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24A new statisticalmonitoring technique based on partial least squares (PLS) is proposed for fault detection and di-

25agnosis in multivariate processes that exhibit collinear measurements. A typical PLS regression (PLSR) modeling

26strategy is first extended by adding the projections of the model outputs to the latent space. Then, a PLS-

27decomposition of the measurements into four terms that belongs to four different subspaces is derived. Q2In

28order to online monitor the PLS-projections in each subspace, new specific statistics with non-overlapped do-

29mains are combined into a single index able to detect process anomalies. To reach a complete diagnosis, a further

30decomposition of each statistic was defined as a sum of variable contributions. By adequately processing all this

31information, the technique is able to: i) detect an anomaly through a single combined index, ii) diagnose the

32anomaly class from the observed pattern of the four component statistics with respect to their respective confi-

33dence intervals, and iii) identify the disturbed variables based on the analysis of the main variable contributions

34to each of the four subspaces. The effectiveness observed in the simulated examples suggests the potential appli-

35cation of this technique to real production systems.

36© 2013 Published by Elsevier B.V.

3738

39

40

41 1. Introduction

42 Statistical process monitoring (SPM) applies multivariate statistics

43 and machine learning methods to product quality and production con-

44 trol, fault detection and diagnosis, and estimation of fault/fault-free

45 magnitudes. The SPM approaches based on historical operating data

46 are useful when applied to process having a large number of measured

47 variables and when causal models are unavailable [1]. In particular, la-

48 tent variable (LV) models are more adequate than causal models to

49 deal with monitoring tasks. Along the last two decades, several strate-

50 gies based on LV models have been proposed for multivariate SPM

51 [2–7]. When a process operates under normal conditions (i.e., when

52 only ‘common-cause’ variations are present), then the correlation struc-

53 ture underlying the measured data can be adequately described

54 through LV models. Monitoring techniques based on LV are useful for

55 detecting and diagnosing abnormal behaviors in complex multivariate

56 processes; and therefore they are of great interest for their use in indus-

57 trial applications [8]. For instance, partial least squares (PLS) is often ap-

58 plied in Process Analytical Technology (PAT) projects, where most

59 applications have successfully been used for monitoring biotechnologi-

60 cal processes of the pharmaceutical industry [9].

61Several fault detection indexes based on LV models can be used to

62alert on the presence of possible anomalies during the process opera-

63tion. An alarm signal typically appears when an index exceeds its

64predefined control limit. Once a fault is detected, the fault diagnosis is

65made by analyzing the contributions of each measured variable to the

66specific index that caused the alarm. An essential requirement for fault

67diagnosis is to avoid misdiagnosis. For example, in the case of a fault

68in a sensor or in an actuator, only one variable associated to the faulty

69device should ideally contribute to the index with a high positive

70value. Contribution charts basically calculate the contributions of the

71variables in a fault situation and select the variableswith large contribu-

72tions as indicators of the probable cause of the fault [10]. Thus, an anal-

73ysis of well-defined contributions should have the following desirable

74properties: i) in absence of faults, all contributionswould exhibit similar

75low average values, thus determining a normal baseline level; ii) in the

76presence of a single fault (i.e., a fault that is due to only one variable), the

77contribution corresponding to the faulty variable should be large, and

78iii) in the presence of a multiple fault (e.g., multiple sensor failures),

79the abnormally large contribution of each faulty variable must be great-

80er than the rest [11].

81Inmedium and large scale processes (such as chemical manufactur-

82ing plants, food industries, etc.), there are a large number of controlled,

83manipulated, and process variables. When a multivariate process

84operates under normal conditions, then the measurement space

85spanned by the measured variables exhibits a non-full or deficient

86rank. In such a case, a model of the correlation structure among all
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order to online monitor the PLS-projections in each subspace, new speci

ture underlying the measured data can be adequately described

through LV models. Monitoring techniques based on LV are useful forthrough LV models. Monitoring techniques based on LV are useful for

detecting and diagnosing abnormal behaviors in complex multivariate
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87 measured variables is required for reaching a proper process monitor-

88 ing. Methods of projection to LVs can be used to transform noisy collin-

89 ear data into well-conditioned and reduced-dimension data that

90 preserve all the useful information about the process, thus allowing

91 the capture of the ‘common-cause’ subspace [7]. These data-driven

92 methods typically use historic data (collected during normal operating

93 conditions) to develop a LV model able to effectively explain the ‘com-

94 mon-cause’ variability. Several of these monitoring techniques (such as

95 PCA: principal component analysis, ICA: independent component anal-

96 ysis, Kernel PCA, and Kernel ICA) treat the data without differentiating

97 outputs from inputs [12–15]. In contrast, a PLS regression (PLSR)

98 model is closer to the intrinsic structure of multi-input multi-output

99 process [16,17], because it allows the elimination of some undesired

100 input variables from the original pre-sets (e.g., those interfering the re-

101 gression model) [18,19].

102 In the last years, several tools based on PLSR have been proposed for

103 monitoring industrial processes [18,20–23]. Simultaneously, some ef-

104 forts have also been aimed at improving the fundamentals of PLSR

105 [24,25]. The development of surveillance PLSR tools able to detect

106 anomalies or poor process performances is undoubtedly an active field

107 of current research.

108 This article aims at developing an online data processing technique

109 useful for helping process engineers to reach a swift identification of

110 the origin of a fault when themonitoring system trigger an alarm signal.

111 The paper is organized as follows. Section 2 describes the fundamentals

112 of an extended PLSR modeling and their geometric properties, which

113 was needed in order to obtain a new online PLS-decomposition of the

114 measurements with associated statistics and contribution analysis.

115 Section 3 presents the main statistical monitoring tools and describes

116 their roles in the measurement PLS-decomposition. Section 4 discusses

117 some simulation tests based on both static and dynamic systems. Final-

118 ly, the main conclusions are presented in Section 5.

119 2. Extended PLSR modeling

120 The PLSR model developed here is calculated by simultaneously

121 deflating the data matrices with the classical PLS–NIPALS algo-

122 rithm [26]. This procedure gives better results for multivariate

123 prediction and process monitoring than other alternative PLS algo-

124 rithms [25]. Besides, the simultaneous deflation on both data matri-

125 ces allows the detection of predictor variables playing an interfering

126 effect [18].

127 Consider a processwithmmeasured input variables plus pmeasured

128 output variables. Assume that Nmeasurements of each variable are col-

129 lected while the process is operating under normal conditions. In order

130 to build a model, the N multivariate measurements are arranged into a

131 predictor matrix X = [x1… xN]' (N × m) consisting of N samples of m

132 variables per sample, and a response matrix Y = [y1… yN]´ (N × p),

133 with N samples of p variables per sample. Then, PLSR can be used to

134 find a regression model between the measurement vectors x =

135 [x1…xm]' and y = [y1…yp]', even when their correlation matrices

136 (Rx and Ry) are both positive semi-definite (i.e., X and Y have collin-

137 ear variables). Themethod produces a projection of X and Y into low-

138 dimension spaces defined by the number A of LV which are then

139 regressed. At each iteration a, the implicit objective of the PLS–

140 NIPALS algorithm (see Table 1) is to find a solution to the following

141 optimization problem [25]:

max
wa ;qa

w′

aX
′

aYaqað Þ subject to : wak k ¼ 1; qak k ¼ 1: ð1Þ

142143

144 In Eq. (1), Xa and Ya stand for the a-times deflated versions of X1 =

145 X and Y1 = Y respectively. The number A of deflations to bemade is de-

146 termined by checking the residual matrices until the leftover informa-

147 tion can no longer be modeled [18]. In this way, the PLSR modeling

148 strategy produces an external and an internal model. The external

149model decomposes X and Y into score vectors (ta and ua), loading vec-

150tors (pa and qa), and residual error matrices (eX and eY2), as follows:

