
Vol. 12, June 2014514

Software Agent Architecture for Managing Inter-Organizational
Collaborations

E. Tello-Leal*1, O. Chiotti2 and P.D. Villarreal3

1 Facultad de Ingeniería y Ciencias
Universidad Autónoma de Tamaulipas
Victoria, Tamaulipas, México
*etello@uat.edu.mx
2 INGAR – Instituto de Desarrollo y Diseño
CONICET-UTN, Consejo Nacional de Investigaciones Científicas y Técnicas
Santa Fe, Argentina
3 Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información (CIDISI)
Facultad Regional Santa Fe, Universidad Tecnológica Nacional
Santa Fe, Argentina

ABSTRACT
The growing importance of cooperation among organizations, as a result of globalization, current market opportunities
and technological advances, encourages organizations to dynamically establish inter-organizational collaborations.
These collaborations are carried out by executing collaborative business processes among the organizations. In this
work we propose an agent-based software architecture for managing inter-organizational collaborations. Two types of
agents are provided: the Collaboration Administrator Agent and the Process Administrator Agent. The former allows
organizations setting up collaborations. The latter allows organizations executing collaborative business processes. A
Colored Petri Net model specifying the role, which an organization fulfills in a collaborative process, is used to carry
out the behavior of the Process Administrator Agent that represents the organization. Planning and execution of the
actions of the Process Administrator Agents are driven by a Colored Petri Net machine embedded to them. Thus,
Process Administrator Agents do not require to have defined at design-time the protocols they can support. In
addition, we propose a model-driven development method for generating Colored Petri Net models from a
collaborative process model defined as interaction protocol. Finally, an implementation of the agent-based software
architecture and methods based on model-driven development are presented.

Keywords:_Software agent, inter-organizational collaboration, Model-Driven Development, collaborative business
process, BPMN.

RESUMEN
La creciente importancia de la cooperación entre las organizaciones, como consecuencia de la globalización, las
oportunidades actuales de mercado y los avances tecnológicos, alienta a las organizaciones a establecer en forma
dinámica colaboraciones inter-organizacionales. Estas colaboraciones se llevan a cabo mediante la ejecución de
procesos de negocio colaborativos entre las organizaciones. En este trabajo de investigación se propone una
arquitectura basada en agentes de software para la gestión de colaboraciones inter-organizacionales. La arquitectura
provee dos tipos de agentes: el Agente Administrador de Colaboraciones y el Agente Administrador de Proceso. El
primer agente permite a las organizaciones a establecer colaboraciones. El segundo agente habilita a las
organizaciones ejecutar procesos de negocio colaborativos. El rol que una organización desempeña en un proceso
colaborativo es especificado mediante un modelo de redes de Petri coloreadas. Este modelo es usado para dirigir el
comportamiento del Agente Administrador de Proceso, el cual representa a una organización. La ejecución de los
planes y las acciones del Agente Administrador de Proceso son dirigidas mediante una máquina de redes de Petri
coloreadas embebida en el agente. Entonces, los Agentes Administrador de Proceso no requieren tener definido en
tiempo de diseño los protocolos que dan soporte a su comportamiento. Adicionalmente, se propone un método
basado en el desarrollo dirigido por modelos para la generación en forma automática de modelos de redes de Petri
coloreadas a partir de un modelo de procesos de negocio colaborativo definido como protocolo de interacción.
Finalmente, la implementación de la arquitectura y los métodos basados en el desarrollo dirigido por modelos son
presentados.

Software Agent Architecture for Managing Inter Organizational Collaborations, E. Tello Leal et al. / 514 526

Journal of Applied Research and Technology 515

1. Introduction

The growing importance of cooperation among
organizations, as a result of globalization, current
market opportunities and technological advances,
encourages organizations to dynamically establish
inter-organizational collaborations. An inter-
organizational collaboration entails a process-
oriented integration between heterogeneous and
autonomous organizations which must be
achieved at a business level and at a technological
level [1]. Inter-organizational collaborations are
carried out through the execution of collaborative
business processes. A collaborative business
process (CBP) defines the global view of the
behavior of the interactions among enterprises to
achieve common business goals [1, 2]. The design
and implementation of CBPs implies new
challenges, such as participants' autonomy,
decentralized management, peer-to-peer
interactions, negotiation, and alignment between
the business solution and the technological
solution [1, 3]. In order to maintain the
organizations' autonomy, it is required a
decentralized management of the CBPs, which
can be achieved through distributed and
synchronized implementation of the integration
business processes of each involved
organizations. An integration process specifies the
public and private behavior that supports the role
an organization performs in a CBP. It contains,
from the viewpoint of an organization, the public
and private logics required to process or generate
the information exchanged with its partners.

