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Abstract. We simulate via a Discrete Element Method the tapping of a narrow

column of disk under gravity. For frictionless disks, this system has a simple analytical

expression for the density of states in the Edwards volume ensemble. We compare the

predictions of the ensemble at constant compactivity against the results for the steady

states obtained in the simulations. We show that the steady states cannot be properly

described since the microstates sampled are not in correspondence with the predicted

distributions, suggesting that the postulates of flat measure and ergodicity are, either

or both, invalid for this simple realization of a static granular system. However, we

show that certain qualitative features of the volume fluctuations difficult to predict

from simple arguments are captured by the theory.

1. Introduction

The description of the states that a pack of macroscopic objects can take has become

an important subject of debate in Physics since basic equilibrium statistical mechanics

was proposed as a suitable framework to deal with this problem [1]. It is expected that

macrostates consisting of a large collection of configurations (or microstates) compatible

with given macroscopic variables that describe the macroscopic state can be readily

defined and that the preferred macrostate for the system under given constraints would

be predictable as the mean of a suitable distribution of such microstates.

The aforementioned collection of microstates have to be generated with a well

defined protocol of repeated perturbations applied to the packing. Such perturbations

are necessary since macroscopic objects (such as the grains of a granular sample) interact

through non-conservative forces (inelastic collisions and friction) and so dissipate all

kinetic energy at the particle scale. Hence, to move from one configuration to another,

an external input of energy is mandatory. Whether a given protocol of perturbation

leads to a collection of microstates that can be defined as an equilibrium macrostate in

the sense described by Thermodynamics is still a matter of debate. Nonetheless, there

exist some consensus that in some cases this may be the case. For instance, annealed

tapping protocols are known to give reproducible volumes (and its fluctuations) for a

given tap amplitude and tap duration [2, 3]. However, the question remains as to what

are the macroscopic variables that fully describe the macroscopic state [4, 5].

Volume fluctuations present a controversial feature. Plotted as a function of volume,

fluctuations display a maximum at an intermediate volume between the maximum

and minimum volume reached by the macrostates in some studies [4, 5]. This is in

contrast with results from experiments using fluidized beds [6] (they show a minimum in

fluctuations) and experiments with non-jammed packings [7] (they present a monotonic

decrease of fluctuations with increasing packing fraction).

In this work we exploit a model recently introduced by Bowles and Ashwin [8, 9]

that allows for a full analytic calculation of the density of states of a frictionless granular

packing. The model has the advantage of corresponding to a realistic representation of

an experimentally realizable system and then allows for a validation of the ability of the

theory of ensembles to describe steady states attained by real granular samples.
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Figure 1. Quasi-onedimensional model. The light shaded region corresponds to a

branch vector aligned with the wall. The dark shaded area corresponds to a branch

vector across the walls. Each configuration contributes with a distinct local volume to

the total volume.

Under Edwards proposal, in the volume ensemble, all possible configurations

compatible with a given macroscopic volume are equally probable. However, the

configurations sampled in the lab by using external perturbations cannot be set at

a prescribed volume. Therefore, it is generally assumed that the collection of states

generated by a repeated perturbation, after any transient has fade, should be compatible

with a “canonical ensemble” of constant compactivity (the analogue of temperature).

We generate such collections of microstates by tapping at different intensities using

realistic simulations of the Bowles– Ashwin model. Then, we compare the results with

the prediction of the “canonical ensemble”.

We will show that the probability distribution of microstates generated by tapping

agree with the prediction of the “canonical ensemble” only for intermediate tap

intensities. For high and low tap intensities, the simulation explores only a portion

of the phase space available.

Despite the shortcomings of the ensemble theory, this solvable model predicts a

non-trivial maximum in fluctuations that can be observed in the simulations but only

for the frictional case.

2. Bowles-Ashwin model

We consider a model granular system introduced by Bowles and Ashwin which has an

analytic density of states [8, 9]. A set of frictionless disk of diameter σ are arranged in a
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Figure 2. (a) The entropy S as a function of packing fraction φ for the Bowles-

Ashwin model for H = 1.28 (black), 1.48 (red), 1.78 (blue) and 1.846 (green). (b) The

compactivity χ. (c) The volume fluctuations σ2
V . The black solid symbols indicate the

position of the minimum (up triangles) and maximum (down triangles) φ allowed for

each H. The corresponding packing fractions φSmax
where entropy is maximum are

indicated by arrows.

narrow channel of width 1 < H/σ < (1+
√

3/4) ≈ 1.866). A configuration mechanically

stable against external pressure is obtained if the following local constraints are met.