X ¼
XA

a¼1

tap
′
a þ eX ¼ TP′ þ eX; P ¼ p1:::pA½ &; ð2Þ

151152

Y ¼
XA

a¼1

uaq
′

a þ eY2 ¼ UQ ′ þ eY2; Q ¼ q1:::qA½ &; ð3Þ

153154where T = [t1... tA] andU = [u1... uA] are orthogonal by columns. In the

155internal model, ta is linearly regressed against the y-score vector ua, i.e.,

U ¼ TB þ eU ;B ¼ diag b1:::bAð Þ ð4Þ

156157where b1…bA are the regression coefficients determined by minimiza-

158tion of the residuals eU.
159CallR and S the pseudo-inverses ofP' andQ', respectively (i.e.,P'R = I

160andQ'S = I). Then, for newX andY, the predictions of T andU are direct-

161ly obtained from Eqs. (2) and (3), as:

T ¼ XR; R ¼ r1:::rA½ &; ð5Þ

162163
U ¼ YS; S ¼ s1:::sA½ &: ð6Þ

164165

166Since the row space of eX belongs to the null-space of R, then eXR ¼ 0

167[27]. Similarly for eY2, that belongs to the null space S, and consequently

168eY2S ¼ 0 . Hence, by combining Eqs. (3)–(5), the following prediction

169model is obtained:

Y ¼ XRBQ ′ þ eUQ ′ þ eY2 ¼ bY þ eY1 þ eY2; ð7Þ

170171where eY2 ¼ Y−YSQ′ and eY1 ¼ YSQ′−bY are the projection and transfor-

172mation error matrices, respectively. Hence, we have extended the PLSR

173model description by adding the projection of Y toU (Eq. (6)), which al-

174lows the decomposition of the prediction error eY into two terms: eY1 and

175eY2 (Eq. (7)).

1762.1. PLS-decomposition of the input and output spaces

177After synthesizing an “in-control” PLSR model, the measurement

178vectors x∈ℝm and y∈ℝp can be decomposed as described below.

179Lemma 1. Call ΠPjR⊥ (ΠQ jS⊥ ) the projector on the model subspace SMX ≡

180Span Pf gpR
m (SMY ≡ Span Qf gpR

p), along the residual subspace SRX ≡

181Span{R}⊥ (SRY ≡ Span{S}⊥). Then:

ΠPjR⊥ ¼ PR′; ΠR⊥ jP ¼ I−PR′; ð8Þ

182183

ΠQ jS⊥ ¼ QS′; ΠS⊥ jQ ¼ I−QS′; ð9Þ

Table 1 t1:1

t1:2(X, Y)-deflated PLS-NIPALS algorithm. Outputs: P, Q, B, T, and U.

t1:3Center the columns of X, Y to zero mean and scale them to unit variance.

t1:4Set a = 1, X1 = X, Y1 = Y. (Initialization)

t1:51. Set ta
0 equal to the maximum-variance column of Xa.

t1:6Set ua equal to the maximum-variance column of Ya.

t1:72.wa ¼ X′

aua= X′

aua

## ##, (‖wa‖ = 1).

t1:83. ta ¼ X′

awa .

t1:94. qa ¼ Y′

ata= Y′

ata
## ##, (‖qa‖ = 1).

t1:105. ua ¼ Y′

aqa .

t1:11If ‖ta
0
− ta‖ b ε, go to step 6, else set ta

0 = ta and return to step 2.

t1:126. p*
a ¼ X′

ata= t′
ata

$ %
, pa = pa⁎/‖pa⁎‖, (‖pa‖ = 1). #

t1:137. ta = ta‖pa⁎‖, wa = wa‖pa⁎‖, ( ‖wa‖ ≠ 1). #

t1:148. ba ¼ u′
ata= t′

ata
$ %

, (inner regression).

t1:159. Xaþ1 ¼ Xa−tap
′

a , Yaþ1 ¼ Ya−bataq
′

a , (deflations).

t1:1610. P← pa, Q← qa, B← ba, T← ta, U← ua, (save data to matrices).

t1:17Set a = a + 1. If a N A, then stop; else return to step 1.

# : Compensation of scales by previous normalization. t1:18
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184185 where ⊥ denotes the orthogonal complement of the subspace (see Proof 1 in

186 Appendix A).

187 From Lemma 1, we propose the following theorem on the PLS-

188 decomposition.

189 Theorem 1. The predictor and response vectors can be decomposed (by

190 PLSR) in complementary oblique projections as:

x ¼ bx þ ex ∈ R
m;

bx ¼ PR′x ∈ SMX ≡ Span Pf g;

ex ¼ I−PR′

& '
x∈ SRX ≡ Span Rf g

⊥

ð10Þ

191192

y ¼ by* þ ey2 ∈R
p;

by* ¼ QS′y∈ SMY ≡ Span Qf g;

ey2 ¼ I−QS′ð Þy∈ SRY ≡ Span Sf g
⊥;

ð11Þ

193194 with the projections on the model subspaces SMX and SMY interrelated

195 according to:

by*
¼ by þ ey1 ∈ SMY ;

by ¼ QBR′bx∈ SMY ;

ey1 ¼ QS′y−QBR
′
x∈ SMY ;

ð12Þ

196197 where ey1 is the error of the linear transformation bx→by*, and by denotes the
198 predictable part of by* from bx (see Proof 2 in Appendix A).

199 The minimum angle θX between the two complementary sub-

200 spaces SMX and SRX is defined as the number 0 ≤ θX ≤ π/2 that

201 satisfies: cosθX ¼ max bx′ex= bx
## ## ex

## ##$ %
. A similar definition applies for

202 the minimum angle θY between SMY and SRY. In turn, θX (θY) can be es-

203 timated through [28]:

sin θX ¼ 1= PR′
## ##

2
; sin θY ¼ 1= QS′

## ##
2

ð13Þ

204205

206 The coordinates of bx and by*
on the model subspaces SMX and SMY, are

207 given by:

t ¼ R′x; u ¼ S′y; ð14aÞ

208209 where t = [t1 ⋯ tA]′ and u = [u1 ⋯ uA]′. The latent vectors are related by:

u ¼ Bt þ eu; ð14bÞ

210211 where bu ¼ Bt ¼ S′by is the prediction of u. Then, from Eqs. (10)–(12),

212 (14a) it results:

bx ¼ Pt; by ¼ Q bu: ð14cÞ213214

215Therefore, the corresponding correlation matrices are related as

216follows:

Λ ¼ R′RxR ¼ N−1ð Þ
−1

T′T ¼ diag λ1:::λAð Þ; ð15aÞ

217218

Δ ¼ N−1ð Þ
−1bU′bU ¼ BΛB ¼ diag bδ1:::bδA

& '
; ð15bÞ

219220

Rbx ¼ N−1ð Þ
−1bX′bX ¼ PΛP′ ¼

XA

a¼1

λapap
′
a; ð15cÞ

221222

Rby ¼ N−1ð Þ
−1bY′bY ¼ QΔQ′ ¼

XA

a¼1

λab
2
aqaq

′
a; ð15dÞ

223224where λi and bδi are the estimated variances of ti and bui, respectively.
225The main geometric properties of the PLS-decomposition are repre-

226sented in Fig. 1 for an idealized low-order hypothetical system. Both

227measurement vectors (x and y) are decomposed into their respective

228projections; and the corresponding control regions (intervals for SRX
229and SRY, and ellipses for SMX and SMY), are also indicated. The oblique

230minimum angles θX (θY) between the model subspace SMX (SMY) and

231the complementary residual subspace SRX (SRY) are easily visualized.