Therefore, the software applications must be
developed in a manner they can interoperate
effectively in this new distributed, heterogeneous,
and sometimes, unreliable environment. Software
agent technology is seen as a potentially robust
and scalable approach to meet this challenge.
Since the features of software agents such as
autonomy, heterogeneity, decentralization,
coordination and social interactions are also
desirable for organizations involved in inter-
organizational collaborations [1], the use of this
technology can be considered as appropriate to be
used within this domain [4, 5]. Software agents that
execute CBPs can help to improve process
integration, interoperability, reusability and
adaptability [6, 7, 8].

In this work we propose an agent-based software
architecture for managing inter-organizational
collaborations. This architecture consists of two
types of agents that represent organizations.
Collaboration administrator agents provide the
functionality to establish a collaboration agreement
among organizations. Process administrator
agents support the execution of collaborative
business processes that organizations agreed to
carry out in a collaboration agreement. The role an
organization fulfills in a collaborative process is
defined in a Colored Petri Net (CP-Net) model,
which is used to drive the behavior of the process
administrator agent representing the organization.
The planning and execution of the actions of
process administrator agents are driven by a CP-
Net machine embedded in them. Thus, the
behavior of the process administrator agents is
derived in run-time. In addition, we propose a
Model-Driven Development (MDD) [9] method for
the automatic generation of CP-Net models from
collaborative process models. CP-Net models of
the process administrator agents are derived from
collaborative process models, which are described
as business interaction protocols defined with the
UML Profile for Collaborative Business Processes
based on Interaction Protocols (UP-ColBPIP)
language solution [1, 10]. Hence, interaction
protocols representing collaborative processes are
executed by process administrator agents without
the need for protocols defined at design-time in
these agents. Finally, as a proof of concept, we
also present an implementation of the agent-based
architecture for inter-organizational collaborations.

The paper is organized as follows. Section 2
describes the agents that compose agent-based
architecture for inter-organizational collaborations.
Section 3 describes the MDD-based method for
generating CP-Net models. Section 4 describes an
implementation of the proposed agent-based
architecture. Section 5 shows an application
example of the architecture and its implementation.
Section 6 includes related work and, finally,
Section 7 presents conclusions and future work.

2._Agent-based architecture for inter-
organizational collaborations

In this section we present an agent-based
architecture for inter-organizational collaboration.

Software Agent Architecture for Managing Inter Organizational Collaborations, E. Tello Leal et al. / 514 526

Vol. 12, June 2014516

Two main functionalities are offered by this
architecture: support for managing dynamic
collaboration agreements among organizations;
capabilities for executing and monitoring CBPs that
organizations agree to carry out. The proposed
architecture is composed of two types of agents
supporting the above functionalities (see Figure 1):

•.Collaboration Administrator Agent (CAAgent),
which represents an organization participating of
an inter-organizational collaboration. It is
responsible for setting up communications with
other CAAgents in order to agree on the CBPs to
be performed. This is also responsible for
instantiating PAAgents that execute the CBPs.

•.Process Administrator Agent (PAAgent), which
executes the role an organization fulfills in a CBP.
It is responsible for the jointly execution of a CBP
along with the PAAgents of the other organizations
involved in the CBP. At any time, an organization
will have a PAAgent for each execution of a CBP
in which it participates.

Relations between these agents are shown in
Figure 2, which depicts an Agent-Object-
Relationship (AOR) diagram [11]. This diagram
defines the conceptual relations between the
agents and the resources used by those agents
represented as objects. Agents are connected
among them through a communication relation to
achieve their goals. The diagram depicts the basic
architecture required to establish an inter-
organizational collaboration between two
organizations and how they can execute CBPs in
order to achieve common business goals.

A CAAgent can communicate with another
CAAgent for establishing collaboration to execute
CBPs. The CAAgent that initiates the
communication is responsible for distributing CBP
models, which are received by the other CAAgent.
This communication is carried out by these agents
through the protocol defined in section 2.1.

The CBP models are defined with the UP-ColBPIP
language. This language supports the definition of
the behavior of CBPs through the modeling of
business interaction protocols [1, 10]. In addition
UP-ColBPIP extends the semantics of UML2
Interactions to model interaction protocols in UML2
Sequence Diagrams. An interaction protocol
describes a high-level communication pattern
through business messages composed by speech
acts and business documents [1, 10]. Speech acts
(request, agree, refuse, etc.) provide semantics to
business messages, which allows defining
complex negotiations and avoiding ambiguous
understanding of the messages.