First, every disk needs three contacts, one with one of the walls of the channel and two

with the only two possible neighbors (the possible branch vectors for any disk are either

aligned against a wall or across the channel). Second, the two branch vectors for a given

disk cannot be both aligned against a wall (see Fig. 1). This allows to count all possible

branch vector configurations (each has a well defined volume) using a simple binomial

expression [8, 9, 10]. As a result, the entropy S(N, V ) defined as the logarithm of the

number of microstates associated with a given volume V and number of disks N is given

by [10].

S(N, V )

λN
= (1− θ) ln(1− θ)− (1− 2θ) ln(1− 2θ)− θ ln θ, (1)

where θ = M/N , being M < N/2 the number of branch vectors aligned with the walls,

and λ plays teh role of the Boltzmann constant. The volume V occupied by the disks

for a given θ is V = NH[
√

(2−H)H(1− θ) + θ]. Notice that V can only take discrete

values since θ is a rational with 0 < θ < 0.5.

The compactivity χ is defined as the intensive variable conjugate to the volume,

i.e., χ−1 = ∂S/∂V , hence

χ =
∂S

∂θ

∂θ

∂V
=

H[1−
√

(2−H)H]

λ[2 ln(1− 2θ)− ln(1− θ)− ln(θ)]
. (2)

The volume fluctuations characterized by the variance σ2
V of the volume can be

obtained from the “specific heat” as σ2
V = λχ2∂V/∂χ. Therefore,

σ2
v = λχ2∂V

∂θ

∂θ

∂χ
=
NH2

[
1−

√
(2−H)H

]2
[

4
1−2θ −

1
1−θ + 1

θ

] . (3)

In Fig. 2 we show the entropy S, the compactivity χ and the volume fluctuations

σ2
V as a function of the packing fraction φ = 4πN/V for various values of H. Notice that
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the range of allowed φ varies with H. The entropy presents a maximum at φSmax —in

agreement with other models for static packings [1, 11] and as estimated via simulations

[12, 13]— which corresponds to θ = 1/2 −
√

5/10. States for packing fractions below

φSmax correspond to negative compactivities associated to the inversion population of

these volume bounded systems. Some authors suggest these negative χ macrostates may

be inaccessible, however, this does not need to be the case; some preparation protocols

may indeed lead to very low packing fractions [13, 14]. Interestingly, fluctuations present

a maximum at packing fractions above φSmax . This maximum fluctuation should be then

observed even if only positive χ states are assessed.

Notice, that the Bowles–Ashwin model is similar to the very first model proposed

by Edwards [1]. However, in Edwards simplistic model, particles are assigned one of two

possible local volumes without restriction associated with the volumes already assigned

to the neighbors as it is done here.

3. Simulation

3.1. Model system

We carry out discrete element simulations of disks of diameter σ subjected to the gravity

force g and confined in a narrow container of width H. The container has a flat base

and is infinitely high. The particle–particle and particle–wall interactions correspond to

a normal restitution coefficient ε = 0.058 and a static and dynamic friction coefficient

µs = µd = 0.5 for the frictional simulations and µs = µd = 10−5 for the “frictionless”

simulations. In order to compare results from systems of different widths we vary the

number N of particles to ensure that a similar height of the granular column is obtained

in all cases (17 ≤ N ≤ 24). Simultaneously, we tune the material density of the disks

in such way that all systems have the same total mass.

We used the Box2D library to solve the Newton-Euler equations of motion [15].

Box2D uses a constraint solver to handle hard bodies. At each time step of the dynamics

a series of 25 iterations are used to resolve penetrations between bodies through a

Lagrange multiplier scheme [16]. After resolving penetrations, the inelastic collision at

each contact is solved and new linear and angular velocities are assigned to the particles.

The equations of motion are integrated through a symplectic Euler algorithm. The time

step δt used is 0.0031
√
σ/g. Solid friction is also handled by means of a Lagrange

multiplier scheme that implements the Coulomb criterion. Previous works using this

library have shown that simulations are consistent with other more complex interaction

models for granular particles [17, 18].

