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Abstract—This study entails a meticulous examination of the
dynamic characteristics exhibited by the continuous stirred tank
reactor (CSTR) with the objective of establishing a robust
multi-model representation that accurately captures the reactor
behavior across its operational range. To achieve this, a method-
ology is presented, which incorporates parameter variations as
uncertainties within the model. The result is a concise polytopic
representation, reduced to its vertices, that effectively captures
the system dynamics and encompasses the range of parameter
uncertainties.

Index Terms—robust multi-model representation, linear
parameter-varying, nonlinear system, CSTR

I. INTRODUCTION

In the field of classical process control ([1]–[3], among oth-

ers), it is widely acknowledged that the nonlinear nature and

sluggish dynamic responses exhibited by industrial processes

needs the tuning of controllers/regulators that offer robust-

ness to the control system. This robustness is essential for

addressing the inherent uncertainties associated with process

modeling. The complexity increases when process constraints

are taken into account. In response to this challenge, traditional

process control approaches rely on the tuning of industrial

controllers using conventional techniques, which often result

in conservative dynamic responses [4].

Within the literature, various control strategies can be found

that utilize a multi-model approach for representing nonlinear

plants [5]–[7]. This approach involves representing nonlinear

systems using a finite set of linear models, where the effects of

nonlinearity are captured through the inclusion of linear time-

invariant (LTI) models corresponding to different operating

points.

The conventional approach to obtaining a polytopic rep-

resentation involves the construction of a polytope, as a

convex hull, that encapsulates the entire operating range of

the nonlinear model, and subsequently augmenting the model

with an additional matrix that take into account the external

disturbances ([8] and [9]). In contrast to this method, this

article proposes a novel procedure to incorporate all parameter

variations. That is, covering the both aspects, the changes in

the operating points and the presence of external disturbances,

as sources of model uncertainty. Consequently, they are in-

cluded in a reduced polytopic representation.

As a consequence, this paper focuses on the development

of a polytopic representation for a Continuous Stirred Tank

Reactor (CSTR). Furthermore, an extension of the multi-

objective regulator proposed in [10] is introduced, which

incorporates a discrete-time representation. Consequently, the

linear matrix inequality (LMI) formulations involved in the

regulator design differs from those in the continuous-time case.

This work is organized as detailed below. In Section II

the nonlinear model of the CSTR is presented, showing,

through numerical simulations, its nonlinear dynamics. Then,

in Section III a procedure to build a reduced polytopic

model is presented. Subsequently, in Section IV three LQR

regulators are analyzed, where two of them are designed with

variable gain using LMI. Moreover, in Section V the dynamic

behavior of the feedback system is studied, through numerical

simulations. Finally, the conclusions are presented in Section

VI.

II. NONLINEAR BEHAVIOR OF CSTR DYNAMIC

In this section, the CSTR presented by Morningred et al.

[11] is considered and depicted in Fig. 1.

The nonlinear model for this unit operation results:

ĊA(t) =
qe(t)

V 0
(CAe − CA(t))− k0e

−ER
T (t) CA(t) , (1)

Ṫ (t) =
qe(t)

V 0
(Te − T (t)) + k1e

−ER
T (t) CA(t)

+
qc(t)

V 0
k2

(

1− e
−k3
qc(t)

)

(Tce − T (t)) ,

(2)

where k1 = −ΔHk0

ρCp
, k2 =

ρCpc

ρcCp
and k3 = hA

ρcCpc
. Based on

its operative conditions, in Table I is shown the physical and

operational parameters.
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Fig. 1: Diagram of a CSTR and its corresponding temperature

controller.

TABLE I: Parameters of the CSTR process.

Name Description Value
V 0 Volume 100 L
qe Feed flow rate 100 Lmin−1

Te Feed temperature 350 K
CAe Feed concentration 1 mol L−1

Tce Inlet coolant temp. 350 K
E/R Activation energy 1e4 K
ΔH Heat of reaction -2e5 calmol−1

Cp, Cpc Specific heats 1 cal g−1 K−1

ρ, ρc Liquid densities 1e3 g L−1

hA Heat transfer term 7e5 calmin−1 K−1

k0 Reaction rate constant 7.2e10 Lmin−1

A. Reactor behavior in open-loop

In order to gain insights into the dynamics of this nonlinear

open-loop system, various initial and steady state conditions

are considered, with the specie A concentration (CAss
), rang-

ing from 0.05 to 0.14 mol/L. This range is chosen to com-

prehensively analyze the entire operating range of the system.

