 6 horas al día. Por último, en el caso de la iluminación exterior se consideran 3 horas diarias menos de uso.

Entonces se calcula el ahorro energético en cada sistema (A_e) con la siguiente fórmula:

$$A_e = (P_{AA} * t_{AA} + 0.15 * P_{I.int} * t_{I.int} + P_{I.ext} * t_{I.ext}) * C_e$$
 Donde:

 P_{AA} es el consumo en kW del sistema de climatización.

 t_{AA} es el tiempo de reducción de uso del sistema de climatización.

 $P_{I.int}$ es el consumo en kW del sistema de iluminación interior.

 $t_{l.int}$ es el tiempo de reducción de uso del sistema de iluminación interior.

 $P_{l.ext}$ es el consumo en kW del sistema de iluminación exterior.

 $t_{I.ext}$ es el tiempo de reducción de uso del sistema de iluminación exterior.

 C_e es el costo de compra de la energía eléctrica en \$/kWh, como este ahorro se presenta en los últimos kW/h del consumo de la vivienda, se utilizará el costo de los mismos para el último bimestre, es decir, \$6,045 (Valor extraído de la facturación de la E.P.E. para el bimestre 2 del 2019, para los últimos kW/h de consumo).

Como el sistema de climatización solo se utiliza en los dos primeros bimestres, se calcula el ahorro de estos dos y el de los cuatro restantes por separado, para luego sumarlos y tener el anual.

Ahorro energético bimestral de los dos primeros bimestres (Con sistema de climatización)

$$P_{AA} = 4 * 1 kW = 4 kW$$
 $t_{AA} = 1 \frac{hora}{dia} = 61 h/bimestre$ $t_{I.ext} = 4 * 0,001 kW = 0,004 kW$ $t_{I.ext} = 3 \frac{horas}{dia} = 183 h/bimestre$

$$P_{I.int} = 6 * 0.001 \ kW = 0.006 \ kW$$
 $t_{I.int} = 6 \frac{horas}{dia} = 366 \ h/bimestre$

Calculamos entonces el ahorro en los dos bimestres que se utiliza el sistema de climatización:

$$A_{e(B1+B2)} = 2 * (4 kW * 61 h + 0.15 * 0.006 kW * 366 h + 0.004 kW * 183 h) * 6.045 kWh$$

 $A_{e(B1+B2)} = $2998.63 = 50.48 U$S$

Y en los cuatro bimestres restantes, donde no se usan los aires acondicionados, el ahorro será:

$$A_{e(B3+B4+B5+B6)} = 4 * (0,15 * 0,006 \ kW * 366 \ h + 0,004 \ kW * 183 \ h) * 6,045\$/kWh$$

$$A_{e(B3+B4+B5+B6)} = \$25,67 = 0,43 \ U\$S$$

Entonces el ahorro energético anual será:

$$A_e = A_{e(B1+B2)} + A_{e(B3+B4+B5+B6)}$$

 $A_e = 51,22 U S$

Ahora, en la imagen 10.1.2 se presenta una gráfica comparativa entre la facturación de la vivienda para un año con y sin control por domótica, donde se ve que el ahorro es mayor en los dos bimestres que se utilizan los equipos acondicionadores de aire.

Imagen 10.1.2: Facturación con y sin sistema de control por domótica-Elaboración propia

10.2.1 Inversión inicial e indicadores económicos

La inversión inicial será de unos \$76664 (aproximadamente U\$S 1290,64), calculada y detallada en el Anexo I.8.: Cálculo del costo total de inversión.

Para el cálculo de los indicadores económicos antes mencionados se utilizan las siguientes fórmulas:

• Valor Neto Actual (VAN)

$$VAN = \sum_{t=1}^{n} \frac{FCN_t}{(1-r)^t} - I_0$$

 FCN_t : Flujo de caja del período (t) considerado.

r: Tasa de descuento o tipo de interes.

n: Numero de años considerados

 I_0 : Inversion Inicial.

El VAN compara todos los ingresos y egresos del proyecto en un momento dado que suele ser el actual, así resulta más fácil interpretar las cifras al tenerlas referidas al momento en que se debe tomar una decisión.

Si el VAN obtenido es mayor a cero, indica que se ganará dinero con el proyecto luego de recuperar la inversión inicial y considerar la tasa de retorno elegida para el mismo. Si da cero significa que no se ganará dinero, pero si se igualará exactamente el costo de dicha inversión más la tasa fijada. Por último, si da menor a cero significa que la rentabilidad del proyecto es menor a la que se fijó, es decir, no alcanza a recuperarse la inversión inicial y a cumplir con la tasa planteada.

Para calcular el VAN se utilizó la fórmula que ya tiene incluida el programa Microsoft Excel.

• Tasa Interna de Retorno (TIR)

$$VAN = 0 \implies TIR: \quad 0 = \sum_{t=1}^{n} \frac{FCN_t}{(1 - TIR)^t} - I_0$$

Se debe igualar a cero el VAN, la tasa de descuento r se remplaza por la Tasa Interna de Retorno (TIR) que es lo que se calcula y compara con la tasa de descuento r. Se busca que, en el proyecto, la TIR obtenida sea mayor o igual a la tasa de descuento.

• Período de Recuperación de la Inversión (PRI)

$$PRI = \frac{I_0}{FCNA_t}$$

FCNA_t: Flujos de caja actualizados del período considerado (Ganancia aunal estimada)

Determinamos así el número de períodos necesarios para recuperar la inversión inicial, para ver si es un valor aceptable o no.

• Costo del capital.

Representa la tasa de retorno que se desea obtener de la inversión realizada en el proyecto, para compensar el costo de oportunidad al destinar recursos al mismo y no utilizarlos, por ejemplo, en otro tipo de inversiones como ser un plazo fijo en dólares, que se considerará una inversión libre de riesgos y cuya tasa actual del Banco Nación es de 2,75 % (Obtenido desde la página web: http://www.bna.com.ar/SimuladorPlazoFijo, en la fecha 06/10/2019, para U\$S 1290,64 y un año).

Representa la tasa de retorno que se desea obtener de la inversión realizada en el proyecto, para compensar el costo de oportunidad al destinar recursos al mismo y no utilizarlos, por ejemplo, en otro tipo de inversiones

Los cálculos se realizaron mediante el programa Microsoft Excel, el cual ya tiene incorporada las fórmulas.

10.2.2 Cálculos de la TIR y del VAN

Se calcularán para una proyección a diez y a veinte años, con una inversión de U\$S 1290,64. La cotización a la fecha 06/10/2019 del dólar es de 59,4 \$/ U\$S, y será esta moneda la que se utilice para realizar el análisis económico, considerando para este análisis que todos los años ahorrará la misma cantidad de energía. El van se calcula sin exigirle alguna tasa (0%) y exigiéndole una tasa de 2,75% para compararla con la inversión en un plazo fijo en dólares.

En la tabla 10.2.2 se muestran los resultados obtenidos para la TIR y el VAN.

	Cálculo de la TII	Ryel VAN a 10 y 20	D años
Año	Flujo de fondos(U\$S)	Año	Flujo de fondos(U\$S)
O(INVERSION)	-1290,64	11	51,21
1	51,21	12	51,21
2	51,21	13	51,21
3	51,21	14	51,21
4	51,21	15	51,21
5	51,21	16	51,21
6	51,21	17	51,21
7	51,21	18	51,21
8	51,21	19	51,21
9	51,21	20	51,21
10	51,21		
Result	ados a 10 años	Resu	ltados a 20 años
VAN(r=0%)	-778,54	VAN(r=0%)	-266,44
VAN(r=2,75%)	-848,18	VAN(r=2,75%)	\$ -510,85
TIR	-14%	TIR	-2%

Tabla 10.2.2: Valores de TIR y VAN para 10 y 20 años - Elaborada propia.

Se observa que a veinte años todavía no se amortizo la inversión inicial y vemos que resultaría más conveniente invertir en otra cosa como un plazo fijo en dólares.

10.2.3 Cálculo del Período de Recupero de la Inversión (PRI)

Calculamos entonces en cuantos años se llega a recuperar la inversión realizada, como se vio con el TIR y el VAN calculados anteriormente, dicho período será mayor a 20 años (25 años y dos meses aproximadamente), el mismo se puede ver en la tabla 10.2.3: Período de Recupero de la Inversión y gráficamente en la Imagen 10.2.3: Gráfico del período de Recupero de la Inversión

		Período de Rec	upero de la Ir	nversion (PRI)	
Año	Flujo de fondos(U\$S)	Acumulado(U\$S)	Año	Flujo de fondos(U\$S)	Acumulado(U\$S)
O(INVERSION)	-1290,637205	-1290,64	14	51,21	-573,70
1	51,21	-1239,43	15	51,21	-522,49
2	51,21	-1188,22	16	51,21	-471,28
3	51,21	-1137,01	17	51,21	-420,07
4	51,21	-1085,80	18	51,21	-368,86
5	51,21	-1034,59	19	51,21	-317,65
6	51,21	-983,38	20	51,21	-266,44
7	51,21	-932,17	21	51,21	-215,23
8	51,21	-880,96	22	51,21	-164,02
9	51,21	-829,75	23	51,21	-112,81
10	51,21	-778,54	24	51,21	-61,60
11	51,21	-727,33	25	51,21	-10,39
12	51,21	-676,12	26	51,21	40,82
13	51,21	-624,91	Período de	Recupero de la Inversión (Años)	25,20

Tabla 10.2.3: Período de Recupero de la Inversión – Elaborada propia.

Imagen 10.2.3: Gráfico del período de Recupero de la Inversión – Elaborada propia.

Se puede ver que la inversión inicial se recuperaría en aproximadamente más de 25 años y dos meses, concluyendo entonces que el proyecto no resulta económicamente rentable y conviene invertir en otra cosa, por ejemplo, en un plazo fijo en dólares.

10.3.3 Cálculo de la reducción de emisión de CO₂.

Como beneficio para el medio ambiente y la sociedad, el proyecto reduciría la emisión de CO2 que se produce al generar la energía eléctrica. En nuestro país se producen 0,48 tnCO2 por cada MWh de energía eléctrica generada, (Obtenido desde la página web de la secretaría de energía de Argentina: http://datos.minem.gob.ar, en la fecha Julio del año 2019).

Calculamos entonces el ahorro anual de emisión de CO₂

Ahorro de emisión de
$$CO_2=0.48\frac{tnCO_2}{MWh}*\frac{605,28~kWh}{A\~no}*\frac{MWh}{1000~kWh}*\frac{1000~kg}{1~tn}$$
 Ahorro de emisión de $CO_2=290,53\frac{kgCO_2}{A\~no}$

11.PROPUESTAS Y DESAFIOS A FUTURO

Aunque el proyecto cumple con su propósito, en lo que refiere al control por domótica, se le pueden realizar mejoras o expandirlo para controlar nuevos sistemas o elementos de la vivienda, logrando así que el mismo sea más completo, mejorando además la interacción y manejo del usuario sobre el sistema de control. A continuación, se plantean algunas mejoras que podrían llevarse a cabo en distintas partes del proyecto.

11.1 Mejoras sobre las aplicaciones y el control del usuario

Las aplicaciones desarrolladas podrán mejorarse tanto en su aspecto visual, como en sus funciones, para hacerlas más sencillas de utilizar y que permitan controlar mayor cantidad de elementos al usuario de una manera más simple. Además de las dos aplicaciones desarrolladas existe la posibilidad de realizar controles similares mediante la conexión por wifi, para lo cual se podría realizar una nueva aplicación.

11.2 Mejoras generales sobre el sistema

Podrían agregarse pantallas táctiles en los diferentes ambientes para permitir por ejemplo que el usuario ajuste fácilmente las luminarias, revise datos de temperatura y humedad de cada ambiente, ingrese datos, etc.

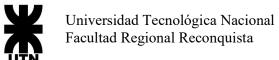
En el sistema de alarma podrían implementarse un sistema de cámaras que permitan al usuario visualizar remotamente distintos ambientes de la vivienda, y en los casos donde se dispare el sistema de alarma, podrían empezar a filmar.

Podría automatizarse además la apertura y cierre del portón, para lo cual habría que instalarle un sistema de accionamiento motorizado. Y que el usuario pueda abrirlo mediante su Smartphone y una determinada clave de acceso.

Si se instalan toldos en las ventanas o en la galería, podrían automatizarse para que se cierren en casos donde mediante un sensor se detecte que comenzó a llover, permitiendo, por ejemplo, dejar abiertas las persianas y que no se moje el interior de la vivienda.

12.BIBLIOGRAFÍA

- Óscar Torrente Artero, "ARDUINO: CURSO PRACTICO DE FORMACION" Alfaomega S.A. Primera edición.
- José Manuel Ruiz Gutiérrez, "IDE ARDUINO + ARDUBLOCK: Utilización de Ardublock para la generación en modo gráfico de aplicaciones para el IDE Arduino". Diciembre 2011.
- José Manuel Ruiz Gutiérrez," PRÁCTICAS CON ARDUINO NIVEL I"
- José Manuel Ruiz Gutiérrez, "MANEJO Y APLICACIONES DEL BUS I2C DE ARDUINO". Agosto 2012.
- José Manual Ruiz Gutiérrez," MANUAL DE PROGRAMACION: ARDUINO"
- CATÁLOGO DE ROBÓTICA, SENSORES Y ARDUINO. Electrónica Embajadores.
- Leopoldo Molina Gonzales, "INSTALACIONES DOMOTICAS". Mc Graw
 Hill
- SEPARATAS DE LEGISLACION: Higiene y seguridad en el trabajo. Errepar S.A. Enero 2014.
- AEA 90364 Parte 7, Sección 771. Edición 2006.
- AEA 90364 Parte 7, Sección 780. Edición 2012.
- Alberto F. Spitta, Gunter G. Seip, "INSTALACIONES ELECTRICAS".Ed DOSSAT S.A.1975.
- CORRIENTES DE CORTOCIRCUITO EN SISTEMAS TRIFÁSICOS DE CORRIENTE ALTERNA: AEA 90909, Parte 0. Ed 2005.
- Comisión de Domótica, "GUÍA DE CONTENIDOS MÍNIMOS PARA LA ELABORACIÓN DE UN PROYECTO DE DOMÓTICA": Colegio de Ingenieros Especialistas de Córdoba. Octubre 2012.



Sitios web consultados:

- https://www.arduino.cc/ (Agosto 2018)
- http://ai2.appinventor.mit.edu (Septiembre 2018)
- http://datos.minem.gob.ar (Julio 2019)
- http://www.bna.com.ar/SimuladorPlazoFijo (Julio 2019)
- http://www.alldatasheet.com (Septiembre 2018 Junio 2019)
- https://simcom.ee/modules/gsm-gprs/sim900/ (Noviembre 2018)
- http://www.ciec.com.ar/images/archivos/Domotica-CIEC.pdf (Agosto 2019)
- Páginas web de los fabricantes. (Septiembre 2018 Junio 2019)

Programas utilizados:

- AUTOCAD 2015 (Autodesk). Descargado del sitio web https://www.autodesk.com/education/free-software/autocad
- ARDUINO IDE. Versión 1.8.3. Descargado en Julio de 2018 del sitio https://www.arduino.cc/en/Main/Software (Septiembre 2018)
- INVENTOR 2019 (Autodesk). Descargado del sitio web https://www.autodesk.com/products/inventor

LISTA DE IMÁGENES

Imagen 3.1: Esquema de un sistema centralizado – Elaboración propia	Pág12
Imagen 3.2: Esquema de un sistema distribuido – Elaboración propia	Pág13
Imagen 4.2: Sistema de control de luminarias exteriores— Elaboración propia	Pág22
Imagen 4.3: Sistema de control de luminarias interiores– Elaboración propia	Pág23
Imagen 4.4: Sistema de control de climatización y ventilación– Elaboración propia	Pág24
Imagen 4.5: Sistema de seguridad para pérdidas de gas – Elaboración propia	Pág26
Imagen 4.6: Sistema de alarma– Elaboración propia.	Pág26
Imagen 4.7: Sistema de simulación de presencia- Elaboración propia	Pág26
Imagen 5.1: Arduino AT mega.	Pág27
Imagen 5.2: Matriz 4x4	Pág27
Imagen 5.3: Módulo LCD 602	Pág27
Imagen 5.4: Adaptador LCD I2C(PCF8574)	Pág28
Imagen 5.5: Módulo HC05	Pág29
Imagen 5.6: Módulo DS3231	Pág29
Imagen 5.7: Módulo Esp 8266 (ESP-01)	Pág30
Imagen 5.8: Módulo GSM/GPRS SIM900.	Pág31
Imagen 5.9: Módulo sensor de temperatura.	Pág31
Imagen 5.10: Módulo sensor de movimiento HC SR 501 PIR.	Pág32
Imagen 5.11: Módulo sensor crepuscular KY 01	Pág32
Imagen 5.12: Módulo sensor de gases MQ2	Pág33
Imagen 5.13: Módulo de relés.	Pág33
Imagen 5.14: Sensores magnéticos de apertura de puertas, tipo NC	Pág34
Imagen 5.15: Módulo de control PWM en 220 V CA (Opto acoplador)	Pág34
Imagen 5.16: Fuente step down 12 V a 5 V de C.C. (5 A máx.)	Pág35
Imagen 5.17: Conductores especiales para conexiones	Pág35
Imagen 5.18: Sirena de 12 V uso exterior	Pág35
Imagen 5.19: Fuente de alimentación con control de carga para batería	Pág36
Imagen 6.1: Captura del programa, selección del modelo – Elaboración propia	Pág37
Imagen 7.1: Aplicación desarrollada para el control manual	Pág39
Imagen 7.2: Aplicación desarrollada para el control por voz	Pág39

Proyecto Final Batistuta Prieto, Ruy Demián

LISTA DE IMÁGENES (Continuación)

Imagen 10.1.2: Facturación con y sin sistema de control por domótica-Elaboración propia	Pág60
Imagen 10.2.3: Gráfico del período de Recupero de la Inversión - Elaboración propia	Pág64
Imagen II.1: Programación de la aplicación desarrollada para control manual-Elaboración propia	.Pág91
Imagen III.1: Programación de la aplicación desarrollada para control por voz-Elaboración propia	.Pág92

Proyecto Final Batistuta Prieto, Ruy Demián

LISTA DE TABLAS

Tabla 4.1: Característica Arduino ATmega 2526 – Elaborada desde hoja de datos	Pág19
Tabla 9.1: Resumen de los circuitos eléctricos existentes en la vivienda. – Elaboración propia	Pág41
Tabla 9.3.1: Tabla para determinar la sección de conductores – AEA90366-Parte7-Sección 771	Pág.47
Tabla 9.3.2: Caídas de tensión y corrientes admisibles de los conductores eléctricos	Pág.48
Tabla 9.3.3: Verificación de conductores y protecciones existentes – Elaboración propia	Pág49
Tabla 9.5.1: Datos del IA y las verificaciones del circuito ACU. – Elaborada desde hoja de datos	Pág51
Tabla 9.5.2: Datos del IA y del Id del circuito ACU – Elaborada desde hoja de datos	Pág.52
Tabla 9.6.1: Datos de los tableros eléctricos de la vivienda – Elaboración propia	Pág55
Tabla 9.6.2: Potencia total disipada en los tableros de la vivienda – Elaboración propia	Pág56
Tabla 10.1.1: Facturas de consumo eléctrico del último año	Pág.58
Tabla 10.2.2: Valores de TIR y VAN para 10 y 20 años – Elaborada propia	Pág.63
Tabla 10.2.3: Período de Recupero de la Inversión – Elaborada propia	Pág64
Tabla I.1.1: Lista de componentes generales necesarios –Elaboración propia	Pág72
Tabla I.1.2: Componentes del control de iluminación exterior – Elaboración propia	Pág.72
Tabla I.1.3: Componentes del control de iluminación interior –Elaboración propia	Pág.73
Tabla I.1.4: Componentes para el control del sistema de climatización – Elaboración propia	Pág74
Tabla I.1.5: Componentes para el sistema de seguridad y alarma-Elaboración propia	Pág74
Tabla I.2.1: Cantidad de E./S. digitales y analógicas necesarias –Elaboración propia	Pág.75
Tabla I.3.1: Conductores y terminales para el living –Elaboración propia	Pág76
Tabla I.3.2: Conductores y terminales para la cocina –Elaboración propia	Pág76
Tabla I.3.3: Conductores y terminales para el dormitorio N°1 –Elaboración propia	Pág76
Tabla I.3.4: Conductores y terminales para el dormitorio N°2 –Elaboración propia	Pág76
Tabla I.3.5: Conductores y terminales para el dormitorio N°3 –Elaboración propia	Pág77
Tabla I.3.6: Conductores y terminales para el patio-Elaboración propia	Pág77
Tabla I.3.7: Longitud total de conductores y terminales necesarios—Elaboración propia	Pág77
Tabla I.3.8: Cantidad y tipos de conductores DuPont necesarios- Elaboración propia	Pág78
Tabla I.4.1: Cantidad de caños, tipos y uniones requeridas – Elaboración propia	Pág78
Tabla I.5.1: Características y tipos de conductores utilizados – Elaboración propia	Pág79
Tabla I.5.2: Verificaciones de los conductores utilizados –Elaboración propia	Pág79
Tabla I.8.1: Lista de todos los componentes necesarios y sus costos –Elaboración propia	Pág83
Tabla I.9.1: Puntuación obtenida para Gestión Energética – CIEC (Pág.30)	Pág84
Tabla I.9.2: Puntuación obtenida para Confort – CIEC (Pág.31)	Pág85
Tabla I.9.3: Puntuación obtenida para Seguridad – CIEC (Pág.32).	Pág86

Proyecto Final Batistuta Prieto, Ruy Demián

LISTA DE TABLAS (Continuación)

Tabla I.9.4: Puntuación obtenida para Comunicación – CIEC (Pág.33)	
Tabla I.9.3: Puntuación obtenida para Accesibilidad – CIEC (Pág.34)	Pág88
Tabla I.10.1: Planilla de cargas – Elaboración propia	Pág89
Tabla I.10.2: Planilla de puntos – Elaboración propia.	Pág89
Tabla I.10.3: Planilla de mantenimiento del sistema – Elaboración propia	Pág89
Tabla III.1: Comandos para control por voz – Elaboración propia	Pág93

LISTA DE PLANOS

Plano N°I - Plano general de la vivienda	Pág133
Plano N°2-Diagrama de circuitos eléctricos de la vivienda	Pág134
Plano N°3 – Diagrama unifilar	Pág.135
Plano N°4-Esquema de conexión del sistema automático de iluminación	Pág136
Plano N°5 - Esquema de conexión del sistema automático de ventilación y climatización	Pág137
Plano N°6 - Esquema de conexión del sistema de alarma	Pág.138
Plano N°7 - Conexión alimentación general del arduino	Pág139
Plano N°8 – Conexión de los sistemas de comunicaciones	Pág140
Plano N°9 - Conexión matriz 4x4 con Arduino	Pág.141
Plano N°10-Conexión del Reloj de tiempo real (RTC) y del LCD (LCD1602A)	Pág.142
Plano N°11 - Conexión del sistema de control automático de la iluminación	Pág143
Plano N°12 - Conexión del sistema de climatización y ventilación automática	Pág144
Plano N°13 - Conexión del sistema para la detección de pérdidas de gas	Pág.145
Plano N°14-Conexión del sistema de alarma (PIR, Sirena y sensores de aberturas)	Pág.146
Plano N°15 - Diagrama lógico y diagrama funcional control de temperatura	Pág.147
Plano N°16- Diagrama lógico y diagrama funcional control de iluminación exterior	Pág.148
Plano N°17 - Diagrama lógico y diagrama funcional control de iluminación interior	Pág149
Plano N°18 - Diagrama lógico y diagrama funcional sistema de seguridad (Alarma)	Pág150
Plano N°19 - Diagrama lógico y diagrama funcional sistema de simulación de presencia	Pág.151
Plano N°20- Diagrama lógico y diagrama funcional sistema de seguridad ante pérdidas de gas	Pág.152

Anexo I: cálculos

Anexo I.1: Cálculo de cantidad de componentes a utilizar para cada sistema.

Anexo I.1.1: Componentes para el sistema general de control.

La tabla I.1.1 muestra la lista de materiales necesarios para el sistema general de control y seguridad de la vivienda.

Componentes generales necesarios		
Designación	M odelo/tipo	Cantidad
Arduino Atmega 2560	Atmega 2560	1
Fuente de alimentacion/Ups	UPS 12V/4A	1
Bateria 12 V 9 Ah Sin mantenim.	PRESS PR1290	1
Matriz 4x4 (16 teclas)	16 teclas	1
Módulo tiempo real (Reloj)	DS3231	1
Comunicación por bluetooth	HC 05	1
Comunicación por wifi	Esp 8266 (ESP-01)	1
Módulo LCD 1602 A	LCD 1602 A	1
Adaptador LCD I2C	PCF8574	1
Módulo GSM/GPRS	SIM900	1
Caja plastica para relés y LED emisor inf.	20x20x10 cm	6
Rack Mural 6 Unidades	Con acrílico	1
Fuente Step down 12 V a 5V	5 V hasta 5A	1
Cables dupont (macho/macho)	30 cm (40 U)	1
Cables dupont (macho/hembra)	30 cm (40 U)	1

Tabla I.1.1: Lista de componentes generales necesarios - Elaboración propia

Anexo I.1.2: Componentes para el control de la iluminación exterior

En el exterior de la casa sólo se controlará el encendido y apagado de las luminarias, para lo cual se usará un único sensor crepuscular y el módulo de relé necesario para accionar las luminarias. Para que el usuario active o desactive el control automático de las luminarias se utiliza un interruptor de dos posiciones. La tabla I.1.2 muestra la lista de materiales necesarios para el sistema de control automático de luminarias exteriores.

Componentes necesarios para control automático de luminarias exteriores			
Designación	Modelo/tipo	Cantidad	
Sens.Crepusc. KY 018	KY 018	1	
Módulo de relés optoacoplados x1	5V /220 V 10A	1	
Interruptor dos posiciones (on/off)	On/Off	1	

Tabla I.1.2: Componentes del control de iluminación exterior - Elaboración propia

Anexo I.1.3: Componentes para el control de la iluminación interior

En el interior de la vivienda se controlará el encendido y apagado de las luminarias del living y los tres dormitorios, además dicho control será progresivo mediante el control por ancho de pulso (PWM), para lo cual se usará un sensor crepuscular para cada ambiente controlado, un sensor de movimiento (considerados en el sistema de alarma de la vivienda) además de una placa optoacopladora para PWM de 220 V, la cual tiene cuatro canales para controlar. Para que el usuario active o desactive el control automático de las luminarias se utiliza un interruptor de dos posiciones. La tabla I.1.3 muestra la lista de materiales necesarios para el sistema de control automático de luminarias interiores.

Componentes necesarios para control automático de luminarias interiores					
Designación Modelo/tipo Cantidad					
Sens.Crepusc. KY 018	KY 018	4			
Optoacoplador para PWM 4 Canales	220 V 10 A C/U	1			
Interruptor dos posiciones (on/off)	On/Off	1*ya considerado			

Tabla I.1.3: Componentes del control de iluminación interior – Elaboración propia

Anexo I.1.4: Componentes para el control de ventilación y climatización.

Primero, para medir la temperatura de cada ambiente y la exterior se requiere de cinco sensores de temperatura LM35D (uno exterior, el del living y el de cada uno de los tres dormitorios). Se controlará también la apertura o cierre de cinco persianas (en la cocina, en los tres dormitorios y en el living), para lo cual se requieren de cinco motores tubulares de 220 V que las accionen y de dos relés por cada uno de éstos, para accionarlos en ambos sentidos a cada uno.

Además, para controlar el encendido y apagado de los equipos de aire acondicionado se requerirán 5 leds emisores infrarrojos (uno en cada ambiente con aire acondicionado).

Por último, para permitir que el usuario active o desactive el control automático de ventilación y climatización de cada ambiente o el general de la vivienda se requerirán de cuatro interruptores de dos posiciones.

La tabla I.1.4 muestra la lista de materiales necesarios para el sistema de climatización y ventilación automático.

Componentes necesarios para el sistema de climatización y ventilación					
Designación	Designación Modelo/tipo				
Sensor de temperatura	LM35D	5			
Motor p/percianas	220 V	4			
Emisor LED infrarrojo	Genérico	4			
Interruptor dos posiciones (on/off)	On/Off	5			
Módulo de relés optoacoplados x2	5V /220 V 10A	3			

Tabla I.1.4: Componentes para el control del sistema de climatización - Elaboración propia

Anexo I.1.5: Componentes para el sistema de seguridad y alarma.

Se utilizará una matriz 4x4 (16 teclas) para el ingreso de una clave de activación y desactivación del sistema de alarma. Además, en un display se mostrará si la clave ingresada fue correcta o no. Para detectar si se abre alguna abertura se utilizarán contactos NC en las puertas y el portón que den acceso al interior de la vivienda. También, en los tres dormitorios y el living se dispondrán sensores de movimientos. Cuando se dispare el sistema de alarma se encenderá una sirena de 12 V (requiere un módulo de relé simple) y se avisará al dueño de la vivienda, mediante una llamada o mensaje a su Smartphone.

Por otro lado, para el sistema de seguridad ante pérdidas de gas se requerirá un sensor MQ2 y una electroválvula para gas.

La tabla I.1.5 muestra la lista de materiales necesarios para el sistema de seguridad y alarma.

Componentes necesarios para	Componentes necesarios para el sistema de alarma y seguridad					
Designación	M odelo/tipo	Cantidad				
Fuente de alimentacion/Ups	UPS 12V/4A	1 *ya considerada				
Bateria 12 V 9 Ah Sin mantenim.	PRESS PR1290	1 *ya considerada				
Matriz 4x4 (16 teclas)	16 teclas	1 *ya considerada				
Módulo tiempo real (Reloj)	DS3231	1 *ya considerada				
Módulo LCD 1602 A	LCD 1602 A	1 *ya considerada				
Adaptador LCD I2C	PCF8574	1 *ya considerada				
Módulo GSM/GPRS	SIM900	1 *ya considerada				
Sirena para alarma (12 V)	12 V p/exterior	1				
Módulo de relés optoacoplados x1	5V /220 V 10A	1				
Sensor de movimiento (infra.)	HC SR 501 PIR	4				
Sensor apertura de puertas/portón	NC int.Magnet.	6				
Sensor de gas	M Q2	1				
Electoválvula para gas	NC 1/2 " 12 V	1				

Tabla I.1.5: Componentes para el sistema de seguridad y alarma-Elaboración propia

Anexo I.2: Cantidad de entradas y salidas necesarias.

Teniendo en cuenta la cantidad de componentes necesarios para todos los sistemas, calculo ahora la cantidad total de entradas/salidas digitales y analógicas requeridas en total, para verificar además que sean suficientes las que tiene el arduino ATmega 2526, el cual tiene 54 entradas/salidas digitales (14 con PWM) y 16 entradas analógicas.

La tabla I.2.1 muestra la lista de entradas/salidas digitales y analógicas necesarias, en la misma vemos que se requieren 51 entradas/salidas digitales y 11 analógicas, con lo cual el arduino elegido será capaz de controlarlas a todas, para una futura expansión se podrá anexar otro arduino para tener mayor capacidad y conectar los dos arduino entre sí en un sistema mixto.

	Cantidad de entradas/salidas digitales y analógicas necesarias						
Designacion	M odelo/tipo	Cantidad	E.S.Digitales	Analógicas	Subtot.(Digitales)	Subtot.(Analógicas)	
Interruptor dos posiciones (on/off)	On/Off	6	1	0	6	0	
Sensor apertura de puertas/portón	NC int.Magnet.	6	1	0	6	0	
Matriz 4x4 (16 teclas)	16 teclas	1	8	0	8	0	
Comunicación por bluetooth	HC 05	1	2	0	2	0	
Comunicación por wifi	Esp 8266 (ESP-01)	1	2	0	2	0	
Módulo GSM/GPRS	SIM900	1	2	0	2	0	
Led emisor infrarrojo	Genérico	4	1	0	4	0	
Módulo tiempo real (Reloj)	DS3231	1	2	0	2	0	
Módulo LCD 1602 A con Adaptador	PCF8574	1	2 ya consideradas	0	0	0	
Sensor de temperatura	LM35D	5	0	1	0	5	
Sens.Crepusc. KY 018	KY 018	5	0	1	0	5	
Sensor de movimiento (infra.)	HC SR 501 PIR	5	1	0	5	0	
Sensor de gas	M Q2	1	0	1	0	1	
Módulo de relés optoacoplados x1	5V /220 V 10A	1	1	0	1	0	
Módulo de relés optoacoplados x2	5V /220 V 10A	3	4	0	4	0	
Módulo de relés optoacoplados x4	5V /220 V 10A	1	5	0	5	0	
Optoacoplador para PWM 4 Canales	220 V 10 A C/U	1	4	0	4	0	
	<u> </u>		Total Digitales	51	Total Analógicas	11	

Tabla I.2.1: Cantidad de E./S. digitales y analógicas necesarias - Elaboración propia

Anexo I.3: Cálculo de longitud y cantidad de conductores necesarios

En las conexiones entre el arduino y los módulos de bluetooth, wifi, GSM/GPRS, matriz 4x4 (16 teclas), adaptador LCD I2C y de éste al LCD 1602 A y alimentaciones respectivas se utilizarán conductores DuPont de los que ya vienen armados con los terminales, debido a que son distancias menores a 20 cm, y estos conductores vienen de dicha longitud o de hasta 30 cm.

Por otro lado, para conexiones de sensores, relés, sirena, detectores de apertura, etc., se deberán armar conductores a medida, seleccionando, desde las tablas de datos del fabricante IMSA, la cantidad de conductores, para luego calcular la longitud y tipos de terminales (macho/hembra) que se requiera para cada caso. Todo esto se calcula y muestra en las tablas I.3.1 (para el living), I.3.2 (para la cocina), I.3.3(para el dormitorio N°1), I.3.4(para el dormitorio N°2), I.3.5(para el dormitorio N°3), I.3.6 (para el patio) y el cómputo final de estos componentes se muestran en la tabla I.3.7.

Para el Living					
Sección del circuito	Distancia (m)	C. Conductores	C.Term.Hem.	C.Term.Mac.	
Ardu. A caja de control	5,5	7	7	7	
Ardu. A PIR + Crepusc.	5,5	5	5	5	
Ardu. A control puerta	9,5	2	0	2	

Tabla I.3.1: Conductores y terminales para el living -Elaboración propia

Para la cocina					
Sección del circuito	Distancia (m)	C. Conductores	C.Term.Hem.	C.Term.Mac.	
Ardu. A caja de control	7,0	7	7	7	
Ardu. A caja de control (12 V)	7,0	2	0	2	
Ardu. A control puerta	11,6	2	0	2	
Ardu Sensor de gas	12,0	3	3	3	
Caja de control - Electrov.Gas	6,4	2	0	0	

Tabla I.3.2: Conductores y terminales para la cocina - Elaboración propia

Para el Dormitorio N°1				
Sección del circuito Distancia (m) C. Conductores C.Term.Hem. C.Term.Mac				
Ardu. A caja de control	4,5	7	7	7
ArduPIR + Crepusc.+ Temp	3,5	5	9	9

Tabla I.3.3: Conductores y terminales para el dormitorio N°1 -Elaboración propia

Para el Dormitorio N°2				
Sección del circuito Distancia (m) C. Conductores C.Term.Hem. C.Term.Mac.				
Ardu. A caja de control	3,9	3	3	3
ArduPIR + Crepusc.+ Temp	3,0	5	9	9

Tabla I.3.4: Conductores y terminales para el dormitorio N°2 –Elaboración propia

Para el Dormitorio N°3					
Sección del circuito	Distancia (m)	C. Conductores	C.Term.Hem.	C.Term.Mac.	
Ardu. A caja de control	4,7	7	7	7	
ArduPIR + Crepusc.+ Temp	4,2	5	9	9	
Ardu. A control puerta	6,5	2	0	2	

Tabla I.3.5: Conductores y terminales para el dormitorio N°3 -Elaboración propia

Para el Patio						
Sección del circuito	Distancia (m)	C. Conductores	C.Term.Hem.	C.Term.Mac.		
S. Temp + Crepuscular	11,0	5	6	6		
Ardu. A control puerta P.adel.	14,6	2	0	2		
Ardu. A control puerta P.atras	10,5	2	0	2		
Ardu. A control portón	14,7	2	0	2		
Ardu. A Sirena 12 V (Alarma)	9,6	2	0	2		

Tabla I.3.6: Conductores y terminales para el patio -Elaboración propia

Para calcular la longitud a comprar de cada cable se juntan los que requieren la misma cantidad de conductores, los resultados obtenidos se muestran en tabla I.3.7.

Sección del circuito	Distancia (m)	C. Conductores	Dist.Acumul(m)	C.T.Macho	C.T.Hembra	C.Cabeza
Ardu. A caja de control (12 V)	7,0	2 (de 1,5 mm2)	7,0	2	0	2
Caja de control - Electrov.Gas	6,4	2 (de 1,5 mm2)	13,4	0	0	0
Ardu. A control puerta	9,5	2	9,5	2	0	2
Ardu. A control puerta	11,6	2	21,1	2	0	2
Ardu. A control puerta	6,5	2	27,6	2	0	2
Ardu. A control puerta P.adel.	14,6	2	42,2	2	0	2
Ardu. A control puerta P.atras	10,5	2	52,7	2	0	2
Ardu. A control portón	14,7	2	67,4	2	0	2
Ardu. A Sirena 12 V (Alarma)	9,6	2	77,0	2	0	2
Ardu Sensor de gas	12,0	3	12,0	3	3	6
Ardu. A caja de control	3,9	3	15,9	3	3	6
Ardu. A PIR + Crepusc.	5,5	5	5,5	5	5	10
ArduPIR + Crepusc.+ Temp	3,5	5	9,0	9	9	18
ArduPIR + Crepusc.+ Temp	3,0	5	12,0	9	9	18
ArduPIR + Crepusc.+ Temp	4,2	5	16,2	9	9	18
S. Temp + Crepuscular	11,0	5	27,2	6	6	12
Ardu. A caja de control	5,5	7	5,5	7	7	14
Ardu. A caja de control	7,0	7	12,5	7	7	14
Ardu. A caja de control	4,5	7	17,0	7	7	14
Ardu. A caja de control	4,7	7	21,7	7	7	14
			Total:	86	72	158

Tabla I.3.7: Longitud total de conductores y terminales necesarios- Elaboración propia

Por otro lado, para las conexiones cortas se calculan el tipo y cantidad de conductores necesarios y los resultados se muestran en la tabla I.3.8

Cantidad de conductores dupont y tipos requeridos para conexiones cercanas al arduino					
Sección del circuito	C.Conductores	Tipo de terminales			
Comunicación por bluetooth	4	Macho / Hembra			
Comunicación por wifi	4	Macho / Hembra			
Módulo GSM/GPRS	5	Macho / Hembra			
Módulo tiempo real (Reloj)	4 Macho / Hembra				
Matriz 4x4 (16 teclas)	Matriz 4x4 (16 teclas) 8 Macho / Macho				
Placa controladora PWM	7	Macho / Macho			
Interruptor dos posiciones (on/off)	12	Macho / Macho			
Adaptador LCD I2C a LCD 1602 A	16	Macho / Hembra			
Adaptador LCD I2C	4	Macho / Hembra			
Total de conductores dupont Macho / Macho 27					
Total de conductores dup	Total de conductores dupont Macho / Hembra 37				
Entonces se comprarán dos	kit de 40 conduc	tores, uno de cada tipo			

Tabla I.3.8: Cantidad y tipos de conductores DuPont necesarios- Elaboración propia

Anexo I.4: Cálculo de longitud y tipos de canalizaciones requeridas

A continuación, se determinan la longitud de cada diámetro de canalización requerida para instalar los conductores de la parte de control y del sistema de alimentación, teniendo en cuenta la longitud total de cada tipo de conductor, el diámetro que le corresponde a cada uno según la AEA 90364 sección 7-771. En la tabla I.4.1 se presentan las longitudes, tipos de caños y cantidad de uniones requeridas.

			Cantio	dad de caños, tipos y uniones reque	ridas						
N° conduct.	S(mm2)	Fabricante y Modelo	Caños	Caracteristicas-Material	Fabricante	Longitud(m)	C/Caños (U)	C/Uniones			
2	1,5	IMSA (Plastix® R)	RS16	PVC semipesado, Auextinguible	Tubelectric	13,4	4	4			
2	1	IMSA (Plastix® R)	RS16	PVC semipesado, Auextinguible	Tubelectric	77,0	30	34			
3	1	IMSA (Plastix® R)	RS16	PVC semipesado, Auextinguible	Tubelectric	15,9	35	40			
2 + PE	2,5	IMSA (Plastix® R)	RS16	PVC semipesado, Auextinguible	Tubelectric	1,5	36	40			
5	1	IMSA (Comander CF)	RS25	PVC semipesado, Auextinguible	Tubelectric	27,2	10	10			
7	7 1 IMSA (Comander CF) RS25 PVC semipesado, Auextinguible Tubelectric 21,7 17 20										
Como lo	Como los caños vienen de 3m se calculan la cantidad de caños requeridos en unidades, y las uniones requeridas, que vienen cada 10 U.										
9	e require	n 36 caños RS16, con 40 u	niones	para los mismos. Además se require	n 17 caños RS	25 con 20 unic	nes para ésto	s			

Tabla I.4.1: Cantidad de caños, tipos y uniones requeridas – Elaboración propia

Anexo I.5: Cálculo y verificación de caídas de tensiones

Se calcularán las caídas de tensiones en la conexión de cada componente, teniendo en cuenta los datos proporcionados por el fabricante de cada tipo de conductor (mostrados en la En la tabla I.5.1.). Además, se verificará que en los extremos donde se conectan los diferentes elementos las tensiones no sean inferiores a las requeridas para el funcionamiento de los mismos.

Para el cálculo de caída de tensión se utiliza la fórmula: $\Delta U = 2 * I * R * L$, donde I es la corriente en Amper, R la resistencia en Ω /km y L la longitud total del tramo en km. Y para la caída de tensión porcentual $\Delta U\% = \frac{\Delta U}{U}$. Para los componentes que son iguales (por ejemplo, para sensores de las aberturas) se calcula para la mayor distancia, que sería la situación más desfavorable, si ésta verifica, entonces las demás también. Las verificaciones realizadas son de corriente admisible del conductor, caída de tensión y tensión mínima de trabajo de cada componente (verifico que la tensión que llega a cada elemento no sea menor a la mínima requerida para el funcionamiento del mismo, dado por el fabricante).

		Característic	as y tipos de o	Características y tipos de conductores a utilizar										
N° conduct.	Sección(mm2)	Mat.Cond.	Mat.Aislan.	R(Ω/km)(70°)	ladm(A)	Fabricante y Modelo								
2	1,5	Cobre (Cu)	PVC	13,3	17	IMSA (Plastix® R)								
2	1	Cobre (Cu)	PVC	19,5	10	IMSA (Plastix® R)								
3	1	Cobre (Cu)	PVC	19,5	10	IMSA (Plastix® R)								
5	1	Cobre (Cu)	PVC	23,33	9	IMSA (Comander CF)								
7	1	Cobre (Cu)	PVC	23,33	8	IMSA (Comander CF)								

Tabla I.5.1: Características y tipos de conductores utilizados - Elaboración propia.

Los resultados obtenidos para las caídas de tensiones y verificaciones se muestran en la tabla I.5.2

		V	erificaciones	de los conductore	s utilizac	los					
Sección del circuito	Long.(m)	N°Cond.	Secc.(mm2)	R(Ω/km)(a 70°)	ladm(A)	U (V)	I (A)	ΔU	ΔU%	U min (U)	Verificación
Ardu. A caja de control (12 V)	7,0	2	1	19,35	10	12	0,4	0,11	0,90%	11,5	Verifica
Ardu. A control portón	14,7	2	1	19,35	10	5	0,08	0,05	0,91%	4,5	Verifica
Ardu. A Electroválvula Gas	13,4	2	1,5	13,30	17	12	1,58	0,52	4,35%	11	Verifica
Ardu. A sensor PIR (HCSR501)	5,5	5	1	23,33	9	5	0,001	0,00	0,01%	3	Verifica
Ardu a sensor Crepuscular(KY 018)	11,0	5	1	23,33	9	5	0,019	0,01	0,20%	4,5	Verifica
Arduino a Sensor temp. (LM35D)	11,0	5	1	23,33	9	5	0,1	0,05	1,03%	3	Verifica
Ardu. A Sirena 12 V (Alarma)	9,6	3	1	19,50	10	5	0,18	0,07	1,33%	4,5	Verifica
Ardu Sensor de gas	12,0	3	1	19,50	10	5	0,035	0,02	0,33%	3,3	Verifica
Ardu. A módulo 4 relés	4,7	7	1	23,33	8	5	0,08	0,02	0,35%	3,3	Verifica

Tabla I.5.2: Verificaciones de los conductores utilizados – Elaboración propia.

Anexo I.6: Cálculo y selección de motores tubulares para accionar las persianas

Para seleccionar los motores tubulares que accionarán las persianas de la vivienda se calculará el peso aproximado de una persiana y luego se seleccionará el motor que pueda levantarla.

En la vivienda se tienen todas las persianas de aluminio con poliuretano expandido y de las mismas dimensiones (1,60 m de ancho por 1,80 m de largo total y 10 mm de espesor).

El peso aproximado por metro cuadrado para este tipo de persianas (de aluminio con poliuretano expandido y 10 mm de espesor) es de $p = 3.5 \text{ Kg/m}^2$, entonces se calcula un peso aproximado total de cada persiana con la fórmula:

$$P(Kg) = p * a * l$$

Donde: a = 1,60 m (ancho); l = 1,80 m (largo total)

$$P(Kg) = 3.5 \frac{Kg}{m^2} * 1.60 m * 1.80 m$$

$$P = 10,08 Kg = 11 Kg$$

Con el peso aproximado se calcula el torque requerido mediante la fórmula:

$$T(N.m) = P(Kg) * (r + e)(m) * 9,81 \frac{N}{Kg}$$

Donde r es el radio del tubo de enrollamiento, en éste caso el mismo tiene un diámetro de 40 mm por lo que su radio es de 20 mm (0,02m).

$$T(N.m) = 11 Kg * (0.02 m + 0.01 m) * 9.81 \frac{N}{Kg} = 3.24 N.m$$

Entonces se requerirán motores tubulares de 220 V de C.A. que tengan al menos 3,24 N.m de torque (levanten al menos 11 Kg).

