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Abstract 
A mixed integer linear programming for the detailed production planning of multiproduct batch plants is 
proposed in this work. New timing decisions are incorporated to the model taking into account that an 
operation mode based in campaigns is adopted. For plants operating in a regular fashion along a time 
horizon, this operation mode assures a more efficient production management. In addition, sequence-
dependent changeover times and different unit sizes for parallel units in each stage are considered. Given 
the plant configuration and unit sizes, the total amount of each product to be produced and the product 
recipes, the proposed model determines the number of batches that compose the production campaign and 
their sizes, the assignment and sequencing of batches in each unit, and the timing of batches in each unit 
in order to minimize the campaign cycle time. The proposed model provides a useful tool for solving the 
optimal campaign planning of installed facilities. 
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1  Introduction 
 
Multiproduct batch plants are characterized by their flexibility to manufacture multiple products using the 
same equipment. These plants consist of a collection of processing units where batches of the various 
products are processed by executing a set of operations. These operations can be characterized by a 
processing time and they do not involve both simultaneous feed and removal of products from the unit 
during this processing time. Units that perform the same operation are grouped in a production stage, and 
they can operate in parallel mode (in phase or out of phase). In multiproduct batch plants, every product 
follows the same sequence through all the processing stages (Voudouris and Grossmann, 1992). 
Assuming a given plant, i.e., its configuration and the unit sizes are known, different production problems 
can be posed depending of the contemplated scenario. In particular, when products demands can be 
accurately forecasted during a relatively long time horizon due to a stable context, more efficient 
management and control of the production resources can be attained if the plant is operated in a periodic 



or cyclic way, i.e. in a campaign-mode. In this case, the campaign consists of several batches of different 
products that are going to be manufactured and the same pattern is repeated at a constant frequency over a 
time horizon. This campaign-based operation mode has several advantages, for example, more 
standardized production during certain periods of time, easier and profitable operations decisions, more 
efficient operation control, and adequate inventory levels without generating excessive costs and 
minimizing the possibility of stock-outs. 
Under this context, a cyclic scheduling problem must be addressed. This type of scheduling is used for 
products manufacturing with relatively constant demand during a planning horizon, which lead to a more 
regular production mode and it is more appropriate for a make-to-stock production policy. From the 
computational point of view, the cyclic scheduling allows reducing the size of the overall scheduling 
problem, which is often intractable. On the other hand, from the modeling point of view, one of the main 
differences between cyclic scheduling based on mixed product campaigns (MPCs) and short-term 
scheduling is the adopted objective function. While the most of approaches for short-term scheduling 
dealt with makespan minimization, tardiness or earliness, the most appropriate performance measure for 
the scheduling problem using MPCs of cyclic repetition is the minimization of the campaign cycle time 
(Fumero et al., 2012). Taking in mind that in a planning context the campaign will be repeated over the 
time horizon, consecutive campaigns have to be overlapped in order to reduce idle times between them as 
much as possible.  
According to Maravelias (2012), the scheduling problem in the context of batch process involves the 
following decisions: (i) selection and sizing of batches to be carried out; (ii) assignment of batches to 
process units; (iii) sequencing of batches on units; and (iv) timing of batches. Taking into account the 
combinatorial nature of the problem, most of the existing approaches in the process systems engineering 
literature consider a special case of the problem, where the number and size of batches is fixed, i.e. the 
lot-sizing problem is solved first and then obtained batches are used as inputs in the scheduling model.  
The scheduling problem using MPCs was scarcely addressed in the literature. Besides the paper of 
Fumero et al. (2012), Birewar and Grossmann (1989) developed slot-based formulations MILP for 
scheduling of multiproduct batch plants using production campaigns, considering different transfer 
policies (unlimited intermediate storage, UIS, and zero wait, ZW) and where the number and size of 
batches are data problem. They determined the optimal campaign cycle time, for simple plants including 
only one unit per processing stage. In Fumero et al. (2011) two MILP models for the simultaneous design 
and scheduling of a multi-stage batch plant are proposed. The parallel units are considered identical and 
no changeover times are taken into account. The rest of the papers that mention the use of campaigns, do 
not refer to the determination of batches and its cyclic sequencing, as it is managed in this work. 
In this work, the detailed planning problem of multistage batch plants with an operation based on MPCs 
is addressed using a MILP model. It is assumed that the plant manager must produce known demands 
using a cyclic campaign during a time horizon. Nonidentical parallel units, ZW transfer policy and 
sequence-dependent changeover times are considered. Given the plant configuration and unit sizes, the 
total amount of each product to be produced in the campaign and the product recipes, the approach 
determines the number of batches that compose the production campaign and their sizes, the batches 
assignment to units, the sequencing of batches in each unit for each stage, and the initial and final times of 
the batches processed in each unit in order to minimize the campaign cycle time. With the aim of 
reducing the combinatorial complexity associated to the scheduling decisions, additional constraints are 
considered in order to eliminate equivalent symmetric solutions. Then, the scheduling approach through 
MPCs considering sequence-dependent changeover times for multistage batch plants with nonidentical 
parallel units is efficiently solved. 
 