3.2. Tapping

Tapping is simulated by setting the initial velocity v0 of the container (originally at rest)

to a given positive value in the vertical direction. In doing so, the container, and the

particles inside, moves upward and fall back on top of a zero restitution base. While
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the box dissipate all its kinetic energy on contacting the base, particles inside the box

bounce against the box walls and floor until they fully settle. After all particles come

to rest a new tap is applied. The intensity of the taps is characterized by the initial

velocity imposed to the confining box at each tap (i.e. Γ = v0).

The tapping protocol consists of a series of 46800 taps. Every 130 taps we change

the value of Γ by a small amount ∆Γ. We initially decrease Γ from about 20.0(σg)1/2

down to a very low value and then increase it back to its initial high value. We repeat

this protocol on the sample three times. At each value of Γ the last 30 taps are used to

average the packing fraction.

4. Results

4.1. Packing fraction

In Fig. 3, we show the mean packing fraction φ as a function of the tap intensity Γ for

various system widths H for frictional and frictionless disks. The annealing protocol in

which we start from high tap intensities yields a well defined mean packing fraction for

any given Γ. Hence, we have averaged results from all three repetitions of the annealing.

Figure 3 shows results consistent with previous studies where a minimum packing

fraction has been reported for wider 2D systems and 3D systems [4, 5, 14, 17, 19]. The

horizontal lines in Fig. 3 indicate the maximum and minimum values of φ allowed

in the Bowles–Ashwin model. As we can see, tapping makes φ vary in a range much

narrower than the possible theoretical values, both for frictional and frictionless disks.

Frictional disks achieve higher and also lower packing fractions than frictionless disks.

Interestingly, for H = 1.28, frictional disks reach mean packing fractions below the

one predicted to correspond to the maximum entropy φSmax indicating that negative χ

may have been achieved (although we do not know the exact density of states for the

frictional case). In all other cases, mean packing fractions remain above φSmax .

To compare results from different H, we plot in Fig. 4 the same data as in Fig. 3

scaled so that the minimum and maximum packing fraction in each curve corresponds

to 0 and 1, respectively [i.e., φ′ = (φ− φmin)/φmax)], and the position of the minimum

φ also coincides (i.e., Γ′ = Γ/Γmin).

The scaled φ′–Γ′ curve shows a good collapse in the full range of tap intensities

considered. This is an indication that, despite the large discrepancies in the range of

densities achieve for different H, tapping induces a similar exploration of configurations

in all these systems.

4.2. Volume histograms

The Bowles-Ashwin model considers frictionless disks and hence the mechanically stable

configurations are reduced to a very small set. In Fig. 5, we can see the distribution of

volumes obtained in the simulations for H = 1.846 at three different tap intensities.

For these histograms, 1000 taps in the steady state for the selected Γ have been
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Figure 3. The mean packing fraction φ as a function of tap intensity Γ for frictional

(black symbols) and frictionless (blue symbols) disks. (a) H = 1.28, (b) H = 1.48, (c)

H = 1.78, (d) H = 1.846. The horizontal lines correspond to the maximum (φmax, red)

and minimum (φmin, blue) packing fraction predicted by the Bowles–Ashwin model,

and for the packing fraction (φSmax
, green) at which entropy is maximum.
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Figure 5. Volume histograms for H = 1.846 for frictional (black) and frictionless

(red) disks. (a) Γ = 1.9, (b) Γ = 5.1, (c) Γ = 14.4. The blue lines correspond to

the analytical histogram ∝ exp(S/λ) exp[−V/(λχ)] where we have chosen λχ to best

fit the data for frictionless disks (Γ = 1.9 → λχ = 0.52, Γ = 5.1 → λχ = 0.58,

Γ = 14.4 → λχ = 0.38.). The blue squares indicate the discrete packing fractions (or

volumes) allowed by the Bowles–Ashwin model for this 24-particle system.

collected. For frictionless disks, the volume takes only the discrete values predicted

by the model. However, frictional disks are able to arrange themselves in configuration

having intermediate volumes since a disk may be stable with only two contacts thanks to

friction even without contacting a wall. Despite this, frictional disks still take volumes

predicted for frictionless disks in a much prominent fashion.

Since we know the density of states [exp(S/λ)], the volume histograms in the

“canonical ensemble” can be calculated as exp(S/λ) exp[−V/(λχ)] [1]. The blue lines

in Fig. 5 represent this histogram with χ chosen as a fitting parameter. As we can see,

low tap intensities yield histograms which are far from being described by the analogue

of the system being coupled to a “volume bath” of given χ. For higher tap intensities,

the assumption that tapping takes the system to a macroscopic state compatible with

a bath at fixed χ is fair. However, notice that high tap intensities lead to low χ and the

system is unable to sample the smallest possible volume (highest packing fraction) in

our simulations which has a non-zero probability according to the theory [see Fig. 5(c)].