When the CAAgents have agreed on a
collaboration and have shared the models of the
CBPs to be executed, they generates the CP-Net
models automatically, and instantiate the
corresponding PAAgents. A PAAgent of an
organization is instantiated by a CAAgent of the
same organization when a CBP has to be
executed. The CAAgent assigns a CP-Net model
to the PAAgent containing the behavior of the role
the organization fulfills in the CBP which agreed to
execute. The CP-Net models of the PAAgents are
generated from the UP-ColBPIP model that
defines the CBP to be executed.

Figure1. Agent-based architecture for inter-organizational collaborations.

Software Agent Architecture for Managing Inter Organizational Collaborations, E. Tello Leal et al. / 514 526

Journal of Applied Research and Technology 517

Hence, PAAgents communicate between them to
carry out the decentralized and jointly execution
of a CBP. The interactions among them are
governed by their CP-Net models and are
carried out according to the UP-ColBPIP
interaction protocol that describes the logic of
the CBP being executed.

2.1 Collaboration Administrator Agent

The organizations use CAAgents for setting up
collaboration agreements and generating new
PAAgent instances. These can also be used to
stop the PAAgent execution and to remove it.
The CAAgent initiates a conversation by
executing a predefined protocol called Request
for Collaboration. Figure 3 shows the interaction
protocol, which was defined with the UP-
ColBPIP language.

In the behavior defined in Figure 3, the CAAgent
performing the initiator role starts this protocol
by sending a request for collaboration to the
responder role.

The responder role is performed by the CAAgent
of the other organization that receives the
request. This means that a CAAgent can play
any role depending on the way the organization
engages in collaboration. The request sent by
the initiator conveys a CollaborationRequest
document containing the UP-ColBPIP model of
the CBP that the initiator proposes to jointly
execute.

The responder can send an agree message or a
refuse message. In the last case the protocol
ends. When the initiator receives an agree
message, it generates a CP-Net model with the
behavior of the role that initiator fulfills in the
CBP. The CP-Net model is generated through
the execution of the transformation engine,
which is described in the Section 3.

Then the initiator creates an instance of a
PAAgent and assigns to it the generated CP-Net
model. Afterwards, the initiator sends an inform
message indicating that the collaboration was
successfully initiated. Alternatively if it cannot
instantiate the PAAgent, sends a failure
message.

Once received the notification of an initiated
collaboration by the initiator, the responder also
generates a CP-Net model for the role the
responder fulfills in the CBP. Then the responder
instantiates a PAAgent and assigns to it the
generated CP-Net model. If it was successful, it
sends an inform message indicating the
collaboration was defined.

Otherwise, it sends a failure message indicating
the collaboration was not defined. In both cases
the protocol ends.

Thus, by executing this protocol CAAgents
dynamically define an agreement to execute a
CBP and instantiates the PAAgents that will
execute the CBP. To create the CP-Net model
required by the PAAgents, the CAAgents
implement a method that enables automatically
generating CP-Net models of the agents from an
UP-ColBPIP model (this method is explained in
Section 3).

Figure 2. Conceptual AOR diagram for
the agent-based software architecture.

Software Agent Architecture for Managing Inter Organizational Collaborations, E. Tello Leal et al. / 514 526

Vol. 12, June 2014518

2.2 Process Administrator Agent

The PAAgent executes a process model known as
integration process, which contains both public and
private activities needed to support the role [1, 9,
4]. Thus, through the enactment of integration
processes, PAAgents of the organizations jointly
execute in a decentralized manner the activities of
the CBP agreement. The integration process is
defined as a CP-Net model generated from the
UP-ColBPIP model of the CBP. Petri Nets are
particularly suited for modeling the behavior of
concurrent systems in terms of control flow or flow
of objects or information [12]. Some advantages
when choosing Colored Petri Nets for executing
integration processes are as follows [13]: Petri
Nets have formal semantics, which enables an
unambiguous execution and simulation of process
models. Unlike some event-based process
modeling notations, such as dataflow diagrams,
Petri Nets can model both states and events.
Besides, there are many analysis techniques for

Petri Nets, which makes it possible to identify
deadlocks, proper completion, absence of dead
tasks, and safety issues.

A PAAgent has an embedded Colored Petri Net
based process machine (see Figure 4) that
interprets CP-Net models to performs the
organization's role in a CBP and interact with
another PAAgent to execute the CBP. The
transitions defined in a CP-Net model represent
the PAAgent's actions that support the message
exchange defined in the interaction protocol of the
CBP being executed. The order in which these
actions should be planned and executed is defined
by the process logic contained in the CP-Net
model. Therefore, the behavior and actions of this
agent are driven by the process machine
according to a CP-Net model. In the execution of
the CP-Net model, the process engine invokes the
behavior action manager component (see Figure
4) for planning an action when a transition is
enabled and for executing an action when the
transition is triggered.