Consequently, the states that represent the reactor dynamics

are disturbed in two opposing directions. Specifically, two

distinct operating points are examined in detail, and their

characteristics are elaborated upon below.

• Test-Part 1. Initially, it is considered that the CSTR has

an outlet reactant concentration CAss = 0.14 mol L−1

and a new steady state for the outlet concentration

CAss
= 0.05 mol L−1 is pretended to reach. To do this, it

is proposed to use the coolant flow rate that corresponds

to the new desired reactant concentration.

• Test-Part 2. In this case, an opposite situation to the pre-

vious one is considered. That is, to bring up the concen-

tration CAss = 0.05 mol L−1 to CAss = 0.14 mol L−1,

changing the refrigerant flow with the same criteria of

the previous test. Thus, the coolant flow necessary to

reach the desired concentration (CAss
= 0.14 mol L−1)

is supplied to the reactor.

Thus, it becomes apparent how variations in the reactant

concentration influence the dynamic behavior of the CSTR

within the specified operating range of this particular variable

(ΔCA(0) = ±0.09 mol L−1).

The results of these simulations are shown in Figs. 2 to 5.

Clearly, the nonlinear behavior of the reactor is evident when

trying to reach the two equilibrium points mentioned above.

In Figs. 2 and 3 (blue lines) it is observed that when

the outlet concentration CAss
= 0.14 mol L−1 is changed

to CAss = 0.05 mol L−1, the system quickly reaches the

desired steady state increasing the temperature inside the

reactor until reach the equilibrium point (Fig. 4 - blue line).

However, according to the simulation results (Figs. 2 and 3

- red lines) when trying to change CAss
= 0.05 mol L−1 to

CAss
= 0.14 mol L−1 the system does not reach the steady

state during the chosen simulation time, because this point is

close to a marginal stable equilibrium point for the open-loop

CSTR due to the reaction curve and the red heat dissipation

line become tangent (Fig. 5).

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

Fig. 2: Concentration dynamic responses of CSTR.
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Fig. 3: Temperature dynamic responses of CSTR.

III. CSTR POLYTOPIC MODELS WITH PARAMETRIC

UNCERTAINTY

In this section, it is analyzed the challenges of approximat-

ing a nonlinear physical system with a nominal linear model

and compensating for the associated parametric uncertainty.

One approach for designing a regulator for such a system

involves constructing a polytope, as a convex hull, that en-

closes the nominal nonlinear plant over its entire operating

range and incorporating a matrix to model parameter variations

as a disturbance vector. Although considering the maximum

variation in the input parameters, the original polytope has 94
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Fig. 4: State space corresponding to the two studied test.

340 360 380 400 420 440 460 480
-50

0

50

100

150

200

250

300

Fig. 5: Reaction and dissipation heat curves.

vertices (Fig. 6), where each one is associated to an identified

LTI model. However, by mean of proposed procedure eight

plants where determined in the operating region as shown

below. In this way, it is possible to reduce the computational

limitations reducing the number of vertices while maintaining

the robustness of the control system.
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Fig. 6: Original operating region (94 vertices)

A. Procedure to build a reduced polytopic model.

In order to reduce the number of vertex operating points

on a convex region obtained from the dynamic responses

of a disturbed nonlinear system, this article proposes the

implementation of a general procedure. The applied procedure

is represented schematically in Fig. 7 and it is detailed below.

Proposed procedure
1) Consider three vertices, for example v1, v2 and v3.

2) Compute the angles θ1 and θ2, if the angular difference

is less than a predetermined value, v2 is deleted and go

to step 3. Otherwise, v2 is not omitted and go to Step 4.

Take into account that,

a) when several consecutive vertices are suppressed, the

angular difference is increased with respect to the

original θ1, but as long as the bound for the angular

difference is not exceeded, the consecutive vertices will

be deleted. When this angular limit is exceeded, the

last vertex is not discarded, considering this and the

two next vertex, go to Step 2.

b) The bound imposed on this angular difference depend

on some criterion imposed for the designer.

3) If v2 is deleted, rename v3 as v2 and go to next step.

4) Taking into account the last not discarded two vertices as

the initial vertices, the procedure is continued with the

next vertex.

The final result of applying this procedure to the polytopic

operating region associated with the reactor is shown in Fig.

8. Now, the reduced region, which is an approximation of

the original operating region, has only eight vertex operation

points with significant difference between them.

Fig. 7: Vertex reduction
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Fig. 8: Reduced operating region (8 vertices)

B. Discrete-time polytopic model

According to the results from the previous section and

considering a bounded parameters variation, the eight LTI
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models corresponding to the obtained operating points were

determined.
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Fig. 9: Sigmoid and dissipation heat functions.