Teniendo en cuenta los cálculos anteriores se elige utilizar motores de la marca Aprimatic, modelo 35S 6Nm/28F de 6 N.m y 20 Kg, cuyo catálogo se encuentra en el anexo VI.

Anexo I.7: Cálculo estimado de ahorro energético

El ahorro energético del sistema de climatización automática dependerá de diversos factores como por ejemplo la potencia de los equipos de aire acondicionado, su tiempo encendido, las temperaturas a las que se encuentren los distintos ambientes y la exterior a la vivienda, para tener una idea del ahorro que se lograría al implementar este tipo de sistemas de control automático se plantearan distintas hipótesis las cuales representarían los distintos escenarios que pudieran presentarse, y para cada uno de estos se realizaran los cálculos.

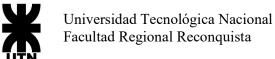
Hipótesis I: temperatura exterior menor a 24°C.

Si la temperatura exterior es menor a 24°C y la interior es mayor, encender los sistemas de aire acondicionado implicaría un gasto innecesario, y la energía consumida durante todo el tiempo de funcionamiento del mismo sería un gasto que podría evitarse con el sistema planteado, abriendo las persianas automáticamente en lugar de encender los equipos.

Hipótesis II: temperatura exterior mayor a 24°C

En el caso en que la temperatura exterior sea mayor a 24°C y a su vez mayor a la de los ambientes interiores, dejar abiertas las persianas ocasionaría un aumento en la temperatura de los ambientes interiores, que luego implicará que los equipos acondicionadores de aire estén un mayor tiempo encendidos y consuman más energía.

Para realizar los cálculos de consumo se utilizan los datos del fabricante de los sistemas de aire acondicionado instalados en la vivienda. Los valores dados por el fabricante suelen estar en kWh/año, para lo cual se consideran 500 hs de uso anuales en modo refrigeración, y al dividir dicho valor por 500 hs tendríamos el consumo de los equipos, además brindan el índice de eficiencia energética (IEE) y la capacidad de refrigeración, con estos últimos dos datos también se puede obtener el consumo, ya que el índice de eficiencia energética se calcula como la relación entre la capacidad frigorífica y el consumo del aparato en modo refrigeración, es decir, mediante la siguientes fórmulas se puede obtener el consumo de los aparatos:

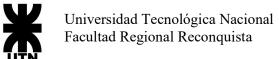

$$IEE = \frac{Capacidad\ frigorifica\ (W)}{Consumo\ eléctrico\ en\ modo\ refrigeración\ (W)}$$

$$Consumo\ eléctrico(kW)\ = \frac{consumo\ anual\ (\frac{kWh}{a\~no})}{500\ h/a\~no}$$

Para las tres habitaciones (equipos iguales de 2300 Frigorías), los datos dan una potencia de unos 830 kW y en el caso del living (equipo de 3000 Frigorías), da unos 1,13 kW, entonces se puede tomar un promedio de 1 kW cada uno, que se toma como valor estimativo. Con lo cual tendremos 1 kWh de consumo en cada equipo por cada hora que estos estén encendidos, ya sea que resulte necesario su utilización o no.

Por otro lado, también se ahorrará energía al utilizar el sistema de iluminación automática, la cual encenderá las luces solo en la intensidad y el tiempo que sea necesario, evitando que las mismas queden encendidas cuando no se las requiera.

Tomando como ejemplo la vivienda sobre la cual se realiza el proyecto, la misma tiene una iluminación exterior compuesta por 4 focos led de 10 W cada uno, dando un total de 40W. Vemos que por cada hora que permanece encendida innecesariamente este sistema, se consume 0,04 kWh. Este tiempo innecesario se presenta desde el momento en que la luz solar es suficiente para iluminar el exterior de la vivienda, podría tomarse por ejemplo unas dos o tres horas como promedio diario. Entonces por cada día las luces exteriores consumen un total de 0,12 kWh, que se podría ahorrar con el sistema automático de iluminación.



Anexo I.8.: Cálculo del costo total de inversión

Para calcular la misma se considerarán los insumos necesarios para realizar este proyecto, los mismos se detallan en la tabla I.8.1, junto con sus precios y el monto total en pesos y en dólares, para valores tomados a la fecha Julio del año 2019.

Designacion-Caracteristicas Arduino Atmega 2560 Fuente de alimentacion/Ups	Modelo/tipo Atmega 2560	Empresa proveedora	Ubicación	Precio	unitario (\$)	Cantidad	-	
Fuente de alimentacion/Ups	Atmega 2560				umtano (3)	Cantidad	Su	btotal (\$)
	Attilega 2300	Nubbeo	Villa Luro, Capital Federal	\$	599,90	1	\$	599,90
LIDS EEOVA 220V	UPS 12V/4A	Pro-Soft	Flores, Capital Federal.	\$	1.199,99	1	\$	1.199,99
UPS 550 VA 220 V	TVR NEO 650	APC Soluciones	Recoleta, Capital Federal.	\$	2.900,00	1	\$	2.900,00
Bateria 12 V 9 Ah Sin mantenim.	PRESS PR1290	Garnet Tecnology	\$	1.470,00	1	\$	1.470,00	
Matriz 4x4 (16 teclas)	16 teclas	PCBREADY	\$	99,90	1	\$	99,90	
Sirena para alarma (12 V)	12 V p/exterior	Pro-Soft	\$	950,00	1	\$	950,00	
Módulo tiempo real (Reloj)	DS3231	PCBREADY	\$	129,90	1	\$	129,90	
Comunicación por bluetooth	HC 05	PCBREADY	La Plata, Buenos Aires	\$	349,90	1	\$	349,90
Comunicación por wifi	Esp 8266 (ESP-01)	Nubbeo	Villa Luro, Capital Federal	\$	179,90	1	\$	179,90
Módulo LCD 1602 A	LCD 1602 A	Nubbeo	Villa Luro, Capital Federal	\$	169,90	1	\$	169,90
Adaptador LCD I2C	PCF8574	Nubbeo	Villa Luro, Capital Federal	\$	89,90	1	\$	89,90
Módulo GSM/GPRS	SIM900	PCBREADY	La Plata, Buenos Aires	\$	970,00	1	\$	970,00
Sensor de movimiento (infra.)	HC SR 501 PIR	Nubbeo	Villa Luro, Capital Federal	\$	99,90	5	\$	499,50
Sens.Crepusc. KY 018	KY 018	Nubbeo	Villa Luro, Capital Federal	\$	79,90	5	\$	399,50
Sensor de temperatura	LM35D	PCBREADY	La Plata, Buenos Aires	\$	69,90	5	\$	349,50
Motor p/percianas	220 V	SICCBA	Córdoba, Córdoba	\$	1.560,00	4	\$	6.240,00
Led emisor infrarrojo	Genérico	SDVELECTRONICA	Nueva Pompeya, Capital Federal	\$	20,00	4	\$	80,00
Sensor de gas	M Q2	SDVELECTRONICA	Nueva Pompeya, Capital Federal	\$	159,90	1	\$	159,90
Electoválvula para gas	NC 1/2 " 12 V	Nubbeo	Villa Luro, Capital Federal	\$	1.900,00	1	\$	1.900,00
Sensor apertura de puertas/portón	NC int.Magnet.	SHUK_INDUSTRIAL	Villa Crespo, Capital Federal	\$	74,99	6	\$	449,94
Caja de PVC para relés y LED emisor inf.	20x20x10 cm	Pro-Soft	Flores, Capital Federal.	\$	220,00	6	\$	1.320,00
Módulo de relés optoacoplados x1	5V /220 V 10A	Pro-Soft	Flores, Capital Federal.	\$	99,90	1	\$	99,90
Módulo de relés optoacoplados x2	5V /220 V 10A	PCBREADY	La Plata, Buenos Aires	\$	145,00	3	\$	435,00
Módulo de relés optoacoplados x4	5V /220 V 10A	Nubbeo	Villa Luro, Capital Federal	\$	259,90	1	\$	259,90
Conductor eléctrico de cobre	2,5 mm	2; cobre con aisltante	de PVC; marca I.M.S.A	\$	14,00	4,5	\$	63,00
Conductor eléctrico de cobre	2 x 1,5 m	m2; cobre con aisltant	e de PVC; marca I.M.S.A	\$	35,00	13	\$	455,00
Conductor eléctrico de cobre	2 x 1 mn	n2; cobre con aisItante	e de PVC; marca I.M.S.A	\$	22,00	77	\$	1.694,00
Conductor eléctrico de cobre	3 x 1 mn	n2; cobre con aisItante	e de PVC; marca I.M.S.A	\$	29,00	16	\$	464,00
Conductor eléctrico de cobre	5 x 1 mn	n2; cobre con aisItante	e de PVC; marca I.M.S.A	\$	50,00	27	\$	1.350,00
Conductor eléctrico de cobre	7 x 1 mn	n2; cobre con aisItante	e de PVC; marca I.M.S.A	\$	64,00	22	\$	1.408,00
Caño PVC semipesado RS16	De PVC se	mipesado, autoexting	guible, marca Tubelectric	\$	55,00	37	\$	2.035,00
Union PVC para RS16	De PVC se	mipesado, autoexting	guible, marca Tubelectric	\$	11,00	40	\$	440,00
Caño PVC semipesado RS25	De PVC se	mipesado, autoexting	guible, marca Tubelectric	\$	85,00	17	\$	1.445,00
Union PVC para RS25	De PVC se	mipesado, autoexting	guible, marca Tubelectric	\$	11,00	20	\$	220,00
Placa de cobre perforada	7 x 5 cm	It&t	Maipú, Mendoza	\$	39,90	1	\$	39,90
Optoacoplador para PWM 4 Canales	220 V 10 A C/U	Nubbeo	Villa Luro, Capital Federal	\$	1.255,00	1	\$	1.255,00
Rack Mural 6 Unidades	Con acrílico	SICCBA	Córdoba, Córdoba	\$	3.250,00	1	\$	3.250,00
Fuente Step down 12 V a 5V	5 V hasta 5A	Pro-Soft	Flores, Capital Federal.	\$	330,00	1	\$	330,00
Cables dupont (macho/macho)	30 cm (40 U)	Nubbeo	Villa Luro, Capital Federal	\$	98,78	1	\$	98,78
Cables dupont (macho/hembra)	30 cm (40 U)	Nubbeo	Villa Luro, Capital Federal	\$	98,78	1	\$	98,78
Interruptor dos posiciones (on/off)	On/Off	Nubbeo	Villa Luro, Capital Federal	\$	47,59	6	\$	285,54
Componentes elect. Varios	Para conect.	It&t	Maipú, Mendoza	\$	300,00	1	\$	300,00
Terminales hembra (Dupont)	Para armar(X10U)	Nubbeo	Villa Luro, Capital Federal	\$	40,00	8	\$	320,00
Terminales macho (Dupont)	Para armar(X10U)	Nubbeo	Villa Luro, Capital Federal	\$	40,00	9	\$	360,00
Cabezales plásticos (Dupont)	Para armar(X10U)	Nubbeo	Villa Luro, Capital Federal	\$	40,00	16	\$	640,00
Descargador tipol+II	A9L16632					1	\$	14.313,65
Descargador tipo III	A9L16298 Schneider Electric				14.313,65 10.043,02	1		10.043,02
Descargador para transmision de datos	A9L16339					1	\$	8.212,75
IA 2x16A/4,5kA/CurvaC/Clase3		11783 Schneider Electric				1	\$	360,00
IA 2x25A/4,5kA/CurvaC/Clase3	11785				360,00 380,00	1	\$	380,00
Id 2x40A/30mA/Super Inmunizado	23524		hneider Electric	\$	5.500,00	1	\$	5.500,00
iu zx40A/30HIA/3UDEr inmunizado				_			_	76.663.85
	lar según Banco Naci	ión, en la fecha Julio d	el ano 2019		59,4	Total(\$)	>	70.003,83

Tabla I.8.1: Lista de todos los componentes necesarios y sus costos - Elaboración propia.

Anexo I.9.: Cálculo del nivel de domotización según tablas del CIEC

Para calcular el nivel de domotización del proyecto planteado, se completó las tablas se presentan en la Guía de contenidos mínimos para proyectos de domótica (de la comisión de domótica del Colegio de Ingenieros Especialistas de Córdoba). Luego de establecer cada valor, se llega puntuación total de 62, y con éste vemos que el proyecto tiene un nivel 1 (Nivel 1 => Puntuación obtenida <= 100), de acuerdo a dicha guía (Pág. 29).

Los valores de cada punto se presentan en la tabla I.9.1 (Gestión Energética), tabla I.9.2 (Confort), tabla I.9.3 (Seguridad), tabla I.9.4 (Comunicación) y tabla I.9.5 (Accesibilidad).

Aplicaciones	Primer Subcategoría	Segunda Subcategoría	Aplicación específica en cuestión	N° de dispositivos o condiciones a cumplir	Puntos	Puntuación
			Desconexión automática de circuitos eléctricos según	Control de dos circuitos o menos	2	4
			ciertos criterios (Racionalización de carga)	Control de tres circuitos o más	4	-
			Apertura/cierre automático de aberturas para aprovehcar	Control de cuatro aberturas o menos	2	2
		Ahorro	condiciones externas de luminocidad,temperatura,etc.	Control de cinco aberturas o más	4	2
		eléctrico	Gestión de tarifa (Encendido de aparatos o circuitos en	Control de dos circuitos o menos	2	0
			horarios de tarifa reducida)	Control de tres circuitos o más	4	Ů
			Monitorización de consumo eléctrico	Una sola monitorización general	2	0
			Monitorización de consumo electrico	Moniyorizaciones parciales por cada circuito eléctrico	4	U
	Ahorro energético		Aviso de puertas o ventanas abiertas cuando esta	Monitorización de cuatro aberturas o menos	2	4
	Anono energetico		encendida la calefación.	Monitorización de cinco aberturas o más	4	4
		Ahorro de	Regulación de la calefacción en función de la	Regulación teniendo en cuenta solo un parámetro	2	0
		combustible	temperatura externa, hora del día, presencia de	Regulación teniendo en cuenta más de un parámetro	4	ľ
			Marsian de la comunicación de la	Una sola monitorización general	2	,
			Monitorización de consumo de gas	Moniyorizaciones parciales por cada circuito de gas	4	0
			Grifos Inteligentes	Dos grifos inteligentes o menos	2	0
Gestión		Ahorro de	Girlos Inteligentes	Tres grifos inteligentes o más	4	ı "
energética		agua	Durches Intelligence	Solo una ducha inteligente	2	0
			Duchas Inteligentes	4	"	
				Corrector de factor de potencia fijo (on/off)	2	0
	Eficiencia	Eficiencia	Corrector de factor de potencia	Corrector de factor de potencia automático por pasos	4	0
	energética	eléctrica		Encendido/apagado de un solo grupo generador	2	
			Control de grupos generadores	Encendido/apagado de varios grupos generadores a demanda	4	0
			6 1/ 1/ 1	Cierta potencia del inmueble	2	0
			Generación eléctrica con grupo generador	Abastecimiento total	4	
		Generación	0 1/ 1/ 1	Cierta potencia del inmueble	2	0
		eléctrica	Gneración eléctrica solar	Abastecimiento total	4	0
	Generación			Cierta potencia del inmueble	2	
	eléctrica		Gneración eléctrica eólica	Abastecimiento total	4	0
		Generación		Hasta 1000 litros de agua por día	2	
		de calor	Control de calentamiento de agua con energía solar	Más de 1000 litros de agua por día	4	0
		Generación		Hasta 1000 litros de agua por día	2	
		de agua	Sistema automático de reciclaje de agua	Más de 1000 litros de agua por día	4	0
Tabla de la Pág	g. 30 de la Guía de o	contenidos míni	mos para la elaboración de un proyecto de domótica, de la Comis (CIEC)	ión de Domótica del Colegio de Ingenieros Especialistas de Córdoba	Subtotal	10

Tabla I.9.1: Puntuación obtenida para Gestión Energética - CIEC (Pág.30)

Aplicaciones	Primer Subcategoría	Segunda Subcategoría	Aplicación específica en cuestión	N° de dispositivos o condiciones a cumplir	Puntos	Puntuaciór																						
			Regulación lumínica on/off en interiores por escenas	Algunos ambientes	1	1																						
			Regulation fullilited on/on en interiores por escenas	Todos los ambientes	2																							
			Regulación lumínica on/off en exteriores mediante sensor	Algunos exteriores	1	2																						
			crepuscular	Todos los exteriores	2	-																						
		Control de	Regulación lumínica lineal en interiores	Algunos ambientes	1	1																						
		luminocidad	Regulación fullillica fillear en filteriores	Todos los ambientes	2	1																						
			Regulación lumínica lineal en exteriores	Algunos exteriores	1	0																						
			Regulación luminica linear en exteriores	Todos los exteriores	2	U																						
			Caración Idanasación accord de la illusticación	Algunos ambientes	1	0																						
			Conexión/desconexión general de la iluminación	Todos los ambientes	2	Ů																						
			Control to reference (1)	Solo ambientes necesarios	1																							
						Control de refrigeración	Control total o central de ambientes	2	1																			
		Control de clima		Solo ambientes necesarios	1																							
						Control de calefacción	Control total o central de ambientes	2	0																			
				Solo ambientes necesarios	1																							
				Control de humedad	Control total o central de ambientes	2	0																					
			ļ			Algunas persianas	1																					
			Control de persianas	Todas las persianas	2	2																						
		Control de		Algunos toldos	1																							
			Control de toldos	Todos los toldos	2	0																						
	Control de dispositivos	aberturas		Algunas cortinas	1	1																						
Confort			Control de cortinas	Todas las cortinas	2	0																						
		Control de riego		Algunas puertas	1																							
			Control de puertas	Todas las puertas	2	2																						
						5.1.11																				Menos de 100 m2 de sup. de riego		
							Riego automático por horario		2 0																			
					Más de 100 m2 de sup. de riego	1																						
			Riego automático según humedad	Menos de 100 m2 de sup. de riego		0																						
				Más de 100 m2 de sup. de riego	2																							
		Control	Control de audio ambiente	Solo una habitación	1	0																						
		multimedia		Más de una habitación	2																							
		ambiente	Control de viedeo ambiente	Solo una habitación	1	0																						
				Más de una habitación	2																							
			Escenas luminosas	Hasta dos escenas luminosas	1	1																						
				Más de dos escenas luminosas	2																							
		Generación -	Escenas de clima	Hasta dos escenas de clima	1	0																						
		programacion		Más de dos escenas de clima	2																							
		de escenas	Escenas con aberturas	Hasta dos escenas de aberturas	1	2																						
				Más de dos escenas de aberturas	2																							
			Escenas multimedia	Hasta dos escenas multimedias	1	0																						
				Más de dos escenas multimedias	2																							
	Sistema de soporte a	DSS Pasivo	Por ejemplo: software que indique según datos metereológicos la	Un solo DSS	1	0																						
	decisiones	D33 FasiVO	mejor altenmativa de vestimenta	Más de un DSS	2	U																						
abla de la Pág.	31 de la Guía de conten	idos mínimos pa	ara la elaboración de un proyecto de domótica, de la Comisión de Domótica Córdoba (CIEC)	del Colegio de Ingenieros Especialistas de	Subtotal	12																						

Tabla I.9.2: Puntuación obtenida para Confort – CIEC (Pág.31)

Aplicaciones	Primer Subcategoría	Segunda Subcategoría	Aplicación específica en cuestión	N° de dispositivos o condiciones a cumplir	Puntos	Puntuación	
				Algunas puertas	2	0	
			Control de acceso por código o llave electrónica	Todas las puertas	4	U	
			Control do consea nor buello digital	Algunas puertas	2	0	
			Control de acceso por huella digital	Todas las puertas	4	U	
		Prevención de	Control do accesa nos vacanacimiento facial	Algunas puertas	2	0	
		intrusión	Control de acceso por reconocimiento facial	Todas las puertas	4	U	
			Mides a setono	Video portero definición blanco y negro	2	0	
			Video portero	Video portero definición color	4	0	
				Hasta 4 cámaras de video vigilancia	2	_	
			Sistema de video vigilancia	Más de 4 cámaras de video vigilancia	4	0	
				Un sensor	2	_	
			Detector predictivo de incendio	Todos los necesarios	4	0	
				Menos de 2 hs de mantenimiento	2		
	Sistema de		Mantenimiento de la alimentación en caso de fallo	Más de 2 hs de mantenimiento	4	0	
	prevención			Solo una	2		
		Prevención de	Válvula de corte de Gas	Más de una	4	1	
		técnica		Solo una	2		
			Válvula de corte de agua	Más de una	4	0	
				Solo lugares necesarios	2		
			Sistema de luz de emergencia	Todos los ambientes	4	0	
			Sensores de viento o lluvia para el cierre de ventanas y	Solo sensor de viento	2		
			recolección de toldos	Estación metereológica completa	4	0	
					Algunos ambientes	2	
			Reacciona con la iluminación	Todos los ambientes	4	4	
		Simulación de		Algunas aberturas	2		
		presencia	Reacciona con la motorización de aberturas	Todas las aberturas	4	2	
			Reacciona con encendido/apagado de circuitos o	Un electrodoméstico	2		
Seguridad			electrodomésticos	Más de un electrodoméstico	4	0	
				Solo aviso	2		
			Alarma con conexión con central	Aviso con envio de información	4	0	
				Solo aviso	2		
			Alarma con conexión comunitaria	Aviso con envio de información	4	4	
				Ambientes necesarios	2		
			Detector de movimiento	Todos los ambientes	4	2	
		Aviso de		Solo una	2		
		intrusión	Sirena interior	Más de una	4	0	
				Solo una	2		
			Sirena exterior	Más de una	4	2	
				Algunas puertas	2		
			Detector de abertura de puertas y ventanas	Todas las puertas	4	4	
	Sistema de			Algunos cristales	2		
	aviso para		Sensores de rotura de cristales	Todos los cristales	4	0	
	resolución de problemas			Ambientes necesarios	2		
	problemas	Otros avisos	Pulsadores para pedido de auxilio	Todos los ambientes	4	0	
				Un sensor	2		
			Detector de inundación	Todos los necesarios	4	0	
				Un sensor	2		
			Detector de fuga de gas	Todos los necesarios	4	2	
		Aviso de		Solo detección de corte	2		
		problemas	Detección de falla en suministro eléctrico	Detección de corte y otros factores del		0	
		técnicos		suministro eléctrico	4		
			Detector de incendio	Un sensor	2	0	
			Detector de Intendio	Todos los necesarios	4	U	
			Detector de dióxido de carbono	Un sensor	2	2	
			Detector de dioxido de carbono	Todos los necesarios	4		
Tabla de la F	Pág. 32 de la Guía	de contenidos n	nínimos para la elaboración de un proyecto de domótica, de la Comi Especialistas de Córdoba (CIEC)	sión de Domótica del Colegio de Ingenieros	Subtotal	23	

Tabla I.9.3: Puntuación obtenida para Seguridad – CIEC (Pág.32)

Aplicaciones	Primer Subcategoría	Segunda Subcategoría	Aplicación específica en cuestión	N° de dispositivos o condiciones a cumplir	Puntos	Puntuaciór		
			Control remotos vía RF	Solo un control	1	2		
			Control remotos via RF	Mas de un control	2	2		
			Control on remates via laferancia	Solo un control	1	2		
			Controles remotos via Infrarrojo	Mas de un control	2	2		
		Control a	Control vía internet	Control parcial (algunas cosas)	1	1		
		distancia	Control via Internet	Control total	2	1		
			Control via linea talafinia	Control parcial (algunas cosas)	1	0		
			Control via línea telefónica	Control total	2	U		
			Country of the control of CARC (AMAC	Control parcial (algunas cosas)	1	_		
			Conttol vía línea celular/SMS/MMS	Control total	2	2		
	Telegestión		Administrative and the Africa	Monitoreo parcial (algunas cosas)	1	2		
			Monitoreo remoto vía RF	Monitoreo total	2	2		
			Adamila na manada da informata	Monitoreo parcial (algunas cosas)	1	0		
			Monitoreo remoto vía infrarrojo	Monitoreo total	2	U		
		Monitoreo a	Monitoreo vía internet	Monitoreo parcial (algunas cosas)	1			
		distancia	Monitoreo via Internet	Monitoreo total	2	0		
			A4	Monitoreo parcial (algunas cosas)	1	_		
			Monitoreo vía línea telefómica	Monitoreo total	2	0		
comunicación				Monitoreo parcial (algunas cosas)	1			
			Monitoreo vía linea celular/SMS/MMS	Monitoreo total	2	1		
			Cablanda 400 Mb/a	Boca de conexión en algunos ambientes	1			
					Cableada 100 Mb/s	Boca de conexión en todos los ambientes	2	1
				211 1 121/	Boca de conexión en algunos ambientes	1		
		Red LAN	Cableada 1 Gb/s	Boca de conexión en todos los ambientes	2	0		
			/	Boca de conexión en algunos ambientes	1	_		
			Fibra óptica	Boca de conexión en todos los ambientes	2	0		
				Cobertura parcial	1			
	Conectividad -		IEE 802.11 a	Cobertura total	2	2		
	Interactividad		155 000 111	Cobertura parcial	1			
			IEE 802.11 b	Cobertura total	2	0		
		Red WIFI	155 000 11	Cobertura parcial	1			
			IEE 802.11 g	Cobertura total	2	0		
				Cobertura parcial	1	_		
			IEE 802.11 n	Cobertura total	2	0		
		Video		Sistema de video conferencia a través de PC	1			
		conferencia	Sistema de video conferencia	Sistema de video conferencia dedicado	2	0		
Tabla de la Pág.	33 de la Guía de co		s para la elaboración de un proyecto de dom ngenieros Especialistas de Córdoba (CIEC)	ótica, de la Comisión de Domótica del Colegio de	Subtotal	13		

Tabla I.9.4: Puntuación obtenida para Comunicación— CIEC (Pág.33)

Aplicaciones	Primer Subcategoría	Segunda Subcategoría	Aplicación específica en cuestión	N° de dispositivos o condiciones a cumplir	Puntos	Puntuación	
			Sistema de movilidad vertical	Solo un control	1	0	
		Movilidad	Sistema de movilidad vertical	Mas de un control	2] "	
		iviovillaaa	Sistema de movilidad horizontal	Solo un control	1	0	
	Deamnulación		Sistema de movindad nonzontar	Mas de un control	2	U	
	Deamnulacion	Accesos	Apertura y cierre automático de puertas	Control parcial (algunas cosas)	1	0	
		automáticos		Control total	2	U	
		lluminación	Sistema automático de encendido de	Control parcial (algunas cosas)	1	2	
		liuminacion	luces por presencia de ambientes comunes	Control total	2	2	
			Acción por vos para ciegos	Control parcial (algunas cosas)	1	2	
Accesibilidad		Acción -	Accion por vos para ciegos	Control total	2	2	
Accesibilidad	Aprehensión	ejecución	Sistema de acción visual para	Monitoreo parcial (algunas cosas)	1	0	
			sordomudos Monitoreo total		2	U	
			Información por voz para ciegos	Monitoreo parcial (algunas cosas)	1	0	
		Info	inionnacion por voz para ciegos	Monitoreo total	2	U	
	Localización	calización Información	Sistema de información visual para	Monitoreo parcial (algunas cosas)	1		
			sordomudos	Monitoreo total	2	0	
			Comunicación por voz para ciegos	Monitoreo parcial (algunas cosas)	1	0	
	Comunicación	Comunicación	comunicación por voz para ciegos	Monitoreo total	2	U	
	Comunicación	Comunication	Sistema de comunicación visual para	Monitoreo parcial (algunas cosas)	1	0	
			sordomudos	Monitoreo total	2	U	
Tabla de la Pág.	34 de la Guía de o	ontenidos mínim	os para la elaboración de un proyecto de domó	itica, de la Comisión de Domótica del Colegio de	Subtotal	4	
			Ingenieros Especialistas de Córdoba (CIEC)		Total	62	
					NIVEL 1	(<=100)	

Tabla I.9.5: Puntuación obtenida para Accesibilidad – CIEC (Pág.34)

Anexo I.10.1: Planilla de cargas

La AEA 90364 parte 7, sección 780 establece que el proyecto de domótica deberá contar con una planilla de cargas, en la cual se especifiquen los elementos de potencia junto con sus respectivas características, la misma se presentará en la tabla I.10.1: Planilla de cargas.

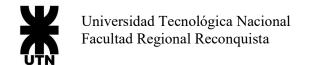
		Panilla de cargas
Dispositivo / sistema	Consumo/Carga máxima	Comentario
Control PWM de las luminarias	Hasta 2200 W	Es el valor máximo que puede controla cada módulo PWM, aunque los focos consumen menos de 15 W c/u.
Motores Tubulares de las persianas	Hasta 2200 W	Según datos del fabricante Aprimatic. Datos en Anexo VI: hoja de datos y catálogos de componentes utilizados
Sistema UPS 550 VA	550 W	Según datos del fabricante Schneider Electric. Datos en Anexo VI: hoja de datos y catálogos de componentes utilizados

Tabla I.10.1: Planilla de cargas - Elaboración propia.

Anexo I.10.2: Planilla de puntos

En la normativa mencionada en el punto anterior, se detalla también, que el proyecto deberá tener también una planilla de puntos, que establezca para cada sector o ambiente, la cantidad de elementos de control analógicos y digitales.

	Planilla de Puntos												
	Dispositivos de salida					Dispositivos de e	ntrada					Interface	
Ambiente / Sector		Dispositi	vos ue sam	Id	Con	nando	Sensores				interfaces		
	Relés	Dimmer	Persianas	Válvula	Matriz de teclas	Interruptor on/off	Temp.	Mov.	Lumin.	Gas	Internet	Telefonica	Otras
Comedor/Living	3	1	1	0	0	0	1	1	1	0	0	0	0
Dormitorio N°1	2	1	1	0	0	0	1	1	1	0	0	0	0
Dormitorio N°2	0	1	1	0	0	0	1	1	1	0	0	0	0
Dormitorio N°3	3	1	1	0	0	0	1	1	1	0	0	0	0
Baño	0	0	0	0	0	0	0	0	0	0	0	0	0
Cocina	3	0	1	0	0	0	0	0	1	1	0	0	0
Pasillo	0	0	0	0	1	5	0	0	0	0	1 (WIFI)	1 (GSM/GPRS)	1 (Bluetooth)
Patio	2	0	0	1	0	0	1	0	1	0	0	0	0
Garaje	0	0	0	0	0	0	0	0	0	0	0	0	0


Tabla I.10.2: Planilla de puntos - Elaboración propia.

Anexo I.10.3: Planilla de mantenimiento del sistema

Para mantener el correcto funcionamiento de cada componente del sistema planteado se debe realizar un mantenimiento tomando como guía la tabla I.10.3: Planilla de mantenimiento para el sistema de domótica.

	Panilla de mantenimien	to para el sistema de domótica					
Dispositivo / sistema a controlar	Tipo/período de mantenimineto	Tarea/Comentario					
Sensores de apertura de las aberturas	Cuando sea necesario	Reemplazar cuando no lleguen a cerrar el circuito adecuadamente					
Teclado (matriz 16 teclas)	Cuando sea necesario	Reemplazar en caso de dañar la membrana que recubre las teclas					
Led emisores infrarrojos	Cuando sea necesario	Limpiar la tierra o polvo que se pueda depocitar sobre los mismos					
Pila del sistema de tiempo real (CR 2032)	Cuando se pierda la fecha/hora	Reemplazar la pila CR2032					
Módulo GSM/GPRS (Mensajes/Ilamadas)	Cuando sea necesario	Realizar la carga de crédito si es un sistema con un chip de servicio prepago					
Motores Tubulares de las persianas	Al menos una vez al año	Revisión general de su correcto funcionamiento, limpieza y lubricación.					
Descargadores de sobretensión	Cuando sea necesario	Reemplazarlos cuando producto de una sobretensión, se dañen irreparablemente					
Batería del sistema UPS	Cuando sea necesario	Reemplazar cuando no mantenga su carga.					
Electroválvula de gas	Cada seis meses	isma cierre y abra correctamente					
*Nota: los mantenimiento mensinados se plantean como base para mantener un correcto funcionamiento del sistema de domótica planteado, pero se pueden agregar más tareas que favorezcan dicho objetivo y/o reducir el tiempo entre cada revisión.							

Tabla I.10.3: Planilla de mantenimiento para el sistema de domótica- Elaboración propia.

Anexo I.11: Cálculo de la autonomía del sistema UPS

Para mantener funcionando el sistema, en caso de un corte de energía, se utilizará un sistema de alimentación ininterrumpida, el cual constará con una batería de 12 V CC y 9 Ah, la cual deberá alimentar:

- La fuente step down 12 V a 5 V que proporciona los 5 V que utilizan el Arduino, los, relés, los sensores, etc.
- Además, proporcionará la alimentación de 12 V CC para mantener encendida la sirena de alarma, en caso de que se active dicho sistema.

La duración de la batería se verá afectada por el consumo de los circuitos que deba alimentar, y además por el tiempo de uso que tenga la misma (ciclos de carga), cuando la batería esté llegando al fin de su vida útil, le costará más mantener la carga y por ende durará menos tiempo. Considerando que la batería es nueva, se calculará entonces una autonomía media de la misma, para lo cual partimos del consumo de los elementos que deba alimentar.

En el caso más desfavorable, la batería estará alimentando el sistema de alarma cuando este esté activado, entonces deberá alimentar la sirena de alarma y la fuente step down. Esta última consume hasta 2A y la sirena 1,1A. (Datos proporcionados por los fabricantes de dichos dispositivos, hojas de datos presentadas en el anexo VI).

Por lo cual tendremos un consumo aproximado de 3,1A como máximo, y según las tablas de descarga de la batería utilizada, la autonomía será de aproximadamente de unas tres horas.

Para nuestra región, los cortes de luz suelen durar un promedio de 1hs, con lo que en dichos casos el sistema tendrá la capacidad de mantenerse alimentado hasta que se restablezca el suministro de energía a la vivienda.

Anexo II: programación de aplicación de control manual

La imagen II.1 muestra la programación de la aplicación de control manual.

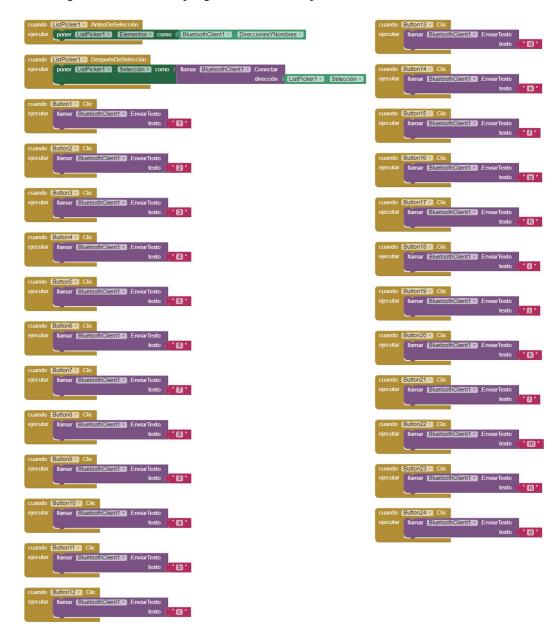


Imagen II.1: Programación de la aplicación desarrollada para control manual-Elaboración propia.

Anexo III: programación de aplicación de control por voz.

La imagen III.1 muestra la programación de la aplicación de control por voz del usuario.

Imagen III.1: Programación de la aplicación desarrollada para control por voz-Elaboración propia.

Por último, en la tabla III.1 se muestra la lista de comandos para el control por voz.

Lista de comandos para control por voz		
Comando	Texto en pantalla	Acción
abriruno	PERSIANA UNO ABIERTA	ABRE PERSIANA DOR N°1
cerraruno	PERSIANA UNO CERRADA	CIERRA PERSIANA DOR N°1
luzuno	LUZ UNO PRENDIDA	PRENDE LUZ DOR N°1
apagaruno	LUZ UNO APAGADA	APAGA LUZ DOR N°1
aireuno	AIRE UNO PRENDIDO	PRENDE A.A. DOR N°1
apagaraireuno	AIRE UNO APAGADO	APAGA A.A. DOR N°1
luzdos	LUZ DOS PRENDIDA	PRENDE LUZ DOR N°2
apagardos	LUZ DOS APAGADA	APAGA LUZ DOR N°2
airedos	AIRE DOS PRENDIDO	PRENDE A.A. DOR N°2
apagarairedos	AIRE DOS APAGADO	APAGA A.A. DOR N°2
abrirtres	PERSIANA TRES ABIERTA	ABRE PERSIANA DOR N°3
cerrartres	PERSIANA TRES CERRADA	CIERRA PERSIANA DOR N°3
luztres	LUZ TRES PRENDIDA	PRENDE LUZ DOR N°3
apagartres	LUZ TRES APAGADA	APAGA LUZ DOR N°3
airetres	AIRE TRES PRENDIDO	PRENDE A.A. DOR N°3
apagarairetres	AIRE TRES APAGADO	APAGA A.A. DOR N°3
abrirliving	PERSIANA LIVING ABIERTA	ABRE PERSIANA LIVING
cerrarliving	PERSIANA LIVING CERRADA	CIERRA PERSIANA LIVING
luzliving	LUZ LIVING PRENDIDA	PRENDE LUZ LIVING
apagarliving	LUZ LIVING APAGADA	APAGA LUZ LIVING
aireliving	AIRE LIVING PRENDIDO	PRENDE A.A. LIVING
apagaraireliving	AIRE LIVING APAGADO	APAGA A.A. LIVING
abrircocina	PERSIANA COCINA ABIERTA	ABRE PERSIANA COCINA
cerrarcocina	PERSIANA COCINA CERRADA	CIERRA PERSIANA COCINA

Tabla III.1: Comandos para control por voz – Elaboración propia.

Anexo IV: Programas del arduino

Anexo IV.1: Programación del arduino

```
//Trabajo Final: Batistuta Ruy "DOMÓTICA APLICADA A UNA VIVIENDA FAMILIAR"
//Declaración de variables e inclusión de librerías a utilizar
//Para LCD
#include <Wire.h>
                    // Librería de comunicación por I2C
#include <LCD.h>
#include <LiquidCrystal I2C.h> // Librería para LCD por I2C
LiquidCrystal I2C lcd (0x27, 2, 1, 0, 4, 5, 6, 7); //(Declaro la dirección y los pines del LCD)
// Para Reloj
#include <RTClib.h> // incluye librería para el manejo del módulo RTC
RTC DS3231 rtc; //Se crea el "Objeto" Reloj DS3231(Modelo utilizado)
int NUMERODIA = 1; //Variable que almacenará el número de día para la simulación de
presencia (Comienza en 1)
//Para Bluetooth
#include <SoftwareSerial.h>
SoftwareSerial miBluetooth(0, 1);
char NOMBREBT[20] = "TF-BATISTUTA-RUY"; //Declaro el nombre que tendrá el
módulo
char CLAVEBT[9] = "12092018"; //Declaro la contraseña tendrá el módulo bluetooth
char DATOBT = 0; //Al recibir un dato por Bluetooth, esta variable la almacena
int BRILLOLIVING = 0; //Variable que almacena el nivel PWM del Living
int BRILLODOR1 = 0; //Variable que almacena el nivel PWM del Dormitorio N°1
int BRILLODOR2 = 0; //Variable que almacena el nivel PWM del Dormitorio N°2
int BRILLODOR3 = 0; //Variable que almacena el nivel PWM del Dormitorio N°3
//Para teclas e ingreso de clave alarma
#include <Keypad.h>
const byte FILAS = 4; //Número de filas de la matriz de teclas
const byte COLUMNAS = 4; //Número de columnas de la matriz de teclas
```



```
char keys[FILAS][COLUMNAS] = {
 {'1','2','3','A'},
 {'4','5','6','B'},
 {'7','8','9','C'},
 {'*','0','#','D'}
}; //Genero la matriz de 16 teclas con la disposición correspondiente
byte pinesFilas[FILAS] = \{31,33,35,37\};
byte pinesColumnas[COLUMNAS] = \{23,25,27,29\};
Keypad teclado = Keypad(makeKeymap(keys), pinesFilas, pinesColumnas, FILAS,
COLUMNAS);
char TECLAPRECIONADA;
                             //Variable que almacena la tecla presionada
char CLAVEINGRESADA[9]; //Variable que almacena las teclas presionadas
char CLAVEACCESO[9] = "12092018"; //Variable clave de acceso a la vivienda, para la
alarma
byte INDICE = 0;
byte ESTADOALARMA;
byte ALARMAACTIVADA;
//Entradas correspondientes a los sensores de apertura/cierre de las puertas y el portón
int SENSORPORTON = 6;
int SENSORPUERTA = 7;
int SENSORPUERTAATRAS =8;
int SENSORPUERTACOCINA =50;
int SENSORPUERTADOR3 =51;
int ESTADOSENSORPORTON = 0;
int ESTADOSENSORPUERTA = 0;
int ESTADOSENSORPUERTAATRAS = 0;
int ESTADOSENSORPUERTACOCINA = 0;
int ESTADOSENSORPUERTADOR3 = 0;
//Salida que activará la sirena de la alarma
```



```
int SIRENA = 18;
//control de luminarias
int SENSORLUMLIVING = 26;
int SENSORLUMDOR1 = 40;
int SENSORLUMDOR2 = 44;
int SENSORLUMDOR3 = 46;
int LUMLIVING = 2;
int LUMDOR1 = 3;
int LUMDOR2 = 4;
int LUMDOR3 = 5;
int VALORSENSORLUMLIVING;
int VALORSENSORLUMDOR1;
int VALORSENSORLUMDOR2;
int VALORSENSORLUMDOR3;
int PWMLIVING;
int PWMDOR1;
int PWMDOR2;
int PWMDOR3;
int ESTADODEPRESENCIA = 0;
//Sensores de movimiento (PIR)
int SENSORPIR0 = 26;
int SENSORPIR1 = 40;
int SENSORPIR2 = 44;
int SENSORPIR3 =46;
int ESTADOPIR0 = 0;
int ESTADOPIR1 = 0;
int ESTADOPIR2 = 0;
```

int ESTADOPIR3 = 0;

56, 56,

//Para control de temperatura (Sumo varios valores leídos de temperaturas para luego hacer un promedio)

int SENSOREXT;//Variable que almacena la temperatura exterior leída en la entrada analógica A2

int SENSORLIVING;//Variable que almacena la temperatura del living leída en la entrada analógica A3

int SENSORDOR1;//Variable que almacena la temperatura del dormitorio N°1 leída en la entrada analógica A6

int SENSORDOR2;//Variable que almacena la temperatura del dormitorio N°2 leída en la entrada analógica A8

int SENSORDOR3;//Variable que almacena la temperatura del dormitorio N°3 leída en la entrada analógica A10

```
float SUMADEVALORESEXT;
float SUMADEVALORESLIVING;
float SUMADEVALORESDOR1;
float SUMADEVALORESDOR2;
float SUMADEVALORESDOR3;
float TEMPERATURAEXT;
float TEMPERATURALIVING;
float TEMPERATURADOR1;
float TEMPERATURADOR2;
float TEMPERATURADOR3;
int IRLIVING = 24;//Pin donde se conecta el emisor infrarrojo del living
int IRDOR1 = 39;//Pin donde se conecta el emisor infrarrojo del dormitorio N°1
int IRDOR2 = 43;//Pin donde se conecta el emisor infrarrojo del dormitorio N°2
int IRDOR3 = 45;//Pin donde se conecta el emisor infrarrojo del dormitorio N°3
#define NumIRsignals 72 //Para la señal IR de los equipos de A.A.
int IRsignal[] = {
 930, 454,
 56, 170,
```