2323. Process monitoring based on PLS-decomposition

233The SPM includes three main activities: 1) the detection of an out-of-

234control condition or occurrence of an anomaly; 2) thediagnostic achieved

235by classifying the type of anomaly that has generated the abnormal be-

236havior, and 3) the isolation of the disturbed variables and – ideally – of

237the disturbing sources. In the following, every one of these points is

238analyzed.

2393.1. PLS-based fault detection

240Once an in-control PLSR model is developed using process data

241under normal operating conditions, the process state can be followed

242by projecting the actual measurements x and y on subspaces SMX, SRX,

243SMY, and SRY, and by using the proper statistics with its control limits.

244For example, a signal of an unexpected change in the input variables x

245can be detected by using the t-based Hotelling's T 2 statistic in SMX,

T
2
t ¼ Λ

−1=2
t

###
###
2
¼ Λ

−1=2
R′

& '
bx

###
###
2
¼ Λ

−1=2
R′

& '
x

###
###
2
; ð16Þ

246247which can be compared against a control limit. This statistic measures a

248meaningful change on the model subspace SMX, and serves for discrim-

249inating excessive changes from normal variations.

250However,when a special event thatwas not originally considered by

251the PLSR model occurs, the new observations x will partially move

Fig. 1. Schematic representation of the PLS-decomposition of themeasurement vectors x and y in their projections on themodel and residue subspaces. The in-control regions are also indicated.
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252 outside SMX towards SRX , showing an increment in the squared of the

253 predicted error SPEx,

SPEx ¼ ex
## ##2 ¼ I−PR′ð Þx

## ##2: ð17Þ

254255

256 This last statistic measures the distance to the model lying in SRX; in

257 other words, it shows a departure of x from the regular expected behav-

258 ior by going to the subspace SRX. Similarly, the bu-based Hotelling's T 2 sta-

259 tistic can be written as

T
2
bu ¼ Δ

−1=2bu
###

###
2
¼ Δ

−1=2
S′

& '
by

###
###
2
; ð18Þ

260261 and used for detecting significant amplitude changes lying in the model

262 subspace SMY. Also, the distance to the regression model in SMY can be

263 written as [see Eqs. (12, 14)]:

SPEy1 ¼ ey1
## ##2 ¼ QS′ −QBR′

( ) y
x

* +####
####
2

¼ Q S′y−BR′xð Þ
## ##2: ð19Þ

264265

266 Similarly, the distance to the model lying in SRY is defined as:

SPEy2 ¼ ey2
## ##2 ¼ I−QS′ð Þy

## ##2: ð20Þ

267268

269 MatricesRbx andRby (Eqs. 15c, 15d) are often singular becausebx andby
270 typically have collinear variables, as it is inferred from Eq. (14c). Conse-

271 quently, the generalized Mahalanobis distance of bx and by can be used to

272 measure the projections as follows:

Dbx ¼ bx′R
−

bx bx; ð21aÞ

273274
Dby ¼ by′R

−

by by: ð21bÞ

275276

277 The following theorem states that not all these statistics are

278 independent.

279 Theorem 2. The Mahalanobis distances computed from bx, t, bu, and by are

280 equivalent, i.e., Dbx ¼ T2
t ¼ T2

bu ¼ Dby (see Proof 3 in Appendix A).

281 The identity in Theorem 2 suggests that the behavior of the response

282 variables y can be monitored through the predictor variables x. There-

283 fore, the monitoring of the complete measurement space can be

284 implemented through the following independent statistics: Tt
2, SPEx,

285 SPEy1, and SPEy2, each one actuating in a different subspace: SMX, SRX,

286 SMY, and SRY, respectively (see Fig. 1). Consequently, a combined detec-

287 tion index ITC can be defined to attain the whole measurement space

288 without signal superposition,

ITC ¼
T2
t

τ2α
þ
SPEx
δ2x;α

þ
SPEy1

δ2y1;α
þ
SPEy2

δ2y2;α
¼ y′ x′
( )

Φ
y
x

* +
; ð22Þ

289290 where τα
2 , δx,α

2 , δy1,α
2 , δy2,α

2 are the respective control limits with a

291 confidence level α, and Φ is a symmetric positive-definite matrix

292 (Φ N 0)). Note that in this way the significance level of each normal-

293 ized statistic is 1. The vector arrangement on the right of Eq. (22) is

294 derived from Eqs. (16, 17, 19, 20), and it shows that the resulting

295 quadratic index depends on the extended vector [y′ x′]′ . As indicat-

296 ed in Appendix B, a control limit Iα (with a confidence level α) can

297 also be defined for ITC; and this index is useful for simultaneous mon-

298 itoring of product quality, process changes, and sensor problems.

299 This combined detection index defines a multidimensional elliptic

300 region that is compatible with the assumption of multi-normal

301 data. Therefore, the amount of false alarms and undetected faults

302 are significantly reduced with respect to the performance typically

303 yielded by separated indexes [12]. The main difference among the

304 statistics composing the combined index ITC are the different scaling

305 factor and the subspace where they are relevant. Typically, the scale

306τα
2 for the statistic Tt

2 is much larger than the scale factors δx,α
2 , δy1,α

2 ,

307or δy2,α
2 for the quadratic errors. This happens because the noise-like

308variability of the errors are much smaller than the signal variability

309of Tt
2 responding to the correlation structure. Thus, a multivariate

310change in x (from its normal values) that lies on SMX produces a con-

311tribution to ITC that is lower than a change of similar magnitude on

312SRX, SMY, or SRY, measured by SPEx, SPEy1, or SPEy2, respectively.

3133.2. Diagnosis of process anomalies

314In order to determine the discriminating capacity of the four statis-

315tics composing the index ITC, an artificial process system – here identi-

316fied with the subscript 0 – is created for generating ideal data obeying

317to a predetermined correlation structure. This artificial process is de-

318fined by first setting values to the PLSR matrices Λ0, P0, B0, and Q0,

319that stand for a model of the system behavior under normal condition.

320In this procedure, the random score vector t0 ∈R
A
∼N 0;Λ0ð Þ works as

321an independent variable to generate the associate vectors of “input”

322and “output” responses by

x0 ¼ P0 t0 ∈ SMX ≡ Span P0f gpR
m
;

y0 ¼ Q 0B0t0 ∈ SMY ≡ Span Q 0f gpR
p
;

ð23Þ

323324

325Since Eq. (23) are linear combinations of random variables, the

326resulting input and output vectors respectively follow: x0 ∼N

3270;P0Λ0P′
0ð Þ and y0 ∼N 0;Q 0B0Λ0B0Q ′

0ð Þ , thus featuring ‘common-

328cause’ variations only. Since these data stand for an ideal perfect

329model, the residuals ex, ey1 and ey2 are null, and there are no differences

330betweenmodel predictions and ideal data, i.e.,bx ¼ x0 andby ¼ by*
¼ y0.

331An anomalous event is detected by a significant change in the mea-

332surements, which triggers the alarm condition when ITC ≥ Iα. The above

333measurement decomposition allows the discrimination among six differ-

334ent classes of anomaly sources, facilitating in this way the diagnostic task.

335Each one of these six alternatives is analyzed by assuming that data are

336generated under localized pure disturbances and then observing the de-

337tection track followedwith the availablemodel (Λ0,P0,B0,Q0). The sketch

338in Fig. 2 helps to visualize how a warning signal (at ex; ey1; ey2 or t) is

339generated as the disturbed measurements (x or y) go through the PLSR

340model.

341Hence, under the above framework, the following classes of anoma-

342lies are discriminated:

343Class 1. Sensor faults associated to x, represented by additional signals

344ξ, that take the x vector out of the pattern cast by the PLSRmodel. In this

345case, the input vector can be written as,

x ¼ x0 þ ξ; Data generationð Þ

346347where x0 is the “free-of-change” part of the input-vector measurement.

