
Congestion Control Proposal in SDN With Random

Early Detection

Luis Lezcano Airaldi

CINAPTIC - FRRe

Universidad Tecnológica

Nacional

Corrientes, Argentina

luislezcano@frre.utn.edu.ar

Reinaldo J. R. Scappini

CINAPTIC - FRRe

Universidad Tecnológica

Nacional

Corrientes, Argentina

rscappini@gfe.frre.utn.edu.ar

Sergio Gramajo

CINAPTIC - FRRe

Universidad Tecnológica

Nacional

Resistencia, Argentina

sergio@frre.utn.edu.ar

Diego Bolatti

CINAPTIC - FRRe

Universidad Tecnológica

Nacional

Resistencia, Argentina

dbolatti@frre.utn.edu.ar

Abstract— The emerging technology of SDN (Software

Defined Networks) separates the data control plane from the

forwarding plane while maintaining a centralized control of the

network management. The SDN features require new traffic

engineering techniques that exploit the global (centralized)

network view, and the status and features of traffic flows. Our

purpose is to perform traffic engineering in an SDN

architecture, using the OpenFlow protocol capabilities and the

potential of the SDN controller to collect operational data of the

entire network, such as topology, latency, buffer utilization and

frame sizes of the controlled devices in order to implement QoS.

Considering that the performance of the network is an essential

component of Quality of Service (QoS), and congestion is the

main factor that affects it, this paper explores a method to

search for alternative paths based on data from switches using

the Random Early Detection (RED) congestion control

mechanism.

Keywords— SDN, Congestion Control, QoS, RED

I. INTRODUCTION

Nowadays, a vast range of applications and services are
provided to satisfy the growing and dynamic needs of society
and Internet traffic has turned very dynamic and complex.
With the continued and increasing demand, congestion
prevention and control is a very important challenge in order
to avoid deficient performance in collapsed networks.

Although traffic-engineering techniques have been widely
exploited in the past to optimize the performance of
communication networks, paradigms established by new
generation networks carry out dynamically analyzing,
predicting and regulating the behavior of data transmission
due to several important reasons, such as real-time
applications [1] [2].

Traditional networks have congestion control algorithms
implemented across the whole protocol stack in packet
switching networks [3]. This is not only to get efficient
bandwidth usage and network stability but also to reach a
satisfactory performance using the available resources such as
RED algorithm [4] [5].

Multiple methods were applied to solve several network
problems, especially QoS [6] [7]. In [8] the authors propose a
theoretical model to search for alternative paths in a congested
network.

In this way, network devices and data center infrastructure
must respond to the growing demand with adequate scalability

and SDN can be useful to improve network performance and
congestion control [9].

SDN is revolutionary network paradigm that separates out
network operation of the control plane above the infrastructure
[10] [11], centralizing data routing decisions by means of a
central controller that communicates with switching devices
through the OpenFlow protocol [12].

The centralization of the SDN control plane and the
possibility of developing applications has effect on network,
thus, forwarding plane allows to add smart solutions that can
be applied to improve routing algorithms such as congestion
control. Therefore, many solutions have been proposed in
literature that addresses this problem, such as studies over
throughput and performance of data centers based on TCP
proposals and SDN control avoiding severe collapses [13]
[14] [15]. Also, some methods have been proposed to avoid
congestion applied in Internet of Things (IoT) Applications
and Data Centers using SDN [16]. In [17] authors propose a
framework of congestion control decision based on global
real-time network conditions information and occupied rate
exchange information between nodes and controller [18] [19].
In [15] and [20] congestion control is calculated with link
utilization in SDN controller and, if it necessary, rerouting
algorithm is applied to choose a better route [21].

Following this approaches, each time t, the current state of
the network can be analyzed to predict future behavior and
update configuration parameters, such as routing tables or
certain thresholds, to avoid network problems. To do that, this
work proposes an approach using RED algorithm and SDN
architecture. The scenario described makes certain
assumptions to simplify the model: the state space is
considered finite (a core network) with no uncertainty, since
the paths between the nodes are known beforehand and the
function to go from one state to another is simply a network
link managed by the controller.

The rest of the paper is organized as follows. Section 2
reviews the main concepts SDN, QoS an RED and its
standards; Section 3 presents our proposal integrating SDN
and search algorithm to solve congestion problems over SDN
forwarding plane. Section 4 contains an illustrative example.
Finally, Section 5 presents the concluding remarks.

mailto:luislezcano@frre.utn.edu.arReinaldo
mailto:luislezcano@frre.utn.edu.arReinaldo
mailto:luislezcano@frre.utn.edu.arSergio
mailto:luislezcano@frre.utn.edu.arSergio

II. FUNDAMENTALS OF SDN, QOS AND RED

Before reaching our proposal, it is necessary to revise
useful previous concepts of SDN, QoS with QoE and RED.