Thereby, for a variation of ±5% in the three system param-

eters (CAe , Te and Tce ), the value range for the concentra-

tion CA under analysis corresponds to the temperature range

430.2 K ≤ T ≤ 454.5 K.

By mean of Fig. 9 it was determined that the temperature

range is achieved when the coolant flow is 67.77 Lmin−1 ≤
qc ≤ 136 Lmin−1, where the equilibrium points bound the

operating interval over the reaction curve.

Then, linearizing the differential equations (1) and (2) in

the working range, the eight LTI vertex models are obtained.

Table II shows the matrices Aj and Bj , from the LTI vertex

models. These models constitute the vertices of the polytopic

model with uncertainties for the CSTR.

LTI Model Aj Bj

1

(
0.5129 −0.0011
90.5390 1.1699

) (
0

−0.0351

)

2

(
0.5131 −0.0011
90.0292 1.1580

) (
0

−0.0347

)

3

(
0.5927 −0.0013
74.2560 1.1975

) (
0

−0.0300

)

4

(
0.6704 −0.0014
58.9150 1.2088

) (
0

−0.0281

)

5

(
0.7239 −0.0014
48.3758 1.2145

) (
0

−0.0265

)

6

(
0.7629 −0.0015
40.7064 1.2170

) (
0

−0.0252

)

7

(
0.7720 −0.0015
39.1695 1.2340

) (
0

−0.0258

)

8

(
0.7721 −0.0015
38.8856 1.2173

) (
0

−0.0248

)

TABLE II: LTI vertex models of the polytope.

Note: C = (1 0) and D = 0 for all models.

Thus, the robust discrete-time model is determined as fol-

lows:

x(k + 1) = A(η(k))x(k) +B(η(k))u(k),

y(k) = Cx(k) +Du(k),

x(0) = x0,

(3)

where the matrices A(η(·)) and B(η(·)) depend on the param-

eter η(·), and the matrices C and D are considered known and

constant. Also, x ∈ R
2 is the state vector ([CA T ]

′
), u ∈ R

1

is the manipulated variable (qc), A ∈ R
2×2 is the state matrix,

B ∈ R
2×1 is the input matrix, C ∈ R

1×2 the output matrix,

D = 0 and η is a nonlinear parameter vector that takes in

account the nonlinearities of Eqns. (1) and (2) and the time

variation of their input parameters ([12]).

Based on the interpolation of the vertex LTI models, it

is possible to obtain a model inside the polytopic operating

region:

A(η(k)) =

nm∑

j=1

αj(k)Aj ,

B(η(k)) =

nm∑

j=1

αj(k)Bj ,

nm∑

j=1

αj(k) = 1, ∀t ≥ 0.

(4)

where nm = 8, αj is a membership vector that relates the

uncertain Linear Parameter-Varying (LPV) model to the vertex

LTI models.

IV. REGULATOR DESIGN WITH VARIABLE GAIN IN

DISCRETE-TIME

This section presents a robust regulator designed with vari-

able gain using LMI. The design contemplates uncertainties

in the model parameters and operational constraints.

Firstly, a formulation of an LQR for a discrete-time LTI

model is carried out, which uses a static feedback gain vector.

Then, the proposed strategy is extended to discrete-time LPV

models. Afterwards, amplitude constraints into the manipu-

lated variable are incorporate. Thereafter, the formulation of a

robust LQR with constraints is presented and finally the results

obtained are extended to a state feedback with variable gain

vector.

A. LQR problem formulation using LTI models

Considering the general state-space form discrete-time LTI

model:

x(k + 1) = Ax(k) +Bu(k) ,

y(k) = Cx(k) +Du(k) ,

x(0) = x0 ,

(5)

where x ∈ R
n are measurable states and u ∈ R

m is the

control signal with k = 0, 1, 2, ...,∞, and establishing a state

feedback control law, given by:

u(k) = Fx(k) . (6)

So, the closed-loop control system becomes:

x(k + 1) = Aclx(k)

x(0) = x0 ,
(7)

where Acl � A+BF .
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B. LQR problem formulation using LPV models in discrete-
time

In this section, the results from Section IV-A, which is based

on LTI models, are extended to solve control problems on

linear models with parametric uncertainties (LPV).

In this way, a robust control formulation is presented that

encloses the parameters variations of the nominal model in an

uncertainty model, in consequence the real plant is included

within a multi-model framework.