2  Problem description 
 



The problem addressed in this article deals with a multiproduct batch plant where J denotes the set of 
processing stages that compose the plant and K the set of all units in the plant. Kj represents the set of 
nonidentical parallel batch units that operate out-of-phase in stage j, so K = K1  K2  …  KJ. 
A set I of products must be manufactured in the plant following the same sequence of stages. The total 
amount required of each product in the campaign, Qi (i  I), which allows maintaining adequate stocks 
levels taking into account the estimated demands, is a model parameter. Qi can be fulfilled with one or 
more batches, therefore an index b is introduced to denote the bth batch required to meet production of 
the corresponding product. 
In each stage, there are not restrictions about parallel unit sizes and, therefore, different unit sizes are 
admitted. Then, Vk is used to denote the size of unit k. The processing time of each batch of product i in 
unit k, tik, and the size factor SFij that denotes the required capacity of units in stage j to produce one mass 
unit of final product i, are problem data. 
Considering the demand of product i, the non-identical parallel unit sizes for each stage, the equipment 
utilization minimum rate for product i at each unit, denoted by αik, and the size factors of product i in each 
stage, the minimum and maximum numbers of batches required to fulfill the demand of product i can be 
calculated in order to ensure solution optimality. Thus, the minimum and maximum numbers of batches 
of product i for the campaign are calculated, respectively, as following: 
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feasible batch sizes for product i. The upper bound for the number of batches of each product i in the 
campaign allows to propose a set of generic batches associated to that product, IBi, where UP

ii NBCIB  .    

Intermediate storage tanks are not allowed. Therefore, taking into account the configuration of the plant, 
there is no batch splitting or mixing, i.e. each batch is treated as a discrete entity throughout the whole 
process. It is assumed that a batch cannot wait in a unit after finishing its processing. Therefore, the ZW 
transfer policy between stages is adopted, i.e., after being processed in stage j, a batch b is immediately 
transferred to the next stage j+1. Besides, batch transfer times between units are assumed very small 
compared to process operation times and, consequently, they are included in the processing times.  
Sequence-dependent changeover times, cii’k, are considered between consecutive batches processed in the 
same unit k, even of the same product. This transition time corresponds to the preparation or cleaning of 
the equipment to perform the following batch processing. It is necessary for various reasons: ensure 
products quality, maintain the equipment, safety reasons, etc. 
For scheduling decisions, an asynchronous slot-based continuous-time representation has been used. The 
slots correspond to time intervals of variable length where batches will be assigned. In each slot l of a 
specific unit k at most one batch b of product i can be processed and, if no product is assigned to slot l, its 
length will be zero. The number of slots that must be postulated for unit k of stage j, denoted by Lkj, can 
be approximated considering the estimation on the maximum number of batches of each product at the 
campaign. Then, the number of slots postulated for all units of each stage is the same and it is given by: 
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Although this value is an overestimation, a major approximation cannot be proposed taking into account 
that the parallel units are different and, on the other hand, the number and sizes of batches to be scheduled 
are optimization variables, unlike the most of scheduling approaches presented in the literature where 
they are considered as parameters. However, the lower bound on the number of batches of product i at the 