- 56, 56,
- 56, 56,
- 56, 56,
- 58, 56,
- 56, 56,
- 54, 58,
- 56, 168,
- 54, 170,
- 56, 170,
- 54, 170,
- 58, 166,
- 54, 172,
- 56, 168,
- 56, 170,
- 54, 56,
- 58, 168,
- 56, 56,
- 58, 54,
- 56, 170,
- 56, 56,
- 56, 56,
- 56, 56,
- 54, 170,
- 58, 56,
- 56, 168,
- 54, 170,
- 58, 54,
- 56, 170,
- 56, 168,

```
54, 170,
 56, 4014,
 926, 226,
 54, 0}; //Señal IR que se envía a los equipos de AA para prenderlos o apagarlos, depende de
cada equipo.
//para control de pérdidas de gas
int NIVELGAS ;//Variable que almacena la concentración de gas leída en la entrada analógica
A5
int CIERREGAS = 32;
// Para wifi
SoftwareSerial modulowifi(14,15); //Genero un Objeto modulowifi, que es la placa wifi
conectada en esos pines
boolean completada = false;
String cadenaingresada = ""; //Para cuando envió un dato por wifi
// Para comunicación por llamada
#include <SoftwareSerial.h>
SoftwareSerial SIM900(16, 17);//Genero un Objeto SIM900, que es la placa SIM900
conectada en esos pines
#include "SIM900.h"
void llamar(){
SIM900.println("ATD +543482XXXXXXX;"); //Donde están la XXXXXX debe ir el número
de celular al que va a llamar
delay(100);
SIM900.println();
delay(20000);
SIM900.println("ATH"); //Luego de los 20 segundos corta la llamada
delay(1000); }
void mensaje sms(){
if(ALARMAACTIVADA == HIGH){
SIM900.print("AT+CMGF=1\r");
```



```
delay(100);
SIM900.println("AT+CMGS=\"+543482XXXXXX\""); //Donde están la XXXXXX debe ir
el número de celular al que va mandar el mensaje
delay(100);
SIM900.println("Alarma Activada");
delay(100);
SIM900.println((char)26);
delay(100);
SIM900.println();
delay(5000); }
if (NIVELGAS>400){
SIM900.print("AT+CMGF=1\r");
delay(100);
SIM900.println("AT+CMGS=\"+543482XXXXXX\\""); //Donde están la XXXXXX debe ir
el número de celular al que va mandar el mensaje
delay(100);
SIM900.println("Pérdida detectada");
delay(100);
SIM900.println((char)26);
delay(100);
SIM900.println();
delay(5000); } }
void setup() {
//Para reloj (Solamente se usa una vez, cuando se le descarga el programa al arduino
rtc.adjust(DateTime(__DATE__, __TIME__)); // Ajusta la hora y fecha igual a la de la PC
cuando se conecta el arduino a la misma.
//Para comunicación por llamada (Inicializa la comunicación serial de la placa SIM900)
SIM900.begin(19200);
delay(25000); //Espera 25 segundos para asegurarse la primera vez de encontrar la Red
//Para LCD
```



```
lcd.clear(); // limpia pantalla
//para control de pérdidas de gas (Declaro la salida que activa/desactiva la electroválvula)
pinMode(32,OUTPUT);
//Para wifi (Inicializa la comunicación serial de la placa wifi)
modulowifi.begin(9600);
cadenaingresada.reserve(300); //Genera y reserva una cadena de caracteres para esta
comunicación
//Para control de Luminarias (Declaro sus entradas/salidas digitales)
pinMode(SENSORPIR0, INPUT);
pinMode(SENSORPIR1, INPUT);
pinMode(SENSORPIR2, INPUT);
pinMode(SENSORPIR3, INPUT);
pinMode(LUMLIVING, OUTPUT);
pinMode(LUMDOR1, OUTPUT);
pinMode(LUMDOR2, OUTPUT);
pinMode(LUMDOR3, OUTPUT);
pinMode(52,INPUT);//HIGH = CONTROL AUTOM. LUMINARIAS
//Para control de temperatura(Declaro sus entradas/salidas digitales)
pinMode(9, INPUT);//HIGH = CONTROL AUTOM. PERSIANAS
pinMode(10, INPUT);//HIGH = CONTROL AUTOM. TEMP LIVING
pinMode(11, INPUT);//HIGH = CONTROL AUTOM. TEMP DOR1
pinMode(12, INPUT);//HIGH = CONTROL AUTOM. TEMP DOR2
pinMode(13, INPUT);//HIGH = CONTROL AUTOM. TEMP DOR3
pinMode(28, OUTPUT);//P.A. LIVING
pinMode(30, OUTPUT);//P.C. LIVING
pinMode(24, OUTPUT);//IR LIVING
pinMode(41, OUTPUT);//P.A. DOR1
pinMode(39, OUTPUT);//IR DOR1
```

pinMode(42, OUTPUT);//P.C. DOR1


```
pinMode(43, OUTPUT);//IR DOR2
pinMode(47, OUTPUT);//P.A. DOR3
pinMode(48, OUTPUT);//P.C. DOR3
pinMode(45, OUTPUT);//IR DOR3
//para alarma(Declaro sus entradas/salidas digitales)
pinMode(6, INPUT);//SENSOR PORTON
pinMode(7, INPUT);//SENSOR PUERTA
pinMode(8, INPUT);//SENSOR PUERTAATRAS
pinMode(40, INPUT);//SENSOR MOVIMIENTO1
pinMode(44, INPUT);//SENSOR MOVIMIENTO2
pinMode(46, INPUT);//SENSOR MOVIMIENTO3
pinMode(18, OUTPUT); }//SIRENA DE ALARMA
void pulseIRLIVING(long microsecs) {
cli();
while (microsecs > 0) {
 digitalWrite(IRLIVING, HIGH);
 delayMicroseconds(10);
 digitalWrite(IRLIVING, LOW);
 delayMicroseconds(10);
 microsecs -= 26;}
sei();}
void pulseIRDOR1(long microsecs) {
cli();
while (microsecs > 0) {
 digitalWrite(IRDOR1, HIGH);
 delayMicroseconds(10);
 digitalWrite(IRDOR1, LOW);
 delayMicroseconds(10);
 microsecs = 26;
```



```
sei();}
 void pulseIRDOR2(long microsecs) {
 cli();
 while (microsecs > 0) {
 digitalWrite(IRDOR2, HIGH);
  delayMicroseconds(10);
  digitalWrite(IRDOR2, LOW);
  delayMicroseconds(10);
 microsecs = 26;
 sei();}
void pulseIRDOR3(long microsecs) {
 cli();
 while (microsecs > 0) {
 digitalWrite(IRDOR3, HIGH);
 delayMicroseconds(10);
  digitalWrite(IRDOR3, LOW);
 delayMicroseconds(10);
 microsecs = 26;
 sei();}
void eventoserie() {
while (Serial.available()) {
char caracteringresado = (char)Serial.read();
cadenaingresada += caracteringresado;
if (caracteringresado == '\n') {
completada = true;} } }
//Evento serie que espera a que se ingresen datos por esta comunicación y las almacena
void loop() {
NIVELGAS = analogRead(A5);
 if (NIVELGAS > 400){
```



```
digitalWrite(CIERREGAS, LOW);
 mensaje sms();//Llama a la función que va a enviar el mensaje al celular
 lcd.setCursor(2, 0);
 lcd.print("Fuga de gas");
 lcd.setCursor(2, 1);
 lcd.print("revisar"); }
 else{ digitalWrite(CIERREGAS, LOW);}
//control por bluetooth (Si recibe algún dato por bluetooth lo compara con los programados)
if (miBluetooth.available()){
 DATOBT = miBluetooth.read();
//Dormitorio N°1
 if( DATOBT == '1' ) {
  digitalWrite(42, HIGH);
  digitalWrite(41, LOW);
 delay(240000);
 digitalWrite(41, HIGH); }//Abre la persiana del dormitorio N°1
 if (DATOBT == '3'){
 BRILLODOR1 = BRILLODOR1 + 10;
 if (BRILLODOR1 > 255)
 BRILLODOR1 = 255;
  analogWrite(LUMDOR1, BRILLODOR1); }//Aumenta el PWM de la luminaria del
dormitorio N°1
  if (DATOBT == '2'){
BRILLODOR1 = BRILLODOR1 - 10;
 if (BRILLODOR1 < 0)
 BRILLODOR1 = 0;
  analogWrite(LUMDOR1, BRILLODOR1); }//Disminuye el PWM de la luminaria del
dormitorio N°1
if( DATOBT == '4' ) {
```



```
digitalWrite(41, HIGH);
 digitalWrite(42, LOW);
 delay(240000);
 digitalWrite(42,HIGH); }//Cierra la persiana del dormitorio N°1
if(DATOBT == 'e'){}
 for (int i = 0; i < NumIR signals; i+=2) {
 pulseIRDOR1(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }
delay(1000); }//Prende el A.A. dormitorio N°1
if(DATOBT == 'f')
 for (int i = 0; i < NumIR signals; i+=2) {
 pulseIRDOR1(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }
delay(1000); } //Apaga el A.A. dormitorio N°1
//Dormitorio N°2
 if(DATOBT == '8'){
 BRILLODOR2 = BRILLODOR2 + 10;
 if (BRILLODOR2 > 255)
 BRILLODOR2 = 255;
analogWrite(LUMDOR2, BRILLODOR2);}//Aumenta el PWM del dormitorio N°2
  if (DATOBT == '9'){
BRILLODOR2 = BRILLODOR2 - 10;
 if (BRILLODOR2 < 0)
 BRILLODOR2 = 0;
  analogWrite(LUMDOR2, BRILLODOR2); }//Disminuye el PWM del dormitorio N°2
 if(DATOBT == '6'){
for (int i = 0; i < NumIR signals; i+=2) {
 pulseIRDOR2(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }//Prende el A.A.del dormitorio N°2
```



```
delay(1000); }
if( DATOBT == '5' ) {
for (int i = 0; i < NumIR signals; i+=2) {
 pulseIRDOR2(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }//Apaga el A.A.del dormitorio N°2
delay(1000); }
//Dormitorio N°3
if( DATOBT == 'b' ) {
 digitalWrite(48, HIGH);
 digitalWrite(47, LOW);
 delay(240000);
 digitalWrite(47, HIGH); }//Abre la persiana del dormitorio N°3
 if(DATOBT == 'a')
 BRILLODOR3 = BRILLODOR3 + 10;
 if (BRILLODOR3 > 255)
 BRILLODOR3 = 255;
  analogWrite(LUMDOR3, BRILLODOR3);}//Aumenta el PWM del dormitorio N°3
  if (DATOBT == '9'){
BRILLODOR3 = BRILLODOR3 - 10;
 if (BRILLODOR3 < 0)
 BRILLODOR3 = 0;
  analogWrite(LUMDOR3, BRILLODOR3); }//Disminuye el PWM del dormitorio N°3
if( DATOBT == 'd' ) {
 digitalWrite(47, HIGH);
 digitalWrite(48, LOW);
 delay(240000);
 digitalWrite(48, HIGH);//Cierra la persiana del dormitorio N°3}
if(DATOBT == 'c')
 for (int i = 0; i < NumIR signals; i+=2) {
```



```
pulseIRDOR3(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }//Prende el A.A.del dormitorio N°2
delay(1000); }//Prende el A.A. del dormitorio N°3
if(DATOBT == 'i')
for (int i = 0; i < NumIR signals; i+=2) {
 pulseIRDOR2(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }//Prende el A.A.del dormitorio N°2
delay(1000); }//Apaga el A.A. del dormitorio N°3
//Cocina
if(DATOBT == 'g')
 digitalWrite(38, HIGH);
 digitalWrite(36, LOW);
 delay(240000);
 digitalWrite(36, HIGH);}//Abre la persiana de la cocina
 if(DATOBT == 'h')  {
 digitalWrite(36, HIGH);
 digitalWrite(38, LOW);
 delay(240000);
 digitalWrite(38, HIGH); } //Cierra la persiana de la cocina
//Living
 if(DATOBT == 'm') {
 digitalWrite(30, HIGH);
 digitalWrite(28, LOW);
 delay(240000);
 digitalWrite(28, HIGH);}//Abre la persiana de living
 if(DATOBT == 'J')
 BRILLOLIVING = BRILLOLIVING + 10;
 if (BRILLOLIVING > 255)
 BRILLOLIVING = 255;
```



```
analogWrite(LUMLIVING, BRILLOLIVING); }//Aumenta el PWM del living
  if ( DATOBT == 'K' ){
BRILLOLIVING = BRILLOLIVING - 10;
 if (BRILLOLIVING < 0)
 BRILLOLIVING = 0;
analogWrite(LUMLIVING, BRILLOLIVING); \}//Disminuye el PWM del living
if(DATOBT == 'L') {
 digitalWrite(28, HIGH);
 digitalWrite(30, LOW);
 delay(240000);
 digitalWrite(30, HIGH);}//Cierra la persiana del living
if(DATOBT == 'n')
 for (int i = 0; i < NumIR signals; i+=2) {
 pulseIRLIVING(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }//Prende el A.A.del living
delay(1000);}//Prende el A.A. del living
if( DATOBT == 'o' ) { for (int i = 0; i < NumIR signals; i+=2) {
pulseIRLIVING(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }
delay(1000); }} //Apaga el A.A. del living
//Control de Luminarias
ESTADOPIRO = digitalRead(SENSORPIRO);//Defino que las variables dependerán de los
valores leidos desde los sensores PIR
ESTADOPIR1 = digitalRead(SENSORPIR1);
ESTADOPIR2 = digitalRead(SENSORPIR2);
ESTADOPIR3 = digitalRead(SENSORPIR3);
if (digitalRead(52) == HIGH){
if (ESTADOPIR0 == HIGH) {
VALORSENSORLUMLIVING = analogRead(SENSORLUMLIVING);
```



```
PWMLIVING = map(VALORSENSORLUMLIVING, 0, 1023, 0, 255);
 analogWrite(LUMLIVING, PWMLIVING);
 delay(1800000); }
 else {PWMLIVING = 0;}
if(ESTADOPIR1 == HIGH) {
VALORSENSORLUMDOR1 = analogRead(SENSORLUMDOR1);
PWMDOR1 = map(VALORSENSORLUMDOR1, 0, 1023, 0, 255);
analogWrite(LUMDOR1, PWMDOR1);
delay(1800000);}
else { PWMDOR1 = 0;}
if(ESTADOPIR2 == HIGH) {
VALORSENSORLUMDOR2 = analogRead(SENSORLUMDOR2);
PWMDOR2 = map(VALORSENSORLUMDOR2, 0, 1023, 0, 255);
analogWrite(LUMDOR2, PWMDOR2);
delay(1800000);}
else \{PWMDOR2 = 0;\}
if(ESTADOPIR3 == HIGH) {
VALORSENSORLUMDOR3 = analogRead(SENSORLUMDOR3);
PWMDOR3 = map(VALORSENSORLUMDOR3, 0, 1023, 0, 255);
analogWrite(LUMDOR3, PWMDOR3);
delay(1800000);}
else \{PWMDOR3 = 0;\}\}
//Control alarma
ESTADOSENSORPORTON = digitalRead(SENSORPORTON);
ESTADOSENSORPUERTA = digitalRead(SENSORPUERTA);
ESTADOSENSORPUERTAATRAS = digitalRead(SENSORPUERTAATRAS);
ESTADOSENSORPUERTACOCINA = digitalRead(SENSORPUERTACOCINA);
ESTADOSENSORPUERTADOR3 = digitalRead(SENSORPUERTADOR3);
//Para activar la alarma en 12 sin detectar ninguna presencia con los sensores de movimiento
```



```
for (int i=0; i < 144; i++){
ESTADODEPRESENCIA = ESTADODEPRESENCIA + ESTADOPIRO + ESTADOPIRO
+ ESTADOPIR2 + ESTADOPIR3;
delay(300000); // sensor de movimiento cada 5 min durante las 12 horas
if (ESTADODEPRESENCIA == 0) {
  ALARMAACTIVADA = 1;}
TECLAPRECIONADA = teclado.getKey();
if (TECLAPRECIONADA)
 {CLAVEINGRESADA[INDICE] = TECLAPRECIONADA;
 INDICE++; }
if(INDICE == 8)
 { if(!strcmp(CLAVEINGRESADA, CLAVEACCESO)){
  if (ESTADOALARMA == 0){
   lcd.setCursor(2, 0);
   lcd.print("Alarma Activada");
   lcd.setCursor(2, 1);
   lcd.print("en 1 minuto");
   delay(60000);
   ALARMAACTIVADA = 1;
 if (ESTADOSENSORPUERTACOCINA == LOW){
   digitalWrite(SIRENA, LOW);
   delay(36000000);}
  else { digitalWrite(SIRENA, HIGH);}
   if (ESTADOSENSORPUERTADOR3 == LOW){
   digitalWrite(SIRENA, LOW);
   delay(36000000);}
  else {digitalWrite(SIRENA, HIGH); }
 if (ESTADOSENSORPORTON == LOW){
   digitalWrite(SIRENA, LOW);
```



```
delay(36000000);}
  else {digitalWrite(SIRENA, HIGH); }
 if (ESTADOSENSORPUERTA == LOW){
   digitalWrite(SIRENA, LOW);
   delay(36000000);}
  else {digitalWrite(SIRENA, HIGH);}
 if (ESTADOSENSORPUERTAATRAS == LOW){
   digitalWrite(SIRENA, LOW);
   delay(36000000);}
  else { digitalWrite(SIRENA, HIGH);}}
  else { ALARMAACTIVADA = 0;
  lcd.setCursor(2, 0);
  lcd.print("Alarma desactivada");} }
  else {
  lcd.setCursor(2, 0);
  lcd.print("Clave incorrecta"); }
  INDICE = 0;
//Para llamada si se activó la alarma
if(ALARMAACTIVADA == 1) {
llamar(); //
mensaje sms();}
//Control automático de temperatura
SUMADEVALORESEXT = 0;
SUMADEVALORESLIVING = 0;
SUMADEVALORESDOR1 =0;
SUMADEVALORESDOR2 =0;
SUMADEVALORESDOR3 =0;
for (int i=0; i < 10; i++){
SENSOREXT = analogRead(A2);
```

```
*
```

```
SENSORLIVING = analogRead(A3);
SENSORDOR1 = analogRead(A6);
SENSORDOR2 = analogRead(A8);
SENSORDOR3 = analogRead(A10);
//Calculo un promedio de cada 10 mediciones para cada temperatura
TEMPERATURAEXT = ((SENSOREXT * 5000.0) / 1023) / 10;
TEMPERATURALIVING = ((SENSORLIVING * 5000.0) / 1023) / 10;
TEMPERATURADOR1 = ((SENSORDOR1 * 5000.0) / 1023) / 10;
TEMPERATURADOR2 = ((SENSORDOR2 * 5000.0) / 1023) / 10;
TEMPERATURADOR3 = ((SENSORDOR3 * 5000.0) / 1023) / 10;
SUMADEVALORESEXT = TEMPERATURAEXT + SUMADEVALORESEXT;
SUMADEVALORESLIVING = TEMPERATURALIVING +
SUMADEVALORESLIVING;
SUMADEVALORESDOR1 = TEMPERATURADOR1 + SUMADEVALORESDOR1;
SUMADEVALORESDOR2 = TEMPERATURADOR2 + SUMADEVALORESDOR2;
SUMADEVALORESDOR3 = TEMPERATURADOR3 + SUMADEVALORESDOR3;
delay(1000); }
if (digitalRead(9) == HIGH){
if ((SUMADEVALORESEXT/10) > 24){
 digitalWrite(36, HIGH);//NO DEJA ABRIR PERSIANA COCINA
 digitalWrite(28, HIGH);//NO DEJA ABRIR PERSIANA LIVING
 digitalWrite(41, HIGH);//NO DEJA ABRIR PERSIANA DOR1
 digitalWrite(47, HIGH);//NO DEJA ABRIR PERSIANA DOR3
 digitalWrite(38, LOW);//CIERRO PERSIANA COCINA
 digitalWrite(30, LOW);//CIERRO PERSIANA LIVING
 digitalWrite(42, LOW);//CIERRO PERSIANA DOR1
 digitalWrite(48, LOW);//CIERRO PERSIANA DOR3
 delay(300000);
 digitalWrite(38, LOW);//CIERRO PERSIANA COCINA
```



```
digitalWrite(30, LOW);//CIERRO PERSIANA LIVING
  digitalWrite(42, LOW);//CIERRO PERSIANA DOR1
  digitalWrite(48, LOW);//CIERRO PERSIANA DOR3
//PARA TEXT MAYOR A 24 Y CONTROL AUTO TEMP. LIVING ACTIVADO
PRENDE AIRE Y CIERRA PERSIANA
  if(digitalRead(10) == HIGH){
  digitalWrite(30, LOW);
  digitalWrite(28, HIGH);
  delay(300000);
  digitalWrite(28, LOW);
  for (int i = 0; i < NumIR signals; i+=2) {
pulseIRLIVING(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }
delay(1000); }
//PARA TEXT MAYOR A 24 Y CONTROL AUTO TEMP. DOR1 ACTIVADO PRENDE
AIRE Y CIERRA PERSIANA
  if(digitalRead(11) == HIGH){
  digitalWrite(42, HIGH);
  digitalWrite(41, LOW);
  delay(300000);
  digitalWrite(41, HIGH);
for (int i = 0; i < NumIR signals; i+=2) {
 pulseIRDOR1(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }//Prende el A.A.del dormitorio N°1
delay(1000);}
//PARA TEXT MAYOR A 24 Y CONTROL AUTO TEMP. DOR2 ACTIVADO PRENDE
AIRE Y CIERRA PERSIANA
  if(digitalRead(12) == HIGH){
 for (int i = 0; i < NumIR signals; i+=2) {
 pulseIRDOR2(IRsignal[i]*10);
```



```
delayMicroseconds(IRsignal[i+1]*10); }//Prende el A.A.del dormitorio N°2
delay(1000);}
//PARA TEXT MAYOR A 24 Y CONTROL AUTO TEMP. DOR3 ACTIVADO PRENDE
AIRE Y CIERRA PERSIANA
  if(digitalRead(13) == HIGH){
  digitalWrite(47, HIGH);
  digitalWrite(48, LOW);
  delay(300000);
  digitalWrite(48, HIGH);
for (int i = 0; i < NumIR signals; i+=2) {
 pulseIRDOR1(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }//Prende el A.A.del dormitorio N°3
delay(1000);}}
else {
  if((SUMADEVALORESLIVING/10) > 24) {
  digitalWrite(28, LOW);//ABRO PERSIANA LIVING
  delay(300000);
  digitalWrite(28, HIGH);
  digitalWrite(30, HIGH); //NO DEJA CERRAR PERSIANA LIVING}
  if((SUMADEVALORESDOR1/10) > 24) {
  digitalWrite(41, LOW);//ABRO PERSIANA DOR1
  delay(300000);
  digitalWrite(41, HIGH);
  digitalWrite(42, HIGH);//NO DEJA CERRAR PERSIANA DOR1}
  if((SUMADEVALORESDOR3/10) > 24) {
  digitalWrite(47, LOW);//ABRO PERSIANA DOR3
  delay(300000);
  digitalWrite(47, HIGH);
  digitalWrite(48, HIGH);} } } //NO DEJA CERRAR PERSIANA DOR3
```



```
//Para reloj y simulación de presencia
DateTime fecha = rtc.now();
if (ESTADODEPRESENCIA == 0) {
if (NUMERODIA == 1){
if (fecha.hour() == 9 \&\& fecha.minute() == 00){
  digitalWrite(36, LOW);// ABRIR PERSIANA COCINA
  digitalWrite(28, LOW);//ABRIR PERSIANA LIVING
  delay(300000);
  digitalWrite(36, HIGH);
  digitalWrite(28, HIGH);
  digitalWrite(41, LOW);//ABRIR PERSIANA DOR1
  delay(300000);
  digitalWrite(41, HIGH); }
if (fecha.hour() == 18 \&\& fecha.minute() == 00)
  digitalWrite(38, LOW);//CIERRO PERSIANA COCINA
  delay(300000);
  digitalWrite(38, HIGH);//CIERRO PERSIANA COCINA
  digitalWrite(30, LOW);//CIERRO PERSIANA LIVING
  delay(300000);
  digitalWrite(30, HIGH);//CIERRO PERSIANA COCINA
  digitalWrite(42, LOW);//CIERRO PERSIANA DOR1
  delay(300000);
  digitalWrite(42, HIGH);}//CIERRO PERSIANA COCINA
if (fecha.hour() == 19 && fecha.minute() == 10){
  digitalWrite(22, LOW);//PRENDO LUCES EXTERIORES A LAS 19:10
  delay(15120000);
  digitalWrite(22, HIGH);//APAGO LUCES EXTERIORES A LAS 23:30
  PWMLIVING = 255;
  analogWrite(LUMLIVING, PWMLIVING);
```



```
digitalWrite(22, LOW);//PRENDO LUZ DEL LIVING A LAS 19:10
 delay(15120000);
 PWMLIVING = 0; //APAGO LUZ DEL LIVING A LAS 22:30
 analogWrite(LUMLIVING, PWMLIVING);}
NUMERODIA = NUMERODIA + 1;}
if (NUMERODIA == 2){
if (fecha.hour() == 9 \&\& fecha.minute() == 15){
 digitalWrite(36, LOW);// ABRIR PERSIANA COCINA
 digitalWrite(28, LOW);//ABRIR PERSIANA LIVING
 delay(300000);
 digitalWrite(36, HIGH);
 digitalWrite(28, HIGH);
 digitalWrite(41, LOW);//ABRIR PERSIANA DOR1
 delay(300000);
 digitalWrite(41, HIGH); }
if (fecha.hour() == 18 && fecha.minute() == 32){
 digitalWrite(38, LOW);//CIERRO PERSIANA COCINA
 delay(300000);
 digitalWrite(38, HIGH);
 digitalWrite(30, LOW);//CIERRO PERSIANA LIVING
 delay(300000);
 digitalWrite(30, HIGH);
 digitalWrite(42, LOW);//CIERRO PERSIANA DOR1
 delay(300000);
 digitalWrite(42, HIGH);}
if (fecha.hour() == 18 && fecha.minute() == 55){
 digitalWrite(22, LOW);//PRENDO LUCES EXTERIORES A LAS 18:55
 delay(15120000);
 digitalWrite(22, HIGH);//APAGO LUCES EXTERIORES A LAS 22:45
```



```
PWMLIVING = 255;
 analogWrite(LUMLIVING, PWMLIVING);
 digitalWrite(22, LOW);//PRENDO LUZ DEL LIVING A LAS 18:55
 delay(15120000);
 PWMLIVING = 0; //APAGO LUZ DEL LIVING A LAS 21:45
 analogWrite(LUMLIVING, PWMLIVING);}
NUMERODIA = NUMERODIA + 1;}
if (NUMERODIA == 3){
if (fecha.hour() == 8 && fecha.minute() == 33){
 digitalWrite(36, LOW);// ABRIR PERSIANA COCINA
 digitalWrite(28, LOW);//ABRIR PERSIANA LIVING
 delay(300000);
 digitalWrite(36, HIGH);
 digitalWrite(28, HIGH);
 digitalWrite(41, LOW);//ABRIR PERSIANA DOR1
 delay(300000);
 digitalWrite(41, HIGH); }
if (fecha.hour() == 19 && fecha.minute() == 12){
 digitalWrite(38, LOW);//CIERRO PERSIANA COCINA
 delay(300000);
 digitalWrite(38, HIGH);//CIERRO PERSIANA COCINA
 digitalWrite(30, LOW);//CIERRO PERSIANA LIVING
 delay(300000);
 digitalWrite(30, HIGH);
 digitalWrite(42, HIGH);//CIERRO PERSIANA DOR1
 delay(300000);
 digitalWrite(42, HIGH);}
 if (fecha.hour() == 19 \&\& fecha.minute() == 26)
 digitalWrite(22, LOW);//PRENDO LUCES EXTERIORES A LAS 19:26
```

```
delay(15120000);
digitalWrite(22, HIGH);//APAGO LUCES EXTERIORES A LAS 23:46
PWMLIVING = 255;
analogWrite(LUMLIVING, PWMLIVING);
digitalWrite(22, LOW);//PRENDO LUZ DEL LIVING A LAS 19:26
delay(15120000);
PWMLIVING = 0; //APAGO LUZ DEL LIVING A LAS 22:46
analogWrite(LUMLIVING, PWMLIVING);}
NUMERODIA = NUMERODIA + 1;
if (NUMERODIA == 4){
if (fecha.hour() == 8 \&\& fecha.minute() == 10)
digitalWrite(36, LOW);// ABRIR PERSIANA COCINA
digitalWrite(28, LOW);//ABRIR PERSIANA LIVING
delay(300000);
digitalWrite(36, HIGH);
digitalWrite(28, HIGH);
digitalWrite(41, LOW);//ABRIR PERSIANA DOR1
delay(300000);
digitalWrite(41, HIGH); }
if (fecha.hour() == 19 && fecha.minute() == 00){
digitalWrite(38, LOW);//CIERRO PERSIANA COCINA
delay(300000);
digitalWrite(38, HIGH);//CIERRO PERSIANA COCINA
digitalWrite(30, LOW);//CIERRO PERSIANA LIVING
delay(300000);
digitalWrite(30, HIGH);//CIERRO PERSIANA COCINA
digitalWrite(42, LOW);//CIERRO PERSIANA DOR1
delay(300000);
digitalWrite(42, LOW);}//CIERRO PERSIANA COCINA
```



```
if (fecha.hour() == 19 && fecha.minute() == 10){
digitalWrite(22, LOW);//PRENDO LUCES EXTERIORES A LAS 19:10
delay(15180030);
digitalWrite(22, HIGH);//APAGO LUCES EXTERIORES A LAS 00:00
PWMLIVING = 255;
analogWrite(LUMLIVING, PWMLIVING);
digitalWrite(22, LOW);//PRENDO LUZ DEL LIVING A LAS 19:10
delay(15120000);
PWMLIVING = 0; //APAGO LUZ DEL LIVING A LAS 22:30
analogWrite(LUMLIVING, PWMLIVING);}
NUMERODIA = NUMERODIA + 1;
if (NUMERODIA == 5){
if (fecha.hour() == 9 \&\& fecha.minute() == 20){
digitalWrite(36, LOW);// ABRIR PERSIANA COCINA
digitalWrite(28, LOW);//ABRIR PERSIANA LIVING
delay(300000);
digitalWrite(36, HIGH);
digitalWrite(28, HIGH);
digitalWrite(41, LOW);//ABRIR PERSIANA DOR1
delay(300000);
digitalWrite(41, HIGH); }
if (fecha.hour() == 18 && fecha.minute() == 35){
digitalWrite(38, LOW);//CIERRO PERSIANA COCINA
delay(300000);
digitalWrite(38, HIGH);//CIERRO PERSIANA COCINA
digitalWrite(30, LOW);//CIERRO PERSIANA LIVING
delay(300000);
digitalWrite(30, HIGH);//CIERRO PERSIANA COCINA
digitalWrite(42, LOW);//CIERRO PERSIANA DOR1
```

```
delay(300000);
 digitalWrite(42, HIGH);}//CIERRO PERSIANA COCINA
 if (fecha.hour() == 20 \&\& fecha.minute() == 10){
 digitalWrite(22, LOW);//PRENDO LUCES EXTERIORES A LAS 20:10
 delay(15120000);
 digitalWrite(22, HIGH);//APAGO LUCES EXTERIORES A LAS 23:30
 PWMLIVING = 255;
 analogWrite(LUMLIVING, PWMLIVING);
 digitalWrite(22, LOW);//PRENDO LUZ DEL LIVING A LAS 20:10
 delay(15120000);
 PWMLIVING = 0; //APAGO LUZ DEL LIVING A LAS 22:30
 analogWrite(LUMLIVING, PWMLIVING);}
NUMERODIA = NUMERODIA + 1;}
if (NUMERODIA == 6){
 if (fecha.hour() == 9 \&\& fecha.minute() == 00){
 digitalWrite(36, LOW);// ABRIR PERSIANA COCINA
 digitalWrite(28, LOW);//ABRIR PERSIANA LIVING
 delay(300000);
 digitalWrite(36, HIGH);
 digitalWrite(28, HIGH);
 digitalWrite(41, LOW);//ABRIR PERSIANA DOR1
 delay(300000);
 digitalWrite(41, LOW); }
 if (fecha.hour() == 17 && fecha.minute() == 40){
 digitalWrite(38, LOW);//CIERRO PERSIANA COCINA
 delay(300000);
 digitalWrite(38, HIGH);//CIERRO PERSIANA COCINA
 digitalWrite(30, LOW);//CIERRO PERSIANA LIVING
 delay(300000);
```

```
digitalWrite(30, HIGH);//CIERRO PERSIANA COCINA
digitalWrite(42, LOW);//CIERRO PERSIANA DOR1
delay(300000);
digitalWrite(42, LOW);} //CIERRO PERSIANA COCINA
if (fecha.hour() == 19 && fecha.minute() == 32){
digitalWrite(22, LOW);//PRENDO LUCES EXTERIORES A LAS 19:32
delay(15120000);
digitalWrite(22, HIGH);//APAGO LUCES EXTERIORES A LAS 23:30
PWMLIVING = 255;
analogWrite(LUMLIVING, PWMLIVING);
digitalWrite(22, LOW);//PRENDO LUZ DEL LIVING A LAS 19:32
delay(15120000);
PWMLIVING = 0; //APAGO LUZ DEL LIVING A LAS 22:30
analogWrite(LUMLIVING, PWMLIVING);}
NUMERODIA = NUMERODIA + 1;}
if (NUMERODIA == 7){
if (fecha.hour() == 9 \&\& fecha.minute() == 00){
digitalWrite(36, LOW);// ABRIR PERSIANA COCINA
digitalWrite(28, LOW);//ABRIR PERSIANA LIVING
delay(300000);
digitalWrite(36, HIGH);
digitalWrite(28, HIGH);
digitalWrite(41, LOW);//ABRIR PERSIANA DOR1
delay(300000);
digitalWrite(41, HIGH); }
if (fecha.hour() == 18 && fecha.minute() == 00){
digitalWrite(38, LOW);//CIERRO PERSIANA COCINA
delay(300000);
digitalWrite(38, HIGH);//CIERRO PERSIANA COCINA
```



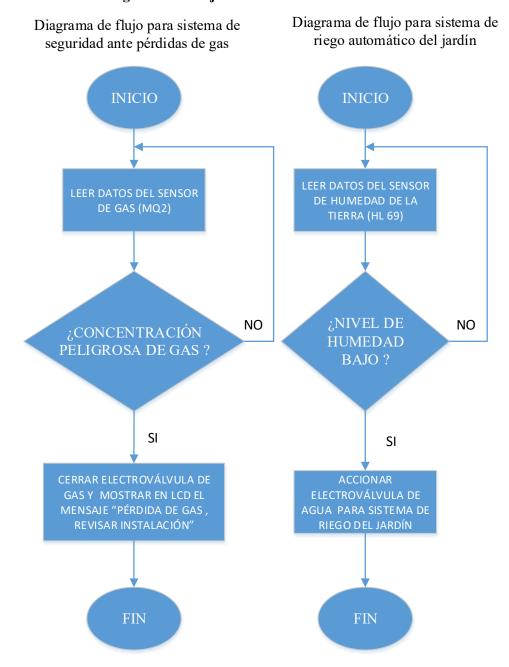
```
digitalWrite(30, LOW);//CIERRO PERSIANA LIVING
  delay(300000);
  digitalWrite(30, HIGH);//CIERRO PERSIANA COCINA
  digitalWrite(42, LOW);//CIERRO PERSIANA DOR1
  delay(300000);
  digitalWrite(42, HIGH);}//CIERRO PERSIANA COCINA
  if (fecha.hour() == 19 && fecha.minute() == 10){
  digitalWrite(22, LOW);//PRENDO LUCES EXTERIORES A LAS 19:10
  delay(15120000);
  digitalWrite(22, HIGH);//APAGO LUCES EXTERIORES A LAS 23:30
  PWMLIVING = 255;
  analogWrite(LUMLIVING, PWMLIVING);
  digitalWrite(22, LOW);//PRENDO LUZ DEL LIVING A LAS 19:10
  delay(15120000);
  PWMLIVING = 0; //APAGO LUZ DEL LIVING A LAS 22:30
  analogWrite(LUMLIVING, PWMLIVING);}
  NUMERODIA = 0; \} 
//PARA EL WIFI
//Dormitorio N°1
 if( cadenaingresada == '1' ) {
 digitalWrite(42, HIGH);
 digitalWrite(41, LOW);
 delay(240000);
 digitalWrite(41, HIGH); }
 if (cadenaingresada == '3'){
 BRILLODOR1 = BRILLODOR1 + 10;
 if (BRILLODOR1 > 255)
 BRILLODOR1 = 255;
  analogWrite(LUMDOR1, BRILLODOR1); }
```

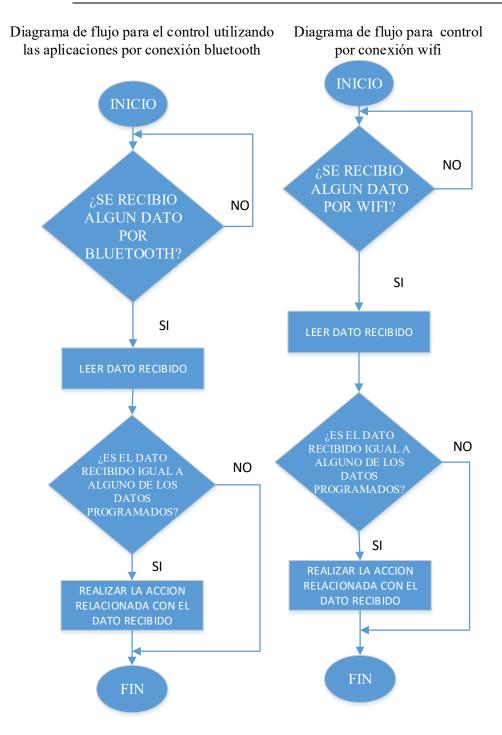


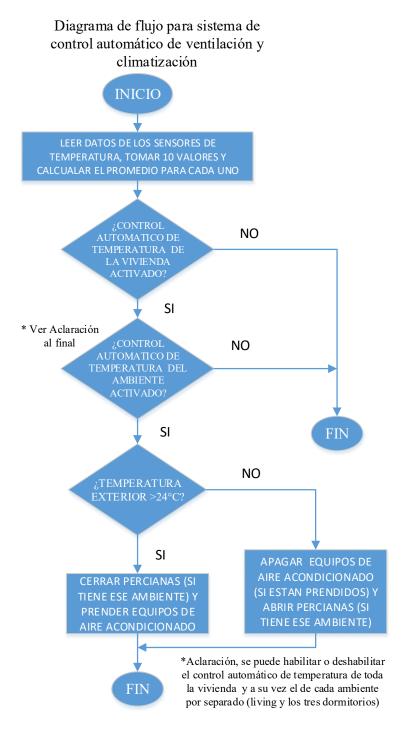
```
if (cadenaingresada == '2'){
BRILLODOR1 = BRILLODOR1 - 10;
 if (BRILLODOR1 < 0)
 BRILLODOR1 = 0;
 analogWrite(LUMDOR1, BRILLODOR1);}
if( cadenaingresada == '4' ) {
 digitalWrite(41, HIGH);
 digitalWrite(42, LOW);
 delay(240000);
 digitalWrite(42, HIGH);}
if( cadenaingresada == 'e'){
for (int i = 0; i < NumIR signals; i+=2) {
 pulseIRDOR1(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }//Prende el A.A.del dormitorio N°1
delay(1000); }
if( cadenaingresada == 'f'){
for (int i = 0; i < NumIR signals; i+=2) {
 pulseIRDOR1(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }//Apaga el A.A.del dormitorio N°1
delay(1000); }
//Dormitorio N°2
 if (cadenaingresada == '8'){
 BRILLODOR2 = BRILLODOR2 + 10;
 if (BRILLODOR2 > 255)
 BRILLODOR2 = 255;
 analogWrite(LUMDOR2, BRILLODOR2);}
 if (cadenaingresada == '9'){
BRILLODOR2 = BRILLODOR2 - 10;
 if (BRILLODOR2 < 0)
```



```
BRILLODOR2 = 0;
analogWrite(LUMDOR2, BRILLODOR2);}
if( cadenaingresada == '6'){
for (int i = 0; i < NumIR signals; i+=2) {
pulseIRDOR2(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }//Prende el A.A.del dormitorio N°2
delay(1000); }
if( cadenaingresada == '5'){
for (int i = 0; i < NumIR signals; i+=2) {
pulseIRDOR2(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }//Apaga el A.A.del dormitorio N°2
delay(1000); }
//Dormitorio N°3
if( cadenaingresada == 'b' ) {
digitalWrite(48, HIGH);
digitalWrite(47, LOW);
delay(240000);
digitalWrite(47, HIGH); }
if (cadenaingresada == 'a'){
BRILLODOR3 = BRILLODOR3 + 10;
if (BRILLODOR3 > 255)
BRILLODOR3 = 255;
analogWrite(LUMDOR3, BRILLODOR3);}
if (cadenaingresada = '9'){
BRILLODOR3 = BRILLODOR3 - 10;
if (BRILLODOR3 < 0)
BRILLODOR3 = 0;
analogWrite(LUMDOR3, BRILLODOR3);}
if( cadenaingresada == 'd' ) {
```



```
digitalWrite(47, HIGH);
 digitalWrite(48, LOW);
 delay(240000);
 digitalWrite(48, HIGH); }
if( cadenaingresada == 'c'){
for (int i = 0; i < NumIR signals; i+=2) {
 pulseIRDOR3(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }//Prende el A.A.del dormitorio N°3
delay(1000); }
 if( cadenaingresada == 'i'){
for (int i = 0; i < NumIR signals; i+=2) {
 pulseIRDOR3(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }//Apaga el A.A.del dormitorio N°3
delay(1000); }
//Cocina
if( cadenaingresada == 'g' ) {
 digitalWrite(38, HIGH);
 digitalWrite(36, LOW);
 delay(240000);
 digitalWrite(36, HIGH);}
 if( cadenaingresada == 'h' ) {
 digitalWrite(36, HIGH);
 digitalWrite(38, LOW);
 delay(240000);
 digitalWrite(38, HIGH); }
//Living
 if( cadenaingresada == 'm' ) {
 digitalWrite(30, HIGH);
 digitalWrite(28, LOW);
```



```
delay(240000);
digitalWrite(28, HIGH); }
if (cadenaingresada == 'J'){
BRILLOLIVING = BRILLOLIVING + 10;
if (BRILLOLIVING > 255)
BRILLOLIVING = 255;
analogWrite(LUMLIVING, BRILLOLIVING); }
if ( cadenaingresada == 'K' ){
BRILLOLIVING = BRILLOLIVING - 10;
if (BRILLOLIVING < 0)
BRILLOLIVING = 0;
analogWrite(LUMLIVING, BRILLOLIVING); }
if( cadenaingresada == 'L' ) {
digitalWrite(28, HIGH);
digitalWrite(30, LOW);
delay(240000);
digitalWrite(30, HIGH); }
if( cadenaingresada == 'n'){
for (int i = 0; i < NumIR signals; i+=2) {
pulseIRLIVING(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }//Prende el A.A.del living
delay(1000); }
if( cadenaingresada == 'o'){
for (int i = 0; i < NumIR signals; i+=2) {
pulseIRLIVING(IRsignal[i]*10);
delayMicroseconds(IRsignal[i+1]*10); }//Apaga el A.A.del living
delay(1000); } }}}}
```