Considering the discrete-time LPV model given by Eqn.

(3), it is possible to incorporate the dynamics of the uncertain

system into a convex polytope of nm vertices with an affine

dependence on the parameter η(·) ([13]):
[
A (η(k)) |B (η(k))

] ∈ Ω, ∀k ≥ 0, (8)

with Ω is a polytope with LTI models at its nm vertices, which

is represented as:

Ω � Co{ [A1 | B1], [A2 | B2], . . . , [Anm
| Bnm

] }. (9)

where Co{·} denotes a convex hull and [Aj | Bj ] are the

matrices of each vertex LTI model.

That is, ∀k ≥ 0 there exist nm non-negative coefficients

αj(k), with j = 1, 2, ..., nm such that:

[A(η(k)) | B(η(k))] =

nm∑

j=1

αj(k) [Aj | Bj ] ,

nm∑

j=1

αj(k) = 1 .

(10)

Subsequently, two LQR controllers are formulated, but due

to the document format constraints a detailed description of

these controllers cannot be provided in this article.

1) LQR formulation using LTI model (See [14] and [15]).

2) LQR problem using LPV models as an extended version

of the regulator described above.

V. NUMERICAL SIMULATION

For numerical simulation, the nonlinear model given by

Eqns. (1) and (2) are employed for simulating the process.

Moreover, the LQR weighting matrices were defined as

Rx = I and Ru = I
1. However, it is important to highlight

that the three implemented LQR formulations use the same

set of matrices, and operate with the same sampling period.

In addition, the results of numerical simulation here presented

were achieved using MATLAB with Yalmip toolbox ([16]).

For a first test, the reference tracking goal is set as

0.14 mol L−1 for the concentration of A. Additionally, the

nominal plant is simulated with an initial disturbance of states

given by ΔCA = −0.09 mol L−1 and ΔT = 22.08 K.

The states evolution and the coolant flow can be seen in

Figs. 10 to 13. There it is shown, in black line, the system

response to a disturbance in the states when a static and

unconstrained LQR is applied. In Figs. 10, 11 and 12, it can

1
I denotes the identity matrix with appropriate dimensions.
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Fig. 10: Concentration time response.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
425

430

435

440

445

450

455

Fig. 11: Temperature time response.

be seen that the system has a good performance with this

regulator but, at the same time, in Fig. 13, a coolant flow rate

greater than 175 Lmin−1 is required, exceeding the maximum

available.

Also, in red line, it presents the system response with the

same state disturbance, when a static LQR with constraints

on the manipulated variable is applied. Clearly the maximum

value of the manipulated variable is not exceeded. Obviously

this option, it has a lower performance than the previous case.

Finally, in blue line, it shows the system response to the state

disturbance when a variable gain LQR with constraints on the

control signal is applied. It is observed that with this regulator

the system has a good performance and that the upper bound

on manipulated variable is not exceeded.

Table III summarizes a comparison of the performance

indexes of these three methods. It is possible to appreciate

that regulator 1 has a similar performance to the regulator 3
while the regulator 2 presents higher Integral of Absolute Error

(IAE), Time-weighted Integral of Absolute Error (ITAE) and

Integral of Square Error (ISE) than the others ones.

TABLE III: Performance indexes of the implemented LQRs

in a CSTR for the first test.

Regulator IAE ITAE ISE
1 Static LQR without Constraints 0.039725 +1, 497% 0.0019287
2 Static LQR with Constraints +7, 368% +34, 388% +8, 026%
3 Recalculated LQR with Constraints +0, 5387% 0.016717 +2, 810%
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Fig. 12: State space.
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Fig. 13: Coolant flow rate.

The reason for this similar behavior in the system response,

when the regulators 1 and 3 are applied, is due to the control

signal constraint takes effect only at the initial instant, when

the disturbance is maximum. Then, as the system evolves and

approaches its equilibrium state, the required coolant flow is

lower and this constraint no longer has effects. Therefore,

when recalculating the gain at subsequent instants, both al-

gorithms match and the gains are similar.

This can be seen in Figs. 14 and 15 where the gain of

the three mentioned regulators is shown as a function of the

iterations.
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Fig. 14: Concentration control loop gain.
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Fig. 15: Temperature control loop gain.

VI. CONCLUSION

In this work, a procedure to reduce the size of a large

polytope without loss of robustness was presented as the main

contribution. Moreover, the resulting reduced polytope was

employed for the robust design of quadratic linear regulators,

as demonstrated through numerical simulations, obtaining at-

tractive results.
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