campaign, ,NBC LOW
i  strongly reduces the number of possible combinations and consequently improves 

the computational performance of the model. 
As previously stated, the problem consists of solving simultaneously two decision levels often addressed 
sequentially. Through a holistic approach, the selection and sizing of batches of each product, the 
assignment of batches to units in each stage, the production sequence of assigned batches in each unit and 
initial and final processing times for batches that compose the campaign in each processing unit are 
jointly determined. 
 
3  Mathematical formulation 
 
3.1 Batches selection and sizing constraints 
The number of batches of product i that must be manufactured in the campaign is a model variable. Then, 
a binary variable zib is introduced, which takes value 1 if batch b of product i is selected to satisfy the 
demand requirements of that product and 0 otherwise.  
Let Bib be the size of batch b of product i and Qi the demand of product i that must be fulfilled, then: 
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Taking into account that the size of unit k denoted by Vk and the size factor SFij are model parameters, if 
batch b of product i is processed in unit k of stage j the following inequalities limit the size Bib of batch b 
between the minimum and maximum processing capacities of unit k: 
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where ik is the minimum filled rate required to process product i in unit k. Due to the units selected to 
process the batches of each product are optimization variables and their sizes are different, Eq. (2) must 
be expressed through a variable that indicates this selection, as it will see later. 
Besides, without loss the generality and in order to reduce the number of alternative solutions, the 
selection of batches of a same product as well as the assigned sizes to them are made in ascending and 
descending numerical order, respectively, that is: 

iiibib IBb,IBb,Iizz  1          1       (3) 

iiibib IBb,IBb,Ii BB  1          1       (4) 

	
3.2 Assignment and Sequencing constraints 
Selected batches must be assigned, in each stage, to specific slots in the units. Then, the binary variable 
Ybkl is introduced, which takes value 1 if batch b is assigned to slot l in unit k and 0 otherwise. Although 
this variable is enough for formulating the scheduling problem, the binary variable Xkl, which specifies the 
slots set utilized in unit k for processing batches, will be also used in order to reduce the search space and, 
therefore, to improve the computational performance.  
Logical relations can be defined among binary variables zib, Xkl and Ybkl. In fact, if slot l of unit k is not 
utilized, then none of the proposed batches is processed in it. Moreover, if slot l of unit k is utilized, then 
only one of the proposed batches is processed in it. Then, the following constraint is imposed: 
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On the other hand, if batch b of product i is selected (i.e. zib = 1), then this batch is processed, in each 
stage j, in only one slot of some of the available units at the stage. This condition is guaranteed by: 
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Without loss of generality and in order to reduce the search space, it is assumed that slots of each unit are 
consecutively used in ascending numerical order. Hence, the slots of zero length take place at the end of 
each unit. Eq. (7) establishes that for each unit k, slot l+1 is only used if slot l has been already allocated: 

Ll,Kk,J j,XX jklkl   1           1       (7) 

Finally, variable Ybkl allow correctly expressing the inequalities posed in (2) as: 
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where scalar M1 is a sufficiently large number.  
 