Anexo IV.2: Diagramas de flujo de los diferentes sistemas

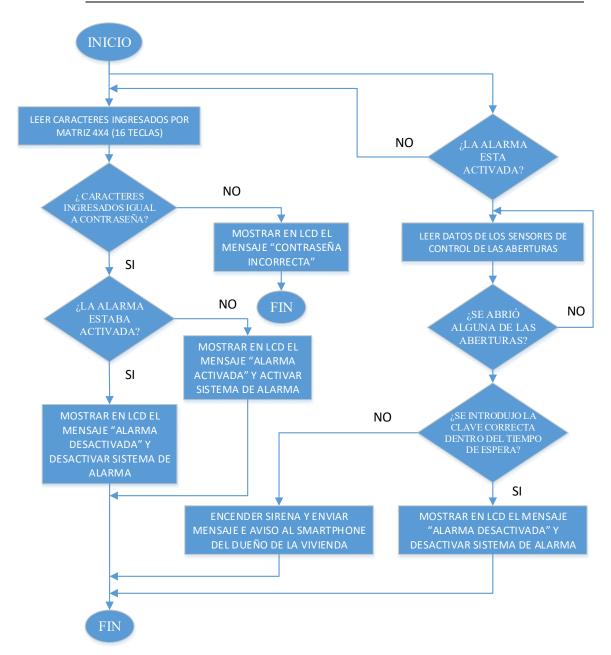
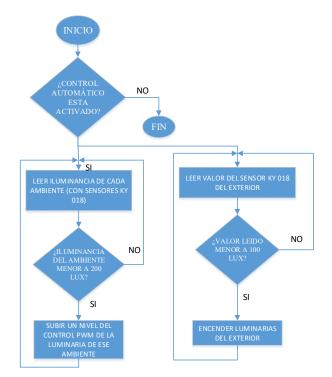
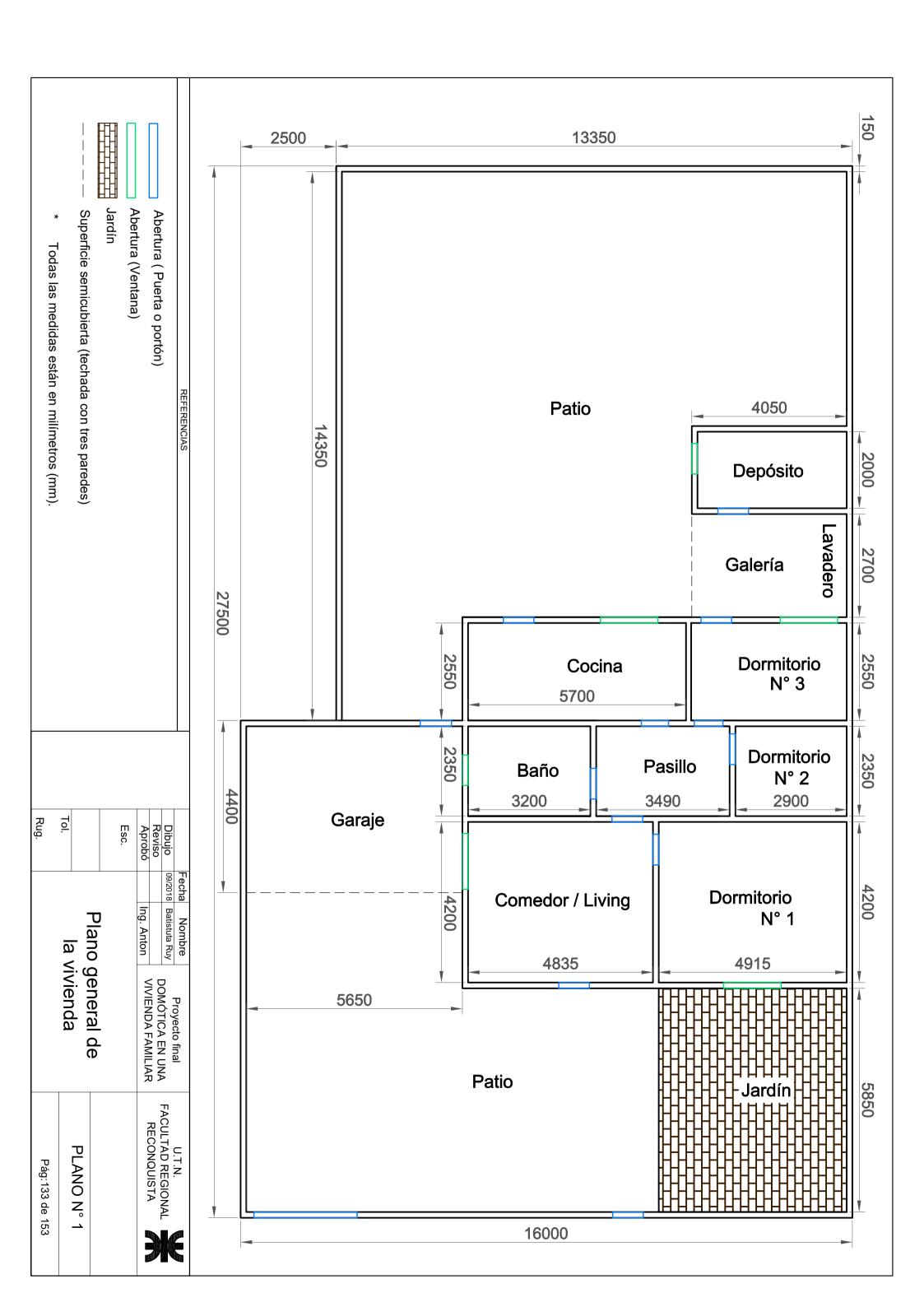
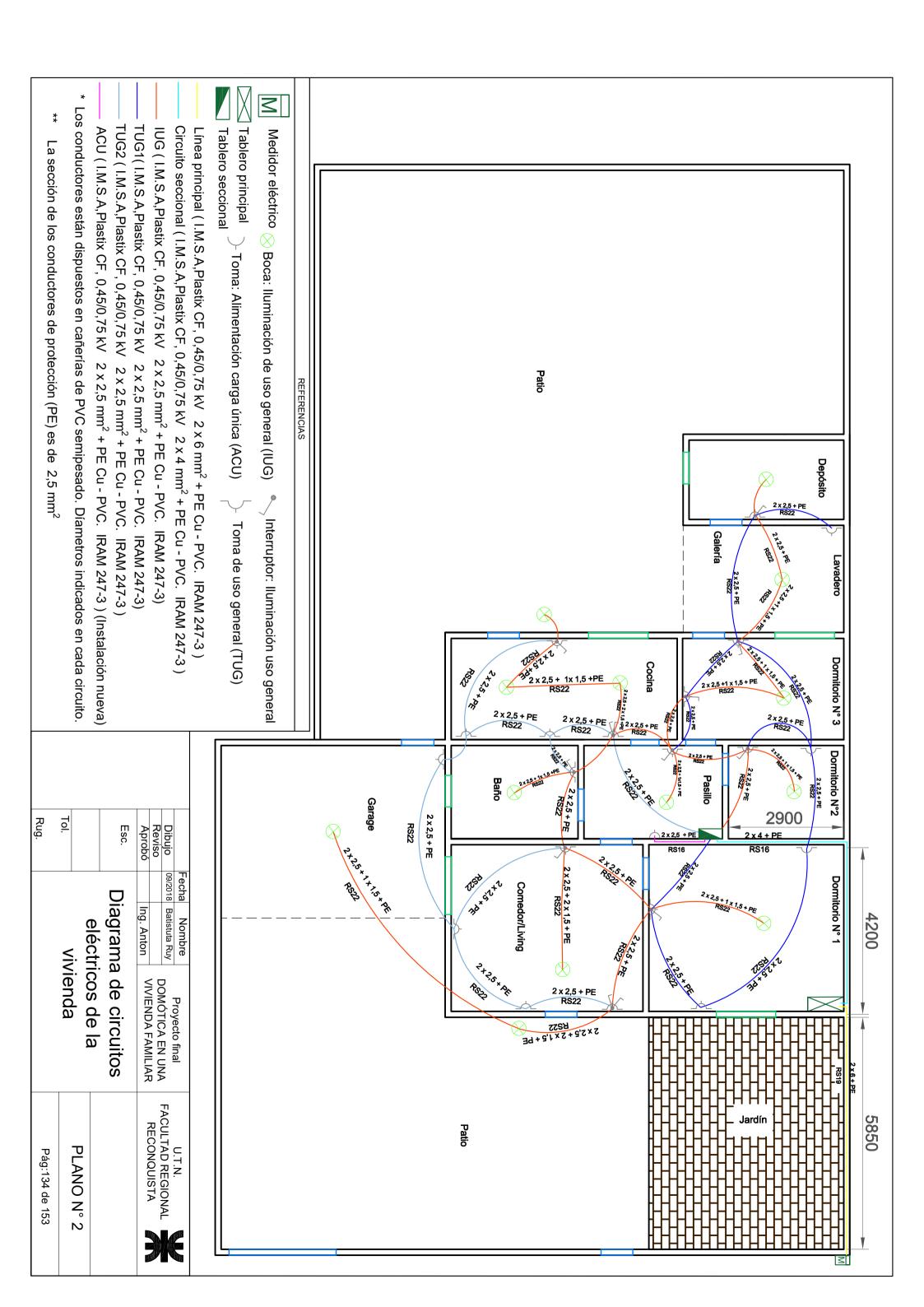
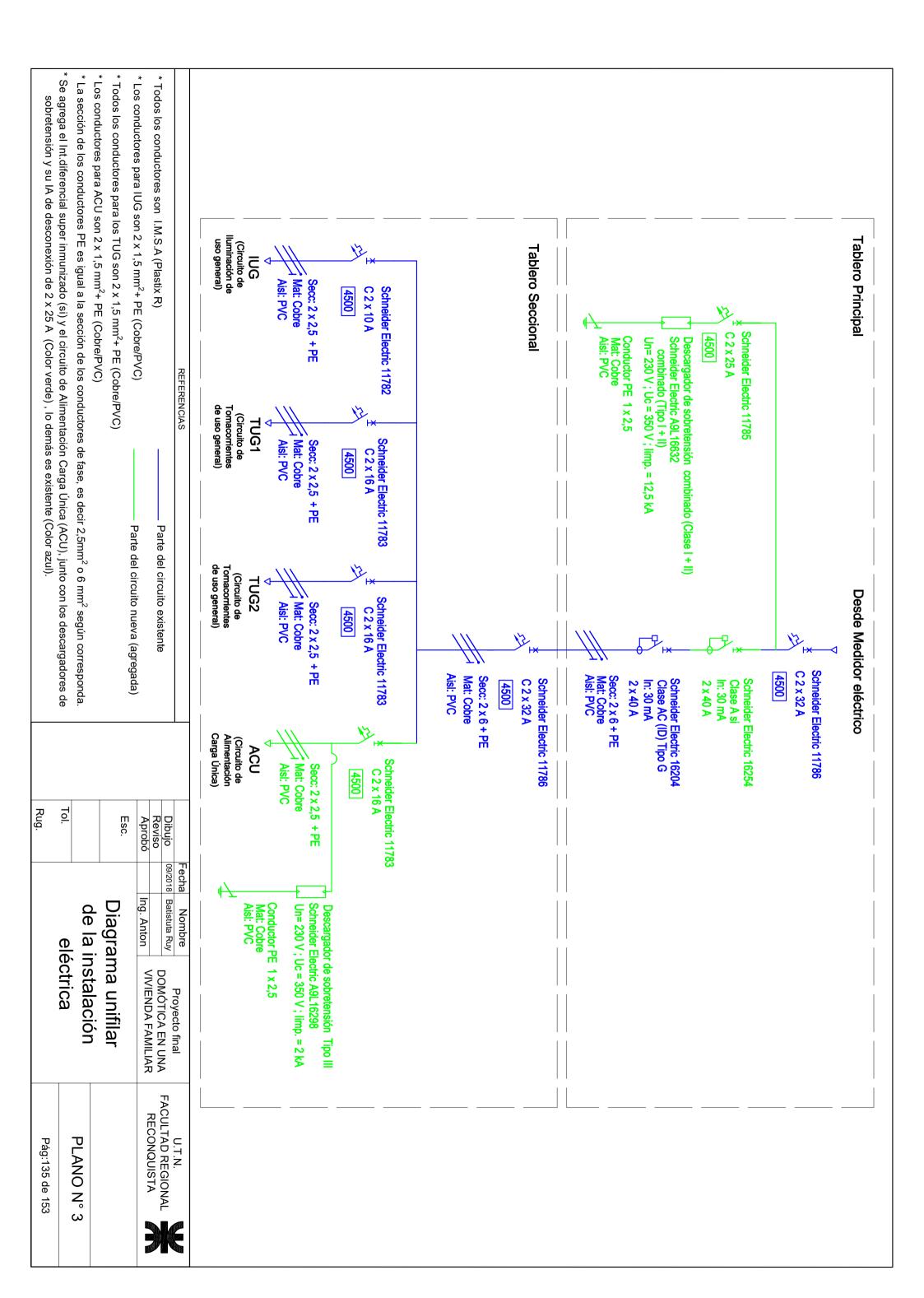
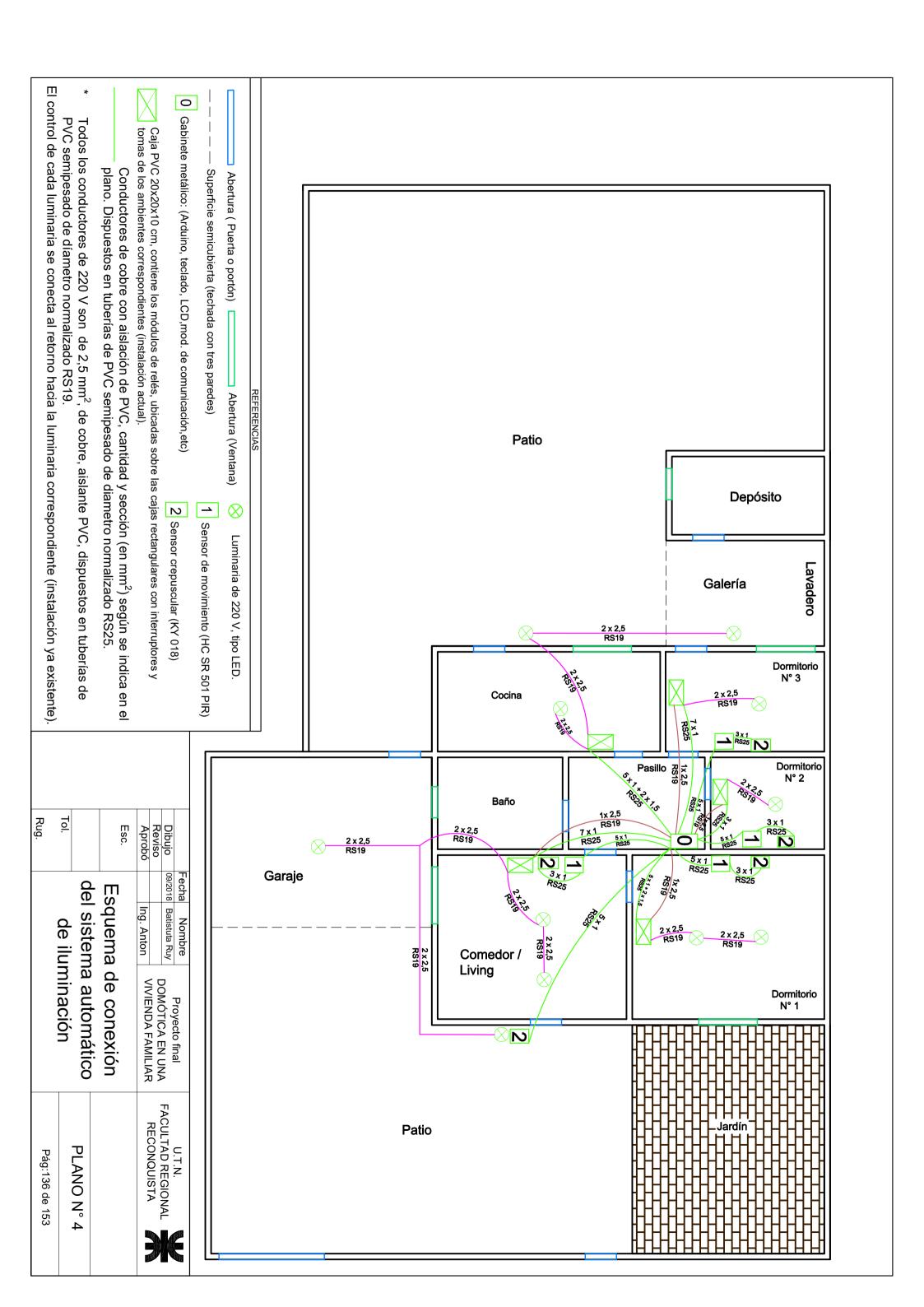
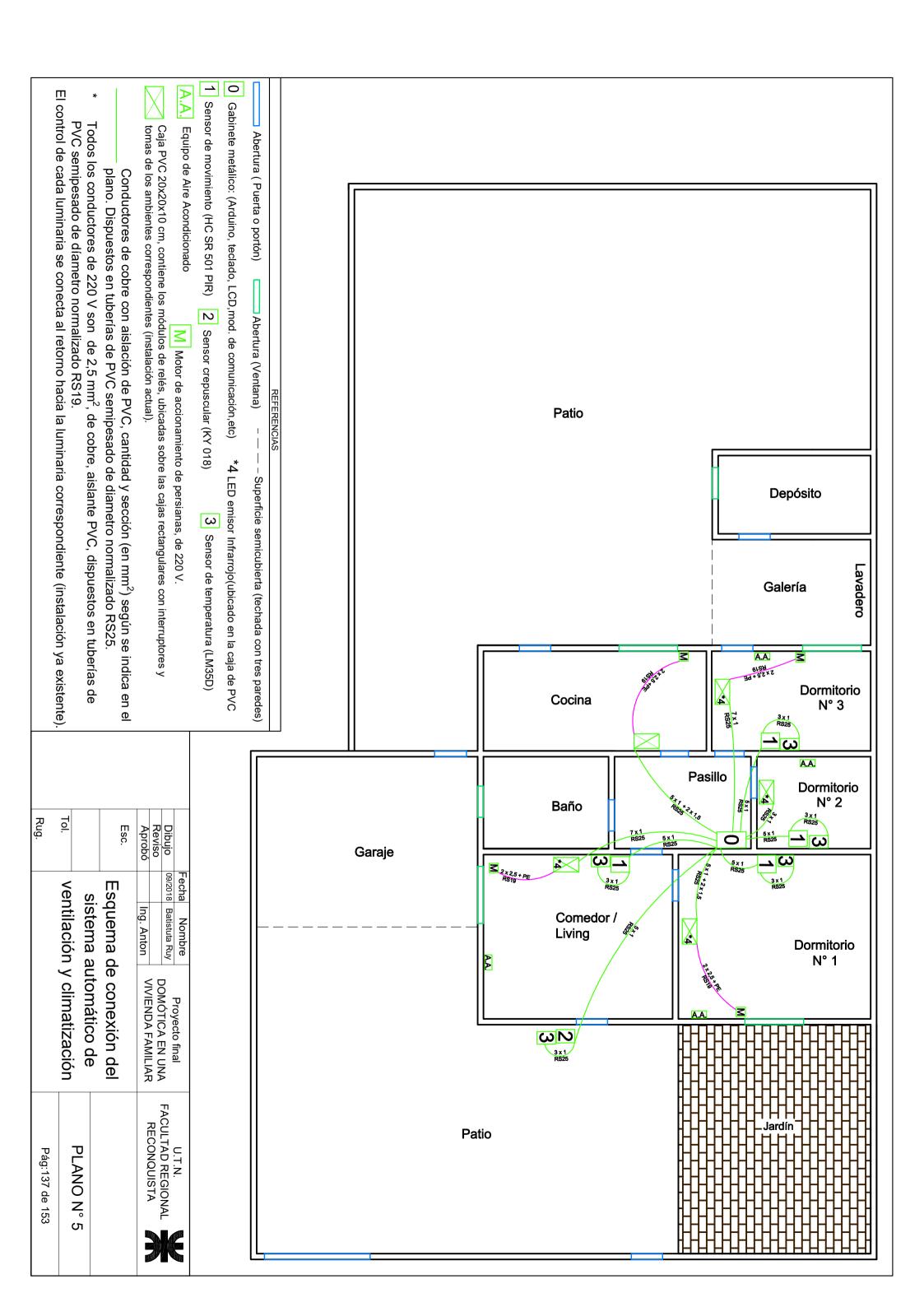


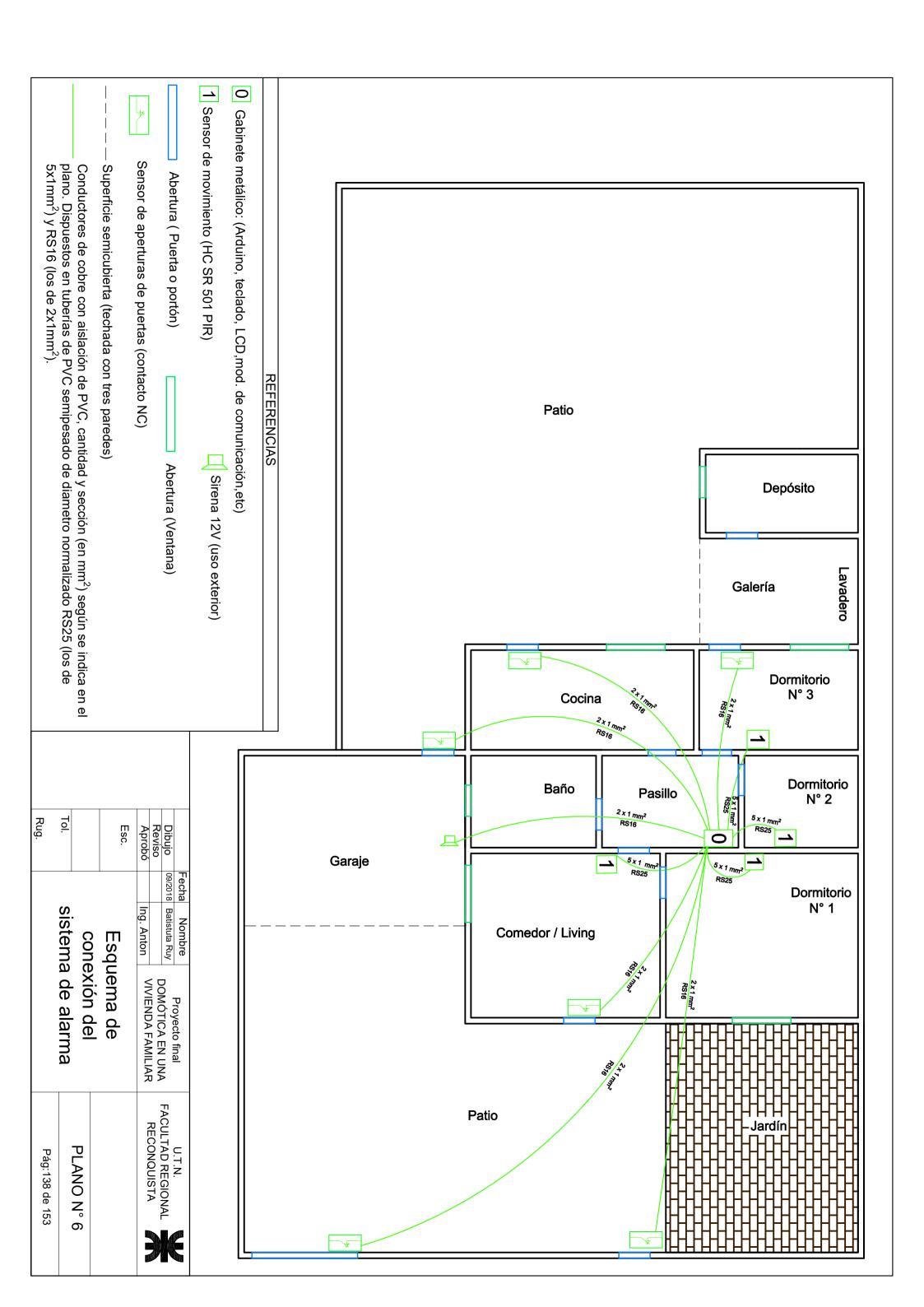
Diagrama de flujo para el control automático de las luminarias

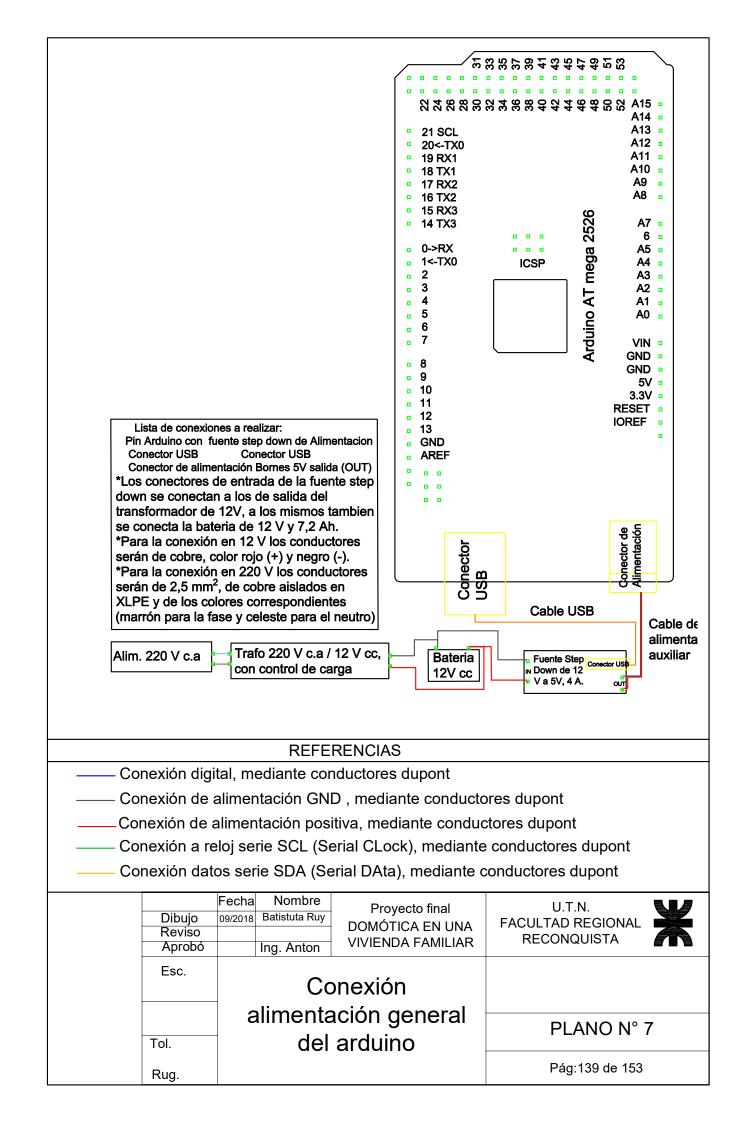




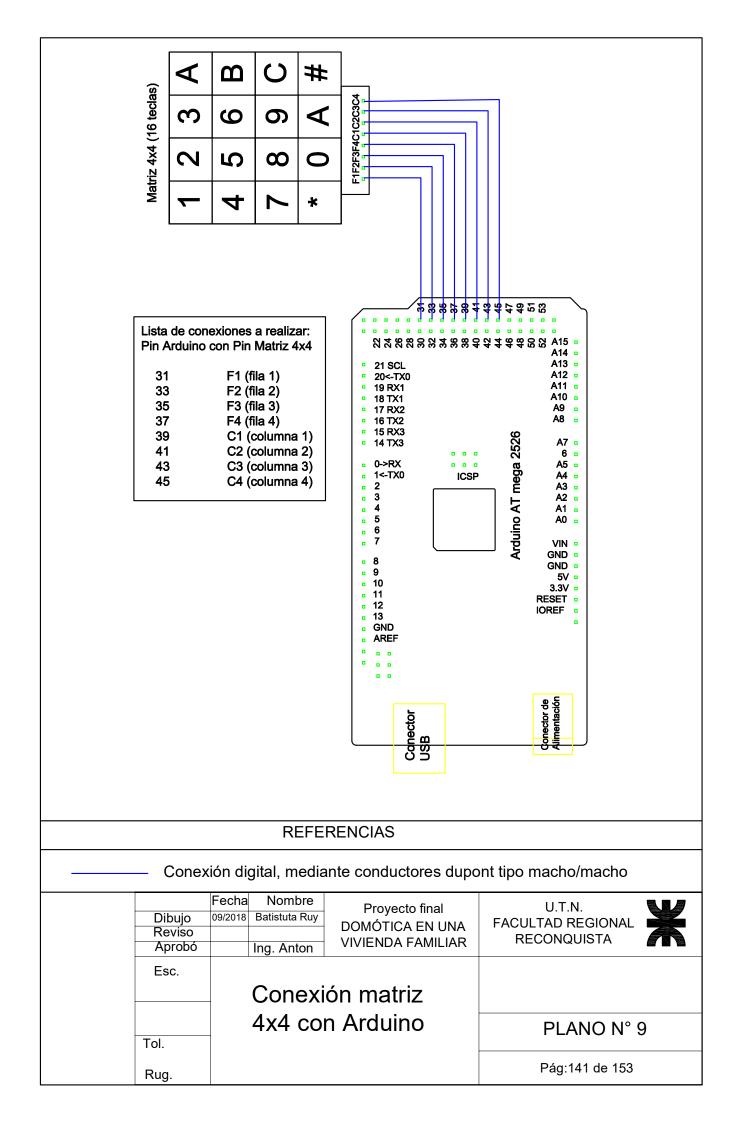

Diagrama de flujo para el sensor de presencia dentro de 48 hs, si no detecta presencia en 48 hs activa la alarma.

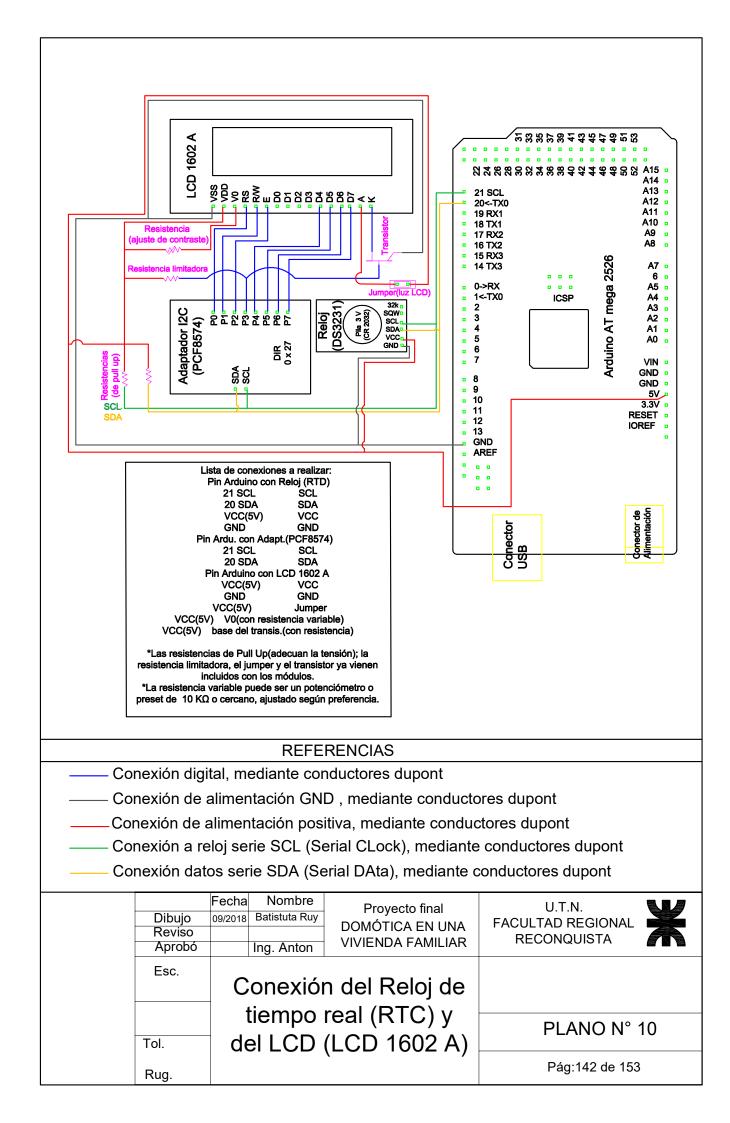



ANEXO V: PLANOS

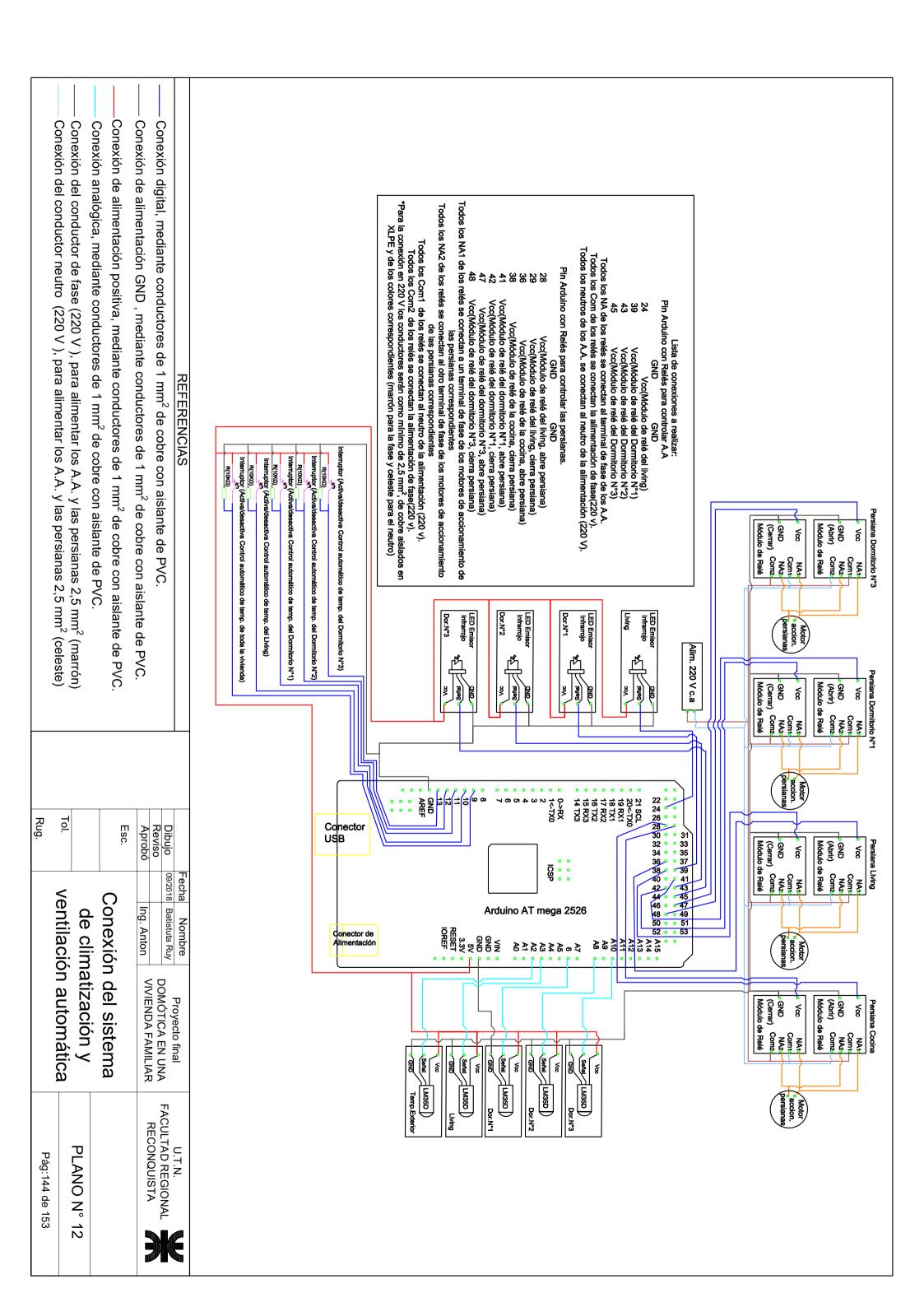


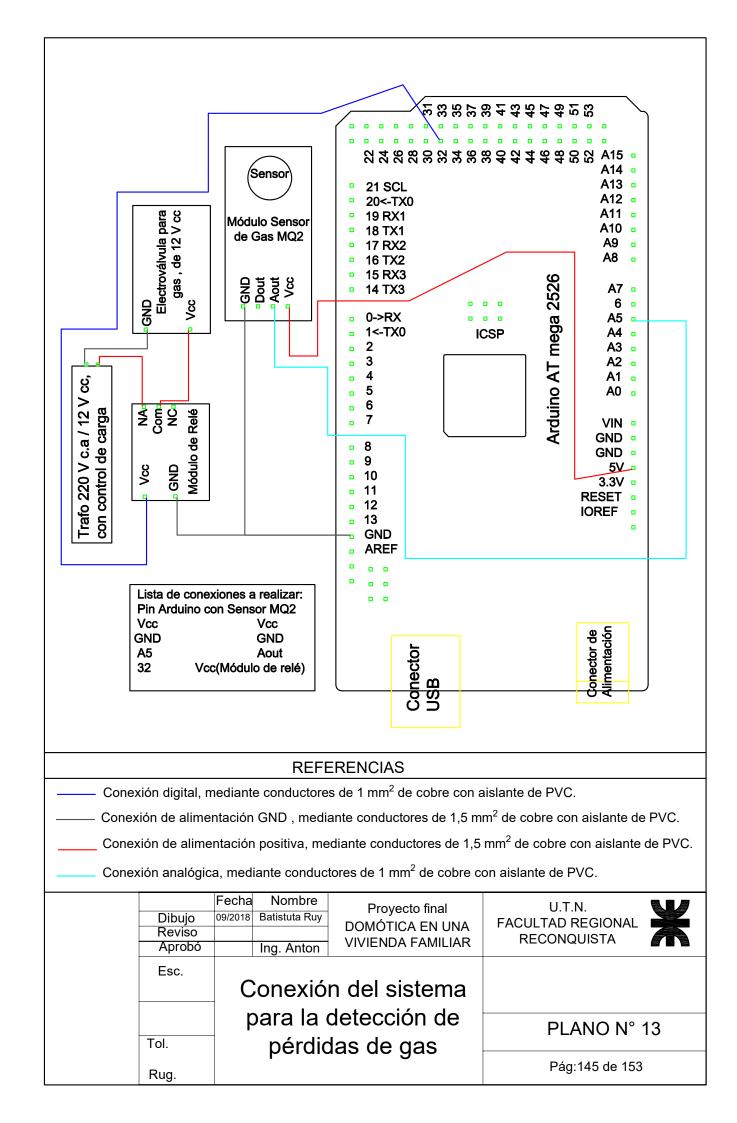


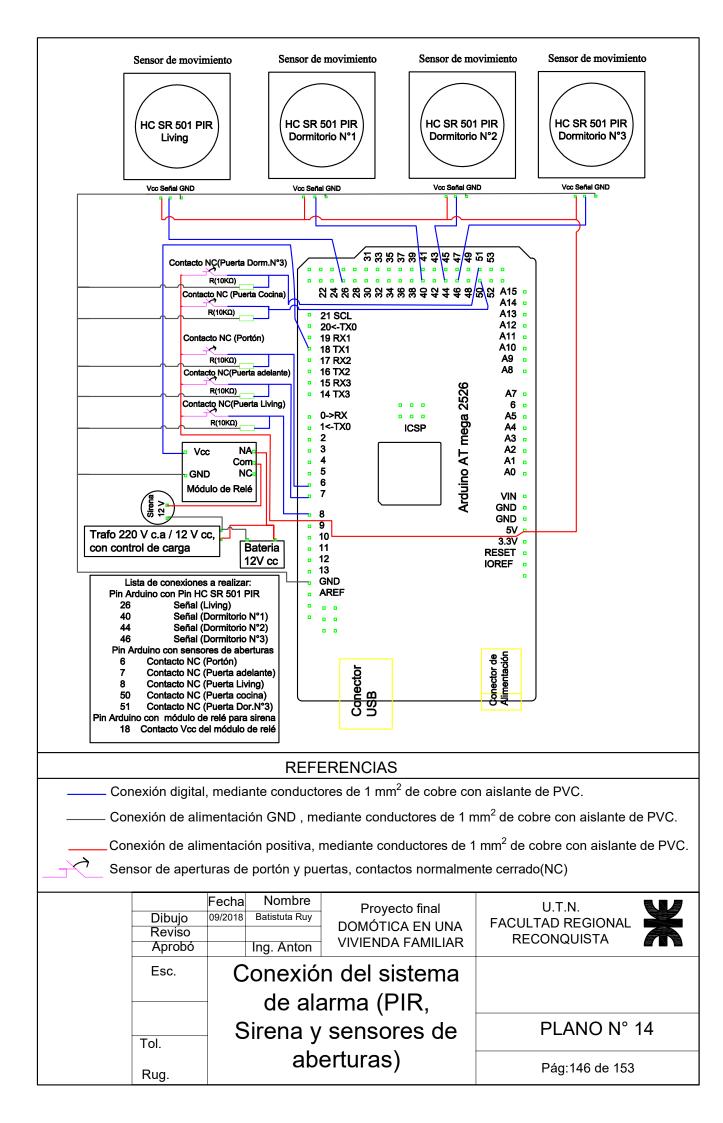


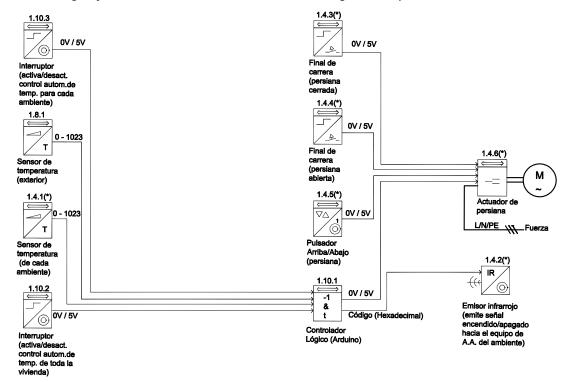












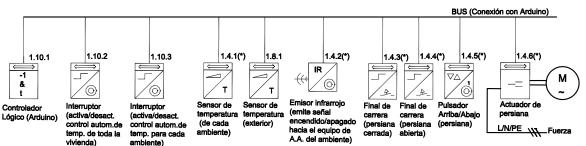
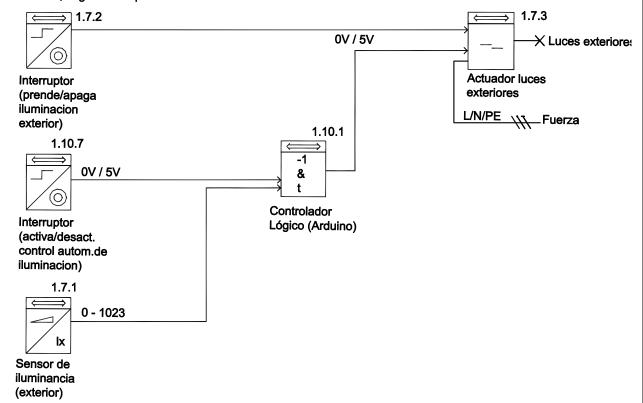


Diagrama Lógicos: (Control automático de temperatura)

*Aclaración:La comunicación no se realiza mediante telegramas, sino midiendo los valores directamente de las entradas, en el caso de las entradas o salidas digitales entre 0V (cero lógico) y 5V (uno lógico), y para las analógicas los valores van de 0 a 1023. Son estos valores los marcados en cada conexión lógica junto con el número de entrada o salida, según corresponda.

Diagrama Funcional: (Control automático de temperatura)


*Estas direcciones de grupo pertenecen a un ambiente (Living), los demás ambientes utilizarán las direcciones mostradas en la siguiente tabla:

Ambiente Componente	Sens.temp.del ambiente	Emisor Infrarroio	F.C.(Pers.Able	ta) F.C.(Pers.Cerrada)	Puls.(Arrib./Abai.)	Actuador Persiana	Act./Desc.Control Autom. Temp.
Living	1.4.1	1.4.2	1.4.3	1.4.4	1.4.5	1.4.6	1.10.3
Dormitorio N°1	1.1.1	1.1.2	1.1.3	1.1.4	1,1,5	1.1.6	1.10.4
Dormitorio N°2	1.2.1	1.2.2	1.2.3	1.2.4	1.2.5	No tiene	1.10.5
Dormitorio N°3	1.3.1	1.3.2	1.3.3	1.3.4	1.3.5	1.3.6	1.10.6
Referencia de nomenclatu	ras: direcciones físicas	Referencia d	e números de c	ada amniente:	Ami	ciente Com	ponente Actuador Persiana
1.X.X ←	- N° de componente	1:Dormitorio N°1		tio 10:Pasillo		Cocina	1.6.6
† †	N° de cada ambiente	2:Dormitorio N°2		arage			
	- (Igual para toda la casa)	3:Dormitorio N°3	6:Cocina 9:G	aleria			

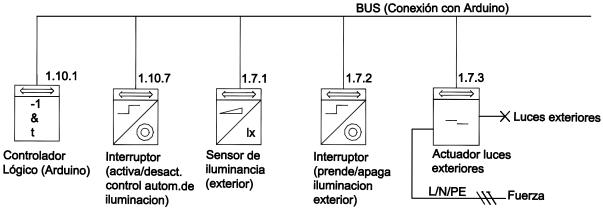
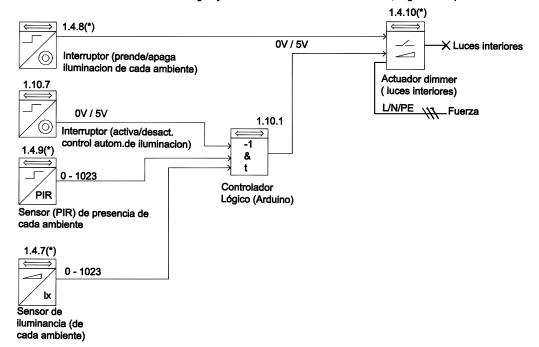

	Fecha Nombre 09/2018 Batistuta Ruy Ing. Anton	Proyecto final DOMÓTICA EN UNA VIVIENDA FAMILIAR	U.T.N. FACULTAD REGIONAL RECONQUISTA
Esc.	•	ma lógico y	
Tol.		na funcional e temperatura	PLANO N° 15
Rug.	oond of a		Pág:147 de 153

Diagrama Lógico: (Control automático de iluminación exterior)

*Aclaración:La comunicación no se realiza mediante telegramas, sino midiendo los valores directamente de las entradas, en el caso de las entradas o salidas digitales entre 0V (cero lógico) y 5V (uno lógico), y para las analógicas los valores van de 0 a 1023. Son estos valores los marcados en cada conexión lógica junto con el número de entrad o salida, según corresponda.



Referencia de nomenclaturas: direcciones físicas	Referencia de	números	de cada amr	iente:
1.X.X N° de componente	1:Dormitorio N°1 4	4:Living	7:Patio	10:Pasillo
↑ ↑ N° de cada ambiente	2:Dormitorio N°2 5		8:Garage	
(Igual para toda la casa)	3:Dormitorio N°3 6	6:Cocina	9:Galeria	

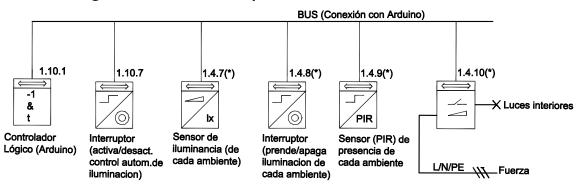
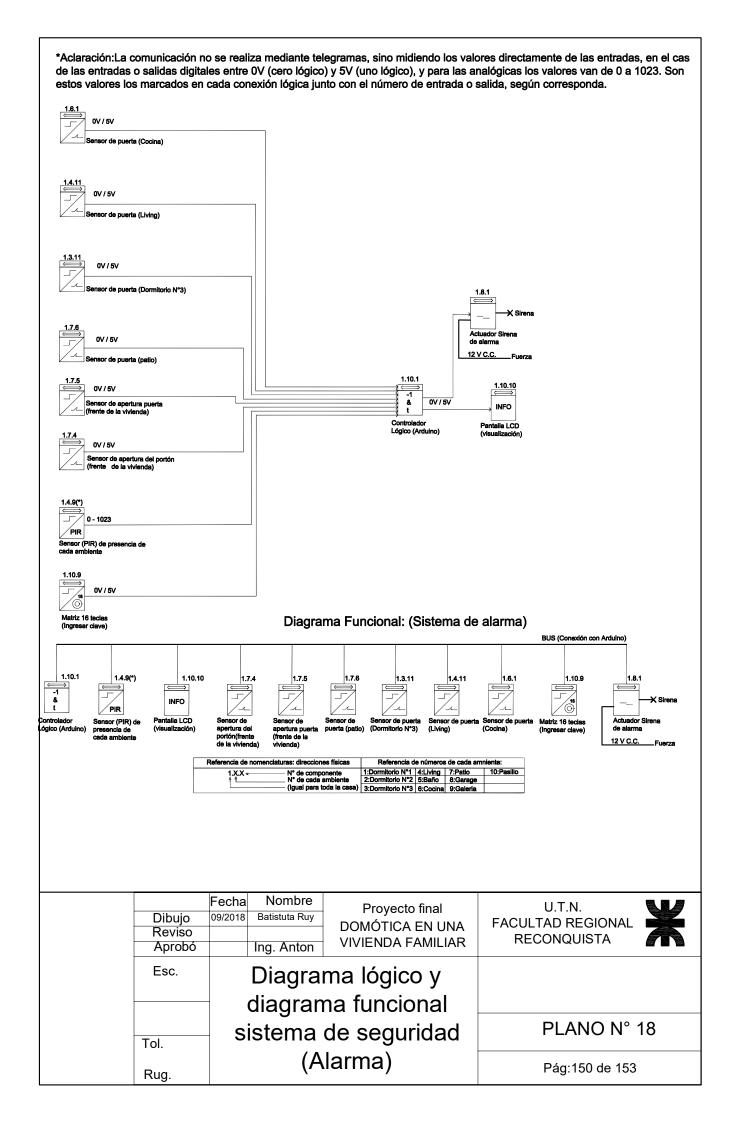
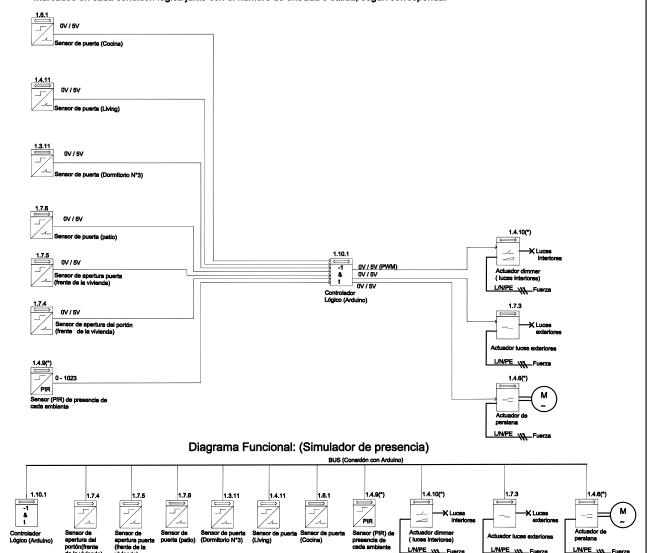

	Dibujo Reviso Aprobó	Fecha 09/2018	Nombre Batistuta Ruy Ing. Anton	Proyecto final DOMÓTICA EN UNA VIVIENDA FAMILIAR	U.T.N. FACULTAD REGIONAL RECONQUISTA
	Esc.	Diagrama lógico y diagrama funcional			
-	Tol.		•	e iluminación	PLANO N° 16
	Rug.		ex	xterior	Pág:148 de 153

Diagrama Lógico: (Control automático de iluminación interior)

*Aciaración:La comunicación no se realiza mediante telegramas, sino midiendo los valores directamente de las entradas, en el caso de las entradas o salidas digitales entre 0V (cero lógico) y 5V (uno lógico), y para las analógicas los valores van de 0 a 1023. Son estos valores los marcados en cada conexión lógica junto con el número de entrada o salida, según corresponda.


