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Abstract. Hardware virtualization technologies were principally designed for
server consolidation, allowing multiple Operating Systems instances to be co-
located on a single physical computer. But, laaS providers always need higher
levels of performance, scalability and availability for their virtualization services.
These requirements could be met by a distributed virtualization technology,
which extends the boundaries of a virtualization abstraction beyond a host. As a
distributed system, it depends on the communications between its components
scattered in several nodes of a virtualization cluster. This work contributes M3-
IPC, an IPC software layer designed to facilitate the development of an OS-based
distributed virtualization.
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1 Introduction

Hardware virtualization is the most common technology that provides Virtual
Machines (VM) as abstractions. Operating System (OS) level virtualization is another
technology that is located at a higher level, encapsulating user-space applications within
Containers or Jails or Virtual Operating Systems (VOS) [1]. On the other hand, in the
1980s, several Distributed Operating Systems (DOS) [2, 3, 4, 5] were developed as a
consequence of the limited CPU performance of a single host and the need for
scalability and higher computing power.

Thinking of a distributed virtualization technology seems to make sense to achieve
higher performance and increase service availability. OS-based virtualization and DOS
technologies lead authors to think about their convergence to achieve these goals,
extending the boundaries of the virtualized abstraction to multiple hosts and thereby
running multiple isolated instances of DOSs sharing the same cluster.

A distributed OS-based virtualization approach will explore aggregation with
partitioning. In such systems, a set of server processes constitutes a distributed OS
running within an execution context which authors call “Distributed Container” (DC).
Processes belonging to a DC may be scattered on several nodes of a cluster
(aggregation); and processes of different DCs could share the same host (partitioning).
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The development of such distributed systems would be facilitated with an IPC
infrastructure that provides uniform semantics without considering process location.
But, as it is also a virtualization system, this IPC infrastructure should support
confinement to isolate communications among processes of different DCs. In addition
to these features, other characteristics are required which are related to generic
distributed systems. They refer to keeping IPC operational even during process
migration and supporting fault-tolerant applications which use the Primary-Backup
approach [6]. Therefore, there is also a need to redirect communications addressed to
the failed Primary towards one of its Backup processes that becomes the new primary.
All these features should be complemented by a suitable performance to make
Distributed Virtualization a feasible approach.

This paper proposes M3-IPC, a general purpose IPC software layer which is the
foundation of a "Distributed Virtualization System" (DVS) [7], a new model of OS-
level virtualization for Cloud Computing (IaaS). Distributed Virtualization must not be
confused with Clustered Virtualization [8, 9] in which an application could run in a
distributed way across a group of Containers located on several nodes of a cluster. On
such systems, the boundaries of each container are limited by the node where they run,
and applications must be developed using special middleware to extend APIs, which
avoid the direct migration of legacy applications.

M3-IPC was developed to communicate distributed components of a VOS running
within a DC, but it can be used as a powerful infrastructure for designing generic
distributed applications. Although the IPC mechanism could be embedded within the
DVS, the authors considered useful to build it as an independent software module.
Before M3-IPC design, several IPC mechanisms were evaluated, but none of them meet
the aforementioned requirements.

The next sections present some works related to IPC mechanisms, followed by a
sketch of DVS components, M3-IPC concepts, design goals and implementation issues.
Then, results of performance tests are discussed in Evaluation Section. Finally,
Conclusions and Future Works Sections summarize the main features of the resulting
software, including future improvements.

2 Motivation and Related Works

M3-IPC focuses on providing an IPC software layer to ecnable N-to-N
communications between Client and Servers without any intermediary broker. It should
facilitate the development of complex distributed systems such as an OS-level DVS. A
great deal of effort had been already taken in providing IPC mechanisms for distributed
systems, some of them being integrated as a component within classical DOS [10, 11]
and others as added software through libraries, patches, modules, etc. [12, 13, 14, 15,
16]. Their features, semantics and performance, were previously evaluated and during
M3-IPC design, implementation, and testing stages. For space limitation reasons, only
a representative set of these suitable IPC software is considered here:
¢ Synchronous Inter-process Messaging Project for Linux (SIMPL) [12].
¢ Send/Receive/Reply (SSR) [13].
¢ Distributed IPC (DIPC) [14].
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e Remote Procedure Call (RPC) [15].