348Let us assume that the disturbance ξ does not follow the correlation pat-

349tern of x0 at all (see Eq. (23)), in other words, ξ ∈ SRX. Then, t ¼ R′
0x ¼

350R′
0x0 þ R′

0ξ ¼ t0 þ 0 ¼ t0 , which shows that the disturbance goes

351completely to the residual variable

ex¼x−bx ¼ x−P0t ¼ x−x0 ¼ ξ≠0 ∈ SRX Disturbance detectionð Þ

352353

354Class 2. Sensors faults associated to the output variable y,

y ¼ y0 þ η; Data generationð Þ

355356where y0 is the “free-of-change” part with a population structure deter-

357mined by the normal conditions only. This disturbance is analyzed by

358assuming that η ∈ SRY. Hence, the disturbance track from generation

359to detection is as follows:

by*
¼ Q0S

′
0y ¼ Q 0S

′
0y0 þ Q 0S

′
0η ¼ y0 þ 0 ¼ y0;
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, that take the

at all (see Eq.
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ey 2¼y−by*
¼ η≠ 0∈ SRY ; Disturbance detectionð Þ

362363 and again, a measurement disturbance not associable with the normal

364 behavior is sent to a residual subspace, in this case, SRY.

365 Class 3. Changes in the correlation structure of x. An x vector popula-

366 tion affected by this kind of change can also be generated by the same

367 score t0, but using an “unknown” change ΔP = P − P0, i.e.,

x¼Pt0¼ P0þΔPð Þt0 ¼ x0 þ ΔPt0: Data generationð Þ

368369

370 It should be noted, however, that when using the measurement x

371 with the available model P0, the scores change to t ¼ R′
0x¼R′

0 P0þΔPð Þ

372 t0 ¼ t0 þ R′

0ΔPt0, thus generating the following no-null residual values

ex ¼ x−bx ¼ x0 þ ΔPt0ð Þ−P0 t ¼ x0 þ ΔPt0ð Þ− x0 þ P0R
′
0ΔPt0ð Þ

¼ I−P0R
′
0ð ÞΔPt0≠ 0∈ SRX ; ey1 ¼ by*

−by ¼ y0−Q 0B0t
¼ y0−Q 0B0 t0 þ R′

0ΔPt0ð Þ ¼−Q 0B0R
′

0ΔPt0≠ 0∈ SMY :

373374 where the residuesex andey1 are used to detect the disturbance. Also, it is

375 important to note that Λ−1=2
0 R′

0
bx

###
###
2
=τ

2
α≪ ex

## ##2=δ2x;αwhen bx
## ##2 ¼ ex

## ##2.

376 Class 4. Changes in the intrinsic gains. The diagonal matrix B is the

377 core place where the PLSR model ties up input with output vari-

378 ables. Let us assume an unknown change occurred in this matrix,

379 i.e.,

by *
¼ Q0Bt0 ¼ Q 0 B0 þ ΔBð Þt0 ¼ y0 þQ 0ΔBt0; Data generationð Þ

380381 and analyze the effects on the statistics being considered for mon-

382 itoring,

ey1 ¼ by*
−by ¼ y0 þ Q 0ΔBt0ð Þ−Q 0B0t0 ¼ Q 0ΔBt0≠ 0∈ SMY

383384 which tells that the “detecting signal” should be observed by mon-

385 itoring the residue ey1 on SMY, while the remaining statistics remain

386 unaffected (see Fig. 2).

387 Class 5. Changes in the correlation structure of y. Let us assume an un-

388 known change in the matrix Q, i.e.

y¼QB0t0¼ Q0þΔQð ÞB0t0¼y0þΔQB0t0 Data generationð Þ

389390 and the detection track characterized by

by *
¼ Q0S

′

0y ¼ Q 0S
′

0 y0 þ ΔQB0t0ð Þ ¼ y0 þ Q0S
′

0ΔQB0t0ey2 ¼ y−by*

¼ y0 þ ΔQB0t0ð Þ− y0 þ Q 0S
′
0ΔQB0t0ð Þ

¼ I−Q 0S
′
0ð ÞΔQB0t0≠ 0 ∈ SRY

391392 and also

ey1 ¼ by*
−by ¼ y0 þ Q0S

′

0ΔQB0t0

& '
−y0 ¼ Q 0S

′

0ΔQB0t0≠ 0∈ SMY :

393394 where the residues ey1 and ey2 are used to “detect the disturbance”.

395Class 6. A significant change in the process condition produces

396measurements that follow the correlation structure captured by the

397undisturbed PLSR model. This type of disturbance can be represented

398by changes in the population parameters of t0 ∼ N(0,Λ0), i.e., we have

399to assume a displacement of E{t0} from 0 to a μt ≠ 0, or a significant

400change in the variability from Λ0 to Λt ≠ Λ0. Hence, the anomaly in

401this case produces

t ¼ t0 þ Δt∼N μt;Λtð Þ Data generationð Þ

402403with a Δt of magnitude such that: Tt
2 = ‖Λ0

−1/2t‖2 = ‖Λ0
−1/2(t0 +

404Δt)‖2 ≥ τα
2 (disturbance detection).

405The above results are summarized in Table 2. The highlighted dis-

406crimination patterns indicate the statistics that are activated as soon

407as the measurements (x, y) bring information about a localized model

408mismatch. The six analyzed anomalies can qualitatively be grouped

409into the following three categories: sensor fault (classes 1 and 2), pro-

410cess change (classes 3, 4 and 5), and excessive (quality) operation

411change (class 6).

412Some final comments about the effect of the dimension A on the dis-

413criminating sensitivity seem convenient at this point. Recall that the

414predictor variables x are assumed as belonging to an m dimensional

415space, i.e., x∈ℝm. This space is then projected onto the subspaces SMX

416and SRX where dim(SMX) = A ≤ m and dim(SRX) = m-A. Hence, when

417A→m, the subspace SRX (useful for detecting sensor faults in the predic-

418tor variables x) reduces, leaving information of possible anomalous

419measurements in SMX. It is then understandable that when A increases

420beyond a certain point, the ability for failure detection on SRX tends to

421disappear. At the same time, too small values of Amight move the cor-

422related behavior to SRX, playing an interfering roll in the residue index

423SPEx. A similar reasoning can be done with the output variables y, orig-

424inally in a space of dimension p, i.e., y∈ℝp.

Table 2 t2:1

t2:2Expected statistics pattern for each anomaly class.

t2:3Anomaly class Statistics composing ITC
(associated subspaces)

t2:4Tt
2/τα

2

(SMX)

SPEx/

δx,α
2

(SRX)

SPEy1/

δy1,α
2

(SMY)

SPEy2/

δy2,α
2

(SRY)

t2:5Class 1: fault of sensors in x (ξ) − ++ − −

t2:6Class 2: fault of sensors in y (η) − − − ++

t2:7Class 3: changes in correlations of x (ΔP) − ++ ++ −

t2:8Class 4: changes in the intrinsic gains (ΔB) − − ++ −

t2:9Class 5: changes in correlations of y (ΔQ) − − ++ ++

t2:10Class 6: excessive change in (μt, Λt) ++ − − −

t2:11++: significant value.−: negligible value.

Fig. 2.Measurements decomposition based on projections onto the subspaces created by a PLSR model.
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425 3.3. Isolation of disturbed variables or disturbing sources

426 When trying to localize a faulty sensor or detect an abnormal corre-

427 lation, the identification of the involved variables becomes very helpful.

428 The use of contribution analysis to characterize an anomaly has been

429 previously proposed [11]. The preliminary classification of the anoma-

430 lous event according to Table 2, enable us to restrict the search problem

431 to one or two statistics.