Diagrama Funcional: (Control automático de iluminación interior

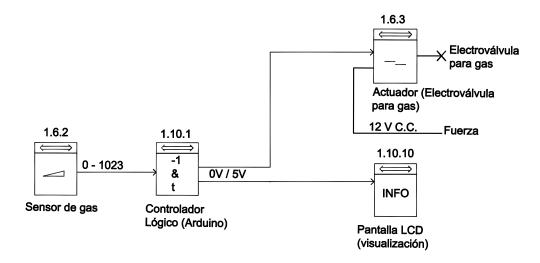
*Estas direcciones de grupo pertenecen a un ambiente (Living), los demás ambientes utilizarán las direcciones mostradas en la siguiente tabla:


Ambiente Compon	ente Sens.ilumin.del ambiente	Interruptor(Prende	e/Apaga)	Sensor PIR	Actuador Luces
Living	1.4.7	1.4.8		1.4.9	1.4.10
Dormitorio N°1	1.1.7	1.1.8		1.1.9	1.1.10
Dormitorio N°2	1.2.7	1.2.8		1.2.9	1.2.10
Dormitorio N°3	1.3.7	1.3.8		1.3.9	1.3.10
Referencia de nomeno	laturas: direcciones físicas	Referencia de números de cada amniente:			
1.X.X -	N° de componente	1:Dormitorio N°1	4:Living	7:Patio	10:Pasillo
↑ ↑ ↑	N° de componenteN° de cada ambiente	2:Dormitorio N°2	5:Baño	8:Garage	
	— (Igual para toda la casa)	3:Dormitorio N°3	6:Cocina	9:Galeria	

Dibujo Reviso Aprobó	Fecha 09/2018	Nombre Batistuta Ruy Ing. Anton	Proyecto final DOMÓTICA EN UNA VIVIENDA FAMILIAR	U.T.N. FACULTAD REGIONAL RECONQUISTA
Esc.			ma lógico y	
		•	na funcional	
Tol.		•	e iluminación	PLANO N° 17
Rug.		ir	nterior	Pág:149 de 153

Diagrama Lógico: (Simulador de presencia)

*Aclaración:La comunicación no se realiza mediante telegramas, sino midiendo los valores directamente de las entradas, en el caso de las entradas o salidas digitales entre 0V (cero lógico) y 5V (uno lógico), y para las analógicas los valores van de 0 a 1023. Son estos valores los marcados en cada conexión lógica junto con el número de entrada o salida, según corresponda.


*Estas direcciones de grupo pertenecen a un ambiente (Living), los demás ambientes utilizarán las direcciones mostradas en la siguiente tabla:

Ambiente Componente	Sensor PIR	Actuador P	ersianas	Actuador	Luces		
Living	1.4.9	1.4.	6	1.4.	10		
Dormitorio N°1	1.1.9	1.1.	В	1.1.	10		
Dormitorio N°2	1.2.9	1.2.	В	1.2.	10		
Dormitorio N°3	1.3.9	1.3.	8	1.3.	10		
Referencia de nomenclatur	as: direccione	s físicas	Re	ferencia d	e número	s de cada am	niente:
1.X.X ←	N° de compo N° de cada a	nente		torio N°1		7:Patio	10:Pasilio
1 † t				itorio N°2	5:Baño	8:Garage	
	(Igual para to	da la casa)	3:Dorm	itorio N°3	6:Cocina	9:Galeria	

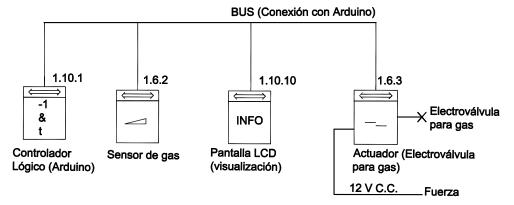

Dibujo Reviso Aprobó	Fecha Nombre 09/2018 Batistuta Ruy Ing. Anton	Proyecto final DOMÓTICA EN UNA VIVIENDA FAMILIAR	U.T.N. FACULTAD REGIONAL RECONQUISTA
Esc.		ma lógico y na funcional	
Tol.	sistema	de simulación	PLANO N° 19
Rug.	de p	resencia	Pág:151 de 153

Diagrama Funcional: (Sistema de seguridad para pérdidas de gas)

*Aclaración:La comunicación no se realiza mediante telegramas, sino midiendo los valores directamente de las entradas, en el caso de las entradas o salidas digitales entre 0V (cero lógico) y 5V (uno lógico), y para las analógicas los valores van de 0 a 1023. Son estos valores los marcados en cada conexión lógica junto con el número de entrada o salida, según corresponda.

Diagrama Funcional: (Sistema de seguridad para pérdidas de gas)

Referencia de nomenclaturas: direcciones físicas	Referencia d	e números	de cada amr	niente:
1,X,X ← N° de componente	1:Dormitorio N°1	4:Living	7:Patio	10:Pasillo
↑ ↑ N° de cada ambiente	2:Dormitorio N°2		8:Garage	
(Igual para toda la casa)	3:Dormitorio N°3	6:Cocina	9:Galeria	

Re	Fech bujo 09/20 eviso probó		Proyecto final DOMÓTICA EN UNA VIVIENDA FAMILIAR	U.T.N. FACULTAD REGIONAL RECONQUISTA
Es	SC.	•	ma lógico y na funcional	
Tol.		sistema	de seguridad	PLANO N° 20
Rug	ı.	ante per	didas de gas	Pág:152 de 153

ANEXO VI: HOJA DE DATOS Y CATÁLOGOS DE COMPONENTES UTILIZADOS

TABLAS DE LA AEA 90364 PARTE 7

Tabla 771.8.I – Resumen de los grados de electrificación de las viviendas (pág. 27 AEA 90364 parte 7)						
GRADOS DE ELECTRIFICACION	SUPERFICIE (LÍMITE DE APLICACIÓN)	DEMANDA DE POTENCIA MAXIMA SIMULTANEA CALCULADA				
Mínimo	Hasta 60 m ²	Hasta 3,7 KVA				
Medio	mas 60 m ² hasta 130 m ²	Hasta 7 KVA				
Elevado	mas 130 m² hasta 200 m²	Hasta 10 KVA				
Superior	mas 200 m ²	más de 10 KVA				

Electrificación	Cantidad mínima	Tipo de circuitos						
	de circuitos	Variante	(IUG)	(TUG)	(IUG)	(TUG)		
Mínima	2	Única	1	1	-	17.00		
		a)	1	1	1	- 2		
Media		b)	1	1	2	1		
Wedia	3	c)	2	1	-	- 24		
		d)	1	2	-	123		
Elevada	5	Única	2	2	1	7-2		
superior	6	Única	2	2	1	1		

Tabla 7	71.9.I – Demanda máxima de potencia simultá	nea (pág.45 AEA 90364 parte 7)
Circuito	Valor mínimo de la potenci	a máxima simultánea
Circuito	Viviendas	Oficinas y locales
IUG sin tomacorrientes derivados	66% de la que resulte al considerar todos los puntos de utilización previstos, a razón de 150 VA c/u	100% de la que resulte al considera todos los puntos de utilización previstos, a razón de 150 VA c/u
IUG con tomacorrientes derivados	2200VA por cad	la circuito
TUG	2200VA por cad	la circuito
IUE	66% de la que resulte al considerar todos los puntos de utilización previstos, a razón de 500 VA c/u	100% de la que resulte al considera todos los puntos de utilización previstos, a razón de 500 VA c/u
TUE	3300VA por cad	la circuito

Tabla 771.9.II – Coeficientes de simultaneidad (pág.45 AEA 90364 parte 7)				
Grado de electrificación	Coeficiente de simultaneidad			
Mínimo	1			
Medio	0,9			
Elevado	0,8			
Superior	0,7			

Tabla 771.8.III – Resumen de los puntos de utilización en viviendas y en locales u oficinas proyectados originalmente para vivienda (pág.30 AEA 90364 parte 7)

		Puntos mínimos de utilización			
Ambiente	Grado de electrificación	IUG	TUG	TUE	
Sala de estar y comedor,	Mínimo	Una boca cada 18			
escritorio, estudio,	Medio	m² de superficie o	Una boca cada 6 m²		
biblioteca o similares, en	Elevado	fracción (mínimo	de superficie o fracción (mínimo dos)	Una boca si la superficie de los	
viviendas.	Superior	una)	Traccion (Timinio acs)	ambientes supera los 36 m²	
Dormitorio (Superficie	Mínimo		Dos bocas		
	Medio	Una boca			
menor a 10 m ²)	Elevado	Olla DOCa			
	Superior				
D	Mínimo				
Dormitorio (Superficie igual o mayor a 10 m² hasta 36	Medio	Una boca	Tres bocas		
o mayor a 10 m² nasta 36 m²)	Elevado	Olla DOCa	rres bocas		
,	Superior				
Dormitorio (Superficie	ormitorio (Superficie Elevado Dos bocas Tres bocas	Una boca			
iliayor a 50 ili-j	Superior	DOS DOCAS	ires bocas		
Cocina =	Mínimo	Una boca	Tres bocas más dos tomacorrientes		
	Medio	Dos bocas	Tres bocas más dos tomacorrientes		
	Elevado		Tres bocas más tres tomacorrientes		
	Superior		Tres bocas más tres tomacorrientes	Una boca	
	Mínimo		Una boca		
Baño (para toilette ver 771.8.5 n)	Medio	Una boca	Una boca cada 12 m² de superficie o fracción (mínimo una		
<u>//1.6.5 II</u> /	Elevado	Ona boca			
	Superior		boca)		
	Mínimo				
Vestíbulo, garaje, hall,	Medio		Una boca por cada 5		
galería, vestidor, comedor	Elevado		m de longitud o		
diario o similares.	Superior		fracción (para pasillos de L>2m)		
	Mínimo		Una boca		
Pasillo, balcones, atrios o	Medio	Una boca por cada 5 m de longitud o			
similares.	Elevado	fracción	Dos bocas	•	
	Superior				
	Mínimo		Una boca		
. ,	Medio				
Lavadero	Elevado	Una boca	Dos bocas		
	Superior	=		Una boca	

Tal	Tabla 771-7.1: Resumen de tipos de circuitos (pág.25 AEA 90364 parte 7)					
Tipo de circuito	Designación	Sigla	Máxima cantidad de Bocas	Máximo calibre de protección		
USO GENERAL	Iluminación Uso general	IUG	15	16 A		
030 GLIVENAL	Tomacorriente Uso general	TUG	15	20 A		
USO ESPECIAL	Iluminación Uso Especial	IUE	12	32 A		
	Tomacorriente Uso Especial	TUE	12	32 A		
	Alimentación a fuentes de MBTF	MBTF	15	20 A		
	Salidas de fuentes de MBTF		Sin Límite	Responsabilidad del Proyectista		
	Alimentación pequeños motores	APM	15	25 A		
USO ESPECIFICO	Alimentación Tensión Estabilizada	ATE	15	Responsabilidad del Proyectista		
030 ESPECIFICO	Circuito de MBT Sin p.a.t.	MBTS	Sin Límite	Responsabilidad del Proyectista		
	Alimentación carga Única	ACU	No corresponde	Responsabilidad del Proyectista		
	Iluminación Trifásica Especifica	ITE	12 por Fase	Responsabilidad del Proyectista		
	Otros Circuitos Específicos	OCE	Sin Límite	Responsabilidad del Proyectista		

abla 771.H.XIII – Factor de simultaneidad (K) asignado para tableros que cumplen con IEC 60670-24 (pag.235 AEA 90364 parte 7				
N° de circuitos principales	Factor de simultaneidad asignado			
2 a 3	0,8			
4 a 5	0,7			
6 a 9 inclusive	0,6			
10(y mayor cantidad)	0,5			

Tabla 771-H.1: resumen para determinar la sección de conductores (pág.223 AEA 90364 parte 7)					
Paso	Dato Origen	Cálculo	Resultado	Obs.	
Determinación de la corriente de proyecto IB	DPMS (VA) (del circuito considerado)	DPMS/220 $DPMS/\sqrt{(3} x380)$	IB IB	Circuito monofásico Circuito trifásico	
Elección del conductor a partir de su corriente máxima Iz	lв	$I_Z \ge I_B$	S Iz	Tener en cuenta las condiciones de instalación.	
Elección de la corriente asignada del dispositivo In	IB IZ	$I_B \le I_n \le I_Z$	In	Tener en cuenta Ir en aparatos regulables	
Verificación de la actuación de la protección por sobrecarga	Iz	$I_2 \le 1,45 I_Z$	S1	Si no verifica cambiar la sección o aislación	
Determinación de la corriente de cortocircuito máxima I"k	Empresa distribuidora o potencia del transformador	Calcular o utilizar tablas según se indica en <u>771.H.2.2</u>	l"k		
Verificación por máxima exigencia térmica	l"k,l²tt t,S,k	$k^2 S^2 \ge I^2 t \text{o}$ $S \ge \frac{I\sqrt{t}}{k}$	S2	Si S2 > S1 Entonces S = S2	
Verificación de la actuación de la protección por corriente mínima de cortocircuito Ikmín.	I "k, S, In Curvas fijas Regulaciones Instantáneas	Calcular o utilizar tablas <u>771-H.VII</u> <u>771-H.VIII</u>	S3	Si S3 > S S = S3	
Verificación caída de Tensión en el extremo del circuito	Ів	771.9 Consideraciones de proyecto	S4	Si S4 > S S = S4	

abla // I.i.i.x I ala pequellos interio	ptores automáticos de has	ta 10 A (p	ag.232 AEA	1 90364 pai	te /)	
	Clases de limitaciones de energía					
Poder de corte asignado [A]	Clase 1	Clase 2 I².t máx. [A² s]		Clase 3		
	I².t máx. [A² s]					
	Tipo B y C	Тіро В	Tipo C	Tipo B	Tipo (
3000		31000	37000	15000	18000	
4500	Oi- Karika assasifisada	60000	75000	25000	30000	
6000	Sin límite especificado	10000	120000	35000	42000	
10000		240000	290000	70000	84000	

	Clases de limitaciones de energía				
Poder de corte asignado [A]	1	2 I².t máx. [A² s]		3 I².t máx. [A² s]	
	I².t máx. [A² s]				
	Tipo B y C	Tipo B	Tipo C	Тіро В	Tipo C
3000		40000	50000	18000	22000
4500		80000	100000	32000	39000
6000	Sin límite especificado	130000	160000	45000	55000
10000		310000	370000	90000	110000

Sección conductor	mm²	1,5	2,5	4,00	6,00	10,00
Diámetro exterior máximo	mm	3,5	4,2	4,8	6,3	7,6
Sección total	mm²	9,62	13,85	18,10	31,17	45,36
años según IRAM (RL: acero liviano, Rs: acero semipesado	Sección mm²	Cantidad de conductores				
RS16	132	4+PE	2+PE	-	-	-
RL16	154	5+PE	3+PE	2+PE	-	-
RS19	177	6+PE	4+PE	3+PE	-	-
RL19	227	7+PE	5+PE	4+PE	2+PE	-
RS22	255	9+PE	6+PE	4+PE	2+PE	-
RL22	314	11+PE	7+PE	5+PE	3+PE	2+PE
RS25	346	13+PE	9+PE	6+PE	3+PE	2+PE
RL25	416		10+PE	7+PE	4+PE	2+PE
RS32	616		15+PE	11+PE	6+PE	4+PE
RL32	661			12+PE	7+PE	4+PE
RS38	908				9+PE	6+PE
RL38	962				10+PE	7+PE
RS51	1662				18+PE	12+PE
RL51	1810					

Corriente asignada [A]	Potencia disipada [W]
$I_n \le 10$	3
$10 \le I_n \le 16$	3,5
$16 \le I_n \le 25$	4,5
$25 \le I_n \le 32$	6
$32 \le I_n \le 40$	7,5
$40 \le I_n \le 50$	9
$50 \le I_n \le 63$	13
$63 \le I_n \le 100$	15
$100 \le I_n \le 125$	20

Líneas principales.	4 mm ²
Circuitos seccionales.	2,5 mm ²
Circuitos terminales para iluminación de usos generales (con conexión fija o a través de tomacorrientes).	1,5 mm²
Circuitos terminales para tomacorrientes de usos generales	2,5 mm ²
Circuitos terminales para iluminación de usos generales que incluyen tomacorrientes de usos generales.	2,5 mm²
Líneas de circuitos para usos especiales	2,5 mm ²
Líneas de circuito para uso específico (excepto MBTF)	2,5 mm ²
Líneas de circuito para uso específico (alimentación a MBTF)	1,5 mm²
Alimentación a interruptores de efecto	1,5 mm ²
Retorno de los interruptores de efecto	1,5 mm²
Conductor de protección	2,5 mm ²

Sección de los conductores de					
línea de la instalación S [mm²]	Si el conductor de protección (o el de puesta a tierra) es del mismo material que el conductor de línea	Si el conductor de protección (o el de puesta a tierra) no es del mismo material que el conductor de línea			
S ≤ 16	s	$\frac{k1}{k2} \times S$			
16 < S ≤ 35	16	$\frac{k1}{k2} \times 16$			
S > 35	S/2	$\frac{k1}{k2} \times \frac{S}{2}$			

Donde:

k1 es el valor de k para el conductor de línea, elegido de la <u>Tabla 771.19.II</u>, de acuerdo con los materiales del conductor y su aislación,

k2 es el valor de k para el conductor de protección, elegido de las tablas 771.C.III a 771.C.VII según corresponda.

Tabla 771.3.I - Valores máximos de resistencia de puesta a tierra de protección (pág.9 AEA 90364 parte 7) Columna 1 Valor máximo de la resistencia de toma de tierra de las masas eléctricas Ra(Ω) para las masas eléctricas Ra(Ω) Corriente diferencial máxima asignada del dispositivo diferencial las masas eléctricas Ra(Ω) eléctricas Ra(Ω) para Uι U_L 24 V 50 V 2,5 1,2 0,6 10 A Sensibilidad baja 5 A 10 4.8 2.4 3 A 17 8 4 1 A 500 mA 100 48 24 Sensibilidad media 300 mA 167 80 40 500 100 mA 240 Hasta 30 mA Sensibilidad alta Hasta 1666 inclusive

OTRAS TABLAS UTILIZADAS

Tipo	Sección (mm²)	RO/R	X0/X
	1,5	4	4
Disalassa	2,5	4	4
Bipolares	4	4	4
	6	4	4
	1,5	4	4
	2,5	4	4
etrapolares	4	4	4
	6	4	4

	Factor de tensión C para el cálculo de :						
Tensión nominal Un	Corrientes máximas de cortocircuito C _{máx} (1)	Corrientes mínimas de cortocircuito C _{min}					
Baja tensión 100 V a 1000 V (IEC 60038, tabla I)	1,05 ⁽³⁾ 1,10 ⁽⁴⁾	0,95					
Media tensión > 1 kV a 35 kV (IEC 60038, tabla III)	1,10	1,00					
Alta tensión > 35 kV a 380 kV Norma IEC 60038, tabla IV)		1,00					

^[1] Cmáx U_n no debe exceder la máxima tensión U_m para equipamientos de sistemas de potencia.

⁽²⁾ Si no se define una tensión nominal, se debe aplicar Cmáx U_n= U_m o Cmín U_n= 0,90 U_m.

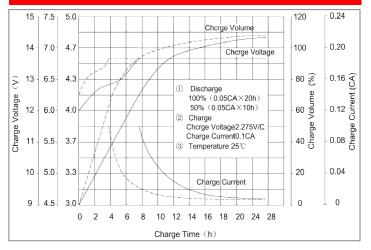
(3) Para sistemas de baja tensión con una tolerancia de + 6%, por ejemplo, para sistemas renombrados de 380 V a 400 V.

(4) Para sistemas de baja tensión con una tolerancia de + 10%.

UPS 12V4A

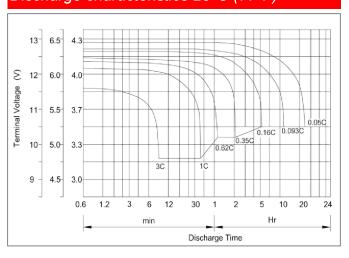
	MODELO	UPS 1	.2V4A	UPS 2	4V2A		
	Voltaje de Salida DC	CH1:13.8V	CH1:13.4V	CH1:27.6V	CH2:26.5V		
	Tolerancia del voltaje de salida	±1%		±1%			
	Corriente de salida	4.0A	0.35A	2.0A	0.25A		
SALIDA	Rango de corriente de salida	0-4A		0-2A			
SAL	Ripple y ruido	100mVp-p		100mVp-p			
	Potencia W	59.	9W	61.	8W		
	Rango de ajuste de voltaje	CH1:11.	3~14.9V	CH1:21.	3~29.8V		
	Tiempo de espera en la config.	800ms,10	00ms,50ms/115VAC	200ms,100ms,30ms	s/230VAC		
	Rango de entrada AC		100~240VAC	,120~370VDC			
ENTRADA	Eficiencia	8:	L%	83	3%		
	Corriente de entrada	1.6A/115V 0.8A/230V					
	Corriente de impulso AC	Cold-start current 25A/115V 45A/230V					
	Fuga de Corriente	<2mA/240VAC					
	Protección de sobre carga	115%~135% rated output power					
ΙÓΝ	Protección de sobre voltaje	115%~135%					
PROTECCIÓN	Protección corto Circuito	Protection:Hiccup mode					
PRO	Protección de la Batería	9.5^	11V	20~	22V		
	En Bajo voltaje de batería		Corte au	tomatico			
	Coeficiente de temperatura	±0.03%°C(0~50°C)					
MBIENTE	Vibración	10~500	Hz,2G 10min./1cycle	e,Period for 60min,Ea	ach axes		
MBIE	Temperatura y humedad de trabajo		-10°C~+60°0	C,20~90%RH			
∢	Temperatura y humedad de almacenamiento	-20°C~+85°C,10~95%RH					
0	Withstand voltaje	I/P-O/	P:2KVAC I/P-FG:1	.5KVAC O/P-FG:0.	5KVAC		
RIDAI	Aislamiento	I/P-O/P I/P-FG O/P-FG:500VDC/100MΩ					
SEGURIDAD	Standard de Seguridad	Desgin refer to	UL1012,EN60950-1	L,EN61347-1,EN-613	47-2 approved		
	Standard EMC	EN55015,EN550	022,EN55024,EN610	00-2,EN61000-3,EN6	51547 approved		
OTROS	Dimensiones		129×98	×38mm			
OTF	Peso		0.3	 38kg			

Battery Construction								
Component	Positive Plate	Negative Plate	Container	Cover	Safety Valve	Terminal	Separator	Electrolyte
Raw material	Lead dioxide	Lead	ABS UL94HB/V0	ABS UL94HB/V0	Rubber	Copper	Fiberglass	Sulfuric acid


Constant Current Discharge Rating Amperes @25°C (77°F)								
Time	10min	15min	30min	1hr	3hr	5hr	10hr	20hr
Final Discharge Voltage A/cell	19.463	15.863	9.225	5.400	2.340	1.530	0.837	0.450

Characteristics						
		C20 1	9.00 AH			
Rated Capacity		C10 1	.75V/C	8.37 AH		
25°C (77°F)		C5 1	.70V/C	7.65 AH		
		C1 1	.60V/C	5.40 AH		
Internal Resistance	;	Full charged ba	ttery 25°C (77°F)	23.0 mΩ		
		40°C	(104°F)	107%		
Capacity affected		25°C	(77°F)	100%		
by temperature (20 hour rate)		0°C	(32°F)	76%		
, ,		-10°C	66%			
Self Discharge		Batteries can be stored for more than 6 months at 25 Self-discharge ratio less than 3% per month at 25°C. Please charge batteries before using.				
Standard Terminal			F2			
Max. Discharge Current 25°C (77°F	:)			90 A(5s)		
Final Discharge Voltage V/cell	•		1.70V	1.60V		
Discharge Current (A	A)	(A) ≤0.15C	0.15C< (A) < 0.5C	(A) ≥0.5C		
	Cyala	Initial C	harging Current 2.3	A Or Small		
Charging (Constant Voltage)	Cycle	14.5V~′	14.9V/ 25°C (77°F)			
(Float	13.6V~	13.8V/ 25°C (77°F)			

Specifications								
Nominal	Voltage	12	2 V					
NominalCap	pacity (20hr)	9) AH					
	Length	151 mm	5.94 in					
	Width	65 mm	2.56 in					
Dimension	Height	94 mm	3.70 in					
	Total Height (with terminals)	100 mm	3.94 in					
Weight	Approx.	2.5 kg	5.50 lbs					



Charge characteristic curve for standby use

Discharge characteristics 25°C (77°F)

Physical Dimensions: mm

Catálogo de Productos y Soluciones

Back-UPS®

Protección y autonomía para los ordenadores del hogar y la oficina

Catálogo de Productos y Soluciones

BE325-IT

BE550G-SP

BK350EI

BK650EI

BR550GI

BR1200GI

BK500EI

BH500INET

BR900GI

BR1500GI

- Protege el PC y los datos
- Conectividad USB o Serial con software para el apagado seguro del sistema y almacenamiento de la información
- Alarmas visuales y sonoras
- Protección contra sobretensiones para líneas de teléfono / fax / módem / ADSL
- Modelos desde 325 VA a 1500 VA
- Hasta 3 años de garantía (incluyendo la batería)
- Póliza de Protección de Equipos de hasta 100.000€ (según modelos)

Protección y autonomía para los ordenadores del hogar y la oficina Catálogo de Productos y Soluciones

	BACK-UPS		BE325-IT	BE400-SP	BE550G-SP	BE700G-SP	BK350El	BK500EI	BK650El	BH500INET	BR550Gl	BR900GI	BR1200Gl	BR1500Gl
Entrada	Tensión Nominal							230	V CA					
		Rango Máximo	180-260 V CA		180-266 V			160-264 V CA		180-266 V CA	168-180 V CA		160-286 V CA	
	Frecuencia Nominal	Waxiino	50Hz +/-3%		50/60 Hz					47 / 63 Hz (autoselcción)			
	Enchufe		Schuko		Schuko IEC320 C14 IEC320 C14 IEC320 C14 IEC320 C14 IEC320 C14 (10A)				A)					
Salida	entrada Tensión						(10A)		(10A) V CA				<i>'</i>	
Juliua	nominal	Rango						200	V 0/1					
	Frecuencia	Máximo	FO.11 / 1		47.0	10.11				5011 / 1				
	nominal Enchufes		50 Hz (auti	oselección)	47-6					50 Hz (aut 2+1+1				
	salida	EC320 C13			4 + 4	4 + 4	3 + 1	3 + 1	3+1	(Gestionados)	3 + 1	4 + 2	6+2	6 + 2
		Schuko	2 + 2											
		Cables Salida					2	2				2		
	Potencia salida	VA	325	400	550	700	350	500	650	500	500	800	1000	1500
		W	185	240	330	405	210	300	400	300	300	540	600	865
	Protección sobretensión	Julios	300		310			300		600	300	320	1	80
Físicas	Dimensiones	Alto mm	115	86	86	86	165	165	170	372	165	229	371	371
		Ancho mm	360	230	230	230	91	91	90	225	91	102	86	86
		Profundo mm	95	285	285	285	283	284	280	105	284	324	333	333
	Dogo													
	Peso	Bruto Kg	4,6	5,6	7,8	6,8	7	7	7	8,4	7	10,3	12	13
		Neto Kg	4	5,4	6,9	7,3	6,3	6,3	6	7,4	6	9,3	11	12
	Color		Negro	Carbón	Carbón	Carbón	Beige	Beige			B€	eige		
Otras	Batería sustitución		RBC47		APCRBC110	RBC17	RBC2	RBC2	RBC17		RBC2	RE	302	RBC2
	Interfaces	RS232					Si	Si			:	Si		
		USB			Si					Ş	Si .			
		Web/SNMP				N	lo			Si		1	No	
	Protección de datos	Telefónico RJ-			(Si				(Si			
	datos	Datos RJ-45			Si	No		No				Si		
	Software	APC							PowerChute F	Personal Edition				
		Soportando						\		/XP/200, Mac 0	c			
	Batería										•			BR24BP (1)
	Adicional Batería por	Estándar												BMZ4BP (1)
	sustitución "on-site" ampliable hasta un total de 5 ó 6 años		De 2 años		De 3 años De 2 años									
	Nivel de servicio							SB ·	- 10					
Autonomía	Carga en Watios	Carga en Va						Cu	uadro de Autono	mía según la pot	tencia de la carg	ja enchufada al	SAI	
	90	150	11m	25m	22m	33m	20m	20m	32m	30m	28m	62m	55m	70m (225m)
	210	350		6m	9m	14m	5m	5m	10m	9m	17m	25m	24m	31m (100m)
	300	500			4m	7m		2,5m	5m	4m	5,8m	15m	15m	20m (60m)
	480	800										6m	8m	10m (40m)
		1000											6m	7m (29m)
	900	1500												2,5m (17m)

THOMSON

Detector de apertura para puerta o ventana ref. 510706

Compruebe que dispone de la última versión del manual en www.thomsonbox.eu.

A - NORMAS DE SEGURIDAD

A1 - PRECAUCIONES DE USO

- Use el detector solamente en el interior.
- · No deje que los niños manipulen el producto.
- · No exponga el producto a la luz directa del sol.
- No instale el producto en un entorno sometido a fuertes variaciones de temperatura o una humedad importante.

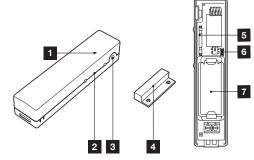
Este producto funciona únicamente con la Thombox.

A2 - RECICLAJE

Está prohibido desechar las pilas usadas con la basura ordinaria. Las pilas / acumuladores que contienen sustancias nocivas llevan marcados los símbolos contiguos que indican la prohibición de tirarlas con la basura ordinaria. La designación de los metales pesados correspondientes es

la siguiente: Cd = cadmio, Hg = mercurio, Pb = plomo. Puede entregar estas pilas / acumuladores usados en los vertederos municipales (centros de clasificación de materiales reciclables) que tienen la obligación de recogerlos. No deje las pilas / pilas de botón / acumuladores al alcance de los niños, manténgalos en un sitio al que no puedan acceder. Hay riesgo de que los niños o los animales domésticos se los traguen. ¡Peligro de muerte! Si a pesar de todo se diera el caso, consulte inmediatamente con un médico o acuda al hospital. Tenga cuidado de no cortocircuitar las pilas ni tirarlas al fuego ni recargarlas. ¡Existe riesgo de explosión!

Este logotipo significa que no se deben tirar aparatos inservibles con los residuos domésticos. Las posibles sustancias peligrosas contenidas pueden perjudicar la salud o el medio ambiente. Entregue estos aparatos a su distribuidor o utilice los servicios municipales de recogida selectiva.


B - DESCRIPCIÓN DEL PRODUCTO

B1 - CONTENIDO DEL KIT

B2 - DETECTOR DE APERTURA PARA PUERTA O VENTANA

Tornillo para el imán del detector de apertura

1	Testigo de funcionamiento
2	Ubicación del sensor magnético
3	Ubicación del tornillo de cierre del detector
4	lmán
5	Sensor magnético
6	Dispositivo antisabotaje
7	Alojamiento de la pila

C - ACERCA DEL CONCEPTO THOMBOX

La Thombox es un sistema domótico que se conecta al módem ADSL (Freebox, Livebox...), que permite independientemente de donde se encuentre, gestionar la seguridad como una verdadera central de alarma controlada desde casa o a distancia. También le permite gestionar sus accesorios de confort (iluminación), los elementos que se abren (motorizaciones de persianas, de garaje...), la energía (consumo eléctrico, calefacción) con unos pocos clics desde un ordenador, una tableta táctil o un teléfono inteligente, desde cualquier parte del mundo y gracias a Internet.

Para conseguir esto y también para crear escenas (secuencia de acciones) que van a simplificar su vida diaria, debe registrar su Thombox (sólo en la primera instalación) y asociarle los accesorios compatibles con la tecnología ARW.

La Thombox tiene una tecnología evolutiva y el número de accesorios no está limitado.

D - EMPAREJAMIENTO DEL PRODUCTO CON LA THOMBOX

- Para funcionar, este producto debe estar emparejado con la Thombox.
- Vaya a la interfaz de la Thombox, pestaña «General»

ETAPA 1: pulse la red «ARW»

ETAPA 2: Durante la cuenta atrás, coloque el aparato en modo de emparejamiento y retire la lengüeta que protege la pila:

ETAPA 3: El emparejamiento ha finalizado.

Dé el nombre que quiera al accesorio para identificarlo más fácilmente.
 Después pulse Guardar, y Cerrar.

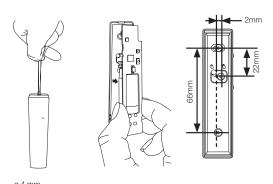
AÑADIR EN LA PARTICIÓN ALARMA

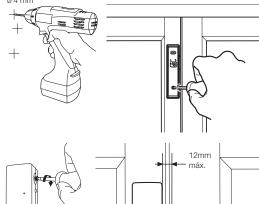
Para añadir el detector en la parte Seguridad y permitir que active la alarma, vaya a Sécurité (Seguridad)

Pulse Crear una zona
 O

 En caso necesario, identifíquese (de forma predeterminada el código PIN es 0000 y después OK)

- Dé un nombre a la zona (puede volver a usar el nombre del detector).
 Seleccione el accesorio en «ZONA»
- Seleccione el «TIPO» de accesorio y después «ESTADO DE ARMADO»
 El estado de activación corresponde al estado en el que debe estar el detector para que se pueda activar la seguridad.
- Después pulse en la parte superior de la página Guardar
- Inicie una sincronización


El accesorio está listo. Una vez que se active la alarma, podrá activar una alerta si detecta una apertura, al igual que los otros detectores de la partición de seguridad.


E - INSTALACIÓN

IMPORTANTE:

Antes de fijar definitivamente el accesorio, le recomendamos que realice una prueba de alcance. Para ello, coloque el detector lo más cerca posible de su ubicación definitiva antes de fijarlo y realice una prueba del accesorio previamente emparejado con la Thombox.

Fijado a una puerta o a una ventana, este detector de apertura detecta cualquier tentativa de intrusión (el alejamiento del imán genera una detección) y transmite la información a la Thombox que activa la alerta.

- Fije el imán con el adhesivo de doble cara o los tornillos suministrados.

espigas

- Fije el imán en frente de las 2 espigas del detector.

F-USO

- Una vez instalado el detector, puede probar el funcionamiento esté emparejado o no con la Thombox:
- En reposo, el LED de la parte delantera está apagado. La separación del imán (apertura de la puerta) y su regreso (cierre de la puerta) se indican mediante un parpadeo del LED.
- Si después de la instalación el detector no reacciona a la apertura de la puerta, compruebe que la pila del detector sea buena y esté correctamente insertada, y que la distancia entre el imán y el detector no supere 12 mm cuando la puerta está cerrada (el imán debe colocarse en frente de las 2 espigas del detector).

Cuando la puerta se abre, la separación del imán genera una detección y la Thombox recibe la información.

La Thombox es avisada instantáneamente en caso de apertura de la tapa o de arranque del detector de su soporte.

La Thombox recibe el aviso cuando el nivel de la pila es bajo, y avisará de ello al usuario.

G - INFORMACIÓN TÉCNICA Y LEGAL

G1 - CARACTERÍSTICAS TÉCNICAS

- Frecuencia radio: Protocolo ARW 868,3 MHz
- Alcance por radio: hasta 300 m en campo abierto
- Alimentación: 3 V con una pila CR123A suministrada
- Temperatura de funcionamiento: De -10 °C a +50 °C, uso interior exclusivamente
- Separación máxima entre el sensor y el imán: 12mm
- · Autonomía: hasta 4 años

G2 - GARANTÍA

Este producto tiene una garantía de 2 años para las piezas y la mano de obra desde la fecha de la compra. Es obligatorio conservar el justificante de compra durante todo el periodo de la garantía.

La garantía no cubre los daños causados por golpes y accidentes.

Ningún elemento de este producto debe abrirse o repararse, salvo para introducir y sustituir las pilas o baterías, si no es por el personal de la empresa AVIDSEN.

Los elementos definidos como consumibles, como las pilas no entran en el marco de la garantía.

Cualquier intervención en el aparato anulará la garantía

G3 - ASISTENCIA Y ASESORAMIENTO

- A pesar de todo el cuidado que hemos aportado al diseño de nuestros productos y a la realización de estas instrucciones, si encuentra dificultades durante la instalación del producto o tiene cualquier pregunta, le recomendamos encarecidamente que se ponga en contacto con nuestros especialistas que se encuentran a su disposición para asesorarle.
- En caso de problema de funcionamiento durante la instalación o tras unos días de uso, debe ponerse en contacto con nosotros mientras se encuentra delante de la instalación para que nuestros técnicos diagnostiquen el origen del problema, ya que este seguramente se deba a un ajuste no adaptado o una instalación no conforme. Si el problema procede del producto, el técnico le dará un número de expediente para la devolución a la tienda. Sin este número de expediente, la tienda tendrá derecho a rechazar el cambio del producto.

¿Necesita asesoramiento para la puesta en servicio, la instalación de la Thombox o para emparejar los accesorios de la gama Thomson Maison Connectée?

Póngase en contacto con los técnicos de nuestro servicio posventa en el:

Tel.: + 34 902 101 633

(Precio: 0,06 euros/min)

De lunes a jueves de 8:00 a 17:00 h y los viernes de 08:00 a 13:00 h.

G4 - DEVOLUCIÓN DEL PRODUCTO - SPV

A pesar del cuidado aportado al diseño y a la fabricación de su producto, si este debe ser devuelto al servicio posventa en nuestros locales, puede consultar la evolución de las intervenciones en nuestro sitio de Internet en la dirección siguiente: http://sav.avidsen.com

G5 - DECLARACIÓN DE CONFORMIDAD

con la directiva R&TTE

AVIDSEN declara que el equipo: Detector de apertura para puertas y

ventanas referencia 510706

cumple con la directiva R&TTE 1999/5/CE y que su conformidad se ha

evaluado según las normas aplicables vigentes:

EN300220-2: V2.3.1 EN301489-3: V1.4.1 EN301489-1: V1.8.1

EN50130-4: 1995+A1: 1998+A2: 2003

EN61000-6-3: 2007

EN60950-1: 2006 + A11: 2009

En Chambray les Tours, a 15/09/2015 Alexandre Chaverot, presidente

Consulte toda nuestra gama Thomson Casa conectada en

Baja Tensión 0,6 / 1,1 kV

RZ

RETENAX PREENSAMBLADO

Distribución Aérea en BT

NORMAS DE REFERENCIA

IRAM 2263

DESCRIPCION

CONDUCTOR

> Metal de las Fases: Aluminio grado eléctrico 1350 (AAC) en los conductores activos.

Flexibilidad: clase 2; según IRAM NM 280 e IEC 60228. Metal del Neutro (portante): Aleación de Aluminio (AAAC); a pedido (no contempladas en norma IRAM) de Aluminio con alma de acero (ACSR) o aluminio 1350 H 19 (AAC) Temperatura máxima en el conductor: 90° C en servicio continuo, 250° C en cortocircuito.

> AISLANTE

Polietileno reticulado (xlpe), que a su vez actúa como cubierta.

> REUNION

Conductores aislados reunidos en torno al neutro portante o conjuntamente con éste.

Marcación:

PRYSMIAN RETENAX PREENSAMBLADO Pirelli ® - IND. ARG.— Sección (mm²) 6,0/1KV - IRAM NM 63001.

> Normativas

IRAM 2263, bajo pedido NF 33-209/91, NBR 8182, ICEA u otras.

Certificaciones

Todos los cables de Pirelli cables están elaborados con Sistema de Garantía de Calidad bajo normas ISO 9001 - 2000 certificadas por la UCIEE.

Especialmente adecuados para instalaciones de líneas aéreas en redes secundarias de distribución, en electrificación rural, alumbrado público o acometidas a usuarios; con instalación sobre postes tensada y autosoportada, sobre apoyos o tendidos sobre las fachadas de los edificios. No recomendados para uso en instalaciones enterradas ni empotradas.

CARACTERÍSTICAS

Temperatura

rígidas

sión

Resistente a los ravos ultraviole-

Resistente al frío

Norma de Fabricación

nominal

de servicio

Resistente a la absorción de agua

Resistente a la abra-

Mezclas ecológicas

Sello IRAM

Sello de Seguridad Eléctrica

CONDICIONES DE EMPLEO

Tendido con morsetería

Los cables RETENAX PREENSAMBLADOS son especialmente adecuados para instalaciones de líneas aéreas en redes secundarias de distribución, en electrificación rural, alumbrado público o acometidas a usuarios; con instalación sobre postes tensada y autosoportada, sobre apoyos o tendidos sobre las fachadas de los edificios. No recomendados para uso en instalaciones enterradas ni empotradas.

1,1 kV

IRAM 2263

Características mecánicas (IRAM)

Sección nominal	Diám. exterior aprox. de cada conductor	Diám. exterior aprox. del conjunto	Masa total aprox. (4)	Carga de rotura del neutro portante (5)
N ⁰ x mm ²	mm	mm	kg/km	daN/mm²
1x16/16(1)	7,5/7,7	15	140	445
1x25/25(1)	9/9,5	19	220	712
1x35/35(1)	10,5/11	22	300	978
1x50/50(1)	11,5/12,5	24	395	1405
3x1x16/16(1)	7,5/7,7	19	285	445
3x1x25/25(1)	9/12,5	26	515	1405
3x1x35/35(1)	10,5/12,5	29	635	1405
3x1x50/50(1)	11,5/12,5	30	755	1405
3x1x70/50(1)	13,7/12,5	34	960	1405
3x1x95/50(1)	16/12,5	37	1250	1405
3x1x120/70(1)	17,1/14,7	41	1520	1933
3x1x150/70(1)	18,9/14,7	43	1790	1933
3x1x185/70(1)	20,5/14,7	46	2120	1933
3x1x185/95(1)	20,5/17	48	2240	2656
3x1x25/25(2)	9/12,5/9	26	620	1405
3x1x35/35(2)	10,5/12,5/9	29	745	1405
3x1x50/50(2)	11,5/12,5/9	30	860	1405
3x70/50(2)	13,7/12,5/9	34	1080	1405
3x95/50(2)	16/12,5/9	37	1360	1405
3x1x120/70(2)	12,1/14,7/9	41	1640	1933
3x1x150/70(2)	18,9/14,7/9	43	1900	1933
3x1x185/70(2)	20,5/14,7/9	46	2240	1933
3x1x185/95(2)	20,5/17/9	48	2350	2656
3x25/50(3)	9/12,5/9	26	730	1405
3x35/50(3)	10,5/12,5/9	29	845	1405
3x50/50(3)	11,5/12,5/9	30	965	1405
1x70/50(3)	13,7/12,5/9	34	1190	1405
1x95/50(3)	16/12,5/9	37	1460	1405
3x1x120/70(3)	17,1/14,7/9	41	1740	1933
3x1x150/70(3)	18,9/14,7/9	43	2010	1933
3x1x185/70(3)	20,5/14,7/9	46	2350	1933
3x1x185/95(3)	20,5/17/9	48	2450	2656

- 1. Sin conductor de alumbrado
- 2. Con un conductor de alumbrado de 25 mm2 (bajo pedido también en 16 mm2).
- 3. Con dos conductores de alumbrado de 25 mm2 (bajo pedido también en 16 mm2).
- 4. En los cables con conductores de alumbrado, el valor corresponde a la sección de 25 mm².
- 5. Valores obtenidos de la Tabla 1 de la Norma IRAM 2212 para portante de aleación de aluminio.

NOTA: Pirelli is a Trademark Licensed by Pirelli & C. S. p.A.

Baja Tensión 0,6 / 1,1 kV

Distribución Aérea en BT

Características eléctricas (IRAM)

Sección nomi- nal	Intensidad de corriente admisible (4)	Resist. Eléctrica a 60°C 50 Hz (5)	Resist. Eléctrica a 90°C 50 Hz	Reactancia in- ductiva media por fase a 50Hz	Caída de tensión a 60° C y cos $\varphi = 0.8$ (5)	Caída de ten- sión a 90° C y cos $\varphi = 0.8$
N ⁰ x mm ²	Α	ohm/km	ohm/km	ohm/km	V/A km²	V/A km
1x16/16(1)	85	2,327	2,558	0,070	3,81	4,18
1x25/25(1)	115	1,458	1,602	0,068	2,41	2,64
1x35/35(1)	141	1,059	1,164	0,068	1,78	1,94
1x50/50(1)	174	0,739	0,834	0,065	1,26	1,41
3x1x16/16(1)	60	2,218	2,449	0,089	3,12	3,49
3x1x25/25(1)	82	1,394	1,539	0,088	2,02	2,22
3x1x35/35(1)	103	1,008	1,113	0,088	1,049	1,63
3x1x50/50(1)	124	0,745	0,822	0,086	1,12	1,23
3x1x70/50(1)	160	0,515	0,569	0,085	0,80	0,88
3x1x95/50(1)	200	0,373	0,411	0,084	0,60	0,66
3x1x120/70(1)	232	0,295	0,325	0,083	0,50	0,54
3x1x150/70(1)	268	0,241	0,266	0,082	0,42	0,45
3x1x185/70(1)	311	0,192	0,212	0,081	0,35	0,38
3x1x185/95(1)	311	0,192	0,212	0,081	0,35	0,38
3x1x25/25(2)	82	1,394	1,539	0,088	2,02	2,22
3x1x35/35(2)	103	1,008	1,113	0,088	1,049	1,63
3x1x50/50(2)	124	0,745	0,822	0,086	1,12	1,23
3x70/50(2)	160	0,515	0,569	0,085	0,80	0,88
3x95/50(2)	200	0,373	0,411	0,084	0,60	0,66
3x1x120/70(2)	232	0,295	0,325	0,083	0,50	0,54
3x1x150/70(2)	268	0,241	0,266	0,082	0,42	0,45
3x1x185/70(2)	311	0,192	0,212	0,081	0,35	0,38
3x1x185/95(2)	311	0,192	0,212	0,081	0,35	0,38
3x25/50(3)	82	1,394	1,539	0,088	2,02	2,22
3x35/50(3)	103	1,008	1,113	0,088	1,049	1,63
3x50/50(3)	124	0,745	0,822	0,086	1,12	1,23
1x70/50(3)	160	0,515	0,569	0,085	0,80	0,88
1x95/50(3)	200	0,373	0,411	0,084	0,60	0,66
3x1x120/70(3)	232	0,295	0,325	0,083	0,50	0,54
3x1x150/70(3)	268	0,241	0,266	0,082	0,42	0,45
3x1x185/70(3)	311	0,192	0,212	0,081	0,35	0,38
3x1x185/95(3)	311	0,192	0,212	0,081	0,35	0,38

^{1.} Sin conductor de alumbrado

03

^{2.} Con un conductor de alumbrado de 25 mm2 (bajo pedido también en 16 mm2).