PAAgents have only generic actions defined at
design-time. They do not require to have
implemented the behavior of predefined interaction
protocols. The transitions of CP-Net models
represent the actions the agent has to execute.
Such actions are used to carry out the behavior of
a PAAgent according to the transition type to
execute in the CP-Net model.

The types of transitions represent both public and
private activities. The former are represented by
the transitions send and receive, which support the
sending and the receiving of a message,
respectively. The latter are composed of the
transitions generate and process. A generate
transition represents a private action that
generates the required information to be sent,
previous to a send transition. A process transition
represents a private action that process the
information previously received. A process
transition may be specialized in other types of
transitions, such as invoke, verify or evaluate,
which represent specific actions for processing a
received message.

When a send transition is fired by the process
machine, this transition activates a send action of
the PAAgent, which carries out the sending of a

Figure 3. Request for collaboration
 interaction protocol.

Software Agent Architecture for Managing Inter Organizational Collaborations, E. Tello Leal et al. / 514 526

Journal of Applied Research and Technology 519

message. When a receive transition is enabled, a
blocking action of the agent is invoked, which waits
for the reception of a message. The receive
transition is fired when a message is received,
which implies the activation of the receive action of
the agent. If a generate transition is triggered, this
activates a generate action, consisting in
generating certain required information to be sent.
The process action is activated by the process
transition when this is triggered. The process
action consists of an internal process of evaluation
of the business document previously received,
after of enactment a receive action. Therefore, the
concrete actions of these agents are obtained at
run-time according to the logic defined in CP-Net
models. This enables PAAgents to execute any
interaction protocol representing the CBP that
organizations want to execute as part of a dynamic
collaboration agreement.

Sending and receiving a message to/from another
agent is carried out by the communication
manager component of the PAAgent. This
component is invoked when the behavior action
manager executes a send or a receive action (see
Figure 4). In the execution of a CP-Net model, to
coordinate the exchanged information between the

agents the tokens maintain information about the
process (e.g.: process ID) and the business
documents which are sent, received, or generated
internally. The transitions are also allowed to have
a guard with a Boolean expression. When a guard
exists, it must evaluate to true to enable the
transition, otherwise the transition is disabled and
cannot occur [14]. A guard puts an extra constraint
on the enabling of a transition.

3..MDD-based method to generate Colored
Petri Net models

In order to automate the generation of CP-Net
models we propose a method based on the Model-
Driven Development (MDD) [9, 15]. This method
provides a transformation process to generate CP-
Net models that PAAgents require to execute
CBPs. The MDD-based method takes as inputs a
UP-ColBPIP model that contains a CBP to be
executed, and a role an organization will perform in
the CBP (see Figure 5). With these inputs, the
transformation process generates as output a CP-
Net model for an organization, according to the
target role the organization will fulfill in the CBP.
This method is applied for generating the CP-Net
models of all the organizations that want to
execute a CBP. Thus, the behavior required for the
agents to execute a CBP is generated in an
automatic and agile way.

The transformation process consists in analyzing
each element of an interaction protocol from the
viewpoint of a target role, and generating the
corresponding elements of the CP-Net that
represent the protocol's element. The public logic
of the control flow, i.e. the ordering of transitions

Figure 4. Process administrator
agent components. Figure 5. Structure of the UP-ColBPIP to

Colored Petri Net transformation tool.

Software Agent Architecture for Managing Inter Organizational Collaborations, E. Tello Leal et al. / 514 526

Vol. 12, June 2014520

and places is derived according to transformation
rules for control flow segments, which are similar
to those defined in [16] for generating BPMN
models. These rules define how a control flow
segment of a protocol is transformed in transitions
in the CP-Net, to express control flows such as
exclusive gateway, loop, parallel gateway, and
synchronization.

The transformation of a business message of a
protocol requires generating a send or receive
transition, according to the role for which the CP-
Net model is generated. Also, this transformation
requires generating a generate transition
previous to a send transition or a process
transition after a receive transition. This is
carried out by the following transformation rule
for a business message. This rule indicates the
transitions and places to be generated for the
sender of the message and the receiver of the
message, as follows.

• Sender: two transitions are added. The first one
is the send transition, which is added along with
one input place and one output place. The send
transition is labeled as: Send + Speech Act +
Business Document name, being the speech act
and the business document those defined in the
message of the protocol. The second one is the
generate transition that is added and connected to
one input place and one output place, which is also
the input place of the send transition. This
indicates that previous to the sending of a

message, a generate transition is performed for
producing the business document to be sent. The
generate transition is labeled as: Generate +
Business Document name, being the business
document that one defined in the message of a
protocol.