¢ Telecommunications IPC (TIPC) [16].

All of the above presented IPC mechanisms were used for performance comparison
against M3-IPC as it is shown in Evaluation Section. URPC [17] was not considered
because, although it may reach a good performance, it is weak on issues related to
security. Messages Queues, Pipes, FIFOs, and Unix Sockets do not have the ability to
communicate with remote processes. DIPC presents interesting features, but it is no
longer maintained.

One of the most important features needed to build a DVS is IPC isolation, which
includes the following properties:

1. Confinement: A process running within a DC cannot communicate with any process
within another DC.

2. Private Addressing: An endpoint number (an M3-IPC address which identifies a
process or thread) allocated to a process running within a DC could be allocated to
other processes running within other DCs.

3. Virtualization Transparency: A process does not need to know that it is a member
of a DC or the node in which is running, or in which nodes other processes of the
same DC are running. To allow DVS management, privileged processes could
allocate endpoints and DCs for other non-related processes.

None of the evaluated IPC software meet all of these requirements considering that
a DC could span several nodes of a cluster.

3 M3-1PC Design

This section describes the design outline and rationale for M3-IPC to provide local
and remote IPC for centralized and distributed systems. It presents the DVS topology
model for which it was originally designed, its design goals, main concepts and
implementation issues.

3.1 DVS Components

A DVS consists of the following components (Fig. 1):

o DVS: Itis the top level layer that assembles all cluster nodes and it embraces all DCs.

e Node: It is a computer that belongs to the DVS where processes of several DCs are
able to be run. All nodes are connected by a network infrastructure.

e DC: It is the group or set of related processes that might be scattered on several
nodes. M3-IPC only allows communications among processes that belong to the
same DC. The boundary of each DC can be based on administrative boundaries. A
DC hides its internals from the outside world and hides network communication
issues from its processes.

e Fndpoint: An endpoint is an integer number which identifies a process/thread
registered in a DC. Endpoints are unique and global within a DC, but could be
repeated within other DCs.
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M3-IPC does not impose a network/transport protocol to be used for inter-node

communications. It allows programmers to choose the protocol that best fit their needs.
Nodes communicate among them through proxies.
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Fig. 1. DVS topology model.

3.2 MB3-IPC Design Goals

The following design goals were established:

e Fasy-to-use: Defining, implementing, and deploying applications using M3-IPC
should be straightforward.

o Location Transparency: The application should not need to consider the location of

the involved processes in order to facilitate programming,.

o Confinement. IPC must be confined so as to achieve a proper degree of isolation.
o Concurrency: It should support threads to maximize throughput and efficiency.
o Transparent Live Migration Support: The application would use process migration
[18] as a mechanism to achieve workload balancing and downtime avoidance.
o Transparent Fault Tolerance Support: IPC must remain operational even during

PEECT Processes.

process switching from Primary to Backup [6] without the awareness of the other

e Performance and Scalability: Performance goals are considered satisfied when
meeting minimal thresholds established for local and remote transfers. IPC

throughput between processes located on different nodes must be limited by the
network capability (latency and bandwidth) and the transport protocol being used.

o Communication Protocol Agnostic: Developers can choose the Network/Transport

Protocol to be used by proxies that best satisfies their needs.
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o Modular and Customizable: It should be able to be used by any kind of application
with similar requirements.
o Client/Server and RPC Oriented. M3-IPC must cover typical communication
patterns between multiple clients against multiple servers.
o Security: Basic security principles must be applied to its design and implementation.
M3-IPC is based on the assumption of a cluster of network nodes that are connected
to a switched LAN where the packet loss rate is low and the available bandwidth is high.