^{3.} Con dos conductores de alumbrado de 25 mm2 (bajo pedido también en 16 mm2).

^{4.} Condiciones de referencia: Un solo cable expuesto al sol, Irradiancia (radiación) solar de 1000 W/m², temperatura ambiente de 40°C y de 90°C en los conductores. Sin viento y considerando un sistema de cargas equilibradas.

Retenax Preensamblado

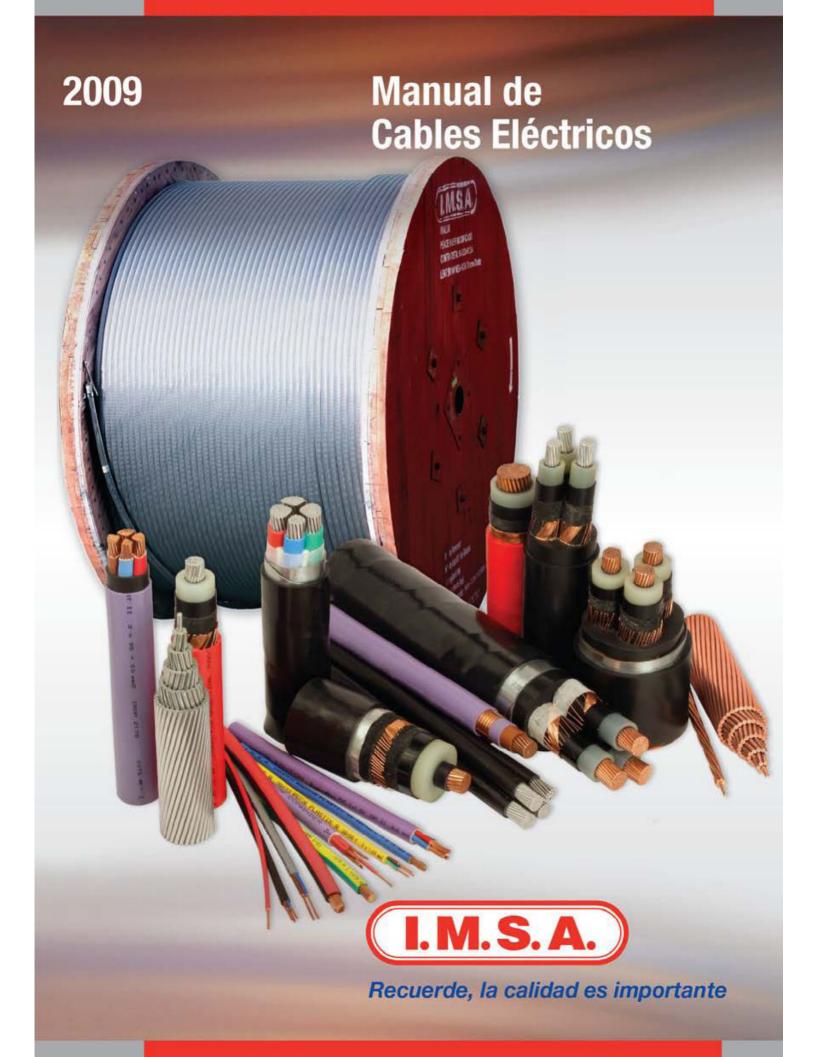
Características eléctricas (IRAM)

(5) Los valores de la resistencia eléctrica (efectiva) y caída de tensión unitaria están referidos a la temperatura más probable de 60° C en los conductores. Además, se indica la caída de tensión a la máxima temperatura de funcionamiento. De todas maneras, para determinar con mayor precisión la caída de tensión deberá calcularse previamente la temperatura de los conductores correspondiente a la carga transmitida, teniendo en cuenta que la sobretemperatura $\Delta T2$ del conductor con respecto al ambiente para una corriente I2 cumple aproximadamente la relación $\Delta T2 = \Delta T1$ * (I2 / I1)2, siendo $\Delta T1$ e I1 la sobretemperatura e intensidad en condiciones conocidas como las que se indican en la tabla. Una vez hallada la temperatura real debe corregirse el valor de la resistencia (efectiva) de la citada tabla y luego calcular la caída de tensión con la fórmula:

 Δ U = K *(R *cos ϕ + X *sen ϕ) [V /A*km] , siendo K = 1,73 para sistemas trifásicos y K = 2 para sistemas monofásicos.

Factor de corrección: Si la irradiancia (radiación) solar, H (W/m²), del lugar del tendido difiere del valor indicado de 1000 W/m², se pueden obtener los valores de Intensidad de corriente admisible multiplicando los valores anteriores por el factor de corrección que corresponda (ver tabla siguiente):

Tipo de cable	H (W	//m²)
	500	1500
Monofásico	1,03	0,96
Resto	1,08	0,90


RESISTENCIA A LA INTEMPERIE: Por estar destinados a prestar servicio al aire libre la cubierta, que cumple además las funciones de aislamiento, satisface ensayos de resistencia a la radiación ultravioleta, al ozono y a la humedad saturante en una atmósfera agresiva de dióxido de azufre.

Acondicionamientos:

NOTA: Pirelli is a Trademark Licensed by Pirelli & C. S. p.A.

Resumen de características

Denomina-	Resumen de caracte-	Conductor	Aislación	Cubierta	Tensión	Temperat	tura de oper	ración (°C)	Norma
ción Comercial I.M.S.A.	rísticas de los cables				(kV)	Normal	Sobre- carga	Corto- circuito	
Plastix CF	Cables para instalaciones fijas domiciliarias e industriales.	Cu	PVC	-	0,45 / 0,75	70	100	160	IRAM NM 247-3 IEC 60227 IRAM 62267
Plastix HF	Cables para instalaciones fijas especialmente en lu- gares de alta densidad de personas.	Cu	Poliolefinas libres de halógenos	_	0,45 / 0,75	70	100	160	IRAM 62267
Plastix X	Cables para alimentación de artefactos de iluminación y pequeños aparatos	Cu	PVC	_	0,3 / 0,3	70	100	160	IRAM NM 247-5 IEC 60227-5
Plastix R-CH	Cables para instalaciones movibles, flexibles, redon- dos o chatos	Cu	PVC	PVC	0,3 / 0,5	70	100	160	IRAM NM 247-5 IEC 60227-5
Cable Porta- electrodo	Cables unipolares, uso máquinas Soldadoras	Cu o Al	Caucho sintético	-	48 V	70	100	160	IMSA
Comander R	Cables multipolares extraflexibles, para señali- zación y comando	Cu	PVC	PVC	0,3 / 0,5	70	100	160	IEC 60227-7
Payton PVC Superflex	Cables de energía para instalaciones subterráneas	Cu o Al	PVC	PVC	0,6 / 1,1	70	100	160	IRAM 2178 IEC 60502-1
Payton XLPE Superflex	Cables de energía para instalaciones subterráneas	Cu o Al	XLPE	PVC	0,6 / 1,1	90	130	250	IRAM 2178 IEC 60502-1
Payton HF Superflex	Cables de energía para uso en áreas de alta densidad de personas.	Cu o Al	XLPE	Poliolefinas libres de halógenos	0,6/1	90	130	250	IRAM 62266
Comander CF	Cables multipolares flexibles redondos, para señalización y comando	Cu	PVC	PVC	0,6/1,1	70	100	160	IEC 60502-1 IRAM 2268 IEC 60227-7
Payton XLPE 6.6 kV	Cables subterráneos de potencia de MT, uni o multipolares	Cu o Al	XLPE	PVC	6,6	90	130	250	IRAM 2178 IEC 60502-2
Payton XLPE 13.2 kV	Cables subterráneos de potencia de MT, uni o multipolares	Cu o Al	XLPE	PVC	13,2	90	130	250	IEC 60502-2 IRAM 2178

Denomina-	Resumen de caracte-	Conductor	Aislación	Cubierta	Tensión	Temperate	ura de opera	ación (℃)	Norma
ción Comercial I.M.S.A.	rísticas de los cables				(kV)	Normal	Sobre- carga	Corto- drcuito	
Payton XLPE 33 kV	Cables subterráneos de potencia de MT, uni o multipolares	Cu o Al	XLPE	PVC	33	90	130	250	IEC 60502-2 IRAM 2178
Payton XLPE 66 kV	Cables subterráneos de potencia de AT	CuoAl	XLPE	PVC	66	90	130	250	IEC 60502-2 IRAM 2381
Etix	Cables de aluminio aislados para distribución de energía, aéreos, preensamblados	Al	XLPE	-	0,6/1,1	90	130	250	IRAM 2263 NBR 8182
Etix Acometida	Cables aislados para acometida aérea de energía a usuarios, preensamblados	Cu	XLPE	-	0,6/1,1	90	130	250	IRAM 2164 NBR 8182
Etix Acometida Concéntrico	Cables aislados para acometida aérea de energía a usuarios, concéntricos	Cu	XLPE	-	0,6/1	90	130	250	IRAM 63001
Etix MT	Cables preensamblados para distribución en MT	Al	XLPE	PE - PVC XLPE	13,2 / 33	90	130	250	IRAM 63004
lmalal XLPE	Cables para distribución aérea en BT	Al	XLPE	-	0,6/1	90	130	250	IRAM 63002 IEC 60502
CCDD	Cables de cobre duro desnudos para distribución de energía y puestas a tierra	Cu	-	-	-	-	-	-	IRAM 2004
lmalal	Cables de aleación de aluminio desnudos para dis- tribución de energía aérea	AI AI	-	-	-	_	-	-	IEC 61089 IRAM 2212
lmalum	Cables de aluminio con alma de acero para trans- misión de energía aérea	AI - Ac	-	-	-	-	-	-	IEC 61089 ASTMB232 IRAM 2187

En este Manual de Cables Eléctricos se presenta la gama de productos más usuales.

I.M.S.A. fabrica una línea completa de cables eléctricos en diversas tensiones (1,1kV, 3,3 kV, 6,6 kV, 13,2 kV, 12/20 kV, 18/30 kV, 33 kV, 45 kV, 66 kV), conformaciones y materiales de aislación (PVC, XLPE, PE, Poliolefinas libres de halógenos, etc.).

I.M.S.A. también produce Alambres Esmaltados para Bobinajes y Metales Semielaborados para usos electromecánicos.

El detalle completo de todos los productos **I.M.S.A.** se puede encontrar en nuestro Cátalogo General de Productos y en nuestra página de internet **http://www.imsa.com.ar**

Cables para instalaciones interiores fijas

Plastix® CF

Cables unipolares de cobre extraflexibles aislados con PVC Noflamex® ecológico.

Usos: Instalaciones fijas, domiciliarias o industriales. Aptos para instalarse en cañerías metálicas o plásticas de trayectoria intrincada debido a su extrema flexibilidad y excelente deslizamiento.

Normas: IRAM NM 247-3, IEC 60227-3, NBR NM 247-3.

Colores: Rojo, negro, blanco, celeste, marrón y verde/amarillo, negro y verde/amarillo a partir de

25 mm² hasta 70 mm² inclusive, negro desde 95 mm².

Rango de fabricación: 1 a 240 mm².

Acondicionamiento: Rollos de 100 m hasta 16 mm²; rollos 10 y 30 m hasta 2,50 mm²; bobinas de

Ø 280 mm hasta 10 mm² y bobinas de madera desde

25 mm² en adelante.

Sección	-	Acondi	cionam	niento		Diámetro	Diámetro	Espesor	Diámetro	Peso 1	Resistencia	Corriente 2	Caída de
nominal		Rollos	5	m/b	obina	alambre	cuerda 1	de la	exterior 1	del cable	eléctrica máx.	admisible	tensión ³
				bobina	bobina	máximo	de cobre	aislación		completo	a 20 °C en CC	cañería	
	10 m	30 m	100 m	Ø 280	Ø							2x	
mm ²				mm	mayor	mm	mm	mm	mm	kg/km	Ohm/km	Α	V/A km
1	-	•	•	1000	-	0,31	1,3	0,6	2,5	13	19,5	11	37
1,5	•	•	•	800	-	0,41	1,6	0,7	3,0	21	13,3	15	26
2,5	•	•	•	500	_	0,41	2,0	0,8	3,6	31	7,98	21	15
4	-	_	•	400	-	0,41	2,5	0,8	4,1	46	4,95	28	10
6	-	-	•	300	_	0,41	3,1	0,8	4,7	65	3,30	36	6,4
10	-	-	•	200	_	0,51	4,0	1,0	6,0	107	1,91	50	3,8
16	_	_	•	_	_	0,61	5,2	1,0	7,2	171	1,21	66	2,4
25	-	-	-	-	1500	0,61	6,2	1,2	8,6	244	0,780	88	1,61
35	-	-	-	-	1500	0,68	9,2	1,2	11,6	376	0,554	109	1,17
50	-	-	-	-	1500	0,68	10,3	1,4	13,1	538	0,386	131	0,85
70	-	-	-	-	1000	0,68	12,2	1,4	15,0	708	0,272	167	0,63
95	-	-	-	-	1500	0,68	13,7	1,6	16,9	947	0,206	202	0,50
120	-	-	-	-	1000	0,68	16,2	1,6	19,4	1214	0,161	234	0,41
150	-	-	-	_	1000	0,86	17,9	1,8	21,5	1489	0,129	261	0,35
185	-	-	-	-	1000	0,86	20,6	2,0	24,6	1924	0,106	297	0,3
240	-	-	_	_	500	0,86	23,0	2,2	27,4	2435	0,0801	348	0,26

- 1) Valores aproximados.
- 2) Según IRAM NM 280, indicada a 20°C, en CC.
- 3) Temp. amb. 40°C, dos conductores cargados en circuito monofásico más un conductor de protección, 100% factor de carga, 50/60 Hz CA.
- 4) Para sistemas de corriente alterna monofásicos de 50/60 Hz, considerando dos cables en contacto y Cos φ = 0,8. Especificaciones sujetas a cambio.
- Factores de corrección para temperaturas distintas de 40°c y por agrupamiento de circuitos en un mismo caño ver página 68.
- Caídas de tensión según sección, % y longitudes ver páginas 76 a 79 inclusive.

Payton PVC 1,1KV Superflex (cont.)

Colores de las	aislaciones				Color de vaina
Número de fas	ses				
1	2	3	4	5	Todas
Marrón	Marrón	Marrón	Marrón	Marrón	Violeta
	Negro	Negro	Negro	Negro	
		Rojo	Rojo	Rojo	
			Celeste	Celeste	
				verde/amarillo	

Multipolares

Sección	ø max,	Espesor de	Espesor nominal	ø exterior	Peso del
nominal	alambres	aislación	de vaina	del cable	cable (1)
mm²	mm	mm	mm	mm	kg/km
2 x 1,5	0,26	0,8	1,8	9,8	114
2 x 2,5	0,26	0,8	1,8	10,8	147
2 x 4	0,31	1,0	1,8	12,7	193
2 x 6	0,31	1,0	1,8	13,7	245
2 x 10	0,41	1,0	1,8	15,6	357
2 x 16	0,41	1,0	1,8	17,7	588
3 x 1,5	0,26	0,8	1,8	10,3	131
3 x 2,5	0,26	0,8	1,8	11,3	172
3 x 4	0,31	1,0	1,8	13,4	232
3 x 6	0,31	1,0	1,8	14,5	299
3 x 10	0,41	1,0	1,8	16,5	445
3 x 16	0,41	1,0	1,8	18,8	730
4 x 1,5	0,26	0,8	1,8	11,1	154
4 x 2,5	0,26	0,8	1,8	12,2	205
4 x 4	0,31	1,0	1,8	14,5	280
4 x 6	0,31	1,0	1,8	15,8	364
4 x 10	0,41	1,0	1,8	18,1	550
4 x 16	0,41	1,0	1,8	20,1	898
3 x 25 +16	0,41	1,2	1,8	25,23	1308
3 x 35 + 16	0,41	1,2	1,8	27,33	1616
5 x 1,5	0,26	0,8	1,8	11,97	210
5 x 2,5	0,26	0,8	1,8	13,16	276
5 x 4	0,31	1,0	1,8	15,67	408
5 x 6	0,31	1,0	1,8	17,24	533
5 x 10	0,41	1,0	1,8	19,65	766
5 x 16	0,41	1,0	1,8	24,48	1206

⁽¹⁾ Valores aproximados

Payton PVC 1,1KV Superflex (cont.)

Formación sem	nirígida (Cu)					
	ø de la cuerda	Espesor de	Espesor nominal	ø exterior	Peso del cable	Peso del cable
nominal	ø alto del sector	aislación	de vaina	del cable	(cobre) (1)	(aluminio) (1)
mm²	mm*	mm*	mm	mm	kg/km	kg/km
2 x 25	6,5r	1,2	1,8	23	1023	704
2 x 35	7,6r	1,2	1,8	26	1294	857
3 x 25	6,5r	1,2	1,8	25	1276	798
3 x 35	7,6r	1,2	1,8	27	1633	976
3 x 50	6,9s	1,4	1,8	25	1829	933
3 x 70	8,0s	1,4	2,0	29	2566	1224
3 x 95	9,5s	1,6	2,1	33	3368	1586
3 x 120	10,6s	1,6	2,2	35	4174	1908
3 x 150	11,8s	1,8	2,3	39	5126	2302
3 x 185	13,2s	1,8	2,5	44	6284	2820
3 x 240	15,0s	2,0	2,7	49	8111	3595
3 x 300	16,8	2,4	2,9	54	10112	4391
3 x 50 + 25	7,3/6,8s	1,4/1,2	1,9	27	2125	1069
3 x 70 + 35	8,6/7,0s	1,4/1,2	2,0	31	2944	1385
3 x 95 + 50	10,1/8,1s	1,6/1,4	2,2	35	3901	1819
3 x 120 + 70	11,5/8,4s	1,6/1,4	2,3	39	5006	2300
3 x 150 +70	12,3/9,6s	1,8/1,4	2,4	42	5888	2624
3 x 185 + 95	12,3/9,6s	2,0/1,6	2,6	47	7309	3247
3 x 240 + 120	13,8/10,9s	2,2/102	2,8	52	9397	4128
3 x 300 + 150	16,3/12,1s	2,4/1,8	2,9	57	11643	4979

Nota:

r = cuerda circular normal

c = cuerda circular compacta

 $s = cuerda\ sectorial\ compacta$

* Los valores separados por

barras corresponden a fase y neutro respectivamente.

(1) Valores aproximados

Payton PVC 1,1KV Superflex (cont.)

Característica	s eléctricas cable	s de cobre (Cu)				
Sección	Corriente adm,	Corriente adm,	Corriente adm,	Corriente adm,	Caída de tensión	Caída de tensión
nominal	aire	aire	enterrados	enterrados	unipolares	multipolares
	unipolares	multipolares	unipolares	multipolares		
mm²	Α	Α	Α	Α	V/A km	WAkm
1,5	18	16	29	25	21	21
2,5	25	22	39	34	13	13
4	33	30	50	44	8,70	8,61
6	41	37	63	55	5,86	5,77
10	56	52	84	74	3,46	3,37
16	75	70	108	95	2,24	2,16
25	127	88	140	123	1,41	1,34
35	157	110	168	147	1,06	0,98
50	191	133	196	173	0,82	0,74
70	244	170	242	211	0,61	0,54
95	297	207	290	254	0,48	0,41
120	345	240	330	290	0,41	0,34
150	397	277	370	325	0,35	0,29
185	453	317	419	369	0,32	0,25
240	535	374	488	428	0,27	0,21
300	617	432	553	484	0,25	0,18

Característica	s eléctricas cable	s de aluminio (Al)				
Sección	Corriente adm,	Corriente adm,	Corriente adm,	Corriente adm,	Caída de tensión	Caída de tensión 2
nominal	aire	aire	enterrados	enterrados	unipolares	multipolares
	unipolares	multipolares	unipolares	multipolares 1		
mm ²	Α	Α	Α	Α	V/A km	V/A km
25	97	68	108	95	2,23	2,15
35	121	83	130	113	1,65	1,58
50	147	102	152	134	1,26	1,18
70	189	130	187	164	0,91	0,84
95	231	159	225	197	0,70	0,63
120	268	184	256	225	0,58	0,51
150	310	213	287	252	0,49	0,43
185	354	243	326	287	0,43	0,36
240	419	287	380	332	0,36	0,29
300	485	331	430	377	0,32	0,25

Nota: temperatura del terreno 25°C, temperatura ambiente 40°C, temperatura del conductor 70°C.

En aire: disposición plana, un solo cable multipolar o simple terna de cables separados 1diámetro, bandeja ranurada. En tierra: profundidad de instalación 0.7m, un solo cable multipolar o simple terna de cables separados 1diámetro, resistividad del terreno 100°C cm/W.

Corriente trifásica en circuito simétrico balanceado. 2-Considerada para sistemas trifásicos, Cos fi = 0.8. Otras condiciones de instalación, aplicar factores de corrección. Los valores de corriente admisible son los aprobados por la **Asociación Electrotécnica Argentina.**

Comander CF

Cables multipolares, para señalización y comando con conductores flexibles de cobre, aislación y vaina de PVC Noflamex® ecológico.

Usos: Instalaciones fijas de señalización, medición, control, protección y comandos eléctricos a distancia, ya sea en centrales de generación, playas de maniobras, estaciones transformadoras, centros de distribución de cargas, etc.

Normas: IRAM 2268, IEC 60502-1, IEC 60227-7

COMANDE	R CF 1.00 m	m²		
Cantidad	Peso1	Peso1	Diámetro ¹	Diámetro ¹
de	s/a	c/a	total	total
fases			s/a	c/a
5	175	356	11,30	14,65
7	210	405	12,19	15,51
10	310	555	15	18,3
12	301	587	15,49	18,81
14	339	635	16,24	19,56
19	432	755	17,91	21,23
24	535	952	20,78	24,10
30	640	1056	21,96	25,28
37	765	1208	23,64	26,90
48	968	1521	26,95	30,47
61	1209	1832	29,57	33,49

COMANDER CF 1.50 mm ²										
Cantidad	Peso1	Peso1	Diámetro	Diámetro						
de	s/a	c/a	total	total						
fases	kg/km	kg/km	s/a	c/a						
5	228	427	12,40	15,72						
7	278	492	13,37	16,69						
10	414	685	16,63	19,95						
12	407	731	17,13	20,45						
14	461	796	17,98	21,30						
19	594	961	19,89	23,21						
24	740	1221	23,14	26,46						
30	893	1370	24,49	27,81						
37	1074	1581	26,40	29,72						
48	1380	2057	30,36	34,28						
61	1712	2445	33,12	37,24						

COMANDE	R CF 2.50 m	m ²		
Cantidad	Peso1	Peso1	Diámetro ¹	Diámetro ¹
de	s/a	c/a	total	total
fases			s/a	c/a
5	285	500	13,40	16,72
7	353	585	14,49	17,81
10	526	824	18,12	21,44
12	523	885	18,68	22
14	596	969	19,62	22,94
19	775	1182	21,75	25,07
24	967	1512	25,38	28,70
30	1174	1724	26,88	30,40
37	1418	2038	29	32,93
48	1840	2607	33,60	37,52
61	2306	3419	36,87	41,79

COMANDER CF 4.00 mm ²										
Cantidad	Peso1	Peso1	Diámetro	Diámetro						
de	s/a	c/a	total	total						
fases	kg/km	kg/km	s/a	c/a						
5	412	668	15,84	19,16						
7	515	793	17,19	20,51						
10	777	1136	21,73	25,05						
12	771	1229	22,43	25,75						
14	882	1353	23,60	26,92						
19	1156	1684	26,26	29,78						
24	1461	2228	30,99	34,91						
30	1796	2546	33,07	36,99						
37	2190	3282	35,92	40,84						
48	2818	4228	41,35	46,87						
61	3556	5033	45,58	50,90						

¹ Valor aproximado. sla: sin armadura cla: con armadura

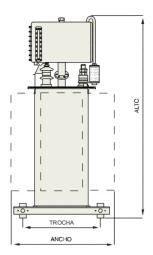
Comander CF (cont.)

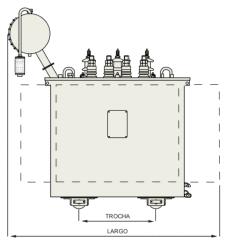
Sección nominal	Diámetro del Alambre	Diámetro de la cuerda	Resistencia eléctrica máxima a 70°C
mm²	mm	mm	Ohm/km
1	0,31	1,26	23,33
1,5	0,41	1,66	15,91
2,5	0,41	2,03	9,55
4	0,41	2,53	5,92

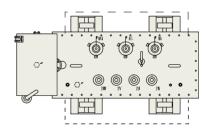
Comander CF co	rriente admisible							
Nº de				Corriente adı	misible (A)			
conductores		En ai	re			Enterra	idos	
		Sección Nom	inal (mm²)			Sección Nomi	nal (mm²)	
	1,0	1,5	2,5	4,0	1,0	1,5	2,5	4,0
5	9	11	15	20	12	15	20	26
7	8	10	13	18	11	13	17	22
10	7	9	12	17	9	11	15	19
12	7	9	12	16	8	10	14	18
14	7	8	11	15	8	10	13	16
19	6	8	10	14	7	8	11	14
24	6	7	10	13	6	8	10	13
30	5	7	9	12	6	7	9	12
37	5	6	8	11	5	6	8	11
48	4	5	7	10	5	6	7	10
61	4	5	7	9	4	5	7	9

Características Técnicas

IRAM 2250


Transfo	rmadoı	es Distri	bución - I	Relació	n 13200 :	£ 2x2.5°	% / 400	V/V
Potencia	Pérdi	das (W)	Ucc (%)		Dimensi	ones (m	m)	Masa (kg)
(kVA)	Po	Pcc		Largo	Ancho	A l to	Trocha	
25	160	600	4	1250	750	1250	600	410
40	200	900	4	1300	750	1300	600	490
63	270	1350	4	1300	750	1300	600	540
80	315	1500	4	1450	750	1300	600	620
100	350	1750	4	1450	750	1350	600	660
125	420	2100	4	1500	750	1350	600	700
160	500	2500	4	1600	750	1450	600	840
200	600	3000	4	1650	850	1450	600	890
250	700	3500	4	1650	900	1450	700	1040
315	850	4250	4	1650	900	1500	700	1220
400	1000	5000	4	1700	950	1700	700	1490
500	1200	6000	4	1700	1050	1700	700	1760
630	1450	7250	4	1700	1050	1900	800	1960
800	1750	8750	5	1950	1050	2025	800	2390
1000	2000	10500	5	2100	1100	2050	800	3080
1250	2300	13800	5	2200	1250	2150	1000	3540
1600	2700	17000	6	2400	2200	2100	1000	4130
2000	3000	21500	6	2500	2500	2200	1000	5060
2500	3300	24800	6	2700	2500	2300	1200	6110
3000	3750	27000	6	2800	2600	2700	1200	6900


IRAM 2250


Transfo	rmador	es Distril	bución -	Relaciór	1 33000 ±	£2x2.5	% / 400	V/V
Potencia	Pérdid	as (W)	Ucc (%)		Dimensi	ones (m	m)	Masa (kg)
(kVA)	Po	Pcc		Largo	Ancho	Alto	Trocha	
16	130	480	4	1550	800	1650	600	500
25	190	650	4	1550	750	1650	600	560
40	290	900	4	1750	800	1650	600	710
63	320	1500	4	1750	800	1650	600	730
80	330	1600	4	1750	800	1850	600	780
100	420	1900	4	1750	850	1850	600	930
125	500	2500	4	1850	850	1850	600	1050
160	600	2800	4	1850	900	1900	600	1150
200	700	3250	4	1850	900	1900	600	1280
250	850	4000	4	1850	1050	1950	700	1470
315	950	4800	4	1850	1050	1950	700	1550
400	1200	5000	4	1950	1050	2200	700	2060
500	1250	6400	4	1950	1150	2300	700	2350
630	1500	7600	4	2150	1150	2300	800	2650
800	1800	9400	5	2200	1200	2300	800	3150
1000	2200	11700	5	2300	1200	2450	800	3650
1250	2500	14200	5	2350	1300	2500	1000	4300
1600	2900	17800	6	2600	2400	2500	1000	5000
2000	3200	22000	6	2700	2600	2600	1000	5400
2500	3600	26000	6	3000	2800	2750	1200	6000

IRAM 2476

Transfor	madores	Substra	nsmisión	- Relació	n 33000 -	+2.5;0;	-3x2.5%	/ 400 V/V
Potencia	Pérdid	las (W)	Ucc (%)		Dimensi	ones (m	m)	Masa (kg)
(kVA)	Po	Pcc		Largo	Ancho	Alto	Trocha	
100	440	2500	5	1700	950	1800	600	1100
200	720	3600	5	1850	900	2050	850	1270
250	850	4250	5	1900	950	2050	850	1370
315	1020	5100	5	1950	1000	2100	850	1600
400	1160	5800	5	2150	1050	2170	850	1900
500	1320	6600	5	2150	1050	2250	850	2150
630	1600	8000	5	2200	1100	2250	850	2500
800	1900	9500	5	2250	1150	2300	850	2930
1000	2300	11500	5	2300	1190	2350	1000	3290
1250	2700	13500	5	2300	2250	2450	1000	4080
1600	3200	16000	5	2400	2300	2550	1000	4780
2000	3700	18500	5	2450	2600	2700	1000	5330
2500*	4200	21000	6	2850	2450	2750	1676	6130
*Regulació	$n \pm 2 \times 2.5$	%						

Nota: El tanque de expansión de los transformadores IRAM 2476 se colocará en el extremo opuesto al indicado en el esquema.

Tadeo Czerweny s.a.

Servicio técnico

++ 54 - 3404 - **482713** - Int. 113 servicio@tadeoczerweny.com.ar

Administración: República 328 (S225BQQ), Gálvez, Santa Fe, Argentina

Tel: ++54 - 3404 - 481627 (I. rotativas) / Fax: ++54 - 3404 - 482873 / E-mail: administracion@tadeoczerweny.com.ar Planta Industrial y Ventas: Bv. Argentino 374 (S2252CMP), Gálvez, Santa Fe, Argentina

Tel: ++54 - 3404 - 482713 (l. rotativas) / Fax: ++54 - 3404 - 483330 /

E-mail: tczsa@tadeoczerweny.com.ar / ventas_galvez@tadeoczerweny.com.ar

Oficina Comercial Bs. As.: Bernardo de Irigoyen 330 5º piso of. 121 (C1072AAH) Capital Federal, Argentina

Tel: ++54-11-52728001 al 5 / Fax: ++54-11-52728006 / E-mail: tczbsas@tadeoczerweny.com.ar

www.tadeoczerweny.com.ar

ENROLLABLES

TIPOLOGÎAS

MOTORES PARA PERSIANAS

MOTORES PARA TOLDOS

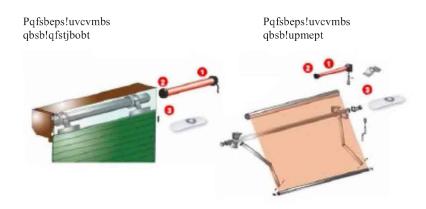
Automatización para toldos, cortinas o pantallas de proyec-

MOTORES PARA CIERRES

Automatización utilizada para el cierre de locales destinados a uso residencial y comercial...

Serie Revolux 35 Serie Revolux 35 Wireless Serie Revolux 45 Serie Revolux 45 Wireless Serie Revolux 59

Serie Revolux 35 Serie Revolux 35 Wireless Serie Revolux 45 Serie Revolux 45 Wireless Serie Revolux 59 Serie Revolux 92



Serie Rolli Serie Revolux 92

PERSIANAS Y TOLDOS: DIAGRAMA DE INSTALACIÔN

1) Operador con o sin receptor a bordo: dispositivo que permite a través

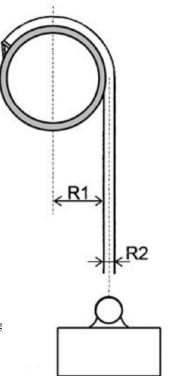
DJFSSFT!FOSPMMBCMFT;!EJBHSBNB!EF!JOTUBMBDJ÷O

- 1) Operador: dispositivo que permite con una alimentación externa, la automatización de un cerramiento.
- 2) Dispositivo de mando: unidad electrónica para la gestión de la automa tización de los operadores.
- 3) Transmisor: dispositivo

- wireless que transmite información al dispositivo de mando.
- 4) Antena: dispositivo que aumenta la recepción de las señales enviadas por el transmisor.
- 5) Indicador luminoso de funcionamiento.
- 6) Pareja de fotocélulas: dispositivo de seguridad que en caso de obstáculos detiene el movimiento de la automatización.
- 7) Dispositivo de mando: permite accionar el movimiento de la automatización c on la ayuda de una llave electrónica o mecánica.

GUÎA PARA LA ELECCIÔN DEL OPERADOR DE PERSIANA

Par nominal motor (Nm)


Palanca de elevación (m)

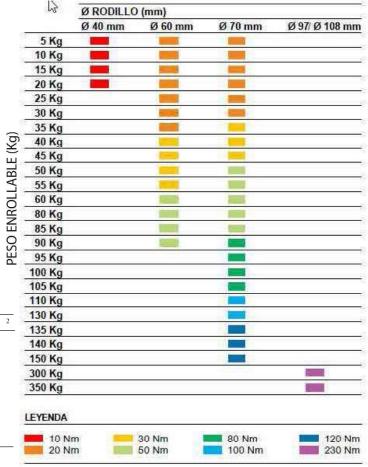
El par nominal motor en Mm (Newton por metro) está indicado en la etiqueta del motor. La palanca de elevación se obtiene sumando el radio del tubo de enrollamiento (R1 en el dibujo al lado) más la mitad del grosor de la persiana (R2 en el dibujo al lado) o más la mitad de la correa que sostiene el peso aplicado.

EJEMPLOS DE CËLCULO

Par nominal del motor 45 Nm Diámetro tubo 60 mm por lo tanto R1= 30 mm (0,030 m) Grosor de la persiana 10 mm por lo tanto R2=5mm (0,005 m)

$$PESO = \frac{45 \text{ Nm}}{0,030 \text{ m} + 0,005} > \frac{45 \text{ Nm}}{0,035 \text{ m}} > 1285 \text{ N} \qquad 9,81 \text{ N} = 1 \text{ kg} \qquad \longrightarrow PESO = \frac{1285 \text{ Nm}}{9,81} > 131 \text{ kg}$$

Este motor consigue levantar un peso libre de 131 kg. Pero hay que considerar que en la aplicación a las puertas y ventanas y a las persianas se adoptan unos coeficientes de seguridad igual al 50%, por lo tanto el peso levantado por el motor debe ser dividido por la mitad, el resultado 65 kg.


Las tablas que se muestran al lado permiten seleccionar un motor en relación al diámetro del rodillo del enrolla miento y al peso del enrollable.

El peso del enrollable en kg se obtiene multiplicando la superficie por el peso en m2 del material del cual está compuesto.

ATENCIÔN

Los pesos mostrados en las tablas están calculados con un margen del 50% (considerando las fricciones, el aumento del diámetro de enrollamiento, etc.).

MATERIAL ENROLLABLE	Kg al m 2
ALUMINIO CON POLIURETANO ESPANDIDO	3,5
ALUMINIO CON POLIURETANO ESPANDIDO	HD 4,8
PVC	6,0
MADERA	8,5
ALUMINIO EXTRUIDO	9,0
ACERO CON POLIURETANO ESPANDIDO	9,5
ACERO CON POLIURETANO ESPANDIDO	10,5
ACERO	11,0

NOTA: Coeficientes de enrollamiento y fricción incluidos

MOTORES TUBULARES REVOLU

Motores tubulares para persianas y toldos.

La posibilidad de asociar los motores a las centrales de alimentación ADI permite realizar dispositivos totalmente automatizados también con mando a distancia.

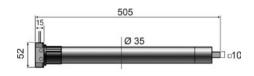
La amplia disponibilidad de adaptadores y accesorios para la instalación permite satisfacer cada exigen cia aplicativa.

Están disponibles 3 kit para la automatización de persianas de 30 kg 60 kg y 90 kg completos de acceso rios para la instalación

Los motores de las series 45, 59 y 92 están disponibles también en las versiones CSM, es decir equipadas

DATOS T	ÉCNICOS					
SERIE	MODELO	PAR	POT	ENCIA	VELOCIDAD	DIAMETRO
(S Sin mani	iobra de emergencia)	(Nm)	(W)	(rpm)	(Ø)	_
(M con mar	niobra de emergencia)					
35	35S 10Nm/17	10	121	17	35	
	35S 6Nm/28F	6	121	28	35	
45	45S 20Nm-45M 20Nm	20	145	15	45	
	45S 30Nm - 45M 30Nm	30	191	15	45	
	45S 50Nm - 45M 50Nm	50	191	12	45	
59	59S 80Nm - 59M 80Nm	80	298	15	60	
	59S 100Nm - 59M 100N	m 100	305	12	60	
	59S 120Nm - 59M 120N	m 120	305	9	60	
92	92S 230Nm - 92M 230N	m 230	602	12	92	

Para todos los modelos 45 y 59 el tiempo de trabajo es de 4 minutos.


ROLLER KIT REVOLUX

MOTORES SIN MA	NIONRA DE EMERGENCIA Y FINALES	DE CARRERA MECANICOS
CODIGO	DESCRIPCION	Peso max.
43302/802	ROLLER KIT 30 kg (455-20Nm)	Ø 60 35 kg
43302/803	ROLLER KIT 60 kg (455-30Nm)	Ø 60 56 kg
43302/804	ROLLER KIT 90 kg (455-50Nm)	Ø 60 90 kg
	El kit incluye:	
	Motor tubular REVOLUX 45S (ve	ersion 20Nm-30Nm o 50Nm)
43380/156	Adaptador para tubo octogonal ø60	
43380/057	Placa de fijación perno cuadrado	
43380/083	Soporte perno cuadrado	

TJO!NBOJPCSB!EF!FNFSHFODJB

MOTOR SIN MANIOBRA DE EMERGENCIA Y FINALES DE CARRERA MECANICOS

CODIGO	DESCRIPCION	Peso max.**	
43300/001	REVOLUX 35S 10Nm	Ø 40 20 kg	
43300/002	REVOLUX 35S 6Nm	Ø 40 20 kg	

MOTOR WIRELESS SIN MANIOBRA DE EMERGENCIA Y FINALES DE CARRERA MECANICOS

CODIGO DESCRIPCION

((•))

43800/001 REVOLUX WIRELESS 35SMS 10Nm

Diámetro 35 mm sin maniobra de emergencia y finales de carrera electrónicos Receptor de telemando incorporado

DESCRIPCION DE	ACCESORIOS SERIE	35

CODIGO	DESCRIPCION	
43380/087	Octogonal para tubo de 40 mm	
43380/115	Redondo para tubo de 40 mm	
CODIGO	DESCRIPCION	
43380/077	Perno cuadrado	
43380/082	Kit fijación perno cuadrado	
43380/091	Soporte estándar para mono-block	
	CODIGO 43380/087 43380/115 CODIGO 43380/077 43380/082	CODIGO DESCRIPCION 43380/087 Octogonal para tubo de 40 mm 43380/115 Redondo para tubo de 40 mm CODIGO DESCRIPCION 43380/077 Perno cuadrado 43380/082 Kit fijación perno cuadrado

NOTA: Todos los motores descritos, a excepto de los modelos REVOLUX WIRELESS, pueden ser combinados con las centrales ADI — Véase la sección "Automatización Doméstica" presente en este catálogo (consultar el índice inicial).

^(*) Para completar la instalación del motor tubular también es necesario un adaptador que hay que elegir en relación al tubo de enrollamiento de la persiana o del toldo, y un soporte que hay que elegir en relación al tipo de instalación. Para la elección, hacer referencia a las páginas relativas a adaptadores y accesorios.

Tubelectric

libres de halógenos. Cajas de embutir

Diseñadas y construidas según Normas: IRAM 62670, IEC 60670, IRAM 2346, con material tecnopolímero aislante de última generación, libre de halógenos.

nal como en seco, ofreciendo soluciones específicas para Desarrolladas para ser utilizadas embutidas en todo tipo de instalación fija, siendo aptas para construcción tradiciotodos los casos.

Código	Descripción	Cant. por envase	
02-220PGLH	02-220PGLH Caja emb. Rectangular	156	
02-221PGLH	Caja emb. Octogonal Chica Profundidad 45 mm	150	
02-222PGLH	Caja emb. Octogonal Grande Profundidad 65 mm	06	
02-223PGLH	Gaja Guadrada	53	
02-224PGLH	02-224PGLH Caja emb. Mignon	176	

mm | APTA LOSA RADIANTE

Caja rectangular de sobreponer libre de halógenos.

Diseñadas y construidas según Norma IEC 60670, con material tecnopolímero aislante de última generación, libre de halógenos.

Son aptas para ser utilizadas en instalaciones fijas sobre pared. Cuentan con pre-calados para ser usadas con conectores Tubelectric® y Cable canal.

Código	Descripción	Cantidad por envase
02-215PGLH	Caja rectangular Gris Libre de Halógenos	96

IP 65 libres de halógenos. Cajas estancas plásticas

PARA PASO, DERIVACIÓN Y CONEXIÓN

rias o industriales tanto embutidas como sobrepuestas, com-Son fabricadas con termoplásticos de última generación que registran ausencia absoluta de halógenos, en su formulación, siendo aptas para ser utilizadas en instalaciones fijas domiciliapatibles con la totalidad de los elementos Tubelectric®.

so continuo en una sola pieza; tienen un grado de protección Las cajas tienen un burlete fabricado en poliuretano de alta respuesta a la deformación elástica, aplicado mediante un proce-IP65, protección UV y son de color Gris.

Código		Alto		Cant. por envase
06-090905GLH	06	06	55	32
06-090907GLH	06	06	75	24
06-111106GLH	115	115	99	24
06-111108GLH	115	115	80	24
06-111111GLH	115	115	110	24
06-111606GLH	115	165	92	82
06-111608GLH	115	165	80	82
06-111611GLH	115	165	110	82
06-161606GLH	165	165	99	16
06-161608GLH	165	165	80	16
06-161611GLH	165	165	110	16
06-162106GLH	165	210	92	12
06-162108GLH	165	210	80	12
06-162111GLН	165	210	110	12
06-212111GLH	210	210	110	12
06-212113GLH	210	210	135	12
06-212116GLH	210	210	165	12
06-213111GLH	210	310	110	ω
06-213113GLH	210	310	135	O
06-213116GLH	210	310	165	(O
06-313111GLH	310	310	110	4
06-313113GLH	310	310	135	4
06-313116GLH	310	310	16.5	ς

Para obtener una terminación perfecta, usá la mecha caladora Tubelectric®. Ver página 27.

Libre de halógenos Pág. 12

Armarios murales 19"

Los armarios murales de Tecnorack están disponibles en dos modelos, Compaqrack mural y Steelrack mural, con ellos ofrecemos una amplia gama de dimensiones para cubrir los requerimientos y necesidades de nuestros clientes y estan diseñados para ofrecer las máximas prestaciones tanto en aplicaciones informáticas, industriales o de telecomunicaciones.

Todos los murales, están fabricados de acuerdo a las normas DIN 41494 parte 1 y 7, UNE-20539 parte 1 y parte 2 e IEC 297 parte 1 y 2, y cumplen la normativa de medio ambiente ROHS.

Nuestros armarios murales, se caracterizan por su cuidado diseño, estética y versatilidad, consiguiendo una elevada calidad, facilidad de instalación y de montaje, sin reducir por ello ni el más mínimo detalle.

Compaqrack

Características Técnicas

Acceso al armario por los laterales desmontables. Entrada de cables dobles pre-troqueladas en su parte superior e inferior, puerta delantera de cristal templado con marco metálico reversible con cerradura y llave. Fabricado en chapa de acero de 1,5mm. Bastidor de estructura metálica soldada. Dos perfiles de 19" desplazables en profundidad.

Dimensiones y referencias

Mur	Mural 1 Cuerpo Fondo 400mm						
Código	Descripción						
41MC06140LP	Altura 6U (360mm) con p/cristal						
41MC09140LP	Altura 9U (500mm) con p/cristal						
41MC12140LP	Altura 12U (620mm) con p/cristal						
41MC15140LP	Altura 15U (760mm) con p/cristal						

Mural 1 Cuerpo Fondo 550mm						
Código		Descripción				
41MC06155LP	Altura	6U (360mm) con p/cristal				
41MC09155LP	Altura	9U (500mm) con p/cristal				
41MC12155LP	Altura	12U (620mm) con p/cristal				
41MC15155LP	Altura	15H (760mm) con n/cristal				

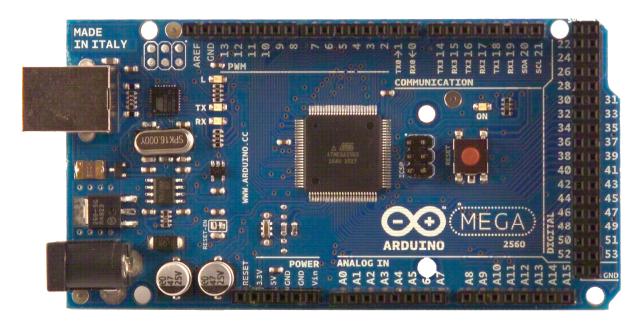
Armario Steelrack mural 19" 1 cuerpos fondo 400mm 6U

Armario Compaqrack mural 19" 1 cuerpo fondo 400mm 6U acceso por los laterales desmontables

Steelrack

Características Técnicas

Caja mural de 1 ó 2 cuerpos con entrada de cables dobles pre-troqueladas en su parte superior e inferior, puerta delantera de cristal templado con marco metálico reversible, cerradura y llave. Fabricado en chapa de acero de 1,5mm. Bastidor estructura metálica soldada, color Oxiron 161. Dos perfiles de 19" desplazables en profundidad.