• Receiver: two transitions are added. First one is
the receive transition with one input place and one
output place. The receive transition is labeled as
Receive + Request + Business Document name,
being the speech act and the business document
those defined in the message of the protocol. The
second one is the process transition, which has
one output place and has as input place the output
place of the receive transition. This indicates that
after the execution of the receive transition, a
process transition is executed. The process
transition is labeled as: Process + Business
Document name, being the business document
that one defined in the message of a protocol.

Figure 6 shows a transformation rule defined with
the ATL transformation language, which from an
UP-ColBPIP model allows generating a transition
generate and a transition send in a Petri Net
model, for each business document with a
request or propose speech acts content in an UP-
ColBPIP model. Transformation rule is the basic
construct in ATL used to express the
transformation logic [17]. The transformation rule
presented in the Figure 6 is specified in a
declarative style.

Figure 6. Transformation rules to generate send and generate transitions (CP-Net)
from business message (UP-ColBPIP) with the request or propose speech act.

Software Agent Architecture for Managing Inter Organizational Collaborations, E. Tello Leal et al. / 514 526

Journal of Applied Research and Technology 521

3.1 Tools for the MDD-based method

A set of tools were developed in order to aid
organizations to apply this methodology. They
were built on the Eclipse open development
platform [18] in order to take advantage of a well-
known development environment and its extension
mechanisms. The tools were implemented as
Eclipse plug-ins (see Figure 7) and consist of:
editor plug-ins for the UP-ColBPIP language that
allow modeling an integration agreement and the
collaboration processes; a plug-in for Petri Nets
that allows editing CP-Nets models; a
transformation engine for Petri Net that implements
the rules of the method for generating CP-Net
integration process models from UP-ColBPIP
interaction protocols; and a transformation engine
for Petri Net Markup Language (PNML) [19] that
generates a CP-Net in an XML format from an
integration process model.

The editor plug-ins are based on Graphical
Modeling Framework and manipulates and store
models based on the Eclipse Modeling
Framework. The rules of the transformation engine
for CP-NET and PNML were implemented by using
the ATL transformation language [17].

Figure 7. Eclipse-based tool for
 the proposed MDD-method.

4. Implementation of the agent-based architecture

In this section we present a prototype
implementation of the proposed agent-based
architecture for managing inter-organizational
collaborations, which is shown in Figure 8. The
software agents were built using the Java Agent
DEvelopment Framework (JADE) [20], which is a
physical multi-agent development framework which
complies with FIPA specifications [20] and aims at
simplifying the development and implementation of
multi-agent systems. The proposed architecture
based on software agents is composed of a

message transport system (MTS) used for
communicating with other agents or agent
platforms, an agent management system (AMS)
intended for managing the agent life cycles such
as starting and stopping, and a directory facilitator
(DF) used for recording the services provided by
an agent. Therefore, the CAAgent and PAAgents
are executed on the JADE platform and they use
the Agent Communication Language (ACL)
messages to communicate among them [21].

Figure 8. Implementation of the
agent-based software architecture.

The process machine component of the PAAgent
was implemented by using the Java-based Petri
Net framework (JFern) [22]. JFern provides an
object-oriented Petri Net simulator. It consists of a
lightweight Petri Net kernel, providing methods to
store and execute Petri Nets in real-time, as well
as for simulation. JFern supports XML based
persistent storage of Petri Nets and markings. The
tokens contain XML formatted business
documents, which are parts of the content of ACL
messages that the agents exchange.

The agent-based architecture includes an
administration tool based on Eclipse Rich Client
Platform [18]. This tool has to be deployed in each
organization and provides the support to:

•.Instantiate the JADE platform.

•.Instantiate the CAAgent of the organization.

•.Search, select and retrieve UP-ColBPIP and CP-
Net models stored in the local repository of the
organization.

•.Manage and monitor the PAAgents instantiated.

Software Agent Architecture for Managing Inter Organizational Collaborations, E. Tello Leal et al. / 514 526

Vol. 12, June 2014522

5. Example scenario

In this section we illustrate the functionality of the
proposed agent-based architecture. We chose a
case study from the Supply Chain Integrated
Management domain. The collaboration is based on
the scenario D of the CPFR business model [23]
that involves two manufacturing enterprises. The
CBP to be executed by them is the Collaborative
Demand Forecast. We apply the above proposed
method to generate the CP-Net models.