A. Software Defined Networking

SDN has emerged as an efficient network technology
capable of supporting the growing of future networks and
intelligent applications. In addition, it allows reducing the
operating costs through simplified hardware, software, and
management methodologies [22].

The SDN Controller is a logically centralized entity in
charge of translating the requirements from the SDN
Application layer to SDN Datapaths and providing SDN
applications with an abstract view of the network, which may
include statistics and events [11]. The SDN Controller has
complete control of SDN Datapaths, subject only to the limit
of their capabilities, and thus it does not have to compete with
other elements in the control plane. This simplifies scheduling
and resource allocation and allow networks to run with more
precise policies, allowing for a greater resource utilization and
guaranteed quality of service. This is done through a well-
understood common information model (e.g. as the one
defined by the OpenFlow Protocol [12] [23]).

Fig. 1 shows a general overview of the SDN architecture
and its layers [24]. The Openflow protocol operates between
the data plane (lower layer) and the control plane (upper
layer). The controller makes its decisions based on calls from
applications, which use the upper layer API that operates
above the control plane.

Fig. 1. Overview of Software-Defined Networking Architecture

B. Quality of Service (QoS) and Quality of Experience

(QoE)

ITU-T Recommendations E.800 [25] and ITU-T E.804
[26] provide the basic definition of QoS and QoS services in
networks. These recommendations cover the whole end-to-
end aspects of telecommunication services (Fig. 2).

Fig. 2. End-to-end QoS (E.804)

Quality measures in telecommunications can be described
in a hierarchical manner:

Network performance (NP): The network performance is
assessed across a part of a network or a sub-network. Example
parameters are bit error ratio, sending and receiving power,
transmission delay.

Overall NP: If several network sections should be
considered as being one integral part of the network (i.e. a
black box), the overall network performance must be assessed.
For example, the network performance of the whole
transmission between two User Network Interfaces (UNIs)
can be summarized in this way.

End-to-end quality of service (QoS): The assessment of
the overall transmission chain from a user's perspective is
considered to deliver the QoS in an objective manner. This
implies that the most complete transmission chain without
involving the user should be considered. Mostly, the measures
rely on service-related characteristics without knowing any
details about the underlying network sections, which are
required to have an end-to-end service.

Quality of experience (QoE): The inclusion of the user to
the overall quality in telecommunications extends the rather
objective QoS to the highly subjective quality of experience
(QoE). The QoE differs from user to user since it is influenced
by individual experiences and expectations.

C. Random Early Detection algorithm

This algorithm, proposed by Floyd and Van Jacobson in
the early 1990s, is a mechanism to address or avoid network
congestion in a proactive (instead of reactive) way [27].

The buffer size and the delay of local queues at each node
in the switches are the main contributors to the delay in the
overall network that affect the transmission of packets and
may result in a congestion [27]. A soft limit on the internal
queue delay of the switch can be calculated using the
maximum buffer occupancy of each switch together with the
outbound link ratio. If queues have been assigned to the switch
ports the OpenFlow controller can send a message "queue get
config" to retrieve the relevant values of the queue, including
length (in bytes), and minimum and maximum data rate (with
Open Flow 1.2 and above). The local queuing delay can be
obtained by dividing the maximum size of the buffer by the
corresponding output link rate.

The Algorithm 1 Fig. 1 shows the basic outline of the RED
algorithm in its simplest form, although there exist many
variants [28] that were developed for specific purposes such
as Weighted Random Early Detection, RED with the
Unresponsive Flow Identification, Flow Random Early
Detection, Balanced Random Early Detection.

The model proposed in this paper may be used with any
implementation of RED assuming the controller has access to
the necessary data about the queue’s states.

Fig. 3. Algorithm 1 – Random Early Detection

The basic behavior of RED, as illustrated in Algorithm 1,
can be summarized as follows: every time a packet arrives to
a queue in a switch, it has a probability 𝑝𝑎 of being dropped.
This probability starts at a minimum when the queue is empty,
and it slowly increases proportionally to the queue length.
This means that, as the congestion increases, so does the
amount of dropped packets. If the queue size is above a certain
predefined threshold 𝑚𝑎𝑥𝑡ℎ, the arriving packets are always
dropped. In the same way, if the queue size is below a
minimum threshold 𝑚𝑖𝑛𝑡ℎ , the arriving packet is always
queued.