3.3. Timing constraints 
Nonnegative continuous variables, TIkl and TFkl, are used to represent the initial and final processing 
times, respectively, of the proposed slots in each unit k. When slot l is not the last slot used in unit k of 
stage j for processing one batch, that is, if Yb’kl+1 take value 1 for some b’, final processing time TFkl of 
slot l in unit k is constrained by:  
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A nonnegative variable YYblb’l’k is defined to eliminate the bilinear products, which takes value 1 if 
1bklY  and ,Y kl'b 11   and 0 otherwise, so (10) is represent using Big-M expressions: 
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On the other hand, when the sequence of slots used in unit k is 1, 2, ... l, i.e. slot l is the last slot used at 
unit k of stage j to process some batch, taking into account that the campaign can be cyclical repeated 
over a time horizon, the final processing time TFkl is calculated considering the changeover time required 
for processing the batch assigned to slot 1 in unit k of stage j. Constraints analogous to (11a) and (11b) are 
posed for this case. 
Constraints to avoid the overlapping between the processing times of different slots in a unit as well as to 
match the initial times of empty slots with the final time of the previous slot are added to the formulation. 
In order to assure ZW transfer policy, constraints of Big-M type are included, depending if slot l is or is 
not the last slot used at unit k for processing one batch. Due to space reasons, this set of constraints is not 
provided in this manuscript, but interested readers can request it to authors. 
Finally, taking into account that slots of each unit are used in ascending numerical order, the expression 
for the cycle time of the campaign, CT, is given by: 

jkkL Kk,Jj,TITFCT        1        (12) 

 
3.4. Objective function 
The problem goal is to minimize the cycle time of the production campaign that fulfills the demands 
requirements, subject to previous constraints. 



4  Example 
 
The considered batch plant consists of three stages with nonidentical parallel units with known sizes that 
operate out-of-phase, as is illustrated in Figure 1. Available units at each stage are denoted by the sets: K1 
= {1}, K2 = {2, 3}, and K3 = {4, 5}, respectively. Products A, B, and C have to be processed through all 
stages before being converted into final products. The required amounts in the campaign are QA = 10500, 
QB = 6000 and QC = 9500. Data on processing times and size factors of each product are shown in Table 
1, while the sequence-dependent changeover times are given in Table 2. 
Considering the non-identical parallel unit sizes at each stage, the size factors for each product in each 
stage and assuming that the equipment utilization minimum rate is 0.50 for all products and equipment 
items, the minimum feasible batch sizes for products A, B and C are: 

  kg 2857kg 5000 kg, 5000  kg, 571450  max.Bmin
A , 

  kg 3333kg 5555 kg, 4285  kg, 666650  max.Bmin
B ,

  kg 2857kg 4545  kg, 4615  kg, 571450  max.Bmin
C . 

 
Stage 1 Stage 2 

2500 L 

3000 L 

4000 L 

3000 L 

4200 L 

Stage 3 

	
Figure 1. Plant structure 

Table 1. Processing times and size factors of products 
 

Product 
             Processing time: tik (h) 

 
 Size factor: SFij (L/kg) 

  Stage 1     Stage 2  Stage 3  Stage 1 Stage 2 Stage 3 

i  1  2 3  4 5  k = 1 k = 2, 3 k = 4, 5 

A  14  25 20  7 6  0.70 0.60 0.50 

B  16  18 18  5 3  0.60 0.70 0.45 

C  12  15 12  4 3  0.70 0.65 0.55 

 
Table 2. Sequence-dependent changeover times 

 
Product 

Sequence-dependent changeover time: cii’k (h) 

 Stage 1       Stage 2  Stage 3 

 
        

 
k = 1  k = 2, 3  k = 4, 5 

i  A B C  A B C  A B C 

A  0 0.5 0.3  0.25 0.3 0.4  0 0.6 0.6 

B  0.8 0 0.6  2.2 0.25 0.8  0.8 0 0.8 

C  1 0.5 0  3 1.5 0.25  2 1.5 0 

 



Then, considering the campaign demands for all products, the maximum number of batches of each 
product at the campaign is four, two and four for products A, B and C, respectively.  
Thus, the sets of proposed batches are {b1, b2, b3, b4}, {b5, b6}, and {b7, b8, b9, b10} for products A, B 
and C, respectively, and consequently a total of ten batches must be postulated to guarantee the global 
optimality of the solution. Also, the maximum feasible batch sizes for all products allow determining the 
minimum number of batches of every product at the campaign. In this case, the maximum feasible batch 
sizes for all products are: 