First, the CBP is defined with the UP-ColBPIP
language (see Figure 9). The protocol begins with
the customer, who requests a demand forecast.
The supplier processes the request and may
respond by accepting or rejecting it, as it is
indicated by the Xor control flow segment. If it is
accepted, the supplier undertakes to realize the
required forecast; otherwise, the process finishes
with a business failure. If the supplier accepts the
request, the customer informs, in parallel, a sale
forecast of its points of sales (POS) and its
planned sales, as it is indicated by the And control
flow segment. Finally, with this information, the
supplier generates a demand forecast and sends it
to the customer. Then, the process ends.

Figure 9. Collaborative demand
forecast interaction protocol.

Second, the automatic process of transformation of
the UP-ColBPIP model to CP-Net model is carried
out. The transformations of the UP-ColBPIP
process models are performed by each
organization involved in the collaboration
relationship. Afterwards to this, the privates
activities are added, which are required to support
the collaborative processes of each organization.
Thus, the CP-Net models contain the behavior of
each organization role. These models will serve to
determine the behavior of PAAgents. For each
individual role there is a separate CP-Net model.
The collection of individual CP-Nets associated
with all the relevant roles represents the entire
interaction protocol. The PAAgents involved in this
collaborative process are the customer PAAgent
and the supplier PAAgent. Figure 10 shows an
excerpt of code of the PNML document generated
for the customer role in a Collaborative Demand
Forecast process.

Figure 11 shows the Petri Net representing the
supplier role that the PAAgents have to execute
the Collaborative Demand Forecast collaborative
process. We use a graphical editor to read and
display the Petri Net model stored in the PNML file.
When PNML file is interpreted by the process
machine component, the execution of CP-Net
model is carried out. In this case, we describes the
actions performs by the PAAgents according with
the transitions of the CP-Net model.

The actions executed by the customer PAAgent
are: First, a generate action is performed to
generate the information to be sent. Then, a send
action is placed in the queue of the customer
PAAgent for sending the business document which
contains the information previously generated.
Next, the PAAgent receives a message, and the
process machine component placed in the queue
of the customer PAAgent a generate action, which
invokes a process to generates the information of
the business documents required. Afterwards, two
send actions are placed in the queue for sending
of the two different business documents.

Finally, the process machine placed a blocking
receive action, in waiting for a message. After
receiving the message, CP-Net model execution is
complete and a method to terminate agents must
be called.

Software Agent Architecture for Managing Inter Organizational Collaborations, E. Tello Leal et al. / 514 526

Journal of Applied Research and Technology 523

The actions executed by the supplier PAAgents
are: First, the process machine placed a blocking
receive action (receive request forecast request),
in waiting for a message, when the message is
received, a process action (evaluate forecast
request) is placed in the PAAgent to evaluate the
message previously received. Then, a send action
(send refuse or agree forecast request response)
is placed in the queue of the supplier PAAgent,
which contains the result of the previous action.
Next, a receive action (receive inform POS and
inform planned events) is activated in the agent in
waiting for a message, next with a process action
(process inform POS and inform planned events).
Afterwards, the PAAgent can executes a generate
action (generate demand forecast) to invoke an
internal process to generate the target business
document. Thus, a send action (send inform
demand forecast) is enabled in the supplier
PAAgent for sending of the message. After
sending the message, the supplier PAAgent ends.

6. Related work

There are several approaches that exploit the
benefits of software agents in the execution of
collaborative business processes.

In [24], an approach to the design and
implementation of collaborative processes based
on an architecture for software agents is
described. Private processes are modeled at the
level of business, as well as on a technical level,
an additional level of abstraction is introduced
between private processes and collaborative
process, which is called view process. This view
process represents an interface for interaction with
other organizations, describing the interactions of

one or more private processes from the
perspective of an organization. At the
implementation level collaborative processes are
extended with information on the specific platform.
The agent model is constructed from a process
model, generated at the technical level and based
on the Service-Oriented Architecture (SOA).

In [7], a method based on the MDD for the
generation of models of software agents capable
of running collaborative processes is proposed,
which allows generating an agent model
specification using capabilities defined as modules
that encapsulate functionality. These are defined
by using the Web Services Description Language
(WSDL) to specify invocations to internal systems
of the organization. Such capabilities are defined in
the plans of the agent. The agent model contains
only interaction messages generated from the
collaborative process, and the agent plans are
specified with calls to other services, delegating
the execution of tasks.

A methodology to model business processes and
to generate specifications for implementation in an
agent platform is presented in [25]. The
methodology uses a MDD-based approach that
allows the transformations by JIAC-V Framework
[26]. The development process starts with the
analysis using use case diagrams. Then, for each
use case diagram, a BPMN-based process model
is created. Starting from process model and the
use case diagrams, the role of each participant,
behavior and capabilities are derived. Finally,
models of organization (roles and agents) of each
agent, and the behavior of the agents (plans, rules,
and services) are integrated, allowing the
generation of the agent code.