432 A simple strategy for decomposing the four statistics in Eq. (22) is

433 also proposed here. The arrangement can be applied to any quadratic

434 form I2 = z′Az (like Tt
2, SPEx, SPEy1, or SPEy2), to reveal the contribu-

435 tion intensity of each variable zi. This decomposition is performed as

436 follows:

I
2
¼ z′A

Xn

i¼1

zi ¼
Xn

i¼1

z′aizi ¼
Xn

i¼1

cI
2
zið Þ ð24Þ

437438 where ai = [ai1 ⋯ ain]′ is the i-th column of the matrix A,

439 zi ≜ [0 ⋯ zi ⋯ 0]′ (n × 1) is a vector with only a nonzero value

440 in the i-th position, and cI2(zi) stands for the contribution of zi to I2.

441 This contribution captures the gradient of the statistic in the zi direction,

442 i.e.,

1

2
∇z I

2
& '

+ zi ¼
1

2
∇z z′Az

$ %
+ zi ¼ z′aizi ¼ cI

2
zið Þ: ð25Þ

443444

445 Note that it can also be written in terms of the projections by

446 substituting the relationshipsR′bx ¼ R′x, I−PR′ð Þex ¼ I−PR′ð Þx,S′by*
¼ S′

447 y and I−QS′ð Þey2 ¼ I−QS′ð Þy in Eqs. (16, 17, 19, 20), yielding

cT
2
t xið Þ ¼ x′aixi ≡ bx′aibxi; with A ¼ RΛ

−1
R′ ¼ a1⋯am½ &m,m ð26Þ

448449

cSPEx xið Þ ¼ ex′aiexi;with A ¼ I−PR′ð Þ
′
I−PR′ð Þ ¼ a1⋯am½ &m,m ð27Þ

450451

cSPEy1 xið Þ ¼ by*′ bx′
( )

a j
bxi; cSPEy1 y j

& '
¼ by*′ bx′
( )

a j
by*
j

with A ¼
SS′ −SBR′

−RBS′ RB
2
R′

* +
¼ a1⋯apapþ1⋯apþm

h i
pþmð Þ, pþmð Þ

ð28Þ

452453

cSPEy2 y j

& '
¼ ey′

2
a jey2; j;with A ¼ I−QS′ð Þ

′
I−QS′ð Þ ¼ a1⋯ap

h i
p,p

: ð29Þ

454455

456 Then, by combining Eqs. (22), (24), (26)–(29) gives

ITC ¼ IMX xð Þ þ IRX xð Þ þ IRY1 x; yð Þ þ IRY2 yð Þ

ITC ¼
Xm

i¼1

cIMX xið Þ þ
Xm

i¼1

cIRX xið Þ þ
Xm

i¼1

cIRY1 xið Þ þ
Xp

j¼1

cIRY1 y j

& '
0
@

1
A

þ
Xp

j¼1

cIRY2 y j

& '
ð30Þ

457458 where e.g., the term cIMX(xi) = cTt
2(xi)/τα

2 in Eq. (30) is the normal-

459 ized contribution of xi to ITC through the projection on SMX (see

460 Eq. (26)). Furthermore, since IMX has a significance level of 1, then

461 the significance level of their contributions cIMX is also adopted

462 equal to 1. In particular, cT2
t xið Þ ¼ xiai

′x (Eq. (26)) is equivalent to

463 the contribution defined by Westerhuis et al. [29]; and it tends to

464 the contribution reported by Alvarez et al. [30], when SMX→ℝ
m, be-

465 cause Dbx→T2
x ¼ x′R−1

x x with Rx N 0.

466 The variable contribution defined by Eq. (24) guarantees a correct

467 diagnosis when A is positive semidefinite [11], which always holds for

468 the four statistics of Eqs. (26)–(29). A reliable isolation of faulty sensors

469 must correctly indicate the disturbed variable. For example, a fault in

470 the k-th sensor of x can be represented as x = x0 + fkξk [10], where fk
471 is the fault magnitude and ξk = [00 ⋯ 1 ⋯ 0]′ is the fault direction. If

472 the faulty measurement projection is mostly included in SRX (see Class

473 1), then it can be expressed as: ex ≅ f kξk (i.e. exk ≅ f k and exi ≅ 0∀i≠ k).

474Thus, by including such value into the contributions to ITC (depending

475on the subspace), it results:

IMX ; IRY1; IRY2 ≅ 0;

cIRX xið Þ ¼ ex′aiexi=δ
2
x;α ¼

f k ξ
′

kai 0 = δ
2
x;α ¼ 0 for i≠k

f kξ
′
kai f k=δ

2
x;α ¼ f

2
kaii=δ

2
x;α for i ¼ k

(
ð31Þ

476477

478A correct diagnosis occurs when the contribution of the non-faulty

479variable is less than or equal to the contribution of the faulty variable,

480i.e. when cIRX(xk) ≥ 0 (see Eq. (31)). Therefore, a correct isolation is

481guaranteed when aii ≥ 0, which is always true since A ≥ 0 (Eq. (27)).

4824. Simulation test

483The describedmonitoring procedure is now testedwith randommea-

484surements obtained from the numerical simulation of two systems of dif-

485ferent complexity. The first system is a synthetic example representing a

486hypothetical static process, where the internal data structure was arbi-

487trary chosen. The second application is a more realistic problem where

488the variables of a dynamic process under normal conditions are empiri-

489cally modeled by PLSR.

4904.1. A four-state static process

491The synthetic example is first simulated to better interpret the pro-

492posed methodology as a monitoring tool. The normal operation of the

493chosen system includes four internal states, which are represented by

494the following four points of its latent space (t-scores): {(t1⁎,t2⁎)}1 … 4 =

495{(1,1),(1,3),(3,3),(3,1)}. The “measurements” of the external variables, x

496and y, are generated by adding zero-mean Gaussian random noises

497(εi, i = 1…4) to the PLSR correlation structure characterized by the

498arbitrary-selected process matrices P, Q, and B, as follows:

Internal part
t0 ¼ t

*
þ ε1; ε1∼N 0;0:1

2
I2

& '
;

u ¼ Bt0 þ ε2; B ¼ diag 2;0:5ð Þ; ε2∼N 0;0:05
2
I2

& '
;

8
<
:

External part
x ¼ Pt0 þ ε3; P ¼ p1 p2½ &; ε3∼N 0;0:05

2
I7

& '
;

y ¼ Quþ ε4; Q ¼ q1 q2½ &; ε4∼N 0;0:05
2
I5

& '
;

8
<
:

p1 ¼ 0:4045;0;0:5394;0:2697;0:1348;0;0:6742½ &
′
;

p2 ¼ 0;0:7906;0:1581; ‐0:1581; ‐0:3162;0:4743;0½ &
′
;

q1 ¼ 0:5883;0; ‐0:1961;0;0:7845½ &
′
;

q2 ¼ 0:0081;0:7054;0:0678; ‐0:7054;0:0109½ &
′
;

ð32Þ

499500

501This model is used to simulate 40 multivariate observations under

502‘normal conditions’ and the generated dataset is used to fit the PLSR

503model. The selection of A = 2 is determined bymonitoring the simulta-

504neous deflation of X and Y [18]; in this way the errors regarding the

505“true” matrices Q, B, and P are negligible. The control limits τα
2, δx,α

2 ,

506δy1,α
2 and δy2,α

2 are calculated as explained in Appendix B.