  kg 5714kg 6000  kg, 7000  kg, 5714  minBmax
A  

  kg 6000kg 6666  kg, 6000  kg, 6666  minBmax
B  

  kg 5454kg 5454  kg, 6461  kg, 5714  minBmax
C  

then, the required minimum number of batches for products A and C is two, while for product B is one. 
The model under these assumptions comprises 52052 constraints, 9167 continuous variables and 555 
binary variables. It was implemented and solved using GAMS, via CPLEX 12.5 solver, in 42.77 CPU 
seconds with a 0% of optimality gap. The optimal campaign cycle time is equal to 70.4 hours and it 
involves two batches of product A (b1, b2), one of B (b5), and two of C (b7, b8), i.e. the demands of all 
products are fulfill with the minimum number of batches. The optimal production sequence obtained in 
each batch unit for the different stages, considering sequence-dependent changeover times, is illustrated 
in the Gantt chart of Figure 2. Taking into account that the optimal campaign is cyclically repeated over a 
time horizon, the changeover times between products processed in the last and first slot of each unit must 
be included in the optimization in order to achieve the accurate overlap of successive campaigns. For this 
example, as it can be seen from Figure 2, changeover times between pairs of campaigns are: cAC1 = 0.3 h 
for unit of stage 1; cAC2 = cAC3 = 0.4 h for units of stage 2; and cAC4 = cAC5 = 0.6 h for units of stage 3. 
Batches b1 and b2 satisfy the total required demand of product A with sizes of 5500 kg and 5000 kg, 
respectively; batch b5 with size equal to 6000 kg is only selected to accomplish the campaign demand of 
product B; while batches b7 and b8 are required to achieve the production of C with sizes equal to 4955 kg 
and 4545 kg, respectively. The capacities used in each unit of the different stages for processing the 
selected batches are resumed in Table 3. The batches that reach the maximum capacities are highlighted 
in boxes shaded in gray. Batch b2 of product A is processed in units 1, 3 and 5 and its size is the 
maximum possible to be processed in units 3 and 5 of stages 2 and 3, respectively. Then, batch b1 fulfills 
the required amount of that product occupying approximately 96%, 79% and 92% of the capacity of units 
1, 2 and 4, respectively. Batch b5 of product B is processed in units 1, 2 and 4 and its size is the maximum 
possible to be processed in unit 2 of stage 2. On the other hand, two batches of product C are processed 
for meeting its demand. Batch b8 is processed in units 1, 3 and 5 using 80%, 98.5% and 100% of their 
capacities, respectively; while batch b7 fulfills the required amount of that product in the campaign. 
 
5  Conclusions 
 
In this work, the optimal production planning of multistage batch plants with nonidentical parallel units 
that operate in campaign-mode is faced. Scheduling is modeled according to campaign-based operation 
mode in such way that the campaign cycle time minimization is an appropriate optimization criterion. 
Sequence-dependent changeover times are considered for each ordered pair of products in each unit of the 
different stages.  
Taking into account the complexity of the simultaneous involved decisions, some additional constraints 
that eliminate equivalent symmetric solutions maintaining the model generality are considered, in order to 
reduce the search space and therefore improve the computational performance. Also, various equations 
are reformulated in order to keep the problem linear and assure the global optimality of the solution. 
Through the example the capabilities of the proposed formulation are shown. With the proposed 



formulation, an interesting problem has been solved. Many times, in made-to-stock contexts, the 
campaign-based operation mode is an appropriate alternative that allows taking advantage of the available 
resources with an ordered production management. The proposed model simultaneously solves lot-sizing 
and scheduling problems in reasonable computing time. Thus, this approach can be applied in real 
production systems that operate in campaign-mode taking into account the assumed suppositions as far as 
different unit sizes, changeovers, etc. 
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 Figure 2. Gantt chart of the production campaign 

 
Table 3. Capacities used in each unit of each stage 

   Stage 1  Stage 2  Stage 3 

Product Batch  k = 1  k = 2 k = 3  k = 4 k = 5 

A b1  3850  3300   2750  

 b2  3500   3000   2500 

B b5  3600  4200   2700  

C b7  3468.2  3220.4   2725  

 b8  3181.8   2954.5   2500 

 