Figure 10. Excerpt of code of the PNML document generated by transformation engine.

Software Agent Architecture for Managing Inter Organizational Collaborations, E. Tello Leal et al. / 514 526

Vol. 12, June 2014524

A proposal for the design of interaction protocols
based on a language independent modeling
platform for the domain of multi-agent systems is
described in [27]. First, in an interaction protocol
view, used to define the behavior of the agent.
The interaction view allows to define the
interactions of the actors involved. Then, the

system designer can perform a refinement to the
description of behavior through a behavioral
view, adding instances and additional
information of the private process. Finally, from
behavior generated a code transformation is
performed, following the structure of an agent
based on JACK platform.

Figure 11. The CP-Net model of the example scenario (supplier role).

Software Agent Architecture for Managing Inter Organizational Collaborations, E. Tello Leal et al. / 514 526

Journal of Applied Research and Technology 525

7. Conclusion

In this work we have proposed an agent-based
software architecture for managing inter-
organizational collaborations, which allows
organizations setting up collaborations in a
dynamic way and carrying out a decentralized
execution of collaborative business processes
(CBPs). Inter-organizational collaborations can be
supported by a system implementing this agent-
based software architecture composed by
Collaboration Administrator Agents (CAAgents)
and Collaboration Agents (PAAgents).

The CAAgents of the organizations execute a
request for collaboration protocol to agree and
establish an inter-organizational collaboration for the
enactment of a CBP. These agents exchange the
model of the process to be executed in the
collaboration. CBP models are defined with the UP-
ColBPIP language that enables the definition of the
logic of CBPs as interaction protocols. CAAgents
are also responsible for the instantiation of the
PAAgents that will execute the CBPs agreed. Thus,
through these agents organizations can achieve
dynamic agreements for executing CBPs.

The Colored Petri Net models are used to
specify the behavior a PAAgent needs to
perform the role an organization fulfills in a CBP.
These models are automatically generated from
UP-ColBPIP models. Hence, the decentralized
execution of a CBP is achieved by the
enactment of CP-Net models carried out by each
involved PAAgent. Due to the behavior of
PAAgents is driven by Petri Net-based process
machine, their action plans for executing an
interaction protocol representing a CBP can be
generated in run-time. The agent's actions to be
executed are obtained at run-time according to
the logic defined in CP-Net models. This makes
more flexible the architecture of agents for
setting up new collaborations and for adapting to
changes in CBPs. Changes on CBP models are
immediately reflected in CP-Net models, without
having to modify the implementation of the
software agents. Besides, this approach is
different from the traditional development of
software agents where their action plans and
interaction protocols are beforehand
implemented and defined in design-time.

In addition, we have proposed a model-driven
development method for automatically generating
CP-Net models of the PAAgents from CBP models.
This method enables that CAAgents instantiate
PAAgents and assign to them the Petri Net model
that define their behavior for executing a CBP.

Finally, an implementation of the proposed
architecture was presented, which is based on the
JADE agent platform. A Petri Net simulator was
used to implement the process machine of the
PAAgent. Also, a distributed inter-organizational
collaboration management tool based on the
Eclipse platform was developed that enables
organizations to manage their agents and their
own repository of CBP models.

Future work is about the addition of mechanisms
and tools to discover CBP models either in public
or organizations' repositories. In the current
implementation of the PAAgent, private activities
that generate or process the exchanged messages
are simulated. A support for a real integration and
execution will be developed by integrating Web
service technology with software agents.

References

[1] P.D. Villarreal et al., "Modeling and Specification of
Collaborative Business Processes with a MDA Approach
and a UML Profile," in P. Rittgen (eds), Enterprise
Modeling and Computing with UML, Hershey, PA: Idea
Group Inc., 2007, pp. 13-45.

[2]_S. Roser and B. Bauer, "A Categorization of
Collaborative Business Process Modeling Techniques,"
in 7th IEEE International Conference on E-Commerce
Technology Workshops, 2005, pp. 43-54.

[3]_M. Weske, "Business Process Management.
Concepts, Languages, Architectures", Berlin, Germany:
Springer, 2007.

[4]_E. Tello-Leal et al., "An Agent-Based B2B
Collaboration Platform for Executing Collaborative
Business Processes," in C. Wojciech & E. Estevez (eds),
Software Services for e-World, Berlin, Germany:
Springer, 2010, pp. 40-50.

[5] L. Bearzotti et al., "The event management problem
in a container terminal," Journal of Applied Research
and Technology, vol. 11, no. 1, pp. 95-102, 2013.