3.3 MB3-IPC Main Concepts

M3-IPC was designed to emulate the semantics of a multi-server OS within the
Linux kernel providing user-space APIs. Furthermore, it expands its use to processes
located on remote nodes of a cluster, and includes features that could be required by
distributed applications such as application isolation, location transparency, and message
redirection on process migration or process switching on replication.

As M3-IPC supports threads to maximize concurrency, the following references to
processes are also valid for threads.

M3-IPC APIs are classified as:

o Communication APIs: Those APIs emulate Minix 3 [19] IPC primitives. They are
related to message and data transfers among processes. They do not include any
reference to the DC a process belongs to, or to the node where it resides.

o Management APIs: Those related to DVS, DCs, proxies, nodes, and process
management, which allow the mapping of applications to nodes and DCs.

A process which will use M3-IPC must be previously registered at the kernel to bind
a DC to it. The process can register by itself, or by another local process with
management privileges. Every process bound to a DC will have a unique endpoint
number with backup endpoints as exceptions.

Management APIs consider: Local endpoints are those allocated to processes
running on the same node; and Remote endpoints are those allocated to processes
running on other nodes.

Every remote server should be first registered in the client’s node specifying in which
node is running, Once a remote endpoint is registered by the kernel, all local registered
processes (including other clients) within the same DC are able to refer to that server
endpoint in communication APIs. Remote client binding is easier because M3-IPC can
automatically bind remote unprivileged endpoints when their messages arrive to the
local node.

M3-IPC supports message redirection on node switching when a Primary process
(on node A) is replaced by a Backup process (on node B). The local M3-IPC kernel
automatically unlinks the endpoint from the previous Primary process (on node A) and
links it to the new Primary process (on node B). A local process can be registered as a
Backup of a remote Primary process with the same endpoint in the same DC, but
messages sent by other local processes addressed to that endpoint will be sent to the
Primary process. The Backup process will not be able to communicate with any other
process until it is promoted as the new Primary by a privileged process. Message
replication among Primary and Backup processes does not concern M3-IPC.

M3-IPC can keep communications in operational state and can automatically redirect
messages on live process migration. Before a process begins to migrate, a management
application must call mnx migr start(). At that moment, all messages addressed to the
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migrating endpoint will be queued up. Once the process has successfully migrated, the
management application must call mnx migr commit(). All queued messages will be
sent to the process on its new location. If the migration fails, the management application
must call mnx migr rollback(); then the process can resume its execution as if nothing
had happened by receiving the queued messages.

3.4 M3-IPC Implementation Issues

This section describes the implementation details of the M3-IPC core within the
Linux kernel.

M3-IPC APIs use a software interrupt vector or interrupt gate that differs from that
used by Linux system calls. This issue allows both APIs to share the same kernel with
minimal interference or crosstalk. It also facilitates future maintenance of M3-IPC in
current and future Linux kernels.

Two important decisions made before developing M3-IPC were: its construction
being based on software components that are available in the Linux kernel, and taking
advantage of the parallelism in SMP and multi-core systems. Before starting the
development, several Linux kernel synchronization mechanisms and mutual exclusion
facilities were evaluated. Kernel semaphores and RCU (Read-Copy-Update) were too
slow; and spinlocks were somewhat slower than Read/Write locks (rwlocks). Finally,
mutexes were used for mutual exclusion, but since they have a similar performance to
that of rwlocks. A compile option is available for system programmers to choose which
synchronization mechanisms and mutual exclusion facilities want to be used.

Another design decision was related to the mechanism for data transfer from user-
space to kernel-space and vice versa. Netlink sockets [20] have a quite complex start-up
which do not meet DVS project needs. Efficient Capability-Based Messaging (ECBM)
[21] has an impressive performance, but basic security issues were neglected. Finally,
functions copy fo user() and copy from user() provided by the Linux kernel were used.
A custom function named copy usr2usr() was built to copy data from the user-space
buffer of a source process to the user-space buffer of a destination process.

The most outstanding characteristics of how M3-IPC was finally implemented are
summarized in the following list:

o APIs support threads and were implemented using Linux kernel provided mutual
exclusion facilities; Task Queues and Event Waiting were used for process
synchronization; and Reference Counters were used to hold a count of processes
from which a data structure is referenced.

e The granularity of internal critical sections was maximized at the process/thread
level, allowing parallel message transfers among multiple pairs of processes.