III. PROPOSAL

This section describes the proposed model. It is divided
into two subsections. The first mentions the tools and software
used to carry out the simulation, and then, the second section
describes the algorithm implementing the proposed solution.

A. Scenarios Simulation Tools

Multiple scenarios were tested with different topologies
and operation methodologies. A working framework was set
up to measure the performance of the network between any
two nodes and from end-to-end nodes in order to obtain the
NP (Network Performance) and QoS (Quality of Service)
parameters.

The simulators used were Mininet [29] and GNS3 [30]
with OpenVSwitch [31] appliances using, in both cases, an
OpenDayLigh controller (with different versions) and
OpenFlow protocol version 1.3. This software was chosen due
to its availability and extended use in academic research.

The state of the queues in the SDN switches can be
obtained using low-level API calls, one of which is described
here due to its importance for the method proposed. The
queue-stats switch command returns statistics for all queues
on all ports in the switch, or only for the specified port and
queue.

B. Proposed algorithm

Fig. 4. Algorithm 2 – Proposed model

The controller performs readings on all nodes in the
network every certain time 𝑡 to obtain operational data from
the queues in the switches. The parameter of interest here is
the average queue length (𝐴𝑄𝐿), which is an indicator of
possible congestion when using RED gateways. These data
are then used to determine if a node is congested by analyzing
if the 𝐴𝑄𝐿 is above a certain threshold. If a congestion state is
detected on a node, the controller will switch traffic through a
different route, allowing the congested node to go back to a
normal operating state after a period of time 𝑡.

To find a new route, the algorithm shown in Algorithm 2,
checks each node along the path to see if it is operating below
the predetermined congestion threshold (𝐴𝑄𝐿𝑡ℎ𝑟𝑒𝑠). The
purpose of this is to find a new path which is not congested
(lines 2 to 6).

If a route is found, the controller updates its routing tables
and marks the congested nodes, so all new traffic that passes
through them will switch to the new route (lines 7 to 9). In the
next iterations, it periodically checks if the congested nodes
can be restored to their previous path, allowing the network to
recover from a congestion state and go back to the initial setup
(lines 10 and 11).

IV. ILLUSTRATIVE EXAMPLE

To illustrate the idea proposed in this paper, let us consider
a simple network topology as it shown in Fig. 3. This method,
however, can easily scale to more complex topologies. This
network has seven nodes, which can be standard routers or a
set of 5G nodes, managed by an SDN controller.

Fig. 5. Network topology with example AQL values. Node D AQL is

above the defined threshold.

A is an initial node then the route configured by the SDN
controller to get from node A to the destination node Z consist

1. function RandomEarlyDetection(𝑚𝑖𝑛𝑡ℎ : minimum threshold,

𝑚𝑎𝑥𝑡ℎ : maximum threshold)

2. for each packet arrival

3. calculate new average queue size 𝑎𝑣𝑔

4. if 𝑚𝑖𝑛𝑡ℎ ≤ 𝑎𝑣𝑔 ≤ 𝑚𝑎𝑥𝑡ℎ

5. calculate packet dropping probability 𝑝𝑎

6. with probability 𝑝𝑎 drop the arriving packet

 or enqueue it with probability (1 − 𝑝𝑎)

7. else if 𝑎𝑣𝑔 ≥ 𝑚𝑎𝑥𝑡ℎ

8. drop the arriving packet

9. else

10. enqueue packet

1. every time 𝑡:

2. read queues state from all nodes

3. obtain the 𝐴𝑄𝐿 for every node

4. for each node 𝑖:
5. if 𝐴𝑄𝐿𝑖 > 𝐴𝑄𝐿𝑡ℎ𝑟𝑒𝑠 :

6. find a new non-congested route for traffic that

 passes through node 𝑖
7. if there is a new route:

8. update the routing tables in the controller

9. add node 𝑖 to 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 list

10. if 𝑖 is in 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑁𝑜𝑑𝑒𝑠 and 𝐴𝑄𝐿𝑖 < 𝐴𝑄𝐿𝑡ℎ𝑟𝑒𝑠

11. restore node 𝑖 to the previous route

of the following path: A, B, D, E, Z. The controller reads the
state of the nodes every certain predefined time interval 𝑡 as
can be seen in step 1 of Algorithm 2. After a period of time
the node D reports a situation of "probable packet loss", that
is, the congestion threshold or average queue length AQL is
getting closer to the predefined value 𝐴𝑄𝐿𝑡ℎ𝑟𝑒𝑠 . This can
cause the entire network to experience a performance
degradation and, therefore, a decrease in the QoS for users.
The AQL values are checked by the Algorithm in step 2.