Software Agent Architecture for Managing Inter Organizational Collaborations, E. Tello Leal et al. / 514 526

Vol. 12, June 2014526

[6] C.V. Trappey et al., "The design of a JADE-based
autonomous workflow management system for
collaborative SoC design," Expert Systems with
Applications, vol. 36, no. 2, pp. 2659-2669, 2009.

[7] I. Zinnikus et al., "A Model-driven, Agent-based
Approach for the Integration of Services into a
Collaborative Business Process," in 7th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS
2008), 2008, pp. 241-248.

[8] L. Guo et al., "A Novel Approach for Enacting the
Distributed Business Workflows Using BPEL4WS on the
Multi-Agent Platform," in IEEE International Conference
on e-Business Engineering (ICEBE 2005), 2005, pp.
657-664.

[9]_B. Selic, "The Pragmatics of Model-Driven
Development," Journal IEEE Software, vol. 20, no. 5,
pp.19-25, 2003.

[10] P.D. Villarreal et al., "A Modeling Approach for
Collaborative Business Processes Based on the UP-
ColBPIP Language," in W. Aalst et al., (eds), Business
Process Management Workshops, Berlin, Germany:
Springer, 2010, pp. 318-329.

[11] G. Wagner, "The Agent-Object-Relationship Meta-
Model: Towards a Unified View of State and Behavior,"
Information Systems, vol. 28, no. 5, pp. 475-504, 2003.

[12] R. M. Dijkman et al., "Semantics and analysis of
business process models in BPMN," Information and
Software Technology, vol. 50, no. 12, pp. 1281-1294, 2008.

[13] W.M.P. van der Aalst, "Three Good Reasons for
Using a Petri Net-based Workflow Management
System," in International Working Conference on
Information and Process Integration in Enterprises (IPIC-
96), 1996, pp. 179-201.

[14] K. Jensen and L. M. Kristensen, "Coloured Petri
Nets, Modelling and Validation of Concurrent Systems",
Berlin, Germany: Springer, 2009, pp. 34.

[15] OMG., MDA Guide V1.0.1, 03-06-01.pdf. (online),
Available from: http://www.omg.org/cgi-bin/doc?omg/03-
06-01.

[16] I.M. Lazarte et al., "An MDA-based Method for
Designing Integration Process Models in B2B
Collaborations," in 13th International Conference on
Enterprise Information Systems (ICEIS 2011),
SciTePress, 2011, pp. 55-65.

[17] F. Jouault et al., "ATL: a model transformation tool,"
Science of Computer Programming, vol. 72, no. 1–2, pp.
31-39, 2008.

[18] Eclipse, Eclipse Platform. (online), Available from:
http://www. eclipse.org

[19] M. Weber and E. Kindler, "The Petri Net Markup
Language", in H. Ehrig et al., (eds), Petri Net
Technology for Communication-Based Systems, Berlin,
Germany: Springer, 2003, pp. 124-144.

[20] F. Bellifemine et al., "Developing Multi-Agent
Systems with JADE", England: Wiley, 2007.

[21] FIPA, FIPA Agent Communication specifications
deal with Agent Communication Language (ACL),
(online), Available from:
http://www.fipa.org/repository/aclspecs.html, 2002.

[22] M. Nowostawski, JFern - Java-based Petri Net
framework, 2003.

[23] VICS, Collaborative planning, forecasting, and
replenishment - Voluntary guidelines, V 2.0., (online),
Available from:
http://www.vics.org/committees/cpfr/voluntary v2/

[24] T. Kahl et al., "Architecture for the Design and
Agent-Based Implementation of Cross-Organizational
Business Processes," in R.J. Goncalves et al., (eds),
Enterprise Interoperability II, London: Springer, 2007, pp.
207-218.

[25] T. Küster et al., " Integrating Process Modelling into
Multi-Agent System Engineering," Multiagent and Grid
Systems, vol. 8, no. 1, pp. 105-124, 2012.

[26] B. Hirsch et al., "Merging Agents and Services - the
JIAC Agent Platform," in A. El Fallah et al., (eds), Multi-
Agent Programming, USA: Springer, 2009, pp. 159-185.

[27] C. Hahn et al., "Automatic Generation of Executable
Behavior: A Protocol-Driven Approach," in M.P. Gleizes
and J.J. Gomez-Sanz, (eds), Agent-Oriented Software
Engineering X, Berlin, Germany: Springer, 2011, pp.
110-124

	Software Agent Architecture for Managing Inter-Organizational Collaborations
	Introduction
	Agent-based architecture for inter-organizational collaborations
	Collaboration Administrator Agent
	Process Administrator Agent

	MDD-based method to generate Colored Petri Net models
	Tools for the MDD-based method

	Implementation of the agent-based architecture
	Example scenario
	Related work
	Conclusion