¢ Higher performance is achieved because DCs do not share any data structure among
one another during concurrent message transfers between pairs of processes that
belong to different DCs.

¢ Data structures that are frequently used for registered processes (struct proc) are
aligned with L1 cache lines to reduce access time.

o An Affinity Inheritance Protocol (similar to the well-known Priority Inheritance
Protocol) was implemented to minimize performance impact of cache ping-pong.
Thus, the facility provided on Linux to specify process affinity with a set of
processors/cores was used. With this approach, there is a greater chance for the
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message to remain in L1 cache when the destination process is scheduled, thus
reducing access time.

¢ A CPU mask could be allocated by each DC to specify on which CPUs its local
processes are able to run (only meaningful within the each node).

¢ The copy of data blocks and message transfers among co-located processes are made
from the source process address space to the destination process address space
without any intermediate copy through the kernel. The copy is made by the Linux
kernel through the copy-on-write mechanism.

¢ Debugging information is sent to the Linux kernel ring buffer and can be shown by
means of dmesg command.

¢ Data blocks which are page-aligned and whose lengths are greater than or equal to
the page size are copied using the kernel provided page copy() function, which is
very efficient because it uses MMX instructions.

o Information about configuration, status, and statistics of M3-IPC abstractions is
presented as directories and files within Linux /proc filesystem.
M3-IPC has been implemented in C programming language on Linux for Intel x86

32-bit and it is distributed as a kernel patch, a kernel module, and a set of libraries.

Proxies and IPC through the Network

M3-IPC uses application level proxies for communications between nodes, but also
support kernel-level proxies too. Therefore, there is no restriction about the
network/transport protocol proxies can use.

M3-IPC APIs provides a function to get messages from the kernel that need to be
sent to remote nodes, and another function to insert messages into the local kernel
coming from remote nodes to local processes as destinations.

The current M3-IPC distribution provides the use of one pair of proxies (sender-
receiver) for each remote node. Proxies exchange proxy messages which consist of fixed
length headers and, eventually, variable length payloads (data blocks).

The provided proxies send/receive messages and data through the network without
taking account to which DC those messages or data belong to. Custom proxies may
consider implementing encryption, compression, filtering, message logging, QoS, etc.

4 Evaluation

This section is devoted to M3-IPC performance evaluation against other IPC
mechanisms. The compliance of the other design goals was verified during and after the
development stage using several testing scenarios.

Two types of communication tests are presented in Fig. 2: 1) between co-located
processes; 2) between processes located on different nodes. Furthermore, two types of
micro-benchmarks were performed on each one: a) message transfer; b) data copy. The
following common communication pattern was used: a server waits to receive a message
from a client, and immediately replies. Once the client sends the request to the server, it
waits for the reply. The reply may be a message (36 bytes) or a block of data (36 bytes
to 64 Kbytes).

Although several performance metrics were evaluated as latency, CPU usage,
network usage, by space limitations, only the throughput results are presented here.
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The tests were made on a cluster of 8 (eight) quad-core Intel(R) i5 CPU
650@3.20GHz with a memory bandwidth of 20,841 Gbytes/s for 64 Kbytes blocks
(reported by bm_mem), linked by a 1 Gbps dedicated LAN switch.

——m3.1pC
]

—aPIPE

—shR
——simpL
T w0
T some unax
E3 ——tcp
= 600 nec
= 600000 Lol RPC
&
¥ a0
£ 400000
2000
200000 " _—
s =
o

6 s12 1024 2008 409 8192 16384 32768 65536
PPETHR TIFO MMIC UNNTHR TP MSGQ  TCPTHR SIMPL SR RRC

Thorughput [Mbytes’s]

Block Size [Kbytes]
(A) Local message transfer throughput (B) Local data transfer throughput

—+—M3-IPC (TCP)
M3-IPC (TICP)

~+=M3-IPC (Kernel TCP)

—==TIPC

——RPC

& 3 8

Throughput [msg/s|
8

Throughput [Mbytes/s|
z B

<

Lsss

TIPC M3IPC (TIPC) MIIPC(TCP)  M3-IPC(Kemd 6B SIZB 1024B 20488 4096B $192B 16384B 32768B 65536 B
TCP) Block Size [Bytes]

(D) Remote data transfer throughput

Fig. 2: Results of performance tests.