In step 3, the model tries to find a new route for traffic that
passes through the congested node D. If it finds this route, the
controller proceeds to update its internal routing tables with
the new route. In our example, all new traffic for the
destination node Z will go through the route A, F, Z, and the
node D will be marked as “switched” adding it to the list of
congested nodes.

Being left only with the existing flows, the congested node
D is expected to lower its AQL value over the next period,
going back to a normal operating state after some time.
Consequently, in step 4, the model checks the new AQL
values of the nodes in the congested list. If it detects that a
node’s AQL dropped below a certain threshold, it is assumed
that it is safe to restore that node to its previous route. Fig. 4
illustrates this behavior, showing the new data flows being
routed through node F, and the consequent drop on node D
AQL.

Fig. 6. Network topology showing the new route from A to Z and new

AQL values due to the path change.

TABLE I. SHOWS A SUMMARY OF THE EXAMPLE DESCRIBED ABOVE,
FOLLOWING THE STEPS IN THE ALGORITHM PROPOSED

SUMMARY OF THE EXAMPLE

Node State

𝑆0
Route from 𝐴 to 𝑍 :

𝐴 – 𝐵 – 𝐷 – 𝐸 – 𝑍.

𝑆1 AQLs: 𝐵 78%, 𝐷 96%, 𝐸 70%.

𝑆2
Congestion detected in node

𝐷 (𝐴𝑄𝐿𝑑 > 𝐴𝑄𝐿𝑡ℎ𝑟𝑒𝑠).

𝑆3
New route found to 𝑍: 𝐴 – 𝐹 – 𝑍.

Add 𝐷 to the congested nodes list.

𝑆4

Restore nodes in the congested list

to their previous path if their 𝐴𝑄𝐿

value dropped below the

predefined threshold.

The tests results show that the controller switches routes
when the congestion condition is met, but still further research
is required with different conditions and evaluation of corner
cases to better assess the proposed method. In addition, other
considerations are necessary for real-world application, like
flow identification in exit nodes and predefined priorities in
queueing decisions.

V. CONCLUSIONS

The purpose of this paper is to explore the idea of
controlling congestion reacting to certain network conditions.
Taking advantage of the capabilities of a centralized network
controller allows for a wide range of possibilities but they still
require further research.

The goal of the proposed model is to detect congestion in
an SDN network by reading data from switches running any
variant of the RED algorithm, and use these data to act
accordingly, modifying the routes to avoid the congested
paths. The model finds a new path to the destination node
verifying that it does not suffer from congestion.

The model could be extended by adding smart capabilities.
These may range from modeling the network to consider more
parameters than just the AQL to building a neural network that
learns the traffic characteristics and adapt or change different
parameters and even predict future congestion conditions
considering data like peak hours, queue usage and congestion
history.

REFERENCES

[1] H. Kopetz, Internet of things. In Real-time systems, ed: Springer, 2011,
pp. 307-323.

[2] J. W. Guck and W. Kellerer: "Achieving end-to-end real-time Quality
of Service with Software Defined Networking" IEEE 3rd International
Conference on Cloud Networking (CloudNet), Luxembourg, 2014.

[3] D. E. Comer, Internetworking with TCP/IP, ed: Prentice Hall, 2005.

[4] S. Wu, X. Liu, & Z. Wang. “Enhanced random early detection
algorithm BACnet router for congestion avoidance”, 7th International
Conference on Advanced Communication Technology IEEE, ICACT
2005, vol. 2, pp. 1156-1159, 2005.

[5] L. Enhai, L. Yan & Ruimin, P. “An improved random early detection
algorithm based on flow prediction”, Second International Conference
on Intelligent Networks and Intelligent Systems IEEE, pp. 425-428,
2009.

[6] T. Szigeti & C. Hattingh, End-to-End QoS Network Design: Quality of
Service in LANs, WANs, and VPNs. Cisco Press, 2004

[7] A. Barakabitze, et al., "QoE Management of Multimedia Streaming
Services in Future Networks: A Tutorial and Survey," IEEE
Communications Surveys & Tutorials, vol. 22, no. 1, pp. 526-565,
Firstquarter 2020.