Dimensiones y referencias

Mural 1 Cuerpo Fondo 400mm						
Código	Descripción					
41CMC0614	Altura 6U (360mm) con p/cristal					
41CMC0914	Altura 9U (500mm) con p/cristal					
41CMC1214	Altura 12U (620mm) con p/cristal					
41CMC1514	Altura 15U (760mm) con p/cristal					

Mural 2 Cuerpo Fondo 500mm						
Código	Descripción					
41CMC0625	Altura 6U (360mm) con p/cristal					
41CMC0925	Altura 9U (500mm) con p/cristal					
41CMC1225	Altura 12U (620mm) con p/cristal					
41CMC1525	Altura 15U (760mm) con p/cristal					

Arduino MEGA 2560

Œ

Product Overview

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560 (datasheet). It has 54 digital input/output pins (of which 14 can be used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. The Mega is compatible with most shields designed for the Arduino Duemilanove or Diecimila.

	Index
Technical Specifications	Page 2
How to use Arduino Programming Environment, Basic Tutorials	Page 6
Terms & Conditions	Page 7
Enviromental Policies half sqm of green via Impatto Zero®	Page 7

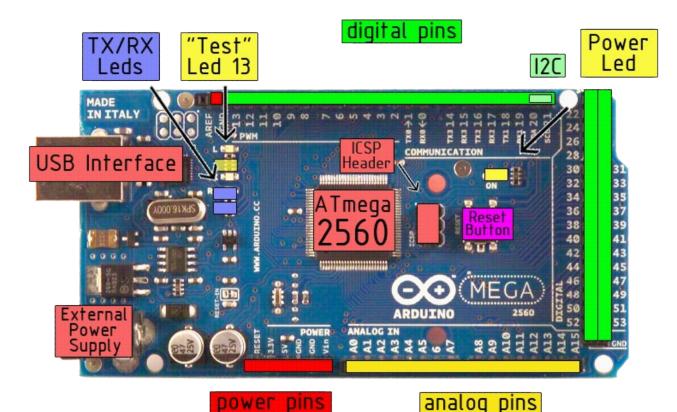
Technical Specification

EAGLE files: arduino-mega2560-reference-design.zip Schematic: arduino-mega2560-schematic.pdf

Summary

Microcontroller ATmega2560

Operating Voltage 5V Input Voltage (recommended) 7-12V Input Voltage (limits) 6-20V


Digital I/O Pins 54 (of which 14 provide PWM output)

16 **Analog Input Pins** DC Current per I/O Pin 40 mA DC Current for 3.3V Pin 50 mA

256 KB of which 8 KB used by bootloader Flash Memory

SRAM 8 KB 4 KB **EEPROM** Clock Speed 16 MHz

the board

The Arduino Mega2560 can be powered via the USB connection or with an external power supply. The power source is selected automatically. External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a battery can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may supply less than five volts and the board may be unstable. If using more than 12V, the voltage regulator may overheat and damage the board. The recommended range is 7 to 12 volts.

The Mega2560 differs from all preceding boards in that it does not use the FTDI USB-to-serial driver chip. Instead, it features the Atmega8U2 programmed as a USB-to-serial converter.

The power pins are as follows:

- VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to 5 volts from the USB connection or other regulated power source). You can supply voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.
- **5V.** The regulated power supply used to power the microcontroller and other components on the board. This can come either from VIN via an on-board regulator, or be supplied by USB or another regulated 5V supply.
- 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
- **GND.** Ground pins.

Memory

The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used for the bootloader), 8 KB of SRAM and 4 KB of EEPROM (which can be read and written with the <u>EEPROM library</u>).

Input and Output

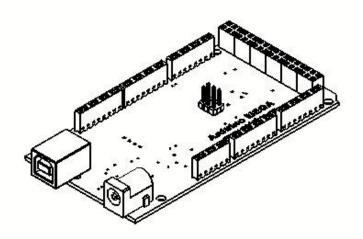
Each of the 54 digital pins on the Mega can be used as an input or output, using pinMode(), <a href="mailto:digitalWrite(), and digitalRead(), functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:

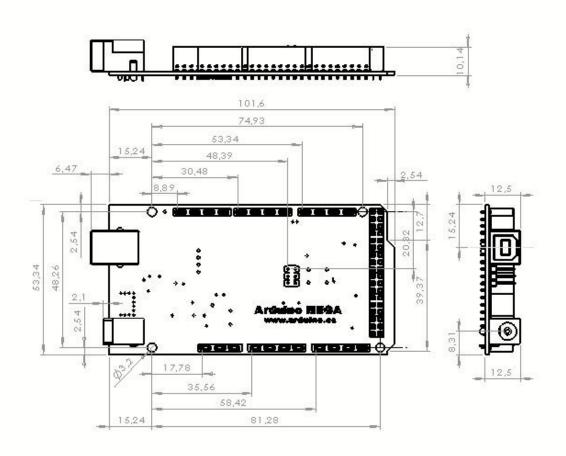
- Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16 (TX); Serial 3: 15 (RX) and 14 (TX). Used to receive (RX) and transmit (TX) TTL serial data. Pins 0 and 1 are also connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip.
- External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19 (interrupt 4), 20 (interrupt 3), and 21 (interrupt 2). These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value. See the attachInterrupt() function for details.
- **PWM: 0 to 13.** Provide 8-bit PWM output with the <u>analogWrite()</u> function.
- SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI communication, which, although provided by the underlying hardware, is not currently included in the Arduino language. The SPI pins are also broken out on the ICSP header, which is physically compatible with the Duemilanove and Diecimila.
- LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.
- I²C: 20 (SDA) and 21 (SCL). Support I²C (TWI) communication using the Wire library (documentation on the Wiring website). Note that these pins are not in the same location as the I²C pins on the Duemilanove.

The Mega2560 has 16 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By default they measure from ground to 5 volts, though is it possible to change the upper end of their range using the AREF pin and analogReference() function.

There are a couple of other pins on the board:

- AREF. Reference voltage for the analog inputs. Used with <u>analogReference()</u>.
- Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which block the one on the board.





Dimensioned Drawing

Datasheet I2C 1602 Serial LCD Module

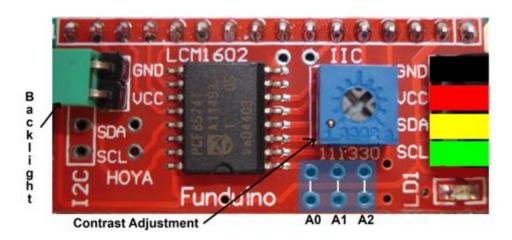
Product features:

The I2C 1602 LCD module is a 2 line by 16 character display interfaced to an I2C daughter board. The I2C interface only requires 2 data connections, +5 VDC and GND to operate

For in depth information on I2C interface and history, visit: http://www.wikipedia/wiki/i2c

Specifications:

I2C Address Range Operating Voltage Backlight Contrast Size


Viewable area

2 lines by 16 character 0x20 to 0x27 (Default=0x27, addressable) 5 Vdc White Adjustable by potentiometer on I2c interface 80mm x 36mm x 20 mm 66mm x 16mm

Power:

The device is powered by a single 5Vdc connection.

Pinout Diagram:

Pin/Control Descriptions:

Pin#	Name	Type	Description
1	GND	Power	Supply & Logic ground
2	VCC	Power	Digital VO 0 or RX (serial receive)
3	SDA	I/O	Serial Data line
4	SCL	CLK	Serial Clock line
A0	A0	Jumper	Optional address selection A0 - see below
A1	A1	Jumper	Optional address selection A1 - see below
A2	A2	Jumper	Optional address selection A2 - see below
Backlight		Jumper	Jumpered - enable backlight, Open - disable backlight
Contrast		Pot	Adjust for best viewing

Addressing:

A0	A1	A2	Address
Open	Open	Open	0x27
Jumper	Open	Open	0x26
Open	Jumper	Open	0x25
Jumper	Jumper	Open	0x24
Open	Open	Jumper	0x23
Jumper	Open	Jumper	0x22
Open	Jumper	Jumper	0x21
Jumper	Jumper	Jumper	0x20

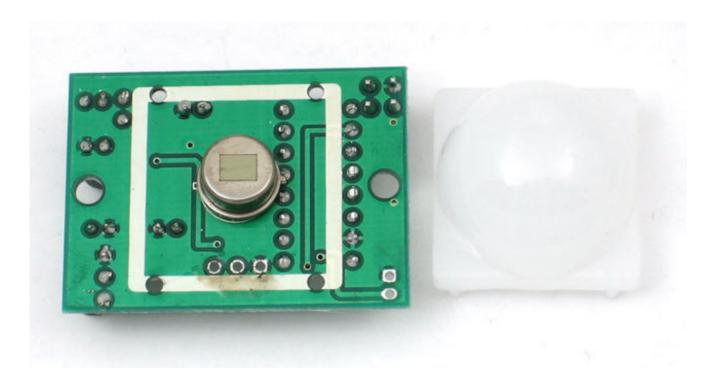
Software:

Download the required LCD Arduino™ library for this device from:

http://www.circuitattic.com/downloads/category/3-sample-code.html?download=9%3Aanother-i2c-library-easier-to-use

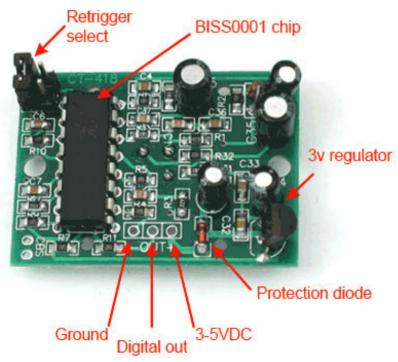
Replace current liquid crystal library found in the Arduino library directory with the above (Note: If you use the examples included with the library, be sure to change address to 0x27)

Simple example using library above.

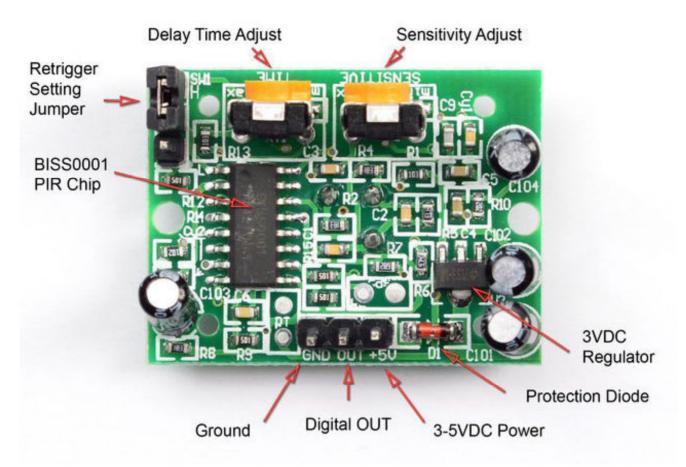

```
#include <Wire.h>
#include <LiquidCrystal I2C.h>
#if defined(ARDUINO) && ARDUINO >= 100
#define printByte(args) write(args);
#else
#define printByte(args) print(args,BYTE);
#endif
\label{liquidCrystal_I2C} \mbox{LiquidCrystal\_I2C lcd(0x27,16,2); // set the LCD address to 0x27 for a}
//chars and 2 line display
void setup()
      lcd.init(); // initialize the lcd
      lcd.backlight();
      lcd.clear();
      delay(100);
      for(int i = 0; i < 3; i++)
             lcd.backlight();
             delay(250);
             lcd.noBacklight();
             delay(250);
      lcd.backlight();
   void loop()
          int x=0;
          lcd.clear();
          lcd.setCursor(2,0); //Start at character 0 on line 0
          lcd.print("Hello World");
          lcd.setCursor(0,1); //Start at character 0 on line 1
lcd.print(" opencircuit.nl");
          delay(3000); //Wait 3 seconds
          lcd.clear();
          lcd.setCursor(0,0); //Start at character 0 on line 0
          lcd.print("Cursor Blink");
          lcd.blink();
          delay(2000);
          lcd.setCursor(0,0);
          lcd.print("Cursor noBlink");
          lcd.noBlink();
          delay(2000);
   }
```

PIR Motion Sensor

Created by lady ada



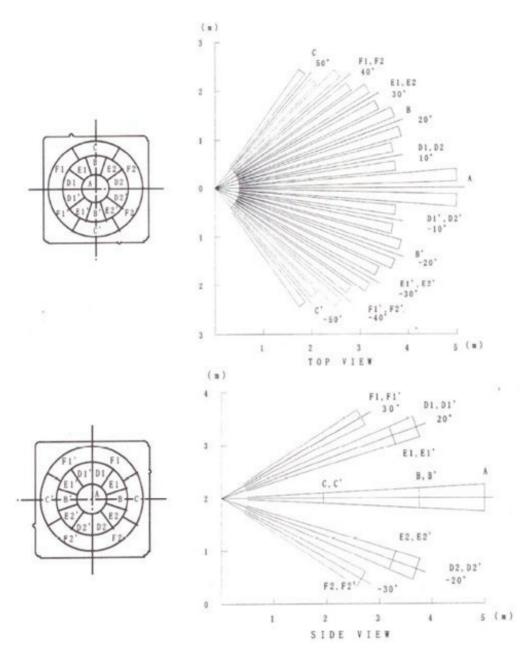
Last updated on 2016-09-10 03:37:04 AM UTC



Along with the pyroelectic sensor is a bunch of supporting circuitry, resistors and capacitors. It seems that most small hobbyist sensors use the BISS0001 ("Micro Power PIR Motion Detector IC") (http://adafru.it/cIR), undoubtedly a very inexpensive chip. This chip takes the output of the sensor and does some minor processing on it to emit a digital output pulse from the analog sensor.

Our older PIRs looked like this:

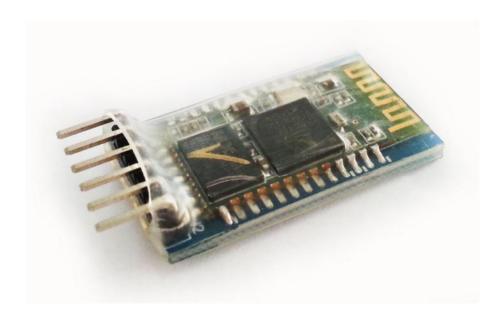
Our new PIRs have more adjustable settings and have a header installed in the 3-pin



For many basic projects or products that need to detect when a person has left or entered the area, or has approached, PIR sensors are great. They are low power and low cost, pretty rugged, have a wide lens range, and are easy to interface with. Note that PIRs won't tell you how many people are around or how close they are to the sensor, the lens is often fixed to a certain sweep and distance (although it can be hacked somewhere) and they are also sometimes set off by housepets. Experimentation is key!

Some Basic Stats

These stats are for the PIR sensor in the Adafruit shop which is very muchlike the Parallax one (http://adafru.it/aKj). Nearly all PIRs will have slightly different specifications, although they all pretty much work the same. If there's a datasheet, you'll want to refer to it


- Size: Rectangular
- Price: \$10.00 at the Adafruit shop (http://adafru.it/aIH)
- **Output:** Digital pulse high (3V) when triggered (motion detected) digital low when idle (no motion detected). Pulse lengths are determined by resistors and capacitors on the PCB and differ from sensor to sensor.

Images from NL11NH datasheet(http://adafru.it/cIT)

Here is another image, more qualitative but not as quantitative. (Note that the sensor in the Adafruit shop is 110° not 90°)

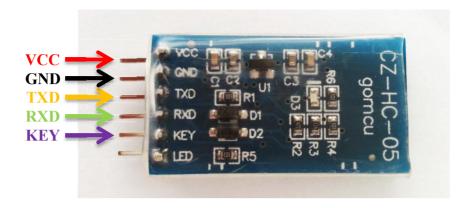
HC-05 Bluetooth Module

User's Manual V1.0

1. Introduction

HC-05 Bluetooth Module is an easy to use Bluetooth SPP (Serial Port Protocol) module, designed for transparent wireless serial connection setup. Its communication is via serial communication which makes an easy way to interface with controller or PC. HC-05 Bluetooth module provides switching mode between master and slave mode which means it able to use neither receiving nor transmitting data.

Specification:


• Model: HC-05

• Input Voltage: DC 5V

• Communication Method: Serial Communication

• Master and slave mode can be switched

2. Pin Definition

Pin	Description	Function
VCC	+5V	Connect to +5V
GND	Ground	Connect to Ground
TXD	UART_TXD, Bluetooth serial signal sending PIN	Connect with the MCU's (Microcontroller and etc) RXD PIN.
RXD	UART_RXD, Bluetooth serial signal receiving PIN	Connect with the MCU's (Microcontroller and etc) TXD PIN.
KEY	Mode switch input	If it is input low level or connect to the air, the module is at paired or communication mode. If it's input high level, the module will enter to AT mode.

FOTORRESISTENCIA LDR 4,3mm x Ø 5,1mm

? ? Los nombres registrados y marcas que se citan son propiedad de sus respectivos titulares.

DESCRIPCION GENERAL.

Fotorresistencia o resistencia dependiente de la luz, consistente en una célula de Sulfuro de Cadmio, altamente estable, encapsulada con una resina epoxi transparente, resitente a la humedad. La respuesta espectral es similar a la del oio humano. Su nivel de resistencia aumenta cuando el nivel de luz disminuve.

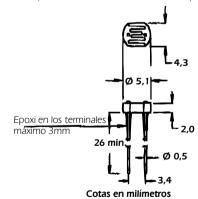
Aplicaciones: Control de contraste en televisores y monitores, control automático de la iluminación, en habitaciones, juquetes y juegos electrónicos, controles industriales, interruptores crepusculares, boyas y balizas de encendido automático, auto-flash, etc...

CARACTERÍSTICAS TÉCNICAS.

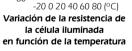
Modelo		Valores máximos			Carao	cterísticas a 25º0	C (nota E)			
	Tensión a 25°C	Potencia disipable	Temperatura ambiente	Resis	tencia (nota/	٩)	? (notaC)	Tiempos de res	puesta a 10 lx (notaD)	Respuesta espectral
				10 lux (2	2856K)	0 lux (notaB)	100-10 lx	t. subida	t. bajada	(pico)
	(Vdc)	(mW)	(°C)	Min.(k?)	Max.(k?)	Min.(M?)	(M?)	(ms)	(ms)	(nm) .
C-2795	150	90	-25 a 75	50	140	20	0.9	60	25	570
					- 10					

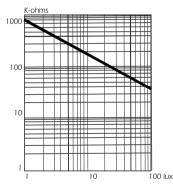
Notas: A) Medido con una fuente luminosa formada por una lámpara de tungsteno, trabajando a una temperatura de color de 2856K.

B)Medición efectuada 10 segundos después de retirar una iluminación incidente de 10 lux.


C) Sensibilidad entre 10 y 100 lux, dada por:

 $? = \log(R100) - \log(R10)$ loa(E100)-loa(E10)


donde R100, R10 son las resistencias a 100 y 10 lux respectivamente, y E100, E10 las iluminancias de 100 y 10 lx respectivamente.


D) Tiempo de subida es el tiempo necesario para alcanzar el 63% del nivel de saturación. Tiempo de bajada es el necesario para que la célula alcance el 37% desde el nivel saturación.

E) Todas las características están medidas con la célula LDR expuesta a la luz (100-500 lux) durante 1 o 2 horas.

Resistencia de la célula en función de la iluminancia

CONSIDERACIONES.

Este componente está destinado para su uso por parte de profesionales, o usuarios con un nivel técnico o conocimientos suficientes, que les permita desarrollar por sí mismos los proyectos o aplicaciones deseados. Por este motivo no se facilitará asistencia técnica sobre problemas de implementación del citado componente en las aplicaciones en las que sea empleado. Para cualquier problema relativo al funcionamiento del producto (excluidos los problemas de aplicación), póngase en contacto con nuestro departamento técnico. Fax 93 432 29 95.

Correo electrónico: sat@fadisel.com. La documentación técnica de este producto responde a una transcripción de la proporcionada por el fabricante.

Los productos de la família "Componentes" de Cebek disponen de 1 año de qarantía a partir de la fecha de compra. Quedan excluidos el trato o manipulación incorrectos.

Disponemos de más productos que pueden interesarle, visítenos en: www.fadisel.com ó SOLICITE GRATUITAMENTE nuestro catálogo.

Web Site: www.parallax.com Forums: forums.parallax.com Sales: sales@parallax.com Technical: support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267

4x4 Matrix Membrane Keypad (#27899)

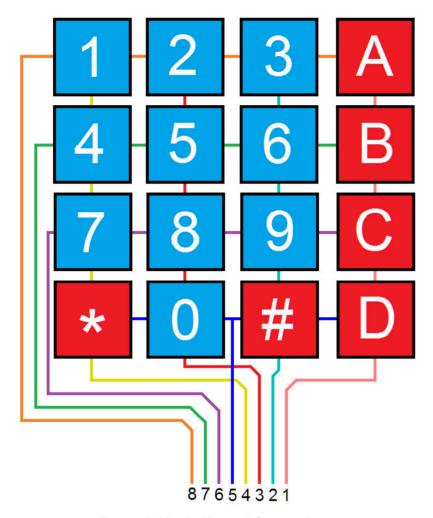
This 16-button keypad provides a useful human interface component for microcontroller projects. Convenient adhesive backing provides a simple way to mount the keypad in a variety of applications.

Features

- Ultra-thin design
- Adhesive backing
- Excellent price/performance ratio
- Easy interface to any microcontroller
- Example programs provided for the BASIC Stamp 2 and Propeller P8X32A microcontrollers

Key Specifications

- Maximum Rating: 24 VDC, 30 mA
- Interface: 8-pin access to 4x4 matrix
- Operating temperature: 32 to 122 °F (0 to 50°C)
- Dimensions: Keypad, 2.7 x 3.0 in (6.9 x 7.6 cm)
 Cable: 0.78 x 3.5 in (2.0 x 8.8 cm)


Application Ideas

- Security systems
- Menu selection
- Data entry for embedded systems

How it Works

Matrix keypads use a combination of four rows and four columns to provide button states to the host device, typically a microcontroller. Underneath each key is a pushbutton, with one end connected to one row, and the other end connected to one column. These connections are shown in Figure 1.

Figure 1: Matrix Keypad Connections

In order for the microcontroller to determine which button is pressed, it first needs to pull each of the four columns (pins 1-4) either low or high one at a time, and then poll the states of the four rows (pins 5-8). Depending on the states of the columns, the microcontroller can tell which button is pressed.

For example, say your program pulls all four columns low and then pulls the first row high. It then reads the input states of each column, and reads pin 1 high. This means that a contact has been made between column 4 and row 1, so button 'A' has been pressed.

TECHNICAL DATA

MQ-2 GAS SENSOR

FEATURES

Wide detecting scope Fast response and High sensitivity
Stable and long life Simple drive circuit

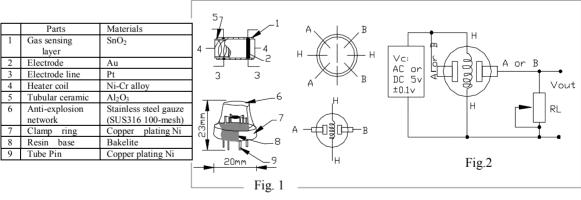
APPLICATION

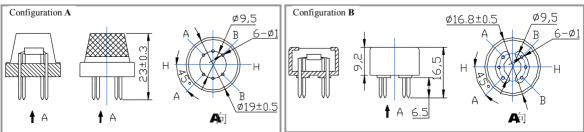
They are used in gas leakage detecting equipments in family and industry, are suitable for detecting of LPG, i-butane, propane, methane ,alcohol, Hydrogen, smoke.

SPECIFICATIONS

A. Standard work condition

Symbol	Parameter name	Technical condition	Remarks
Vc	Circuit voltage	5V±0.1	AC OR DC
$V_{\rm H}$	Heating voltage	5V±0.1	ACOR DC
$R_{\rm L}$	Load resistance	can adjust	
R_{H}	Heater resistance	33 Ω ±5%	Room Tem
P_{H}	Heating consumption	less than 800mw	


B. Environment condition


Symbol	Parameter name	Technical condition	Remarks
Tao	Using Tem	-20°C-50°C	
Tas	Storage Tem	-20°C-70°C	
R _H	Related humidity	less than 95%Rh	
O_2	Oxygen concentration	21%(standard condition)Oxygen	minimum value is
		concentration can affect sensitivity	over 2%

C. Sensitivity characteristic

Symbol	Parameter name	Technical parameter	Remarks
Rs	Sensing	3K Ω -30K Ω	Detecting concentration
	Resistance	(1000ppm iso-butane)	scope:
			200ppm-5000ppm
α	Concentration		LPG and propane
(3000/1000)	Slope rate	≤0.6	300ppm-5000ppm
isobutane			butane
Standard	Temp: 20°C ±2°C Vc:5V±0.1		5000ppm-20000ppm
Detecting	Humidity: 65%±5% Vh: 5V±0.1		methane
Condition			300ppm-5000ppm H ₂
Preheat time	Over 24 hour		100ppm-2000ppm
			Alcohol

D. Structure and configuration, basic measuring circuit

Structure and configuration of MQ-2 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, measuring electrode and heater are fixed into a

TEL: 86-371-67169070 67169080 FAX: 86-371-67169090 E-mail: sales@hwsensor.com

crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-2 have 6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

Electric parameter measurement circuit is shown as Fig.2

E. Sensitivity characteristic curve

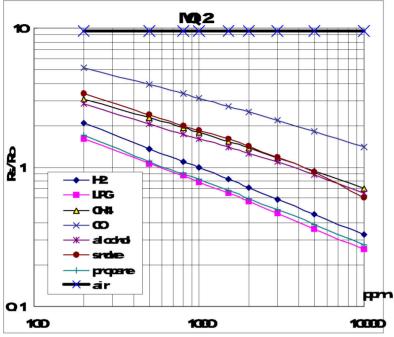


Fig.3 is shows the typical sensitivity characteristics of the MQ-2 for several gases.

in their: Temp: 20°C \
Humidity: 65% \
O₂ concentration 21%
RL=5k Ω

Ro: sensor resistance at 1000ppm of H₂ in the clean air.
Rs:sensor resistance at various concentrations of gases.

Fig.2 sensitivity characteristics of the MQ-2

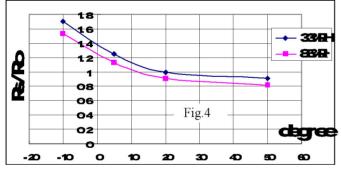
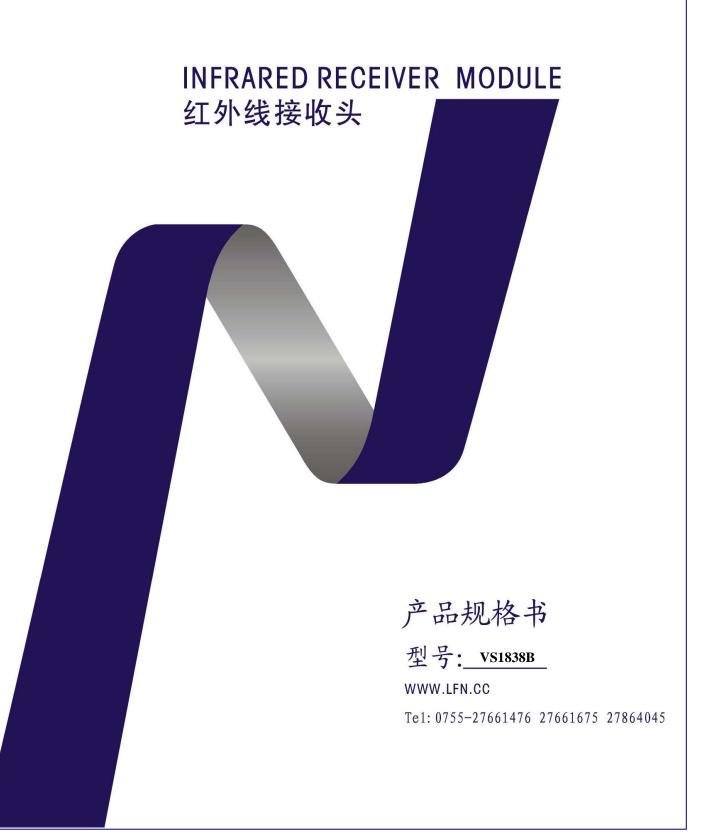


Fig.4 is shows the typical dependence of the MQ-2 on temperature and humidity. Ro: sensor resistance at 1000ppm of H₂ in air at 33%RH and 20 degree.


Rs: sensor resistance at 1000ppm of H₂ at different temperatures and humidities.

SENSITVITY ADJUSTMENT

Resistance value of MQ-2 is difference to various kinds and various concentration gases. So,When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 1000ppm liquified petroleum gas<LPG>,or 1000ppm iso-butane<i-C4H10>concentration in air and use value of Load resistance that(R_L) about 20 K Ω (5K Ω to 47 K Ω).

When accurately measuring, the proper alarm point for the gas detector should be determined after considering the temperature and humidity influence.

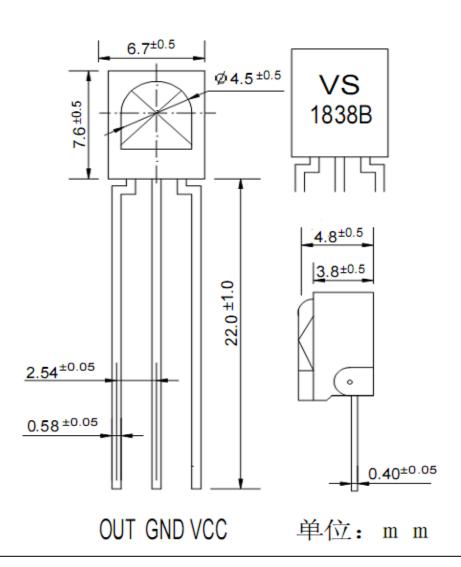
INFRARED RECEIVER MODULE 红外线接收头

型号: VS1838B

1. 简介:

VS1838B 内含高速高灵敏度 PIN 光电二极管和低功耗、高增益前置放大 IC,采用环氧树脂封装外加外屏蔽抗干挠设计,该产品已经通过 REACH 和 SGS 认证属于环保产品,在红外遥控系统中作为接收器使用。

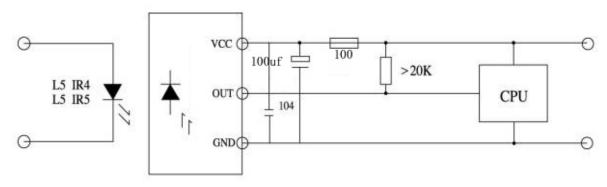
2. 特性:

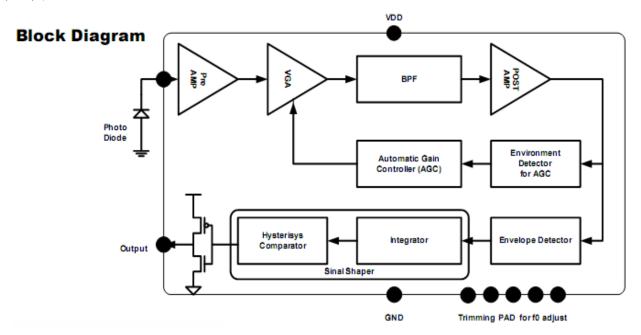

- ●环氧树脂封装外加外屏蔽抗干挠设计;
- ●宽工作电压, 2.7-5.5V;
- ●低功耗; 宽角度及长距离接收;
- ●抗干挠能力强,能抵挡环境干挠;
- ●输出匹配 TTL、CMOS 电平, 低电平有效。

3. 应用:

- ■视听器材(音箱, 电视, DVD, 卫星接收机等);
- ■家庭电器(空调,电风扇,灯饰等);
- ■其它红外线遥控产品。

4. 尺寸:




INFRARED RECEIVER MODULE 红外线接收头

型号:VS1838B

5. 应用电路图:

6. 原理图:

7. 光电参数 (T=25℃ Vcc=5.0v f₀=38KHZ):

参数	符号	测试条件	Min	Type	Max	单位
工作电流	Icc	VDD=5v	0.6	0.8	1.0	mA
接收距离	L	*	11	13		M
接收角度	θ 1/2	EV=200±50LUX, 距离衰减 1/2	+/-35		•	Deg
载波频率	f_0			37. 9		kHz
BMP 宽度	$f_{\scriptscriptstyle BW}$		_	8	_	kHz
低电平输出	V_{OL}	Rpu11-up=2. 4k Ω			250	mV
高电平输出	V_{OH}		VDD-0.3		VDD	V
输出脉冲 宽 度	$T_{ ext{PWL}}$	burst wave Vin=500 μv p-p	450	600	800	μS
	$T_{ ext{PWH}}$	burst wave Vin=50mV p-p	450	640	800	μS

※ 室内, 无阳光直射接收窗, 前、上方 1M 置 40W 电子整流日光灯干挠, 灯光强度为 200 ± 50Lux。

SIRENAS EXTERIORES

Manual de Instalación

MP-150/200/300/400

Recomendaciones para la instalación

Para optimizar el rendimiento de la sirena, se debe evitar realizar cableados muy extensos, ya que el mismo genera una cierta caída de tensión la cual produce una pérdida de potencia.

Para un máximo rendimiento, la longitud del cable no debe superar los 15 metros.

Instalación

La instalación debe realizarse con el terminal positivo de la batería interna de la sirena desconectado. Una vez conectados los cables de TRIGGER, PGM, y TAMPER, debe energizarse la sirena a través de la tensión que entrega la batería de la central de alarma. Finalmente, debe conectarse el terminal positivo de la batería propia de la sirena.

Nota: Tenga en cuenta que cada vez que falte tensión en los terminales POWER, la sirena se disparará en forma automática. Si necesita quitarle la alimentación a dichos terminales, no olvide desconectar el terminal positivo de la batería interna de la sirena, para evitar disparos indeseados.

TERMINALES DE CONEXIÓN

•Terminales POWER: Estos dos terminales son los que le proveen alimentación a la sirena. Dicha alimentación debe tomarse de la batería de la central de alarma.

Importante: Para una mayor protección, no olvide colocar un fusible.

- •Terminal TRIGGER: Mediante esta entrada se controla el disparo de la sirena. La misma debe conectarse a la salida de BELL de la central de alarma. Si la salida de Bell de la alarma dispara por positivo, el terminal Trigger debe conectarse a la salida positiva de Bell y el Jumper Nº 3 debe removerse. Si la salida de Bell de la central de alarma dispara por negativo, el terminal Trigger debe conectarse en el negativo de dicha salida y el jumper Nº 3 debe estar colocado.
- •**Terminal PGM:** Esta entrada puede ser utilizada para indicar si la central de alarma está activada o desactivada. (Para utilizar esta entrada, el Jumper № 5 debe estar colocado).

El terminal PGM debe conectarse a la salida del panel de alarma que indique el estado (Activado o Desactivado). Si dicha salida manda un positivo cuando el panel de alarma está activado, deberá dejarse colocado el Jumper Nº 4 de la sirena. En cambio, si la salida del panel de alarma manda un negativo cuando se encuentra activado, el Jumper Nº 4 debe ser removido. Cuando se active la alarma, la sirena generará un beep de bajo volumen y el Led Multifunción comenzará a parpadear indicando la activación del panel de alarma. En el momento que se desactive la alarma, la sirena generará dos beeps de bajo volumen y el Led Multifunción dejará de parpadear indicando la desactivación del panel. Para cancelar los Beeps debe quitarse el jumper Nº 2. Para cancelar al Led Multifunción, debe quitarse el Jumper Nº 6.

•Terminal TAMPER: Esta salida es N.C.

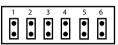
FUNCIONES DE SIRENA

- •Led multifunción: Este Led indica si la alarma se encuentra activada, desactivada o si se produjo un disparo de alarma (Memoria de Alarma).
- •**Pre-alarma:** Si el jumper Nº 1 está colocado, cada vez que la sirena se dispare generará tonos de bajo volumen que irán incrementando en potencia y velocidad durante un período de 15 segundos, avisando que se disparó el sistema de alarma.

Luego de transcurrido dicho tiempo, la sirena comenzará a sonar con su máxima potencia. Para cancelar dicha función, retire el jumper $N^{\circ}1$.

- •Reconocimiento de beeps: Si la alarma emite Beeps en el momento en que es activada y/o desactivada, no es necesario conectar el terminal "PGM" de la sirena para indicar la activación y desactivación, ya que la sirena puede reconocer dichos Beeps y manejar en forma automática al Led Multifunción. Cuando la sirena recibe un Beep en la entrada de Trigger, genera un sonido de bajo volumen y el Led Multifunción comienza a parpadear indicando que la alarma se encuentra activada. Y cuando reciba dos Beeps en la entrada Trigger, la misma generará dos Beeps y el Led Multifunción dejará de parpadear, indicando de este modo que se desactivó la alarma. Para que la sirena reconozca los Beeps debe sacarse el Jumper Nº 5. Si no se saca el Jumper Nº 5, cada Beep que reciba en la entrada de trigger será un disparo de sirena.
- •Memoria de alarma: (Lumínica y sonora): Cada vez que la sirena deje de sonar, permanecerá por un período de 30 minutos encendiendo y apagando en forma secuencial el flash y el Led Multifunción (Sólo en mod. MP-300 Plus y MP-400 A PLus). Luego de transcurrido dicho tiempo, el flash se apagará y el Led Multifunción comenzará a parpadear muy rápidamente. En los modelos MP-200 y MP-150 sólo quedará el Led Multifunción parpadeando rápido hasta que se desactive la alarma. En cualquiera de estos

modelos, si se desactiva el sistema de alarma, la sirena generará un sonido músical de 6 tonos indicando que hubo un disparo. La memoria de alarma se activará en forma automática sí y sólo sí se haya conectado el terminal PGM de la sirena a la salida del panel de alarma que indique el estado (Activado/Desactivado). También se activará si la alarma emite Beeps en los momentos de activación y desactivación.


•Autoalimentada: Esta función se activará cuando se desconecte la alimentación de los terminales "Power" y hará que la sirena suene por un intervalo de aproximadamente 5 minutos (Sólo en el modelo MP-400 A PLUS).

SETEOS DE LA SIRENA

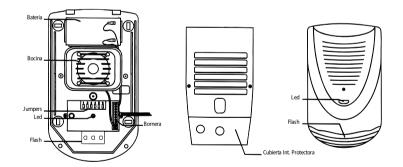
Los cambios efectuados en los jumpers no seran efectivos hasta resetear la sirena, para resetear la sirena, desconecte la alimentación de los bornes power por un intervalo de 5 segundos.

N° DE JUMPER (FUNCION)	CON JUMPER	SIN JUMPER
1 (PREALARMA)	HABILITADA	DESHABILITADA
2 (BEEP'S)	HABILITADOS	DESHABILITADOS
3 (TRIGGER)	DISPARO POR NEGATIVO	DISPARO POR POSITIVO
4 (PGM)	ACTIVADO CON POSITIVO	ACTIVADO CON NEGATIVO
5 (RECONOCIMIENTO DE BEEPS)	SIN RECONOCIMIENTO DE BEEPS	CON RECONOCIMIENTO DE BEEPS
6 LED MULTIFUNCION	HABILITADO	DESHABILITADO

JUMPERS

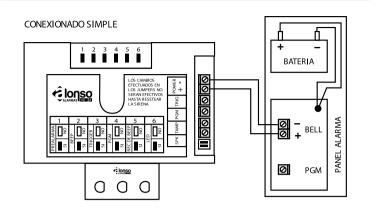
- Para habilitar la prealarma, debe colocarse el jumper Nº 1. Para deshabilitar la prealarma se debe remover dicho jumper.
- Si el Jumper Nº 2 está colocado, la sirena generará los Beeps de bajo volúmen cuando se active y desactive la alarma.
- Si el Jumper Nº 3 está colocado, la sirena está seteada para que se dispare por negativo. Esto quiere decir que la sirena se disparará siempre que en la entrada "TRIGGER" de la sirena no haya un positivo. Por lo tanto, para que la sirena no suene, se debe colocar en dicha entrada una tensión positiva, y cuando se retire la misma, o se coloque dicha entrada a tierra (Negativo), la sirena comenzará a sonar.
- Si se quita el Jumper Nº 3, la sirena quedará seteada para que se dispare por positivo. Esto quiere decir que para que la sirena suene, se debe aplicar una tensión positiva en la entrada "TRIGGER", Para que la sirena no suene, dicha entrada debe estar referida a tierra (Negativo) o no debe tener ninguna tensión positiva.
- Si el Jumper Nº 4 está colocado, la sirena indicará que la alarma está activada siempre que en la entrada "PGM" haya una tensión positiva. Si en dicha entrada no hay tensión o está conectada a tierra (Negativo), la sirena indicará que la alarma está desactivada.
- Si el Jumper Nº 4 no está colocado, la sirena indicará que la alarma está activada cuando en la entrada "PGM" no haya una tensión o la misma esté referida a tierra (Negativo). En este caso, para que la sirena indique que la alarma se encuentra desactivada, en la entrada PGM debe haber una tensión positiva.
- ullet Si el Jumper N° 5 está conectado, la sirena no reconocerá los Beeps. Por lo tanto sólo indicará que la alarma está activada o desactivada si se conecta la PGM.
- Si se quita el Jumper № 5, la sirena reconocerá los Beeps en la entrada"TRIGGER" y manejará en forma automática al Led Multifunción. Esto quiere decir que cuando la central de alarma se active y genere un Beep en la salida de sirena, la sirena indicará que la alarma se activó (El LedMultifunción estará parpadeando). Y cuando se desactive la alarma, y la misma genere dos Beeps en la salida de sirena, el Led Multifunción dejará de parpadear (El Led Multifunción permanecerá encendido)
- Mediante el Jumper Nº 6 se habilita o deshabilita el Led Multifunción.

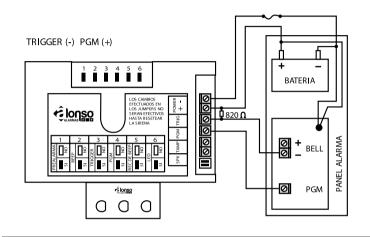
ESPECIFICACIONES TÉCNICAS

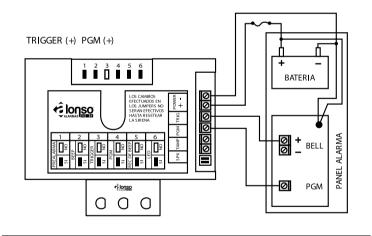

DESCRIPCIÓN	MP-400 A PLUS	MP-300 PLUS	MP-200	MP-150
Tonos de Sirena	3	3	6	3
Flash	Si	Si	-	-
Led Multifunción	Si	Si	Si	Si
Reconocimiento de Beeps	Si	Si	Si	Si
Memoria de Alarma	Si	Si	Si	Si
Tamper Flotante de doble acción	Si	Si	Si	Si
Tamper Switch	N.C.	N.C.	N.C.	N.C.
Batería 12V 1.3 AH	Si	-	-	-
Microprocesada	Si	Si	Si	Si
Programable	Si	Si	Si	Si
Piezoeléctrica	-	-	Si	-
Magnetodinámica	Si	Si	-	Si
Alimentación	12 VCC	12 VCC	12 VCC	12 VCC
Nivel Sonoro	118 dB	118 dB	123 dB	118 dB
Consumo en Reposo	5 mA	5 mA	5 mA	5 mA
Consumo en Trabajo	1,1 A	1,1 A	0,9 A	1,1 A
Dimensiones en Milimetros	280 x 170 x 97	280 x 170 x 97	276 x 147 x 78	180 x 147 x 92
Frecuencias de Trabajo	0,5 - 3 KHz.	0,5 - 3 KHz.	2 - 6 KHz.	0,5 - 3 KHz.

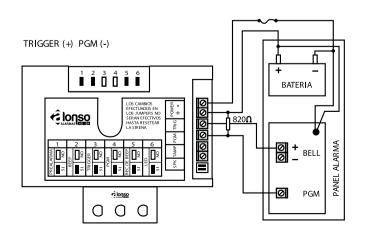
INDICACIONES DEL LED MULTIFUNCIÓN

LED PARPADEANDO EN FORMA LENTA.	LA CENTRAL DE ALARMA SE ENCUENTRA ACTIVADA
LED Y FLASH PARPADEANDO EN FORMA SECUENCIAL	SIGNIFICA QUE HACE MENOS DE 30 MIN. QUE SE DISPARO LA ALARMA
LED PARPADEANDO EN FORMA RAPIDA	SIGNIFICA QUE HAN PASADO MAS DE 30 MIN. DESDE QUE SE DISPARO POR PRIMERA VEZ EL SISTEMA DE ALARMA
LED ENCENDIDO	LA CENTRAL DE ALARMA SE ENCUENTRA DESACTIVADA.


NOTA: Todas estas funciones son válidas si el Led Multifunción se encuentra habilitado.


Detalle





Tipos de Conexionado

GARANTÍA LIMITADA:

Alonso Hnos. Sirenas S.A. garantiza que por un periodo de 18 meses desde la fecha de fabricación, el producto estará libre de defectos en materiales y mano de obra bajo condiciones de uso normal y que, en cumplimiento de cualquier violación de dicha garantía, Alonso Hnos. Sirenas S.A. podrá a su opción reparar o reemplazar el equipo defectuoso al recibo de su equipo en su local de servicio. Esta garantía se aplica solamente a defectos en componentes y mano de obra y no a los daños que pueden haberse presentado durante el transporte y manipulación o a daños debido a causa fuera del control de Alonso Hnos. Sirenas S.A. tales como rayos, voltaje excesivo, sacudidas mecánicas, daños por agua, o daños resultantes del abuso, alteración o aplicación inadecuada del equipo.

La garantía anterior se aplica solamente al comprador original y sustituye cualquier otra garantía, ya sea explícita o implícita, y todas las otras obligaciones y responsabilidades por parte de Alonso Hnos. Sirenas S.A. Esta garantía contiene la garantía total. Alonso Hnos. Sirenas S.A. no se compromete, ni autoriza a ninguna otra persona que pretenda actuar a su nombre, a modificar o cambiar esta garantía ni a asumir ninguna otra garantía o responsabilidad con respecto a este producto.