(C) Remote message transfer throughput

4.1 Tests between Co-located Processes

Tests between co-located processes allow the comparison of M3-IPC performance
versus other IPC mechanisms available on Linux.

One of the design goals states that the expected performance should be as good as
the fastest IPC mechanisms available on Linux. The following IPC mechanisms were
tested using custom and [22, 23] provided micro-benchmarks: Message Queues, RPC,
TIPC, FIFOs, pipes, Unix Sockets, TCP Sockets, SRR, SIMPL.

4.1.1 Message Transfer Performance

The presented results (Fig. 2-A) summarize the best throughput achieved by the IPC
mechanisms running a single pair of client/server processes. Linux IPC mechanisms
with the highest performance were pipes and named pipes (or FIFOs) followed by M3-
IPC (925,314 [msg/s]).

Another micro-benchmark of message transfers between multiple pairs of
Client/Server processes was run to evaluate performance in concurrency. The highest

average throughput was 1,753,206 [msg/s], which was reached with 4 pairs of
Client/Server processes (4 cores).
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4.1.2 Data Copy Performance

As it is shown in Fig. 2-B, M3-IPC performance surpasses other [IPC mechanisms on
Linux. The reasons of this behavior are: 1) M3-IPC performs a single copy of data
between address spaces while the others perform at least two copies (Source to Kernel,
Kernel to Destination); 2) it requires a lower number of context switches; 3) it uses the
Linux kernel provided page copy() function which uses MMX instructions.

4.2 Tests between Processes Located on Different Nodes.

This section presents performance results of M3-IPC against RPC and TIPC.

M3-IPC does not consider flow control, error control, or congestion control. Those
issues are delegated to proxies and the protocol that the use. Reference implementations
of M3-IPC proxies use TCP and TIPC as transport protocols.

4.2.1 Message Transfer Performance

As it can be seen in Fig. 2-C, TIPC has the highest throughput. M3-IPC using TCP
on proxies has throughput similar to RPC.

The remarkable performance of TIPC suggested that it could be a good option to be
used by M3-IPC proxies as transport protocol. M3-IPC versatility and flexibility in
proxy programming allowed authors to modify the source code of proxies in a few
minutes so as to use TIPC instead of TCP. These changes result in an improvement of
performance, emphasizing the impact that the transport protocol has on its throughput.

4.2.2 Data Copy Performance

As shown in Fig. 2-D, TIPC presents the highest throughput of 81[MB/s] that
confirms results presented in [16]. The highest throughput achieved by RPC and M3-
IPC was about 60[MB/s]. Fig.2-D also shows that there is no noticeable difference in
performance when using TIPC instead of TCP as transport protocol on M3-IPC proxies
to copy data blocks.

5 Conclusions and Future Works

[aaS providers always need higher levels of performance, scalability and availability
for their virtualization services. These requirements can be met by a distributed
virtualization technology. As a proof of concept, a DVS prototype using M3-IPC was
developed.

M3-IPC addresses some issues about thread support, location transparency, message
redirection on process migration, network-transport protocol agnostic, and IPC
confinement for virtualization. The results show that M3-IPC achieves all its
performance related design goals, with a high throughput for both intra-node and inter-
node messages and data transfers.

To improve M3-IPC security and isolation issues, its integration to Linux
Capabilities and cgroups [24] are being considered for further research and future works.

Until the development of M3-IPC, to the best of authors’ knowledge, there was not
a modular IPC software for Linux that fully satisfied the particular communication needs
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of a DVS. This suggests that many questions remain about software for programming
communications related to virtualization.
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