[8] Z. Cheng, X. Zhang, Y. Li, et. al., “Congestion-aware local reroute for
fast failure recovery in software-defined networks”, IEEE/OSA
Journal of Optical Communications and Networking, vol. 9, no 11, pp.
934-944, 2017.

[9] D. Thomas, Nadeau, K. Gray, SDN: Software Defined Networks: An
Authoritative Review of Network Programmability Technologies. ed:
O'Reilly Media; 1st edition, 2013.

[10] S. Azodolmolky, Software Defined Networking with Openflow, ed:
Packt Publishing, 2013.

[11] R. Scappini, R. Calcagno, F. Alarcon, S. Gramajo and D. Bolatti,
Trabajando con SDN Y OPENFLOW. 1ra Edición. E-book, ed: Sergio
Gramajo, 2019.

[12] Open Networking Foundation. OpenFlow Switch Specification.
https://www.opennetworking.org/software-defined-
standards/specifications/ , last access date: August, 2020.

[13] T. Hafeez, N. Ahmed, B. Ahmed & A. Malik. “Detection and
mitigation of congestion in SDN enabled data center networks: A
survey”. IEEE Access, vol. 6, pp. 1730-1740, 2017.

[14] Y. Lu, & S. Zhu. “SDN-based TCP congestion control in data center
networks”. IEEE 34th International Performance Computing and
Communications Conference (IPCCC), pp. 1-7, 2015.

[15] J. Bao, J. Wang, Q. Qi & J. Liao, “ECTCP: An Explicit Centralized
Congestion Avoidance for TCP in SDN-based Data Center”. IEEE
Symposium on Computers and Communications (ISCC), pp. 00347-
00353, 2018).

[16] Y. Lu, Z. Ling, S. Zhu, & L. Tang, “SDTCP: Towards datacenter TCP
congestion control with SDN for IoT applications”, Sensors, vol. 17,
no. 1, pp. 109, 2017.

[17] S. Hertiana, A. Kurniawan & U. Pasaribu, “Path associativity
centralized explicit congestion control (PACEC) for SDN”,
International Conference on Control, Electronics, Renewable Energy
and Communications (ICCREC), pp. 18-23, 2017.

[18] J. Gruen, M. Karl & T. Herfet, “Network supported congestion
avoidance in software-defined networks”, 19th IEEE International
Conference on Networks (ICON), pp. 1-6, 2013.

[19] M. Kao, B. Huang, S. Kao & H. Tseng, “An effective routing
mechanism for link congestion avoidance in software-defined
networking”, IEEE International Computer Symposium (ICS), pp.
154-158, 2016.

[20] S. Song, J. Lee, K. Son, H. Jung, & J. Lee. “A congestion avoidance
algorithm in SDN environment”. IEEE International Conference on
Information Networking (ICOIN), pp. 420-423, 2016.

[21] Z. Abdullah, I. Ahmad & I. Hussain, “Segment routing in software
defined networks: A survey”, IEEE Communications Surveys &
Tutorials, vol. 21, no. 1, pp. 464-486, 2018.

[22] S. Sezer et al., "Are we ready for SDN? Implementation challenges for
software-defined networks", IEEE Communications Magazine, vol.
51, no. 7, 2013.

[23] Open Networking Foundation, SDN Technical Specifications:
https://www.opennetworking.org/software-defined-standards/models-
apis/, last access date: June 2020.

[24] Open Networking Foundation, SDN Architecture, TR-502:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf, last
access date: June 2018.

[25] Recommendation ITU-T E.800, Definitions of terms related to QoS:
https://www.itu.int/rec/T-REC-E.800-200809-I, last access date: June
2018.

[26] Recommendation ITU-T E.804, QoS aspects for popular services in
mobile networks: https://itu.int/ITU-T/E.804, last access date: June
2018.

[27] Sally Floyd and Van Jacobson “Random Early Detection Gateways for
Congestion Avoidance” IEEE/ACM. Transactions on Networking, vol.
1, no. 4, pp. 397-413,1993.

[28] P. Singh, S. Gupta, Variable Length Virtual Output Queue Based Fuzzy
Adaptive RED for Congestion Control at Routers. In: Aluru S. et al.
(eds) Contemporary Computing. IC3, pp. 123-134, 2011.

[29] Mininet: An Instant Virtual Network on your laptop: http://mininet.org,
last access date: June 2020.

[30] GNS3: https://www.gns3.com, last access date: June 2020.

[31] Open vSwitch, Production Quality and Multilayer Open Virtual
Switch: https://www.openvswitch.org, last access date: June 2020.