507Table 3 shows six simulated anomalies (one for each class in

508Table 2): a) anomalies of classes 1 and 2 correspond to sensor biases

509that are simulated by disturbing the measurements x and y; b)

Table 3 t3:1

t3:2Simulated scenarios of anomalies.

t3:3Location Anomaly class Magnitude of the change/fault ITC/Ia
(Ia = 2.266)

t3:4k = 11 1 Δx = [0.3 0 0 0 0 0.25 0]′ (Multiple fault) 1.980

t3:5k = 19 2 Δy = [0.35 0 0 0 0]′ (Single fault) 2.381

t3:6k = 27 3 Δp2 = [0 0.28 0 0−0.07 0.14−0.14]′ 5.799

t3:7k = 35 4 ΔB22 = 0.25 3.291

t3:8k = 43 5 Δq1 = [−0.05 0.025 0.05 0.025−0.1]′ 3.700

t3:9k = 51 6 Δt = [0 6]' 2.715
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510 anomalies of classes 3, 4, and 5 are implemented by altering the process

511 matrices; and c) anomaly of class 6 consists in adding up a changeΔt to

512 t0, such that ITC N Iα. Each fault is simulated by affecting only one sample

513 point at a discrete time, k; and immediately the anomaly is canceled

514 from k + 1 onwards. These anomalies represent a hard test for evaluat-

515 ing the ability of the method.

516Fig. 3a shows the time evolution of the ITC detection index and its

517component statistics. The alarm condition is triggered at a given sample

518k, when the ITC index overpasses the control limit. The index ITC proved

519to be effective for detecting all simulated anomalies. Table 3 shows the

520proportion of the variation of ITC with respect to control limit for each

521simulated fault-scenario. The patterns of the statistics recorded in

Fig. 3. Simulation example based on a statistic process. (a) Temporal evolution of the combined index ITC and of its component statistics. (b) Variable contributions to each component

statistics of ITC.
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522 Fig. 3a along with the information given in Table 2 allow an unambigu-

523 ous classification of each anomaly class (see Table 4). Fig. 3b shows the

524 instantaneous variable contributions to each component statistic of ITC.

525 For example, at k = 11, the main contributions to ITC are cIRX(x1) and

526 cIRX(x6); and therefore faults in sensors x1 and x6 are diagnosed (first

527 rowof Table 4). Similarly, at k = 19, cIRY2(y1) diagnoses a fault in sensor

528 y1 (second row of Table 4). The remaining results in Table 4 are summa-

529 rized as follows: a) at k = 27 and k = 43, correlation changes in x and y

530 are respectively diagnosed, which indicatemajor changes in the original

531 external correlations (i.e., P and Q in Eq. (32)); b) at k = 35, cIRY1(y2)

532 and cIRY1(y4) diagnose an upset of the t2-u2 inner relation, because the

533 contributions of y2 and y4 are more correlated with u2 (see the main

534 components of q2 in Eq. (32)); and c) at k = 51, cIMX(x2) and cIMX(x6)

535 diagnose an excessive change in the normal operation point (though

536 still following the correlation structure), because the contributions of

537 x2 and x6 are more correlated with t2 (see the main components of p2
538 in Eq. (32)).

539 4.2. Application to a chemical process with feedback control

540 The chemical process described by Yoon andMacGregor [31] is here

541 adopted to evaluate the proposed method of process monitoring with

542 fault detection and isolation. The process consists of a first-order chem-

543 ical reaction carried out in a non-isothermal continuously-stirred tank

544 reactor, where both the solute (A) and the solvent (S) are continuously

545 fed into the reactor (Fig. 4). This example has widely been used in

546 the literature to test other methods of fault detection and diagnosis;

547 e.g. methods based on both linear [31] and nonlinear [14,32,33] LV

548 models. The mathematical model of the process is given by [31]:

F ¼ FA þ FS;

CA0 ¼ CAA FA þ CAS FSð Þ=F;

dCA

dt
¼

F

V
CA0−

F

V
CA−k0e

−E=R T
CA;

dT

dt
¼

F

V
T0−Tð Þ−

aF3=2C

FC þ aF1=2C =2ρCCPC

& '
VρCP

T−TCð Þ

þ
−ΔHrð Þ

ρCP

k0e
−E=RT

CA;

Q ¼ −ΔHrð ÞVk0e
−E=RT

CA;

ð33Þ

549550 with the following parameters: V = 1 (m3), ρ = 106 (g/m3), ρC =

551 106 (g/m3), E/R = 8330.1 (K), CP = 1 (cal/gK), CPC = 1 (cal/gK),

552 k0 = 1010 (m3/kmol × min), a = 1.678 × 106 (cal/min × K), and

553 ΔHr = −1.3 × 107 (cal/kmol).

554 The process ismonitored from the followingmeasurements: the inlet

555 A flow rate (FA), the inlet A concentration (CAA), the inlet solvent flow

556 rate (FS), the A concentration in the solvent (CAS), the reactant mixture

557 temperature (T0), the cooling water temperature (TC), the coolant flow

558 rate (FC), the outlet concentration (CA), the outlet temperature (T), and

559 the reaction heat rate (Q). These measurements are arranged as follows:

560 x = [FA CAA FS CAS T0 TC FC]′ (process inputs), and y = [CATQ]′ (process

561outputs). Additionally, the following measured process disturbances

562were selected: CAA, FS, CAS, T0, and TC, which were simulated (under

563both normal and fault conditions) through a first-order autoregressive

564(AR) model, i.e.: xi(k) = ϕixi(k − 1) + σe,ie(k), where e(k) ∼ N(0,1)

565and σe,i
2 is the process variance, and ϕi is the AR parameter. Random

566measurement noises are added to all process variables according

567to: xi,meas(k) = xi(k) + σm,im(k) and yi,meas = yi(k) + σm,im(k),

568where m(k) ∼ N(0,1) and σm,i
2 is the noise variance. The parameters

569of the disturbances and measurement noises are shown in Table 5.

570The reaction temperature is regulated through a PI controller,

571implemented as: dFC/dt = KCd(SPT − T)/dt + KC(SPT − T)/TI, with the

572following parameters: KC = −1.5 and TI = 5.0. The adopted initial

573conditions are: T0 = 370.0 K, and CA = 0.8 kmol/m3. The remaining

574variables are kept constant at the following values: TC = 365.0 K,

575FC = 15 m3/min, T = 368.25 K, FS = 0.9 m3/min, FA = 0.1 m3/min,

576CA = 0.8 kmole/m3, CAS = 0.1 kmol/m3, and CAA = 19.1 kmol/m3. All

577variables were sampled at regular intervals of one minute. Under nor-

578mal conditions, 200 samples were used to define the model calibration

579dataset. The following PLSR model was identified in this work:

y kð Þ ¼ QBR
′
x k−1ð Þ; ð34Þ

580581where y(k) represents the response vector at the discrete time k, and

582x(k-1) is the predictor vector at k-1. Eq. (34) represents a static model

583with a one-point delayed input. Based on criteria given by Godoy et al.

584[18], three LVs were required to fit the PLSR model. Since the number

585of LVs equals the number of process outputs, then the response space

Table 4t4:1

t4:2 Anomaly classification and identification of disturbed variables.

t4:3 Sample

point

cIMX(.) cIRX(.) cIRY1(.) cIRY2(.) Diagnosis of the

abnormal event

Diagnosed

class

t4:4 k = 11 – x1, x6 – – Faults in sensors of x1 and x6 1

t4:5 k = 19 – – – y1 Fault in the sensor of y1 2

t4:6 k = 27 – x2 y5, y1, x2 – Correlation changes in xa 3

t4:7 k = 35 – – y2, y4 – Change in the intrinsic gain 4

t4:8 k = 43 – – x7, x3 y1 Correlation changes in yb 5

t4:9 k = 51 x2, x6 – – – Excessive operation change 6

a Main changes occur in x2.t4:10
b Main changes occur in y1.t4:11

Fig. 4. Simulation example based on a dynamic process. Flow diagram of the process with

7 input- and 3 output measured variables.