En Ningún caso, Alonso Hnos. Sirenas S.A. será responsable de cualquier daño o perjuicio directo, indirecto o consecuente, perdida de utilidades esperadas, pérdidas de tiempo o cualquier otra perdida incurrida por el comprador con relación a la adquisición, instalación, operación o fallo de este producto.

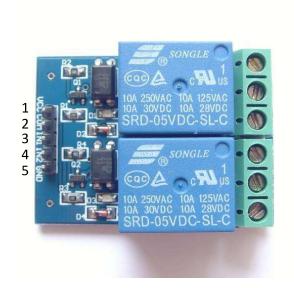
ADVERTENCIA:

Alonso Hnos. Sirenas S.A. recomienda que el sistema sea probado en su integridad con la debida regularidad. sin embargo, a pesar de pruebas frecuentes y debido a interferencia criminal o cortes eléctricos, pero no solo limitado a ello, es posible que este producto deje de operar en la forma esperada.

2 CHANNEL 5V 10A RELAY MODULE

Description

The relay module is an electrically operated switch that allows you to turn on or off a circuit using voltage and/or current much higher than a microcontroller could handle. There is no connection between the low voltage circuit operated by the microcontroller and the high power circuit. The relay protects each circuit from each other.


The each channel in the module has three connections named NC, COM, and NO. Depending on the input signal trigger mode, the jumper cap can be placed at high

level effective mode which 'closes' the normally open (NO) switch at high level input and at low level effective mode which operates the same but at low level input.

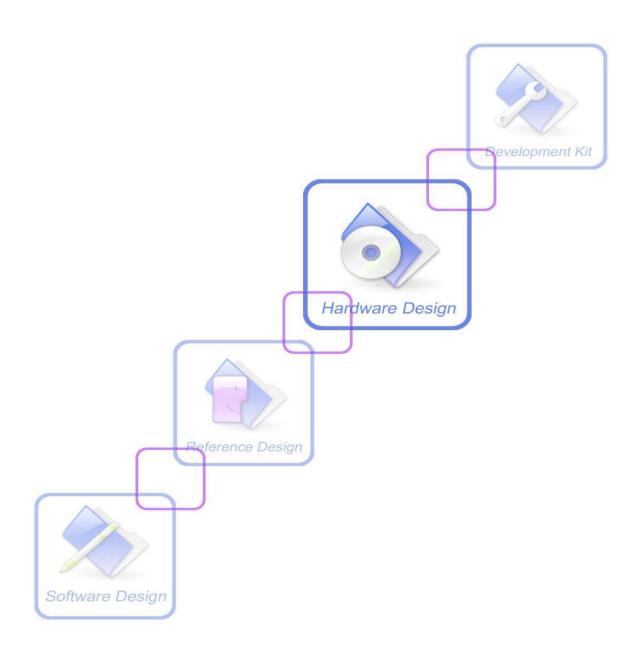
Specifications

- On-board EL817 photoelectric coupler with photoelectric isolating antiinterference ability strong
- On-board 5V, 10A / 250VAC, 10A / 30VDC relays
- Relay long life can absorb 100000 times in a row
- Module can be directly and MCU I/O link, with the output signal indicator
- Module with diode current protection, short response time
- PCB Size: 45.8mm x 32.4mm

Pin Configuration

1. VCC: 5V DC

2. COM: 5V DC


3. IN1: high/low output

4. IN2: high/low output

5. GND: ground

Hardware Design SIM900_HD_V1.01

Table 29: SIM900 current consumption

Voice Call	
GSM 850/EGSM 900	@power level #5 <300mA, Typical 250mA
	@power level #10,Typical 110mA
	@power level #19,Typical 76mA
DCS 1800/PCS 1900	@power level #0 <200mA, Typical 168mA
	@power level #10,Typical 89mA
	@power level #15,Typical 76mA
GPRS Data	
DATA mode, GPRS (1 Rx,1 Tx) CLASS 8	
GSM 850/EGSM 900	@power level #5 <300mA, Typical 240mA
	@power level #10,Typical 110mA
	@power level #19,Typical 83mA
DCS 1800/PCS 1900	@power level #0 <200mA, Typical 170mA
	@power level #10,Typical 95mA
	@power level #15,Typical 80mA
DATA mode, GPRS (3 Rx, 2 Tx) CLASS 10	
GSM 850/EGSM 900	@power level #5 <450mA, Typical 440mA
	@power level #10,Typical 185mA
	@power level #19,Typical 130mA
DCS 1800/PCS 1900	@power level #0 <350mA, Typical 300mA
	@power level #10,Typical 155mA
	@power level #15,Typical 122mA
DATA mode, GPRS (4 Rx,1 Tx) CLASS 8	
GSM 850/EGSM 900	@power level #5 <300mA, Typical 270mA
	@power level #10,Typical 150mA
	@power level #19,Typical 120mA
DCS 1800/PCS 1900	@power level #0 <300mA, Typical 205mA
	@power level #10,Typical 130mA
	@power level #15,Typical 115mA

Class 10 is default set when the module works at data translation mode, the module can also work at class 8 set by AT command.

5.5 Electro-Static Discharge

The GSM engine is not protected against Electrostatic Discharge (ESD) in general. Therefore, it is subject to ESD handing precautions that typically apply to ESD sensitive components. Proper ESD handing and packaging procedures must be applied throughout the processing, handing and operation of any application using a SIM900 module

The measured values of SIM900 are shown as the following table:

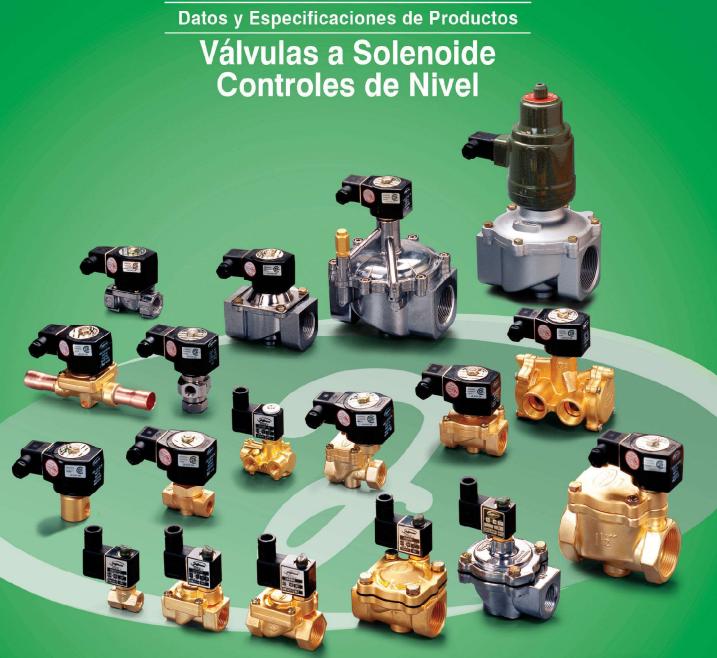


Table 31: PIN assignment

Pin Number	Pin Name	Pin Number	Pin Name
1	PWRKEY	35	PMW1
2	PWRKEY_OUT	36	PWM2
3	DTR	37	SDA
4	RI	38	SCL
5	DCD	39	GND
6	DSR	40	GPIO1/KBR4
7	CTS	41	GPIO2/KBR3
8	RTS	42	GPIO3/KBR2
9	TXD	43	GPIO4/KBR1
10	RXD	44	GPIO5/KBR0
11	DISP_CLK	45	GND
12	DISP_DATA	46	GND
13	DISP_D/C	47	GPIO6/KBC4
14	DISP_CS	48	GPIO7/KBC3
15	VDD_EXT	49	GPIO8/KBC2
16	NRESET	50	GPIO9/KBC1
17	GND	51	GPIO10/KBC0
18	GND	52	NETLIGHT
19	MIC_P	53	GND
20	MIC_N	54	GND
21	SPK_P	55	VBAT
22	SPK_N	56	VBAT
23	LINEIN_R	57	VBAT
24	LINEIN_L	58	GND
25	ADC	59	GND
26	VRTC	60	RF_ANT
27	DBG_TXD	61	GND
28	DBG_RXD	62	GND
29	GND	63	GND
30	SIM_VDD	64	GND
31	SIM_DATA	65	GND
32	SIM_CLK	66	STATUS
33	SIM_RST	67	GPIO11
34	SIM_PRESENCE	68	GPIO12

Catálogo General / 4a

Aprobaciones y Certificados

Características principales Normalmente cerrada y normalmente abierta. Servo operada. Conexiones roscadas de 3/4 a 3 BSP o NPT. Cuerpo de latón forjado o acero inoxidable. Tubo de deslizamiento de AISI 304.

Núcleo móvil y núcleo fijo de AISI 430FR. Espira de sombra de cobre, plata o aluminio.

Aplicaciones:

- •Bombas, equipos de lavado.
- •Irrigación. Compresores. Controles de polución.
- · Calefacción con vapor de media y alta presión.
- Autoclaves. Lavaderos industriales.
- Nebulización, irrigación.
- Secadores de aire. Tratamiento de aguas.

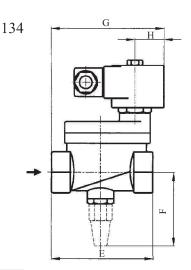
Bobinas capsuladas conexión ISO 4400 / EN 175301-803 (Ex DIN 43650) forma A.. Protección IP65 y NEMA 4x.

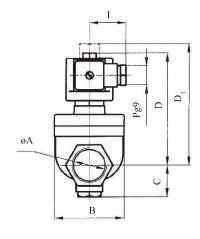
Opcionales:

- Índicador luminoso de bobina energizada.
- Bobinas y carcasas a prueba de explosión y/o intemperie.
 Operador manual sobre el pasaje principal.
- Operador manual sobre el orificio piloto.

Diferencia de presión de trabajo

*Importante: cuando se use corriente continua (CC), la máxima presión diferencial de operación se reduce en un 25% de la indicada en tabla


		Minima			Máxima con va	apor de agua	Máxima con otros fluídos				
Tipo	PT	FE	Otras		Asiento	Asiento d	le PTFE	Otros asientos			
	bar	psi	bar	psi	bar	psi	bar	psi	bar	psi	
NC	0,5	7,5	0,2	3	10	150	17 *	255 *	15 *	225 *	
NA	0,5	7,5	0,2	3	10	150	10	150	10	150	


Especificaciones técnicas - Cuerpo de bronce

-opo	especificaciones tecinicas - ouerpo de bronce												
Ø	Ø orificio		Factor de		Peso		Max. temp. y Nº de catálogo de acuerdo al material del asiento						
conex.	onex.		Lb	Buna "N'	Neoprene	EPDM	FKM	PTFE					
1113.	mm	1115.	IK V	CV	, Kg	LD	80 °C / 176 °F	80 °C / 176 °F	145 °C / 293 °F	150 °C / 302 °F	180 °C / 356 °F		
	Normalmente cerrada												
3/4'	20	0,79	5	5,9	1,2	2,6	1342BA06	1342BN06	1342BE06	1342BV06	1342BT06		
1'	26	1,02	11	13	1,7	3,8	1342BA08	1342BN08	1342BE08	1342BV08	1342BT08		
1,1/2	38	1,50	25	29	3,1	6,8	1342BA12	1342BN12	1342BE12	1342BV12	1342BT12		
2'	50	1,97	40	47	4,1	9,0	1342BA16	1342BN16	1342BE16	1342BV16	1342BT16		
2,1/2	76	3,00	66	77	19	42	1342BA20	1342BN20	1342BE20	1342BV20	1342BT20		
3	76	3,00	85	99	18	40	1342BA24	1342BN24	1342BE24	1342BV24	1342BT24		
							Normalm	nente abierta	1				
3/4'	20	0,79	5	5,9	1,2	2,6	1342BA06INA	1342BN06INA	1342BE06INA	1342BV06INA	1342BT06INA		
1'	26	1,02	11	13	1,7	3,8	1342BA08INA	1342BN08INA	1342BE08INA	1342BV08INA	1342BT08INA		
1,1/2	38	1,50	25	29	3,1	6,8	1342BA12INA	1342BN12INA	1342BE12INA	1342BV12INA	1342BT12INA		
2'	50	1,97	40	47	4,1	9,0	1342BA16INA	1342BN16INA	1342BE16INA	1342BV16INA	1342BT16INA		
2,1/2	76	3,00	66	77	19	42	1342BA20INA	1342BN20INA	1342BE20INA	1342BV20INA	1342BT20INA		
3	76	3,00	85	99	18	40	1342BA24INA	1342BN24INA	1342BE24INA	1342BV24INA	1342BT24INA		

Dimensiones generales

øΑ	В	С	D	$D_{_{1}}$	Е	F	G	Н	I
R 3/4'	52	26	104	114	71	68	84		
R 1'	67	30	108	118	96	72	104	27	35
R 1,1/2	81	36	119	129	114	79	122	1 - "	
R 2'	97	44	125	135	128	85	138		
R 2,1/2'-3'	163	89	214	224	224	170	134		

Dimensiones en mm

	øΑ	В	С	D	$\mathbf{D}_{_{\! 1}}$	Е	F	G	Н	I
	R 3/4'	2,05	1,02	4,09	4,49	2,80	2,68	3,31		
	R 1'	2,64	1,18	4,25	4,65	3,78	2,83	4,09	1,06	1,38
	R 1,1/2°	3,19	1,42	4,69	5,08	4,49	3,11	4,80	1 -,	
Ī	R 2'	3,82	1,73	4,92	5,31	5,04	3,35	5,43		
	R 2,1/2'-3'	6,42	3,50	8,43	8,82	8,82	6,69	5,28		

Dimensiones en ins.

Construcciones especiales

Cuerpo de acero inoxidable:

- •AlSl304: cambiar la letra B por S en el número de catálogo. Ejemplo: 1342ST08.
- •AlSl316: cambiar la letra B por I en el número de catálogo. Ejemplo: 1342IT08.

Datos de la bobina

Tipo de	Código	Potencia	VA (volt	-amper)	Temper máxi		Tensiones
corriente	Courgo	W	Arranque	Sosten.	°C	⁰ F	Tensiones
CA 50 Hz	MF11C	11	40	22	155	311	1
CA 30112	MH11C	11	40	22	180	356	1
CA 60 Hz	MF13C	13	45	27	155	311	2
CA 00 112	MH13C	13	45	27	180	356	2
CC	MH19C	19	19	19	180	356	3

1-(12,24,110,220,240)V 2-(12,24,110,120,220,240)V 3-(12,24,110,220)V

Opcionales	Prefijo	Sufijo	Ejemplos
Bobina a prueba de intemperie, agua y corrosión salina.	YC		YC1342BA08
Bobina a prueba de explosión e intemperie.	ZC		ZC1342BA08
Carcasa a prueba de intemperie.	Y		Y1342BA08
Carcasa a prueba de explosión e intemperie.	Z		Z1342BA08
Operador manual sobre el orificio principal. (**)		- M	1342BA08 -M
Operador manual sobre el orificio del piloto (*) (**)		-MP	1342BA08 -MP
Conexiones NPT.		Т	1342BA08 T
Luz indicadora de Bobina energizada	Ver Bobir	nas.	

(*) No disponible con asiento de PTFE.

(**) Ûnicamente en versiones NC.

Recomendaciones para la instalación Colocación de un filtro delante de la válvula de porosidad \leq de $100~\mu.$ Montar la válvula preferentemente sobre cañería horizontal con la bobina hacia arriba.

La presión de entrada a la válvula debe ser siempre mayor a la presión de salida de la misma.

Para que la válvula pueda abrir, sea normalmente cerrada o normalmente abierta, se debe respetar la presión mínima que se indica en cada modelo.

Aplicaciones según el material del asiento.

ripineaciones seguin	price of the seguine of material del asiento.										
Material del asiento	Buna "N'	Buna "N' Neoprene		FKM	PTFE						
Temperatura máxima	+80 °C / 176 °F	+80 °C / 176 °F	+145 °C / 293 °F	+150 °C / 302 °F	+180 °C / 356 °F						
Usos	Agua, aire, aceites livianos. Gases neutros. Querosene. Bajo y medio vacío.	Oxígeno, alcohol, argón, otros gases y líquidos livianos no corrosivos. Freón 12	Vapor de agua, agua caliente, acetona.	Bencinas, naftas, aromáticos, benceno, etc. Gases calientes. Gasoil	Vapor de agua, aceites calientes, fluidos corrosivos.						

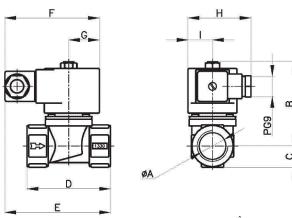
Serie 1330

Serie 2030

Características principales Normalmente cerrada o normalmente abierta. Versiones en acción directa o servodiafragma. Cuerpo de aluminio inyectado. Tapa matrizada de acero inoxidable o aluminio. Conexiones roscadas BSP o NPT. Asientos y diafragma de Buna N.
Bobina capsulada. Conexión ISO 4400 / EN 175301-803 (Ex DIN 43650) forma A.
Protección IP65 y NEMA 4x.
Apertura rápida o apertura lenta regulable hasta 10seg.
Cierre en menos de un segundo.
Opcional: microcontacto de prueba de válvula cerrada.

Especificaciones técnicas

Ø	9	Ø	Fac			Presión dif			Pes	20	
conex.	ori	icio	de f	lujo	Mín		Máx	ima	16	50	Catálogo Nº.
ins.	mm	ins.	Kv	Cv	bar	psi	bar	psi	kg	Lb	
				No	rmalment	e cerrada	- Acción	directa			
1/2	8	0,315	1,7	2			1	15	0.5	1.1	1330LA0
1/2			3,4	4,0			0.2	2	0,5	1,1	1330LA04
3/4	18	0,71	4,2	4,9	0	0	0,2	3	0,5	1,2	1330LA06
1	32	1,26	10	12			0.05	0.75	1	2,2	2030LA08
1 1/4	32	1,20	12	14			0,05	0,75	0,9	1,9	2030LA10
	Normalmente cerrada - Servodiafragma - Apertura rápida										
1	26	1,02	12	14					1	2,2	1330LA08
1 1/4	48	1,89	24	28	0.001	0.01.5		2	1.0	4.0	2030LAD10
1 1/2	70	1,00	35	41	0,001	0,015	0,2	3	1,8	4,0	2030LA12
2	51	2,00	43	50					1,6	3,5	2030LA16
			Norr	nalment	e cerrada	- Servodia	ifragma	Apertura 1	enta		
1	26	1,02	12	14					1,09	2,4	1330LA08L
1 1/4	40	1.00	24	28	0.001	0.015	0,2	3	1.00	4.2	2030LAD10L
1 1/2	48	1,89	35	41	0,001	0,015	0,2	3	1,88	4,2	2030LA12L
2	51	2,00	43	50					1,66	3,7	2030LA16L
				Iormalm	ente cerra	da - Servo	odiafragm	a reforzac	lo		
1	26	1,02	12	14					1	2,2	1330LAR08
1 1/4	4.5	1.00	24	28	0,01	0,15	2	30	1,8	4,0	2030LAR10
1 1/2	45	1,89	34	40	0,01	0,13		30	1,0	4,0	2030LAR12
2			41	48					1,6	3,5	2030LAR16
					ormalmen	te abierta	- Acción c	lirecta			
1/2	8	0,315	1,7	2	0	0	1	15			1330LA0INA
	18	0,71	3,4	4,0	0	0	0,2	3	0,6	1,3	1330LA04INA
3/4	18	0,71	4,2	4,9	-						1330LA06INA
				No	rmalment	e abierta -	Servodia	fragma			
1	26	1,02	12	14					1	2,2	1330LA08NA
1 1/4	48	1,89	24	28	0,001	0,015	0,2	3	1,8	4,0	2030LAD10NA
1 1/2			35	41	0,001	0,013	0,2	,			2030LA12NA
2	51	2,00	43	50					1,6	3,5	2030LA16NA
				Vormaln	nente abie	rta - Servo	diafragm	a reforzad			
1	26	1,02	12	14					1	2,2	1330LAR08NA
1 1/4	15	1.90	24	28	0,01	0,15	2	30	1,8	4,0	2030LAR10NA
1 1/2	45	1,89	34	40	0,01	0,13	2	50	·		2030LAR12NA
2			41	48					1,6	3,5	2030LAR16NA



Válvula a solenoide de 2 vías para gas natural y otros

Dimensiones generales

1330 - 2030

ACCION	DIRECTA

øΑ	В	С	D	Е	F	G	Н	I
1/2'	75	19	75	95	85	27	57	22
3/4'								
1' 1,1/4'	90	29	105	111	85	27	57	22

Dimensiones en mm

øΑ	В	С	D	Е	F	G	Н	I
1/2'	2,95	0,75	2,95	3,74	3,35	1,06	2,24	0,87
3/4'	2,75	0,70	2,70	5,7 1	3,55	1,00	2,2 .	0,07
1'	3,54	1,14	4,13	4,37	3,35	1,06	2,24	0,87
1,1/4	,		,		,	/ /		, , ,

Dimensiones en ins

SERVODIAFRAGMA

øA	В	С	D	Е	F	G	Н	I	J
1'	131	22	157	124	85	27	57	22	74
1 1/4° 1 1/2° 2°	158	46	148	154	85	27	57	22	98

Dimensiones en mm

øΑ	В	С	D	Е	F	G	Н	I	J
1'	5,16	0,87	6,18	4,88	3,35	1,06	2,24	0,87	2,91
1 1/4 '	6,22	1,81	5,83	6,06	3,35	1,06	2,24	0,87	3,86

Dimensiones en ins

Datos de la bobina

Tipo de	Código	Potencia	VA (volt-amper)		Temperatura máxima		Tensiones	
corriente	Codigo	W	Arranque	Sosten.	°C	⁰ F	Tensiones	
CA 50 Hz	MF11C	11	40	22	155	311	1	
CA 30 Hz	MH11C	11	40	22	180	356	1	
CA 60 Hz	MF13C	13	45	27	155	311	2	
CA 00 112	MH13C	13	43	21	180	356		
CC	MH19C	19	19	19	180	356	3	

1-(12,24,110,220,240)V 2-(12,24,110,120,220,240)V 3-(12,24,110,220)V

Aplicaciones

- Equipos de combustión de gas de baja y media presión.
 Aire u otro gas neutro de baja y media presión.
- · Se ajustan a las últimas disposiciones, normas y recomendaciones para uso de gas natural en instalaciones industriales para el territorio de la República Argentina.

Opcionales	Prefijo	Sufijo	Ejemplos
Bobina a prueba de intemperie, agua y corrosión salina.	YC		YC2030LA12
Bobina a prueba de explosión e intemperie.	ZC		ZC2030LA12
Carcasa a prueba de intemperie. (**)	Y		Y2030LA12
Carcasa a prueba de explosión e intemperie. (**)	Z		Z2030LA12
Conexiones NPT		T	2030LA12T
Indicador de válvula cerrada (*)		-I2	2030LA12-I2
Luz indicadora de Bobina energizada	Ver Bobinas	i.	

- (*) Mínimo dp 0.005 bar 0.075 psi.
- (**) Solamente para los tamaños de 1 ', 11/2' y 2'

Recomendaciones para la instalación Colocación de un filtro delante de la válvula con porosidad $\leq 50 \mu$. Preferentemente sobre cañería horizontal con la bobina hacia arriba.

Silent Air

BGH

Aire acondicionado

Manual de Usuario

Lea atentamente todo este manual antes de utilizar su nuevo equipo de aire acondicionado.

Modelos: BC23FN, BC30FN, BC45FN.

8- Datos de eficiencia energética

DATOS DE EFICIENCIA ENERGÉTICA						
MARCA COMERCIAL	MODELO	CONSUMO ANUAL	CAPACIDAD FRÍO	IEE	CLASE EF FRÍO	R
	BC23FN	415 Kw	2,60 Kw	3,01	А	R
BGH	BC30FN	563 Kw	3,40 Kw	3,02	А	R
	BC45FN	845 Kw	5,10 Kw	3,01	А	R

IEE: Indice de eficiencia energética

R: Refrigeración

Los datos pueden sufrir modificaciones. La empresa se reserva el derecho de realizar cambios sin previo aviso.

Luxury - Bombé - Argenpol DIN - Conexdin - Cajas IP30

Centrales de distribución modular

Funcionalidad y estilo

WWW.CONEXTUBE.COM

CENTRALES DE DISTRIBUCIÓN MODULAR

Luxury - Bombé - Argenpol DIN - Conexdin - Cajas IP30

La confiabilidad de nuestros gabinetes Din es el resultado de mas de 35 años de desarrollo y mejora continua. CONEXTUBE le brinda confiabilidad, seguridad, funcionalidad y estilo para todos sus proyectos. Ampliamente recomendados por especialistas y profesionales, certificados según las normas IRAM e IEC y con el sello de seguridad argentina, los gabinetes DIN CONEXTUBE son la mejor elección para instalaciones eléctricas seguras.

Los modelos de uso residencial son ideales para instalarlos en ambientes y espacios modernos y de estilo, cumpliendo con las exigencias de arquitectos y decoradores.

Los modelos industriales cumplen los requisitos de seguridad, resistencia y durabilidad necesarios para su instalación en ambientes húmedos y agresivos o bien, a la intemperie.

LUXURY

Crear lugares únicos es darle valor a los detalles.

• Línea de centrales de lujo y cuidada estética.

Burbuja de nivel

de tapa y marco que los protege hasta el final de la obra para un trabajo final perfecto.

Bridas de acople Para ampliar su capacidad.

Puerta con cerradura
Para mayor seguridad.

TRAM (S)

Riel DIN Metálico y remobible para facilitar el trabajo.

Puerta reversible
Apertura
configurable a
izquierda
o derecha.

<< Batidor desmontable Para montar y cablear en el taller.

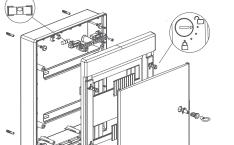
<a><
Packaging renovado
Caja contenedora
con toda la información
requerida para la
instalación.

Especialmente pensadas para quienes dan valor a los detalles. La línea de centrales DIN Luxury, fue concebida con la funcionalidad, estilo y seguridad (Doble aislación) que solo CONEXTUBE puede brindar. Luxury es la primer familia de centrales DIN con el ensayo de disipación térmica IEC60670-24, garantizando el tamaño correcto del gabinete, en función del calor generado por los componentes internos. Posee una alta resistencia al ablandamiento por temperatura.

Caracteristicas técnicas:

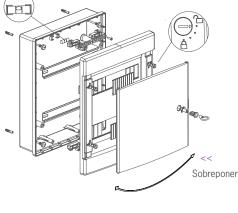
Normas de fabricación: IEC 60670-1. Grado de protección: IP 40.

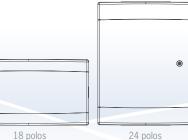
Impacto: IK10 (20J), según IEC 62262. Rango: 4 a 54 polos.

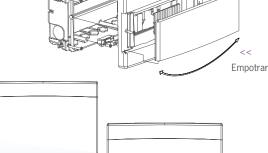

Material: Polímeros de ingeniería, no propagantes de llama. Libre de halógenos. Uso interior.

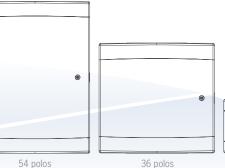
Empotrar

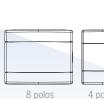
Sobreponer











4 polos

12 polos

en durlock, en modelos de 4 a 12 polos.

Accesorios incluídos

Cobertor troquelable

Kit de marcación

Accesorios para completar la instalación

CÓDIGO	DESCRIPCIÓN
46201000	Sistema para fijación en Durlock®.
46201010	Brida de acople para centrales de 24, 36 y 54 polos.
46201020	Llave triangular
49008151	Barra puesta a tierra/neutro 8 polos
49008152	Barra puesta a tierra/neutro 12 polos
49008153	Barra puesta a tierra/neutro 18 polos

Tabla de códigos de producto y disipación térmica

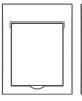
CÓDIGO	DESCRIPCIÓN	DISIPACIÓN (w)	DIMENSIONES (mm)
46010412	Central DIN Luxury de embutir T.F 4 polos	20	196 x 148 x 101
46010422	Central DIN Luxury de sobreponer T.F 4 polos	20	196 x 148 x 101
46010812	Central DIN Luxury de embutir T.F 8 polos	25	175 x 220 x 104
46010822	Central DIN Luxury de sobreponer T.F 8 polos	25	175 x 220 x 104
46011212	Central DIN Luxury de embutir T.F 12 polos	30	180 x 292 x 105
46011222	Central DIN Luxury de sobreponer T.F 12 polos	30	180 x 292 x 105
46011812	Central DIN Luxury de embutir T.F 18 polos	33	216 x 392 x 109
46011822	Central DIN Luxury de sobreponer T.F 18 polos	33	216 x 392 x 109
46012412	Central DIN Luxury de embutir T.F 24 polos	35	400 x 312 x 105
46012422	Central DIN Luxury de sobreponer T.F 24 polos	35	400 x 312 x 105
46013612	Central DIN Luxury de embutir T.F 36 polos	60	400 x 420 x 109
46015412	Central DIN Luxury de embutir T.F 54 polos	70	582 x 420 x 109

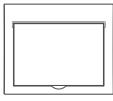
T.F.: Tapa Fumé

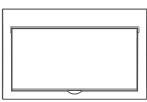
Bombé 🛭 • Primer línea de centrales ecológicas.

Reciclable: Realizadas en polímeros de ingeniería reutilizable.

No tóxicos: Libre componentes halógenos (cloro, flúor, yodo, etc.)




Contenido plástico reducido: Aportando al cuidado del medio ambiente.



Línea de centrales DIN de diseño tradicional, ligeras y robustas (IK 09), con doble aislación y fabricada con cantidad de plástico reducido y material reciclado en planta propia con altos estándares de calidad. Poseen tapas fumé y el modelo de 12 polos puede ser acoplado mediante bridas, que permiten conformar centrales de 24, 36 y 48 polos, adaptándose fácilmente a las necesidades de cada instalación. Para uso domiciliario y comercial.

4 polos 8 polos

12 polos

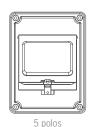
Caracteristicas técnicas:

Normas de fabricación: IEC 60670-1 Grado de Protección: IP 40 Impacto: IK9 (10J), según IEC 62262 Rango: 4 a 12 polos (acoplables). Material: Polímeros de ingeniería, no propagantes de llama. Libre de halógenos. Uso interior.

Sobreponer

Códigos de producto

CÓDIGO	DESCRIPCIÓN	DIMENSIONES (mm)
45000036	Central DIN Bombé de embutir - 4 Polos	172 x 132 x 61
45003036	Central DIN Bombé de sobreponer - 4 Polos	172 x 132 x 106
45000040	Central DIN Bombé de embutir - 8 Polos	172 x 203 x 61
45003040	Central DIN Bombé de sobreponer - 8 Polos	172 x 203 x 106
45000044	Central DIN Bombé de embutir - 12 Polos	172 x 272 x 61
45003044	Central DIN Bombé de sobreponer - 12 Polos	172 x 272 x 106
45000074	Central DIN Bombé de embutir - 24 Polos (2x12)	344 x 272 x 61
45000084	Central DIN Bombé de embutir - 36 Polos (3x12)	516 x 272 x 61


CONEXDIN

La meior protección en intemperie

Centrales IP65, para exterior.

Tableros estancos ideales para realizar instalaciones en ambientes industriales o a la intemperie. Su alto grado de estanqueidad y su doble aislación aseguran la protección necesaria para otorgar una larga vida útil a la instalación más allá de la agresividad del medio. Cumple con las exigencias del ENRE para 1er seccionamiento, luego del medidor de electricidad.

Caracteristicas técnicas:

Normas de fabricación: IEC 60670-1. Grado de Protección: IP 65. Impacto: IK 10, según Polímeros de ingeniería autoextinguible, libre de halógenos. Uso Interior o intemperie (resistente a rayos UV).

Códigos de producto

CÓDIGO	DESCRIPCIÓN	DIMENSIONES (mm)
44000044	Gabinete Conexdin IP65 para 4 polos	146 x 106 x 91
44000045	Gabinete Conexdin IP65 para 5 polos	180 x 135 x 110
44000055	Gabinete Conexdin IP65 para 9 polos	170 x 180 x 100

LÍNEA DE CAJAS IP30

Cubrebornes de superficie

• Línea de cobertores para protecciones en interior.

Tapas cobertoras de superficie, Diseñadas para un montaje rápido. Fabricados con polímeros de ingeniería de altas cualidades, en color blanco brillante.

Códigos de producto

CÓDIGO	DESCRIPCIÓN	DIMENSIONES (mm)
46010200	Caja DIN IP30 para 2 polos - Superficie	131 x 50 x 61
46010400	Caja DIN IP30 para 4 polos - Superficie	131 x 87 x 61

ARGENPOL DIN

Robustez y seguridad para la industrial.
• Línea de centrales Din IP65.

Burbuja de nivel

Perfecta colocación.

de 3 puntos

Exclusivo sistema de cierre de Conextube, que permite un cierre a simple presión o con sus llaves, brindando una alta seguridad y evitando una apertura forzada.

Llaves especiales

Diferentes opciones para una seguridad más personalizada.

TRAM S

Burlete inyectado

Brindando una estanquidad superior.

Bridas de acople

Para requerimientos más exigentes manteniendo sus características técnicas.

Fijación total

Posee anclajes esquineros laterales y perimetrales para fijación de placas y rieles regulables en altura y profundidad.

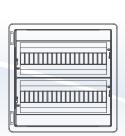
Línea de gabinetes para distribución de energía, de doble aislación e IP65, especialmente diseñado para la instalación de aparatos DIN en ambientes industriales, o donde se requiera una excelente protección al ingreso de líquidos, polvo o agentes químicos. Cuenta con un bastidor modular desmontable que facilita su armado y mantenimiento. Por su capacidad de acople es ideal para armarios y tableros compartimentados.

Características técnicas:

Normas de fabricación: IEC 60670-1 Grado de Protección: IP 65. Burlete: Poliuretano inyectado sist. FIPFG. Impacto: IK 10, según IEC 62262. Rango: 38 a 96 polos. Material: Policarbonato autoextinguible, libre de halógenos. Doble aislamiento. Uso Interior o intemperie

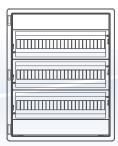
Puerta opaca

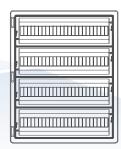
Puerta trasparente



38 polos (2 x 19)

57 polos (3 x 19)




MERCADO DE GABINETES ARGENPOL **ÁMBITOS FUNCIONES**

Petroquímica, automotriz, centros comerciales, via pública, hotelería, talleres, energía, telecomunicaciones, agua y saneamiento, puertos y muchos mas.

Centros de control, tableros de distribución, comado y automatización; tableros de acometida, tableros de control energético, y muchos mas.

72 polos (3 x 24)

96 polos (4 x 24)

Doble aislación garantizado por su estructura y material.

con exclusivos "Excéntrico buscador" y tapones obturadores.

Kit de instalación

Accesorios

CÓDIGO	DESCRIPCIÓN
49008105	Brida de acople de Gabinete Argenpol
48408007	Patas de fijación de Gabinete Argenpol (Kit de 4 patas)
48408008	Maneta de seguridad - 3 embocadouras
48448004	Maneta fija de apertura
	Subpanel consultar

Códigos de producto

CÓDIGO	DESCRIPCIÓN	DIMENSIONES (mm)
48009522	Gabinete AGP DIN 424220 T.O. de 38 polos.	420 x 420 x 200
48009532	Gabinete AGP DIN 424220 T.T. de 38 polos.	420 x 420 x 200
48009523	Gabinete AGP DIN 524220 T.O. de 57 polos.	520 x 420 x 200
48009533	Gabinete AGP DIN 524220 T.T. de 57 polos.	520 x 420 x 200
48009524	Gabinete AGP DIN 645223 T.O. de 72 polos.	640 x 520 x 230
48009534	Gabinete AGP DIN 645223 T.T. de 72 polos.	640 x 520 x 230
48009525	Gabinete AGP DIN 645223 T.O. de 96 polos.	640 x 520 x 230
48009535	Gabinete AGP DIN 645223 T.T. de 96 polos.	640 x 520 x 230

T.O.: Tapa Opaca. T.T.: Tapa Transparente.

>> INFORMACIÓN TÉCNICA <<

TECNOLOGÍA DE MATERIALES [Los materiales plásticos en la industria eléctrica]

Los materiales plásticos sintéticos tienen un lugar de privilegio en la elaboración de productos y materiales eléctricos y electrónicos, por la variedad y riqueza de sus propiedades.

Una forma de clasificarlos es por su comportamiento químico y físico frente al calor: los termorígidos, que una vez tratados y obtenida la pieza, no pueden volver a transformarse, y los termoplásticos, que pueden volver a transformarse, siendo asi reciclables.

Entre los termoplásticos, los denominados polímeros de ingeniería son los mas aptos para las exigencias de la industria eléctrica y electrónica. Permiten fabricar productos con una gran rigidez dieléctrica, sofisticados, de excelente terminación, livianos, resistentes a golpes, a agentes químicos, al ablandamiento por calor y a los rayos UV.

PRINCIPALES PROPIEDADES DE LOS POLÍMEROS DE INGENIERÍA:

PROPIEDADES	NORMA	UNIDAD	POLICARBONATO	POLIÓXIDO FENILENO	POLIAMIDA	A.B.S.
MECÁNICAS						
Resistencia al impacto	ISO 179	KJ/m²	No rompe	40	40	
Resistencia al impacto con entalla	ISO 179	KJ/m²	30-50	15	25	19
Resistencia a la flexión	ISO 178	MPa	No rompe	No rompe	No rompe	>55
Resistencia a la tracción	ISO 3268	MPa	65-70	37	60	46
ELÉCTRICAS						'
Resistencia a las fugas superficiales	IEC 112	V/50dr	KC200	KC175	KC600	KC600
Resistencia superficial	IEC 93	Ω	15	> 12	12	> 12
Resistividad	IEC 93	Ωcm	> 1016	> 1014	> 1012	> 1014
Rigidez eléctrica	IEC 243	kV/mm	35	16	34	31
FÍSICAS						
Temperatura de deflexión	ISO 75/A	°C	135	95	60	95
Temperatura Vicat	ISO 306/B50	°C	145-150	109	210-220	100
Resistencia de temperatura	Contínua	°C	-50 a +130	−50 a +100	-40 a +100	−30 a +100
Tropicalización y hongos			Sin degradación	Sin degradación	Sin degradación	Sin degradación
Absorción de agua	ISO 62/1 96h	mg	10	7	320	13
Densidad	ISO R1183	kg/dm3	1,2	1,1	1,14	1,04
RESISTENCIA AL FUEGO						
Indice de oxígeno	ISO 4589		24,3	27,5	23	21
Inflamabilidad	UL 94 3 mm	%02	94V2	94V1	94V2	HB
Resistencia al hilo incandescente	IEC 695 2-1	°C	960	960	960	650
Toxicidad de humos	ISO 04615	%CI	Libre de halógenos	Libre de halógenos	Libre de halógenos	Libre de halógenos

DOBLE AISLACIÓN (

Las cualidades de los polímeros de ingeniería permiten desarrollar productos eléctricos de doble aislación que, en su normal uso es prácticamente imposible el accidente por falla a tierra dentro del aparato o instalación.

Las reglamentaciones AEA 90364 y 95150 obligan la realización de instalaciones de doble aislación en las acometidas y tablero principal de una vivienda y las recomienda en el resto de la instalación.

Condiciones básicas para un envolvente de doble asilación:

- Equipos y aparatos interiores totalmente cubiertos por material aislante. El envolvente llevará un símbolo visible de su condición.
- El material aislante y condiciones de fabricación del envolvente deben responder a las exigencias normativas de resistencia al fuego,

penetración de sólidos y liquidos, rayos UV, y resistencia al impacto.

- Cualquier elemento metálico que salga al exterior deberá estar convenientemente aislado de cualquier parte conductora dentro del envolvente, ya sea en condición normal o en caso de falla.
- El envolvente, equipado y listo para entrar en funcionamiento, no debe mostrar ninguna parte activa accesible, aun las del conductor de protección.
- Las masas del interior del envolvente no deben conectarse al circuito de protección, aún las de los aparatos que poseen un borne destinado a tal fin.
- Si la puerta del envolvente se puede abrir sin llaves o herramientas deberá proveerse una obstáculo de material aislante que impida un contacto accidental con cualquier parte activa o masas.

GRADOS DE PROTECCIÓN PARA LOS ENVOLVENTES [Penetración de sólidos y líquidos]

La Directiva IEC 60529 (Grados de protección provistos por envolventes) describe un sistema para clasificar los grados de protección provistos por los envolventes de equipamientos eléctricos para limitar el acceso de objetos externos dentro de los mismos durante su operación normal.

El grado de protección contra el ingreso de objetos dentro de un envolvente se clasifica mediante el código IP seguido de dos dígitos. El primero de ellos indica el grado de protección contra el acceso de objetos sólidos y el segundo dígito indica el grado de protección contra el ingreso de líquido.

>> PRIMERA CIFRA

IP	CUERPOS SÓLIDOS Y/O CONTACTOS CON PARTES PELIGROSAS	GRADO DE PROTECCIÓN SEGURIDAD
0		Sin protección
1	50 mm	Protección contra cuerpos sólidos superiores a 50 mm. (por ej. contactos involuntarios con el dorso de la mano).
2	12 mm	Protección contra cuerpos sólidos superiores a 12 mm. (por ej. dedos de la mano).
3	2,5 mm •	Protección contra cuerpos sólidos superiores a 2.5 mm. (por ej. herramientas, cables).
4	1 mm	Protección contra cuerpos sólidos superiores a 1 mm. (por ej. alambres, pequeños cables).
5	(<u> </u>	Protección contra el polvo (ningún depósito perjudicial).
6		Totalmente protegido contra el polvo.

>> SEGUNDA CIFRA

IP	ENSAYO	GRADO DE PROTECCIÓN SEGURIDAD
0		Sin protección
1	6	Protegido contra la caida vertical de gotas de agua.
2		Protegido contra la caida de gotas de agua hasta 15º de la vertical.
3	•	Protegido contra la caida de gotas de agua hasta 60º de la vertical.
4		Protegido contra las proyecciones de agua en todas direcciones.
5		Protegido contra los chorros de agua en todas direcciones.
6	1	Protegido contra el chorro de agua similar a los golpes de mar.
7	& &	Protegido contra los efectos de la inmersión.
8	100m	Protegido contra los efectos de la inmersión bajo presión.

RESISTENCIA AL IMPACTO

La Directiva IEC 62262 describe un sistema para clasificar los grados de protección contra impactos mecánicos que deben proveer los envolventes para equipamientos eléctricos. Este grado se clasifica por el código IK seguido de una cifra de uno o dos dígitos. La cifra es indicativa de la resistencia mecánica que opone el envolvente a un impacto expresado en Joules. La energía de impacto en Joules se determina por medio de ensayos claramente especificados en la Norma. Como ejemplo, para obtener un grado IK10 de 20 Joules es necesario contar con una masa esférica o semiesférica de acero de 5 kg basculante que sostenida a 0,4 mts de altura por sobre el punto de impacto de la probeta a ensayar al soltarla adquiere una aceleración de 10 m/seg2. Se cumple que: 5kg x 0,4 mt x 10 m/seg2= 20 Joules.

TABLAS DE GRADO IK SEGÚN IEC 62262		
Código IK	Energía de imapcto [J]	
IK01	0.14	
IK02	0.2	
IK03	0.35	
IK04	0.5	
IK05	0.7	
IK06	1	
IK07	2	
IK08	5	
IK09	10	
IK10	20	

CONEXTUBE es una empresa argentina nacida en 1979 especializada en el desarrollo y fabricación de materiales y productos para instalaciones eléctricas. Nuestra planta de 9.000 m² se encuentra ubicada en el noroeste del Gran Buenos Aires, y cuenta con maquinarias de última generación, matricería propia, laboratorio de ensayo de materiales, logística integrada y un equipo altamente capacitado de profesionales, técnicos y operarios.

Nuestros procesos y productos están certificados conforme a las normas ISO 9001:2008 y normas IEC, cumpliendo con las directivas regulatorias de seguridad de productos eléctricos para Argentina y varios países de la región. Con presencia permanente en más de 15 países. Por calidad, seguridad y prestigio, CONEXTUBE es la elección de los profesionales.

Nuestra familia de productos

Equipamientos para distribución de energía

- Gabinetes para medición colectiva: Aislantes y acoplables, para medidores monofásicos y trifásicos h/ 29 kW.
- Gabinetes para medición y toma indirecta: Aislantes para T2 y T3 mayores a 30 Kw.
- Cajas de toma:

Aislantes, para acometidas subterraneas, 63/400 A.

- Cajas de toma y seccionamiento: Aislantes, para distribución en country y maniobras de redes subterráneas.
- Cajas para medidores individuales: Aislantes , monofásicas y trifásicas.

Cajas y gabinetes multifunción IP65

• Argenpol:

Gabinetes aislantes acoplables para tableros de potencia.

- Conexpol:
- Cajas aislantse modulares.
- Tablepol:

Tableros aislantes.

Conexbox:

Cajas aislantes de paso para instalación a la vista.

• CAP:

Cajas de aluminio inyectado para instalación a la vista.

Centrales de distribucion modular

• Luxury:

Gabinetes aislantes acoplables 4/54 polos, IP40.

• Argenpol DIN:

Gabinetes aislantes 38/96 polos, IP65.

Bombé:

Gabinetes aislantes acoplables 4/36 polos, IP40.

• Conexdin:

Gabinetes aislantes 4/9 polos p/tableros de pilar, IP65.

Componentes eléctricos de BT

- CXT A Interruptores termomagnéticos Hasta 63 A, 4500/3000 A de PdC, límite térmico 3.
- CXT D: Interruptores Diferenciales

Hasta 63 A, sensibilidad 30 mA, Clase de disparo A (Si) y AC.

Materiales de instalación

- Conectores para caños metálicos fexibles Metálicos roscas BSC y BSP 3 /8" a 4".
- Prensacables

Metálicos y plásticos, roscas BSC, BSP y PG 1/4" a 4".

• Caños metálicos flexibles

Tipos RE y LT con vaina aislante h/ 4".