4.3. Volume fluctuations

Figure 6 shows the volume fluctuations σ2
V as a function of packing fraction for various

widths of the container. We have increased the statistics in Fig. 6 by running 20

independent instances to estimate error bars in the Γ region of interest. As we discussed

in section 2, the Bowles–Ashwin model predicts a maximum in the fluctuations for a

packing fraction above φSmax . It is clear form Fig. 6 that fluctuation present a maximum

for the frictional disks. In contrast, for H > 1.28, frictionless disks under tapping

sample higher values of φ where a monotonic decrease in σ2
V is predicted. For H = 1.28,

frictionless disks do sample states at φ low enough for the maximum in fluctuations

to be observed. Although subtle, it can be seen that fluctuations grow slightly up to

φ ≈ 0.633 and decay quickly beyond that value.

The maximum in the fluctuations has been observed previously in quasi-2D
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Figure 6. Fluctuations of volume for frictional (red) and frictionless (blue) disks

for H = 1.28 (a), 1.48 (b), 1.78 (c), and 1.846 (d). Error bars were obtained as the

standard deviation over 20 independent instances of the simulation. Lines correspond

to the analytic prediction for the Bowles-Ashwin model. The arrows indicate the

position φSmax
of the maximum entropy state.

experiments of tapped granular columns [4, 5]. However, contrasting results have been

found in 2D and 3D packings [21, 7, 22] where a monotonic decay with increasing packing

fraction has been observed, whereas in 3D fluidized beds a minimum in the fluctuations

was reported [6]. While dimensionality and jamming state may be the reasons behind

such strong qualitative discrepancies between experiments, it is clear that in the present

system, both, the analytic ensemble theory and the DEM simulation of tapping agree

in that a maximum in fluctuations exists.

Figure 6 makes apparent an additional feature of fluctuations in the case of frictional

disks. Different fluctuations are observed even if the mean volume of the macrostate

is the same [see parts (b) and (c)]. This has been observed before in similar systems

[4, 5]. The implication is that the macrostates are not fully described by the volume and

further macroscopic variables are needed. In Refs. [4, 5] it was concluded that adding

the force moment tensor as an extra extensive variable allowed the states to be fully

described having same fluctuations if the same mean volume and mean force moment

tensor where observed for two states obtained through different tap intensities and tap

duration.
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5. Conclusions

We have tested the prediction of the Edwards ensemble for the Bowles–Ashwin model by

running DEM simulations of tapped columns of frictionless and frictional disks. These

simulations of a realistic protocol of generating steady states for a model with analytic

solution is particular suited to validate the ensemble approach to describe the statistics

of static packings. One interesting finding is that fluctuations are predicted by the

ensemble theory to display a maximum as a function of φ and this has been indeed

observed in the simulations.

Beyond the overall similarity between the theoretical and simulation results, there

are clear differences that suggest the ensemble theory is unable to capture some of the

response of the realistic system. In particular, the range of volumes explored through

tapping is much narrower than the full range of allowed volumes. This feature akin to

ergodicity breaking [20]. Tapping may condition the system to explore only a region of

the phase space. However, we find that independent instances of the tapping protocol

do not lead to sampling a different portion of the phase space as expected in ergodicity

breaking systems such as glasses. This would imply that the flat measure in the volume

ensemble proposed initially by Edwards is inadequate at least for this system (but

possibly for most granular systems). A revision may be necessary to consider that each

type of perturbation would induce the system to sample the phase space in a different

way.
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[18] M. Sanchéz, C. M. Carlevaro, L. A. Pugnaloni, J. Vib. Control, in press.

[19] P. A. Gago, N. E. Bueno and L. A. Pugnaloni, Gran. Matt. 11, 365 (2009).

[20] F. Paillusson, D. Frenkel, Phys. Rev. E 109, 208001 (2012).

[21] M. Pica Ciamarra, A. Coniglio, M. Nicodemi, Phys. Rev. Lett. 97, 158001 (2006).

[22] C. Briscoe, C. Song, P. Wang and H. A. Makse, Phys. Rev. Lett. 101, 188001 (2008).