Table 5 t5:1

t5:2Parameters for simulating process disturbances and measurement noises.

t5:3Process disturbances Measurement noises

t5:4ϕi σe,i
2 σm,i

2

t5:5FA (x1) 4.0 × 10−6

t5:6CAA (x2) 0.9 0.475 × 10−1 1.0 × 10−2

t5:7FS (x3) 0.9 0.190 × 10−2 4.0 × 10−6

t5:8CAS (x4) 0.5 1.875 × 10−3 2.5 × 10−5

t5:9T0 (x5) 0.9 0.475 × 10−1 2.5 × 10−3

t5:10TC (x6) 0.9 0.475 × 10−1 2.5 × 10−3

t5:11FC (x7) 1.0 × 10−2

t5:12CA (y1) 2.5 × 10−5

t5:13T (y2) 4.0 × 10−4

t5:14Q (y3) 1.0 × 103
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586 cannot be separated into two subspaces. Anyway, the monitoring tech-

587 nique can still be applied.

588 To evaluate the performance of the proposed technique, four types

589 of faults are simulated as follows: F.1) a (non-propagating) sensor

590 fault, simulated as a bias of+2.4 K in T0; F.2) a sensor fault (propagated

591 by the PI control loop), simulated as a bias of +1.5 K in T; F.3) a process

592 change, simulated as a slow drift in the reaction kinetics, given by

593 k0(k) = 0.999 k0(k − 1); and F.4) a process disturbance, simulated as

594 an unmeasured increment in the reactant mixture temperature, given

595 by T0,in = T0 + 0.03k. According to the classification given by Yoon

596 andMacGregor [31], F.1 is a simple fault while F.2, F.3, and F.4 are com-

597 plex faults. The proposed cases are qualitatively similar to fault scenar-

598 ios investigated in previous works [14,31–33]. Also, a quite similar

599 process has been used to test a diagnosis technique based on a linear

600 LV model, with the fault scenarios F.1 and F.2 [34].

601 For simplicity, each fault was introduced at k = 50, and was kept

602 until the end of the simulation. All cases were simulated along 400 min,

603 and therefore 400 samples were collected. The simulation results are

604 depicted in Figs. 5–8. The first row of each figure represents the fault de-

605 tection pattern, where the ordinates are normalized to ITC/Iα and there-

606 fore the control limit is 1. The three last rows of each figure constitute

607 the basis of the diagnosis strategy based on the contribution analysis.

608 For the fault F.1), Fig. 5 shows a significant change in cIRX(x5) for

609 k N 50, while both cIMX(.) and cIRY1(.) remain close or slightly below 1.

610 The variable x5 (=T0) was identified as dominant, with a neat preva-

611 lence on IRX and smaller effects on the other subspaces.

612 In the case of F.2), Fig. 6 shows a rapid alarm in IRY1 at k = 51, while

613 negligible contributions to IMX and IRX are observed. Around 30 min

614 after the beginning of the fault (k = 51–80), the variable contributions

615 to IRY1 properly indicate the root source (i.e., the bias in T). Since T is a

616 controlled variable, the bias fault is gradually removed by effect of the

617 closed-loop action, and the anomaly is then transferred to other vari-

618 ables. From k = 80 onwards, the PI controller propagates the anomaly

619 to the variable FC (x7), which modified T and CA, as it is notified by

620 cIRY1. Additionally, an alert in IMX diagnoses a change in the operating

621 point together with an alert in IRX that indicates a correlation change

622 in FC (x7) with respect to the remaining variables (i.e., x1…x6). The dis-

623 turbed x7 is correctly diagnosed by the contributions to IMX and IRX. The

624variable contributions to each component statistic exhibit transient re-

625sponses until the process is settled to the new steady state.

626The simulated fault F.3) corresponds to a gradual degradation of the

627reaction rate, as typically caused by catalyst poisoning. The process

628change was detected at k≈ 170, after collection of around 120 samples.

629The high levels of cIRY1(y1) and cIRY1(y3) in Fig. 7 indicate that both CA
630and Q cannot be adequately predicted. Since no predictor variable is at-

631tributed to such changes, then it can be inferred that the anomaly is due

632to the modification of some parameter of the plant (k0 in this case).

633Note that k0 is related to T, CA, and Q (see Eq. (33)), but T is regulated to

634SPT by the PI controller.

635Fault F.4) consists in introducing a slow drift of +0.03 K/min in T0.

636This continuous temperature rise indirectly causes an increase in the

637inlet coolant flow rate FC (x7), as required to keep the reactor tempera-

638ture constant at its desired value. According to Fig. 8, a correlation loss

639between FC and the remaining input variables is first diagnosed by a

640high cIRX(x7); then, a change in the operating point of FC is diagnosed

641by a high cIMX(x7).

642The four analyzed example faults allow a direct comparison with

643some detection and diagnosis studies previously-reported [14,31–34].

644Each of these works investigated a different (linear or nonlinear) LV

645technique that was applied to the evaluation of only a limited number

646of the described fault scenarios F.1 to F.4. More specifically, a Kernel

647PCA technique was applied to F.1, F.2, and F.3 [14], a steady-state fault

648signature technique was applied to F.1 and F.2 [31], a nonlinear

649multiscale modeling technique was applied to F.1, F.3, and F.4 [33], and

650a contribution plot without smearing effect was applied to F.1 and F.2

651[34]. Besides, a technique based onGaussian process LVmodelswas eval-

652uated onto the fault scenario F.2, but with purposes of fault detection

653only [32]. In contrast, the technique presented in this work is linear

654and successfully detects and diagnoses the four simulated fault scenarios.

655In general, itwas observed that the detection sensitivity (i.e., theminimal

656disturbance that triggers an out-of-control of the index ITC) is equivalent

657to the sensitivity achieved by the individual approaches of [14,31–34] in

658the cases of the fault scenarios F.1, F.2, and F.4. However, the present ap-

659proach is more sensitive than that used in [14,33] for the fault scenario

660F.3, and allows adequate detection anddiagnosis evenunder lower levels

661of the reaction degradation. Additionally, it should be noticed that the

Fig. 5. Simulation of fault F.1): bias in the measurement of T0. The contributions to the statistic IRX identify the variable x5 (=T0) as the source of the fault.

9J.L. Godoy et al. / Chemometrics and Intelligent Laboratory Systems xxx (2013) xxx–xxx

Please cite this article as: J.L. Godoy, et al., A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the
measurement space, Chemometrics and Intelligent Laboratory Systems (2013), http://dx.doi.org/10.1016/j.chemolab.2013.07.006

cannot be separated into two subspaces. Anyway, the monitoring tech-

cannot be adequately predicted. Since no predictor variable is at-

uated onto the fault scenario F.2, but with purposes of fault detection

K

K

K



U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

662 present detection and diagnosis procedure, implemented through an

663 anomaly classification step followed by a further variable identification,

664 is only based on theoretical considerations that enabled a proper diagno-

665 sis of several classes of faults (Table 4).

666 5. Conclusions

667 The proposedmonitoring technique is based on a PLSRmodel initially

668 designed under ‘in-control’ conditions, and is especially useful for moni-

669 toring processes that exhibit collinear measurements. The fundamentals

670 of the method are based on detecting meaningful deviations of the

671 measurements from their expected behaviors, which in turn serve for

672diagnosing abnormal events. The extension of the PLSRmodeling strategy

673consisted in a new PLS-decomposition that included more specific sta-

674tistics, such as the distance to the regression model. By means of several

675numerical simulations, it was verified that the proposed method was

676effective for detecting and diagnosing different anomalies.

677The proposed detection index, ITC, involves a balanced merging of

678several scaled metrics; and it represents a statistical distance that con-

679siders the correlation structure of the process as well as three

680Euclidean distances to the model. The analytical expression of ITC
681[Eq. (22)] contains an optimized combination of statistics. In fact, if a

682new statistics were added (e.g., T2
bu ), then the new combined index

683would be: ITC⁎ = 2IMX + IRX + IRY1 + IRY2 = ITC + IMX. Thus, the

Fig. 6. Simulation of fault F.2): bias in the measurement of T. At 50 b k b 80, the contributions to the statistic IRY1 identify the variable y2 (=T) as the source of the fault.

Fig. 7. Simulation of fault F.3): degradation of the reaction rate. At k N 170, the contributions to the statistic IRY1 indicate that predictions of the variables y1 (=CA) and y3 (=Q) could be

highly erroneous.
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684 magnitude of IMX would be overweighed, and therefore the information

685 contained in the remaining three statistics will be partially hidden.

686 In the application examples, only small deviations with respect to

687 the nominal values were adopted, in order to evaluate the ability of the

688 control volume associated to ITC for detecting the simulated errors.

689 When an anomaly was present in the process, the combination of the

690 alerts observed in the isolated statistics conforming ITC was efficiently

691 used for classifying the perturbation source. Such preliminary diagnostic

692 was then completed through the analysis of contributions to the alarmed

693 statistics. Isolation of the disturbed variables was feasible through a de-

694 composition of each component statistic in their contributions. The re-

695 sults obtained with two simulation examples show that the proposed

696 technique is effective and accurate enough to be exploitedwithmore em-

697 phasis in the future.

698 In summary, the proposed technique exhibits the following

699 advantages: 1) it is an effective tool to simultaneously cope with

700 quality monitoring, detection, and diagnosis of process faults, and

701 isolation of multiple sensor faults; 2) it is based on a linear LV

702 model and its calibration is relatively simple because only requires

703 data taken from the process operating under normal conditions;

704 and 3) the detection and diagnosis method is mainly based on the

705 theoretical considerations exposed in the first part of this work and

706 compiled in Table 2; instead of being based on recorded patterns of

707 historical faults, such as in the fault signature methods. A limitation

708 of the proposed technique is that it might not be advisable when

709 the data collected under normal operating conditions are multimod-

710 al and/or when strong nonlinear correlations are present. However,

711 it could be extended to dynamic models (e.g., by using dynamic

712 PLS), and also to nonlinear models (e.g., by using kernel PLS).
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717Appendix A. Proofs of Lemma 1 and Theorems 1 and 2

718

719Proof 1. The oblique projector onto Span{A} along Span{B} can be

720obtained through the following equation [27]:

ΠAjB ¼ A A′Π
⊥

BA
& '

−1
A′Π

⊥

B ðA:1Þ

721722where ΠB
⊥ is the orthogonal projector onto Span{B}⊥.

723Since R and S are full column rank, then:

Π
⊥

R⊥ ¼ ΠR ¼ R R′Rð Þ
−1

R′; ðA:2Þ

724725
Π
⊥

S⊥ ¼ ΠS ¼ S S′Sð Þ
−1

S′: ðA:3Þ

726727

728Since P′R = R′P = I (or Q′S = S′Q = I), then substituting Eq. (A.2)

729[or Eq. (A.3)] into Eq. (A.1) yield:ΠPjR⊥ ¼ PR′ (orΠQ jS⊥ ¼ QS′). Similarly,

730we haveΠR⊥ jP ¼ I−PR′ (or ΠS⊥ jQ ¼ I−QS′). □

731Partially, Lemma 1 has also been proved by Gang et al. [25].

732Proof 2. Equations (10, 11) can be proved by taking into account

733that: (i) Span{I − PR′} = Span{R}⊥ and Span{I − QS′} = Span{S}⊥

734(see Lemma 1); and (ii) the projections belong to complementary

735subspaces, because rank(PR′(I − PR′)) = dim(SMX) + dim(SRX) = m

736and rank(QS′ (I − QS′)) =dim(SMY) + dim(SRY) = p. Eq. (12) is direct-

737ly derived from Eq. (7).□

738Proof 3. Substituting by ¼ Q bu into Eq. (21b), one obtains Dby ¼ bu′Q′

739QΔQ′ð Þ−Qbu . The singular value decomposition of the (full-column

740rank) matrix Q (p×A) is Q′ = V[Σ 0]W′, where Σ (A×A) is a non-

741singular diagonal matrix, and W (p×p) and V (A×A) are orthonormal

742matrices. Then,

Q ′ QΔQ ′ð Þ
−
Q ¼ V Σ 0

( )
W′ W

Σ
0

* +
V′ΔV Σ 0

( )
W′

6 7
−

W
Σ
0

* +
V′;

¼ VΣ ΣV′ΔVΣð Þ
−1
ΣV′ ¼ Δ

−1
:

ðA:4Þ

743744

Fig. 8. Simulation of fault F.4): disturbance in T0. At k N 200, the contributions to the statistic IRX identify a correlation loss of the variable x7 (=FC) followed by a change in its operating

point (as identified in IMX from k = 300 onwards).
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745
Therefore, Dby ¼ bu′Δ−1bu ¼ T2

bu . By combining Eqs. (18) and (15b)

746 withbu ¼ BtS, we obtainT2
bu ¼ t′B B−1Λ−1B−1

& '
Bt ¼ T2

t . By replacingbx ¼

747 Pt into Eq. (21a): Dbx ¼ t′P′ PΛP′

& '−
Pt . Similarly to the derivation of

748 Eq. (A.4), it is obtained: P′(PΛP′)−P = Λ−1; hence Dbx ¼ t′Λ−1t ¼ T2
t .

749 From all these equalities, Theorem 2 is proven. □

750 Appendix B. Control limits

751 To calculate the confidence limits we assume that x and y

752 approximately follow multivariate normal behaviors. The T2 con-

753 trol limit at the α significance level is given by [5] τα
2 =

754 [(AN2
− A)/(N2 + NA)]FA,N − A(α), where FA,N-A(.) is the F-distri-

755 bution with A and N-A degrees of freedom. On the other hand,

756 the α-control limit of SPEx is given by [7] δ2x;α ¼ σ2=2ν
$ %

χ2
2ν2=σ2

757 αð Þ where ν and σ2 are the sample average and variance estimated

758 withN observations of SPEx, andχ
2
2ν2=σ

:ð Þ is theχ2-distributionwith 2ν2/

759 σ2 degrees of freedom. Similarly, the control limits of SPEy1 and SPEy2 are

760 calculated.

761 The 100(1-α)% control limit of the ITC is given by [11]

Iα ¼ gχ
2
h αð Þ ðB:1Þ

762763 with g and h given by:

g ¼

tr R y′ x′½ &Φ
& '2
* +

tr R y′ x′½ &Φ
& ' ; h ¼

tr R y′ x′½ &Φ
& 'h i2

tr R y′ x′½ &Φ
& '2
* + ; ðB:2Þ

764765 whereR y′ x′½ & is the correlationmatrix of the extended vector [y′ x′]′ and

766 Φ is equal to

Φ ¼
SQ ′QS′=δ

2
y1;α þ I−QS′ð Þ′ I−QS′ð Þ=δ

2
y2;α −SQ

′
QBR′=δ

2
y1;α

−RBQ ′QS′=δ
2
y1;α Φ22

" #
;

Φ22 ¼ RΛ
−1

R′=τ
2
α þ I−PR′ð Þ′ I−PR′ð Þ=δ

2
x;α þ RBQ ′QBR′=δ

2
y1;α :

ðB:3Þ

767768

769 In all cases, the control limitswere set at the 99 percentile (α = 0.01).
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